Abstract

We present a novel approach for generation at 213nm in continuous-wave, corresponding to the fifth harmonic of common 1064nm laser, in pure continuous-wave mode. The approach is scalable in output power. Starting from two infrared fiber laser sources, we demonstrated 0.456W output at 213nm.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Continuous-wave, single-frequency 229  nm laser source for laser cooling of cadmium atoms

Yushi Kaneda, J. M. Yarborough, Yevgeny Merzlyak, Atsushi Yamaguchi, Keitaro Hayashida, Noriaki Ohmae, and Hidetoshi Katori
Opt. Lett. 41(4) 705-708 (2016)

Efficient 2nd and 4th harmonic generation of a single-frequency, continuous-wave fiber amplifier

Thomas Südmeyer, Yutaka Imai, Hisashi Masuda, Naoya Eguchi, Masaki Saito, and Shigeo Kubota
Opt. Express 16(3) 1546-1551 (2008)

High efficient generation of over 1  Watt 509  nm laser beam by a ring cavity frequency doubler with periodically poled KTiOPO4

Gang Li, Shaokang Li, Xingchang Wang, Pengfei Zhang, and Tiancai Zhang
Appl. Opt. 56(1) 55-60 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Sakuma, Y. Asakawa, T. Imahoko, and M. Obara, “Generation of all-solid-state, high-power continuous-wave 213-nm light based on sum-frequency mixing in CsLiB6O10,” Opt. Lett. 29(10), 1096–1098 (2004).
    [Crossref] [PubMed]
  2. Y. Kaneda, U.S. Patent 9,429,813 “Deep ultraviolet laser generation device and light source device,” (2016).
  3. D. Gapontsev, N. Platonov, M. Meleshkevich, O. Mishechkin, O. Shkurikhin, S. Agger, P. Varming, and J. H. Poylsen, “20W single-frequency fiber laser operating at 1.93 um,” in Conference on Lasers and Electro-Optics, 2007, paper CFI5 (2007).
    [Crossref]
  4. Y. Jeong, J. K. Sahu, D. B. S. Soh, C. A. Codemard, and J. Nilsson, “High-power tunable single-frequency single-mode erbium:ytterbium codoped large-core fiber master-oscillator power amplifier source,” Opt. Lett. 30(22), 2997–2999 (2005).
    [Crossref] [PubMed]
  5. Y. Kaneda and S. Kubota, “Theoretical treatment, simulation, and experiments of doubly resonant sum-frequency mixing in an external resonator,” Appl. Opt. 36(30), 7766–7775 (1997).
    [Crossref] [PubMed]
  6. K. Kato, N. Umemura, and T. Mikami, “Sellmeier and thermo-optic dispersion formulas for β-BaB2O4 (revisited),” Proc. SPIE 7582, 75821L (2010).
    [Crossref]

2010 (1)

K. Kato, N. Umemura, and T. Mikami, “Sellmeier and thermo-optic dispersion formulas for β-BaB2O4 (revisited),” Proc. SPIE 7582, 75821L (2010).
[Crossref]

2005 (1)

Y. Jeong, J. K. Sahu, D. B. S. Soh, C. A. Codemard, and J. Nilsson, “High-power tunable single-frequency single-mode erbium:ytterbium codoped large-core fiber master-oscillator power amplifier source,” Opt. Lett. 30(22), 2997–2999 (2005).
[Crossref] [PubMed]

2004 (1)

J. Sakuma, Y. Asakawa, T. Imahoko, and M. Obara, “Generation of all-solid-state, high-power continuous-wave 213-nm light based on sum-frequency mixing in CsLiB6O10,” Opt. Lett. 29(10), 1096–1098 (2004).
[Crossref] [PubMed]

1997 (1)

Y. Kaneda and S. Kubota, “Theoretical treatment, simulation, and experiments of doubly resonant sum-frequency mixing in an external resonator,” Appl. Opt. 36(30), 7766–7775 (1997).
[Crossref] [PubMed]

Agger, S.

D. Gapontsev, N. Platonov, M. Meleshkevich, O. Mishechkin, O. Shkurikhin, S. Agger, P. Varming, and J. H. Poylsen, “20W single-frequency fiber laser operating at 1.93 um,” in Conference on Lasers and Electro-Optics, 2007, paper CFI5 (2007).
[Crossref]

Asakawa, Y.

J. Sakuma, Y. Asakawa, T. Imahoko, and M. Obara, “Generation of all-solid-state, high-power continuous-wave 213-nm light based on sum-frequency mixing in CsLiB6O10,” Opt. Lett. 29(10), 1096–1098 (2004).
[Crossref] [PubMed]

Codemard, C. A.

Y. Jeong, J. K. Sahu, D. B. S. Soh, C. A. Codemard, and J. Nilsson, “High-power tunable single-frequency single-mode erbium:ytterbium codoped large-core fiber master-oscillator power amplifier source,” Opt. Lett. 30(22), 2997–2999 (2005).
[Crossref] [PubMed]

Gapontsev, D.

D. Gapontsev, N. Platonov, M. Meleshkevich, O. Mishechkin, O. Shkurikhin, S. Agger, P. Varming, and J. H. Poylsen, “20W single-frequency fiber laser operating at 1.93 um,” in Conference on Lasers and Electro-Optics, 2007, paper CFI5 (2007).
[Crossref]

Imahoko, T.

J. Sakuma, Y. Asakawa, T. Imahoko, and M. Obara, “Generation of all-solid-state, high-power continuous-wave 213-nm light based on sum-frequency mixing in CsLiB6O10,” Opt. Lett. 29(10), 1096–1098 (2004).
[Crossref] [PubMed]

Jeong, Y.

Y. Jeong, J. K. Sahu, D. B. S. Soh, C. A. Codemard, and J. Nilsson, “High-power tunable single-frequency single-mode erbium:ytterbium codoped large-core fiber master-oscillator power amplifier source,” Opt. Lett. 30(22), 2997–2999 (2005).
[Crossref] [PubMed]

Kaneda, Y.

Y. Kaneda and S. Kubota, “Theoretical treatment, simulation, and experiments of doubly resonant sum-frequency mixing in an external resonator,” Appl. Opt. 36(30), 7766–7775 (1997).
[Crossref] [PubMed]

Kato, K.

K. Kato, N. Umemura, and T. Mikami, “Sellmeier and thermo-optic dispersion formulas for β-BaB2O4 (revisited),” Proc. SPIE 7582, 75821L (2010).
[Crossref]

Kubota, S.

Y. Kaneda and S. Kubota, “Theoretical treatment, simulation, and experiments of doubly resonant sum-frequency mixing in an external resonator,” Appl. Opt. 36(30), 7766–7775 (1997).
[Crossref] [PubMed]

Meleshkevich, M.

D. Gapontsev, N. Platonov, M. Meleshkevich, O. Mishechkin, O. Shkurikhin, S. Agger, P. Varming, and J. H. Poylsen, “20W single-frequency fiber laser operating at 1.93 um,” in Conference on Lasers and Electro-Optics, 2007, paper CFI5 (2007).
[Crossref]

Mikami, T.

K. Kato, N. Umemura, and T. Mikami, “Sellmeier and thermo-optic dispersion formulas for β-BaB2O4 (revisited),” Proc. SPIE 7582, 75821L (2010).
[Crossref]

Mishechkin, O.

D. Gapontsev, N. Platonov, M. Meleshkevich, O. Mishechkin, O. Shkurikhin, S. Agger, P. Varming, and J. H. Poylsen, “20W single-frequency fiber laser operating at 1.93 um,” in Conference on Lasers and Electro-Optics, 2007, paper CFI5 (2007).
[Crossref]

Nilsson, J.

Y. Jeong, J. K. Sahu, D. B. S. Soh, C. A. Codemard, and J. Nilsson, “High-power tunable single-frequency single-mode erbium:ytterbium codoped large-core fiber master-oscillator power amplifier source,” Opt. Lett. 30(22), 2997–2999 (2005).
[Crossref] [PubMed]

Obara, M.

J. Sakuma, Y. Asakawa, T. Imahoko, and M. Obara, “Generation of all-solid-state, high-power continuous-wave 213-nm light based on sum-frequency mixing in CsLiB6O10,” Opt. Lett. 29(10), 1096–1098 (2004).
[Crossref] [PubMed]

Platonov, N.

D. Gapontsev, N. Platonov, M. Meleshkevich, O. Mishechkin, O. Shkurikhin, S. Agger, P. Varming, and J. H. Poylsen, “20W single-frequency fiber laser operating at 1.93 um,” in Conference on Lasers and Electro-Optics, 2007, paper CFI5 (2007).
[Crossref]

Poylsen, J. H.

D. Gapontsev, N. Platonov, M. Meleshkevich, O. Mishechkin, O. Shkurikhin, S. Agger, P. Varming, and J. H. Poylsen, “20W single-frequency fiber laser operating at 1.93 um,” in Conference on Lasers and Electro-Optics, 2007, paper CFI5 (2007).
[Crossref]

Sahu, J. K.

Y. Jeong, J. K. Sahu, D. B. S. Soh, C. A. Codemard, and J. Nilsson, “High-power tunable single-frequency single-mode erbium:ytterbium codoped large-core fiber master-oscillator power amplifier source,” Opt. Lett. 30(22), 2997–2999 (2005).
[Crossref] [PubMed]

Sakuma, J.

J. Sakuma, Y. Asakawa, T. Imahoko, and M. Obara, “Generation of all-solid-state, high-power continuous-wave 213-nm light based on sum-frequency mixing in CsLiB6O10,” Opt. Lett. 29(10), 1096–1098 (2004).
[Crossref] [PubMed]

Shkurikhin, O.

D. Gapontsev, N. Platonov, M. Meleshkevich, O. Mishechkin, O. Shkurikhin, S. Agger, P. Varming, and J. H. Poylsen, “20W single-frequency fiber laser operating at 1.93 um,” in Conference on Lasers and Electro-Optics, 2007, paper CFI5 (2007).
[Crossref]

Soh, D. B. S.

Y. Jeong, J. K. Sahu, D. B. S. Soh, C. A. Codemard, and J. Nilsson, “High-power tunable single-frequency single-mode erbium:ytterbium codoped large-core fiber master-oscillator power amplifier source,” Opt. Lett. 30(22), 2997–2999 (2005).
[Crossref] [PubMed]

Umemura, N.

K. Kato, N. Umemura, and T. Mikami, “Sellmeier and thermo-optic dispersion formulas for β-BaB2O4 (revisited),” Proc. SPIE 7582, 75821L (2010).
[Crossref]

Varming, P.

D. Gapontsev, N. Platonov, M. Meleshkevich, O. Mishechkin, O. Shkurikhin, S. Agger, P. Varming, and J. H. Poylsen, “20W single-frequency fiber laser operating at 1.93 um,” in Conference on Lasers and Electro-Optics, 2007, paper CFI5 (2007).
[Crossref]

Appl. Opt. (1)

Y. Kaneda and S. Kubota, “Theoretical treatment, simulation, and experiments of doubly resonant sum-frequency mixing in an external resonator,” Appl. Opt. 36(30), 7766–7775 (1997).
[Crossref] [PubMed]

Opt. Lett. (2)

J. Sakuma, Y. Asakawa, T. Imahoko, and M. Obara, “Generation of all-solid-state, high-power continuous-wave 213-nm light based on sum-frequency mixing in CsLiB6O10,” Opt. Lett. 29(10), 1096–1098 (2004).
[Crossref] [PubMed]

Y. Jeong, J. K. Sahu, D. B. S. Soh, C. A. Codemard, and J. Nilsson, “High-power tunable single-frequency single-mode erbium:ytterbium codoped large-core fiber master-oscillator power amplifier source,” Opt. Lett. 30(22), 2997–2999 (2005).
[Crossref] [PubMed]

Proc. SPIE (1)

K. Kato, N. Umemura, and T. Mikami, “Sellmeier and thermo-optic dispersion formulas for β-BaB2O4 (revisited),” Proc. SPIE 7582, 75821L (2010).
[Crossref]

Other (2)

Y. Kaneda, U.S. Patent 9,429,813 “Deep ultraviolet laser generation device and light source device,” (2016).

D. Gapontsev, N. Platonov, M. Meleshkevich, O. Mishechkin, O. Shkurikhin, S. Agger, P. Varming, and J. H. Poylsen, “20W single-frequency fiber laser operating at 1.93 um,” in Conference on Lasers and Electro-Optics, 2007, paper CFI5 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the continuous-wave 213nm laser. TDFA: Thulium-Doped Fiber Amplifier, EDFA: Erbium-Doped Fiber Amplifier, PPsLT: Periodically-Poled stoichiometric Lithium Tantalate, LBO: LiB3O5, BBO: β-BaB2O4.
Fig. 2
Fig. 2 Observation of DRSFM experiment on an oscilloscope, showing the transmission from one of the HR mirrors, reflection at 1907nm and 1540nm. 3 screenshots from different situations are stitched together; I, cavity and 1540nm frequency are both scanned, II, cavity is locked to the 1907nm and 1540nm frequency is scanned, III, 1540nm frequency is locked to the cavity, realizing simultaneous resonance of two wavelength.
Fig. 3
Fig. 3 (a) input-output characteristics of DRSFM at 852nm and (b) efficiency from total input power to 852nm.
Fig. 4
Fig. 4 Input-output characteristic of 426nm generation.
Fig. 5
Fig. 5 Schematic of the second external doubler for 213nm generation. HR1-3: high reflectors for 426nm, HR3 is mounted on a PZT, IC: input coupler, BS: dichroic Brewster beam splitter.
Fig. 6
Fig. 6 Input-Output characteristics of 213nm generation.

Metrics