Abstract

Optically pumped magnetometers (OPMs) that are equipped with hybrid cells of K and Rb have been studied for improving their sensitivity and biomagnetic field measurements. The densities of the two alkali metal atoms and their density ratio are especially important for hybrid OPMs. In this study, we fabricated five hybrid cells using different K and Rb atom densities and measured the output signal intensities by controlling their cell temperatures. The output signal intensity of OPMs has different temperature characteristics depending on the density ratios of K and Rb atoms. The densities of the two atoms at any temperature were estimated based on the Raoult’s law, and we compared the experimental results with the calculated results based on the Bloch equations. Furthermore, the numerical calculations that were obtained based on the Bloch equation by incorporating a relaxation term due to the absorption of the probe beam exhibited good agreement with the experimental results. Finally, in case of nK/nRb = 4.85, it is estimated that a sensitivity of 1.6 fT/Hz1/2 can be achieved by increasing the temperature to 270 °C.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
In-situ measurement of the density ratio of K-Rb hybrid vapor cell using spin-exchange collision mixing of the K and Rb light shifts

Kai Wei, Tian Zhao, Xiujie Fang, Yueyang Zhai, Hairong Li, and Wei Quan
Opt. Express 27(11) 16169-16183 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. Hämäläinen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, “Magnetoencephalography theory, instrumentation, and applications to noninvasive studies of the working human brain,” Rev. Mod. Phys. 65, 413–497 (1993).
    [Crossref]
  2. H. C. Yang, S. Y. Wang, C. H. Chen, J. T. Jeng, J. H. Chen, and H. E. Horng, “Research and Some Applications of High-Tc SQUIDs,” J. Low Temp. Phys. 131, 509–520 (2003).
    [Crossref]
  3. J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. A 89, 130801 (2002).
  4. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596–599 (2003).
    [Crossref] [PubMed]
  5. H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97, 151110 (2010).
    [Crossref]
  6. K. Nishi, Y. Ito, and T. Kobayashi, “High-sensitivity multi-channel probe beam detector towards MEG measurements of small animals with an optically pumped K-Rb hybrid magnetometer,” Opt. Express 26, 1988–1996 (2018).
    [Crossref] [PubMed]
  7. Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Effect of spatial homogeneity of spin polarization on magnetic field response of an optically pumped atomic magnetometer using a hybrid cell of K and Rb atoms,” IEEE Trans. Magn. 48, 3715–3718 (2012).
    [Crossref]
  8. Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Sensitivity Improvement of Spin-Exchange Relaxation Free Atomic Magnetometers by Hybrid Optical Pumping of Potassium and Rubidium,” IEEE Trans. Magn. 47, 3550–3553 (2011).
    [Crossref]
  9. J. Liu, D. Jing, L. Wang, Y. Li, W. Quan, J. Fang, and W. Liu, “The polarization and the fundamental sensitivity of 39K (133Cs)-85Rb-4He hybrid optical pumping spin exchange relaxation free atomic magnetometers,” Sci. Rep. 7, 6776 (2017).
    [Crossref]
  10. M. V. Romalis, “Hybrid Optical Pumping of Optically Dense Alkali-Metal Vapor without Quenching Gas,” Phys. Rev. Lett. 105, 243001 (2010).
    [Crossref]
  11. Y. Ito, D. Sato, K. Kamada, and T. Kobayashi, “Optimal densities of alkali metal atoms in an optically pumped K-Rb hybrid atomic magnetometer considering the spatial distribution of spin polarization,” Opt. Express 24, 15391–15402 (2016).
    [Crossref] [PubMed]
  12. J. Fang, T. Wang, H. Zhang, Y. Li, and S. Zou, “Optimization of spin-exchange relaxation-free magnetometer based on potassium and rubidium hybrid optical pumping,” Rev. Sci. Instrum. 83, 123104 (2014).
    [Crossref]
  13. Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Rate-equation approach to optimal density ratio of K-Rb hybrid cells for optically pumped atomic magnetometers,” Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (IEEE, 2013), pp. 3254–3257
  14. C. B. Alcock, V. P. Itkin, and M. K. Horrigan, “Vapour Pressure Equations for the Metallic Elements: 298–2500K,” Can. Metall. Q. 23, 309–313 (1984).
    [Crossref]
  15. E. Babcock, I. Nelson, S. Kadlecek, B. Driehuys, L. W. Anderson, F. W. Hersman, and T. G. Walker, “Hybrid Spin-Exchange Optical Pumping of 3He,” Phys. Rev. Lett. 91, 123003 (2003).
    [Crossref] [PubMed]
  16. J. Fang, T. Wang, W. Quan, H. Yuan, H. Zhang, Y. Li, and S. Zou, “In situ magnetic compesation for potassium spin-exchange relation-free magnetometer considering probe beam pumping effect,” Rev. Sci. Instrum. 85, 063108 (2014).
    [Crossref]
  17. M. Auzinsh, D. Budker, D. F. Kimball, S. M. Rochester, J. E. Stalnaker, A. O. Sushkov, and V. V. Yashchuk, “Can a Quantum Nondemolition Measurement Improve the Sensitivity of an Atomic Magnetometer?” Phys. Rev. Lett. 93, 173002 (2004).
    [Crossref] [PubMed]

2018 (1)

K. Nishi, Y. Ito, and T. Kobayashi, “High-sensitivity multi-channel probe beam detector towards MEG measurements of small animals with an optically pumped K-Rb hybrid magnetometer,” Opt. Express 26, 1988–1996 (2018).
[Crossref] [PubMed]

2017 (1)

J. Liu, D. Jing, L. Wang, Y. Li, W. Quan, J. Fang, and W. Liu, “The polarization and the fundamental sensitivity of 39K (133Cs)-85Rb-4He hybrid optical pumping spin exchange relaxation free atomic magnetometers,” Sci. Rep. 7, 6776 (2017).
[Crossref]

2016 (1)

Y. Ito, D. Sato, K. Kamada, and T. Kobayashi, “Optimal densities of alkali metal atoms in an optically pumped K-Rb hybrid atomic magnetometer considering the spatial distribution of spin polarization,” Opt. Express 24, 15391–15402 (2016).
[Crossref] [PubMed]

2014 (2)

J. Fang, T. Wang, H. Zhang, Y. Li, and S. Zou, “Optimization of spin-exchange relaxation-free magnetometer based on potassium and rubidium hybrid optical pumping,” Rev. Sci. Instrum. 83, 123104 (2014).
[Crossref]

J. Fang, T. Wang, W. Quan, H. Yuan, H. Zhang, Y. Li, and S. Zou, “In situ magnetic compesation for potassium spin-exchange relation-free magnetometer considering probe beam pumping effect,” Rev. Sci. Instrum. 85, 063108 (2014).
[Crossref]

2012 (1)

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Effect of spatial homogeneity of spin polarization on magnetic field response of an optically pumped atomic magnetometer using a hybrid cell of K and Rb atoms,” IEEE Trans. Magn. 48, 3715–3718 (2012).
[Crossref]

2011 (1)

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Sensitivity Improvement of Spin-Exchange Relaxation Free Atomic Magnetometers by Hybrid Optical Pumping of Potassium and Rubidium,” IEEE Trans. Magn. 47, 3550–3553 (2011).
[Crossref]

2010 (2)

M. V. Romalis, “Hybrid Optical Pumping of Optically Dense Alkali-Metal Vapor without Quenching Gas,” Phys. Rev. Lett. 105, 243001 (2010).
[Crossref]

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97, 151110 (2010).
[Crossref]

2004 (1)

M. Auzinsh, D. Budker, D. F. Kimball, S. M. Rochester, J. E. Stalnaker, A. O. Sushkov, and V. V. Yashchuk, “Can a Quantum Nondemolition Measurement Improve the Sensitivity of an Atomic Magnetometer?” Phys. Rev. Lett. 93, 173002 (2004).
[Crossref] [PubMed]

2003 (3)

E. Babcock, I. Nelson, S. Kadlecek, B. Driehuys, L. W. Anderson, F. W. Hersman, and T. G. Walker, “Hybrid Spin-Exchange Optical Pumping of 3He,” Phys. Rev. Lett. 91, 123003 (2003).
[Crossref] [PubMed]

H. C. Yang, S. Y. Wang, C. H. Chen, J. T. Jeng, J. H. Chen, and H. E. Horng, “Research and Some Applications of High-Tc SQUIDs,” J. Low Temp. Phys. 131, 509–520 (2003).
[Crossref]

K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596–599 (2003).
[Crossref] [PubMed]

2002 (1)

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. A 89, 130801 (2002).

1993 (1)

M. Hämäläinen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, “Magnetoencephalography theory, instrumentation, and applications to noninvasive studies of the working human brain,” Rev. Mod. Phys. 65, 413–497 (1993).
[Crossref]

1984 (1)

C. B. Alcock, V. P. Itkin, and M. K. Horrigan, “Vapour Pressure Equations for the Metallic Elements: 298–2500K,” Can. Metall. Q. 23, 309–313 (1984).
[Crossref]

Alcock, C. B.

C. B. Alcock, V. P. Itkin, and M. K. Horrigan, “Vapour Pressure Equations for the Metallic Elements: 298–2500K,” Can. Metall. Q. 23, 309–313 (1984).
[Crossref]

Allred, J. C.

K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596–599 (2003).
[Crossref] [PubMed]

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. A 89, 130801 (2002).

Anderson, L. W.

E. Babcock, I. Nelson, S. Kadlecek, B. Driehuys, L. W. Anderson, F. W. Hersman, and T. G. Walker, “Hybrid Spin-Exchange Optical Pumping of 3He,” Phys. Rev. Lett. 91, 123003 (2003).
[Crossref] [PubMed]

Auzinsh, M.

M. Auzinsh, D. Budker, D. F. Kimball, S. M. Rochester, J. E. Stalnaker, A. O. Sushkov, and V. V. Yashchuk, “Can a Quantum Nondemolition Measurement Improve the Sensitivity of an Atomic Magnetometer?” Phys. Rev. Lett. 93, 173002 (2004).
[Crossref] [PubMed]

Babcock, E.

E. Babcock, I. Nelson, S. Kadlecek, B. Driehuys, L. W. Anderson, F. W. Hersman, and T. G. Walker, “Hybrid Spin-Exchange Optical Pumping of 3He,” Phys. Rev. Lett. 91, 123003 (2003).
[Crossref] [PubMed]

Budker, D.

M. Auzinsh, D. Budker, D. F. Kimball, S. M. Rochester, J. E. Stalnaker, A. O. Sushkov, and V. V. Yashchuk, “Can a Quantum Nondemolition Measurement Improve the Sensitivity of an Atomic Magnetometer?” Phys. Rev. Lett. 93, 173002 (2004).
[Crossref] [PubMed]

Chen, C. H.

H. C. Yang, S. Y. Wang, C. H. Chen, J. T. Jeng, J. H. Chen, and H. E. Horng, “Research and Some Applications of High-Tc SQUIDs,” J. Low Temp. Phys. 131, 509–520 (2003).
[Crossref]

Chen, J. H.

H. C. Yang, S. Y. Wang, C. H. Chen, J. T. Jeng, J. H. Chen, and H. E. Horng, “Research and Some Applications of High-Tc SQUIDs,” J. Low Temp. Phys. 131, 509–520 (2003).
[Crossref]

Dang, H. B.

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97, 151110 (2010).
[Crossref]

Driehuys, B.

E. Babcock, I. Nelson, S. Kadlecek, B. Driehuys, L. W. Anderson, F. W. Hersman, and T. G. Walker, “Hybrid Spin-Exchange Optical Pumping of 3He,” Phys. Rev. Lett. 91, 123003 (2003).
[Crossref] [PubMed]

Fang, J.

J. Liu, D. Jing, L. Wang, Y. Li, W. Quan, J. Fang, and W. Liu, “The polarization and the fundamental sensitivity of 39K (133Cs)-85Rb-4He hybrid optical pumping spin exchange relaxation free atomic magnetometers,” Sci. Rep. 7, 6776 (2017).
[Crossref]

J. Fang, T. Wang, H. Zhang, Y. Li, and S. Zou, “Optimization of spin-exchange relaxation-free magnetometer based on potassium and rubidium hybrid optical pumping,” Rev. Sci. Instrum. 83, 123104 (2014).
[Crossref]

J. Fang, T. Wang, W. Quan, H. Yuan, H. Zhang, Y. Li, and S. Zou, “In situ magnetic compesation for potassium spin-exchange relation-free magnetometer considering probe beam pumping effect,” Rev. Sci. Instrum. 85, 063108 (2014).
[Crossref]

Hämäläinen, M.

M. Hämäläinen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, “Magnetoencephalography theory, instrumentation, and applications to noninvasive studies of the working human brain,” Rev. Mod. Phys. 65, 413–497 (1993).
[Crossref]

Hari, R.

M. Hämäläinen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, “Magnetoencephalography theory, instrumentation, and applications to noninvasive studies of the working human brain,” Rev. Mod. Phys. 65, 413–497 (1993).
[Crossref]

Hersman, F. W.

E. Babcock, I. Nelson, S. Kadlecek, B. Driehuys, L. W. Anderson, F. W. Hersman, and T. G. Walker, “Hybrid Spin-Exchange Optical Pumping of 3He,” Phys. Rev. Lett. 91, 123003 (2003).
[Crossref] [PubMed]

Horng, H. E.

H. C. Yang, S. Y. Wang, C. H. Chen, J. T. Jeng, J. H. Chen, and H. E. Horng, “Research and Some Applications of High-Tc SQUIDs,” J. Low Temp. Phys. 131, 509–520 (2003).
[Crossref]

Horrigan, M. K.

C. B. Alcock, V. P. Itkin, and M. K. Horrigan, “Vapour Pressure Equations for the Metallic Elements: 298–2500K,” Can. Metall. Q. 23, 309–313 (1984).
[Crossref]

Ilmoniemi, R. J.

M. Hämäläinen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, “Magnetoencephalography theory, instrumentation, and applications to noninvasive studies of the working human brain,” Rev. Mod. Phys. 65, 413–497 (1993).
[Crossref]

Itkin, V. P.

C. B. Alcock, V. P. Itkin, and M. K. Horrigan, “Vapour Pressure Equations for the Metallic Elements: 298–2500K,” Can. Metall. Q. 23, 309–313 (1984).
[Crossref]

Ito, Y.

K. Nishi, Y. Ito, and T. Kobayashi, “High-sensitivity multi-channel probe beam detector towards MEG measurements of small animals with an optically pumped K-Rb hybrid magnetometer,” Opt. Express 26, 1988–1996 (2018).
[Crossref] [PubMed]

Y. Ito, D. Sato, K. Kamada, and T. Kobayashi, “Optimal densities of alkali metal atoms in an optically pumped K-Rb hybrid atomic magnetometer considering the spatial distribution of spin polarization,” Opt. Express 24, 15391–15402 (2016).
[Crossref] [PubMed]

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Effect of spatial homogeneity of spin polarization on magnetic field response of an optically pumped atomic magnetometer using a hybrid cell of K and Rb atoms,” IEEE Trans. Magn. 48, 3715–3718 (2012).
[Crossref]

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Sensitivity Improvement of Spin-Exchange Relaxation Free Atomic Magnetometers by Hybrid Optical Pumping of Potassium and Rubidium,” IEEE Trans. Magn. 47, 3550–3553 (2011).
[Crossref]

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Rate-equation approach to optimal density ratio of K-Rb hybrid cells for optically pumped atomic magnetometers,” Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (IEEE, 2013), pp. 3254–3257

Jeng, J. T.

H. C. Yang, S. Y. Wang, C. H. Chen, J. T. Jeng, J. H. Chen, and H. E. Horng, “Research and Some Applications of High-Tc SQUIDs,” J. Low Temp. Phys. 131, 509–520 (2003).
[Crossref]

Jing, D.

J. Liu, D. Jing, L. Wang, Y. Li, W. Quan, J. Fang, and W. Liu, “The polarization and the fundamental sensitivity of 39K (133Cs)-85Rb-4He hybrid optical pumping spin exchange relaxation free atomic magnetometers,” Sci. Rep. 7, 6776 (2017).
[Crossref]

Kadlecek, S.

E. Babcock, I. Nelson, S. Kadlecek, B. Driehuys, L. W. Anderson, F. W. Hersman, and T. G. Walker, “Hybrid Spin-Exchange Optical Pumping of 3He,” Phys. Rev. Lett. 91, 123003 (2003).
[Crossref] [PubMed]

Kamada, K.

Y. Ito, D. Sato, K. Kamada, and T. Kobayashi, “Optimal densities of alkali metal atoms in an optically pumped K-Rb hybrid atomic magnetometer considering the spatial distribution of spin polarization,” Opt. Express 24, 15391–15402 (2016).
[Crossref] [PubMed]

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Effect of spatial homogeneity of spin polarization on magnetic field response of an optically pumped atomic magnetometer using a hybrid cell of K and Rb atoms,” IEEE Trans. Magn. 48, 3715–3718 (2012).
[Crossref]

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Sensitivity Improvement of Spin-Exchange Relaxation Free Atomic Magnetometers by Hybrid Optical Pumping of Potassium and Rubidium,” IEEE Trans. Magn. 47, 3550–3553 (2011).
[Crossref]

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Rate-equation approach to optimal density ratio of K-Rb hybrid cells for optically pumped atomic magnetometers,” Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (IEEE, 2013), pp. 3254–3257

Kimball, D. F.

M. Auzinsh, D. Budker, D. F. Kimball, S. M. Rochester, J. E. Stalnaker, A. O. Sushkov, and V. V. Yashchuk, “Can a Quantum Nondemolition Measurement Improve the Sensitivity of an Atomic Magnetometer?” Phys. Rev. Lett. 93, 173002 (2004).
[Crossref] [PubMed]

Knuutila, J.

M. Hämäläinen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, “Magnetoencephalography theory, instrumentation, and applications to noninvasive studies of the working human brain,” Rev. Mod. Phys. 65, 413–497 (1993).
[Crossref]

Kobayashi, T.

K. Nishi, Y. Ito, and T. Kobayashi, “High-sensitivity multi-channel probe beam detector towards MEG measurements of small animals with an optically pumped K-Rb hybrid magnetometer,” Opt. Express 26, 1988–1996 (2018).
[Crossref] [PubMed]

Y. Ito, D. Sato, K. Kamada, and T. Kobayashi, “Optimal densities of alkali metal atoms in an optically pumped K-Rb hybrid atomic magnetometer considering the spatial distribution of spin polarization,” Opt. Express 24, 15391–15402 (2016).
[Crossref] [PubMed]

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Effect of spatial homogeneity of spin polarization on magnetic field response of an optically pumped atomic magnetometer using a hybrid cell of K and Rb atoms,” IEEE Trans. Magn. 48, 3715–3718 (2012).
[Crossref]

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Sensitivity Improvement of Spin-Exchange Relaxation Free Atomic Magnetometers by Hybrid Optical Pumping of Potassium and Rubidium,” IEEE Trans. Magn. 47, 3550–3553 (2011).
[Crossref]

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Rate-equation approach to optimal density ratio of K-Rb hybrid cells for optically pumped atomic magnetometers,” Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (IEEE, 2013), pp. 3254–3257

Kominis, K.

K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596–599 (2003).
[Crossref] [PubMed]

Kornack, T. W.

K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596–599 (2003).
[Crossref] [PubMed]

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. A 89, 130801 (2002).

Li, Y.

J. Liu, D. Jing, L. Wang, Y. Li, W. Quan, J. Fang, and W. Liu, “The polarization and the fundamental sensitivity of 39K (133Cs)-85Rb-4He hybrid optical pumping spin exchange relaxation free atomic magnetometers,” Sci. Rep. 7, 6776 (2017).
[Crossref]

J. Fang, T. Wang, H. Zhang, Y. Li, and S. Zou, “Optimization of spin-exchange relaxation-free magnetometer based on potassium and rubidium hybrid optical pumping,” Rev. Sci. Instrum. 83, 123104 (2014).
[Crossref]

J. Fang, T. Wang, W. Quan, H. Yuan, H. Zhang, Y. Li, and S. Zou, “In situ magnetic compesation for potassium spin-exchange relation-free magnetometer considering probe beam pumping effect,” Rev. Sci. Instrum. 85, 063108 (2014).
[Crossref]

Liu, J.

J. Liu, D. Jing, L. Wang, Y. Li, W. Quan, J. Fang, and W. Liu, “The polarization and the fundamental sensitivity of 39K (133Cs)-85Rb-4He hybrid optical pumping spin exchange relaxation free atomic magnetometers,” Sci. Rep. 7, 6776 (2017).
[Crossref]

Liu, W.

J. Liu, D. Jing, L. Wang, Y. Li, W. Quan, J. Fang, and W. Liu, “The polarization and the fundamental sensitivity of 39K (133Cs)-85Rb-4He hybrid optical pumping spin exchange relaxation free atomic magnetometers,” Sci. Rep. 7, 6776 (2017).
[Crossref]

Lounasmaa, O. V.

M. Hämäläinen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, “Magnetoencephalography theory, instrumentation, and applications to noninvasive studies of the working human brain,” Rev. Mod. Phys. 65, 413–497 (1993).
[Crossref]

Lyman, R. N.

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. A 89, 130801 (2002).

Maloof, A. C.

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97, 151110 (2010).
[Crossref]

Nelson, I.

E. Babcock, I. Nelson, S. Kadlecek, B. Driehuys, L. W. Anderson, F. W. Hersman, and T. G. Walker, “Hybrid Spin-Exchange Optical Pumping of 3He,” Phys. Rev. Lett. 91, 123003 (2003).
[Crossref] [PubMed]

Nishi, K.

K. Nishi, Y. Ito, and T. Kobayashi, “High-sensitivity multi-channel probe beam detector towards MEG measurements of small animals with an optically pumped K-Rb hybrid magnetometer,” Opt. Express 26, 1988–1996 (2018).
[Crossref] [PubMed]

Ohnishi, H.

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Effect of spatial homogeneity of spin polarization on magnetic field response of an optically pumped atomic magnetometer using a hybrid cell of K and Rb atoms,” IEEE Trans. Magn. 48, 3715–3718 (2012).
[Crossref]

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Sensitivity Improvement of Spin-Exchange Relaxation Free Atomic Magnetometers by Hybrid Optical Pumping of Potassium and Rubidium,” IEEE Trans. Magn. 47, 3550–3553 (2011).
[Crossref]

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Rate-equation approach to optimal density ratio of K-Rb hybrid cells for optically pumped atomic magnetometers,” Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (IEEE, 2013), pp. 3254–3257

Quan, W.

J. Liu, D. Jing, L. Wang, Y. Li, W. Quan, J. Fang, and W. Liu, “The polarization and the fundamental sensitivity of 39K (133Cs)-85Rb-4He hybrid optical pumping spin exchange relaxation free atomic magnetometers,” Sci. Rep. 7, 6776 (2017).
[Crossref]

J. Fang, T. Wang, W. Quan, H. Yuan, H. Zhang, Y. Li, and S. Zou, “In situ magnetic compesation for potassium spin-exchange relation-free magnetometer considering probe beam pumping effect,” Rev. Sci. Instrum. 85, 063108 (2014).
[Crossref]

Rochester, S. M.

M. Auzinsh, D. Budker, D. F. Kimball, S. M. Rochester, J. E. Stalnaker, A. O. Sushkov, and V. V. Yashchuk, “Can a Quantum Nondemolition Measurement Improve the Sensitivity of an Atomic Magnetometer?” Phys. Rev. Lett. 93, 173002 (2004).
[Crossref] [PubMed]

Romalis, M. V.

M. V. Romalis, “Hybrid Optical Pumping of Optically Dense Alkali-Metal Vapor without Quenching Gas,” Phys. Rev. Lett. 105, 243001 (2010).
[Crossref]

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97, 151110 (2010).
[Crossref]

K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596–599 (2003).
[Crossref] [PubMed]

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. A 89, 130801 (2002).

Sato, D.

Y. Ito, D. Sato, K. Kamada, and T. Kobayashi, “Optimal densities of alkali metal atoms in an optically pumped K-Rb hybrid atomic magnetometer considering the spatial distribution of spin polarization,” Opt. Express 24, 15391–15402 (2016).
[Crossref] [PubMed]

Stalnaker, J. E.

M. Auzinsh, D. Budker, D. F. Kimball, S. M. Rochester, J. E. Stalnaker, A. O. Sushkov, and V. V. Yashchuk, “Can a Quantum Nondemolition Measurement Improve the Sensitivity of an Atomic Magnetometer?” Phys. Rev. Lett. 93, 173002 (2004).
[Crossref] [PubMed]

Sushkov, A. O.

M. Auzinsh, D. Budker, D. F. Kimball, S. M. Rochester, J. E. Stalnaker, A. O. Sushkov, and V. V. Yashchuk, “Can a Quantum Nondemolition Measurement Improve the Sensitivity of an Atomic Magnetometer?” Phys. Rev. Lett. 93, 173002 (2004).
[Crossref] [PubMed]

Walker, T. G.

E. Babcock, I. Nelson, S. Kadlecek, B. Driehuys, L. W. Anderson, F. W. Hersman, and T. G. Walker, “Hybrid Spin-Exchange Optical Pumping of 3He,” Phys. Rev. Lett. 91, 123003 (2003).
[Crossref] [PubMed]

Wang, L.

J. Liu, D. Jing, L. Wang, Y. Li, W. Quan, J. Fang, and W. Liu, “The polarization and the fundamental sensitivity of 39K (133Cs)-85Rb-4He hybrid optical pumping spin exchange relaxation free atomic magnetometers,” Sci. Rep. 7, 6776 (2017).
[Crossref]

Wang, S. Y.

H. C. Yang, S. Y. Wang, C. H. Chen, J. T. Jeng, J. H. Chen, and H. E. Horng, “Research and Some Applications of High-Tc SQUIDs,” J. Low Temp. Phys. 131, 509–520 (2003).
[Crossref]

Wang, T.

J. Fang, T. Wang, W. Quan, H. Yuan, H. Zhang, Y. Li, and S. Zou, “In situ magnetic compesation for potassium spin-exchange relation-free magnetometer considering probe beam pumping effect,” Rev. Sci. Instrum. 85, 063108 (2014).
[Crossref]

J. Fang, T. Wang, H. Zhang, Y. Li, and S. Zou, “Optimization of spin-exchange relaxation-free magnetometer based on potassium and rubidium hybrid optical pumping,” Rev. Sci. Instrum. 83, 123104 (2014).
[Crossref]

Yang, H. C.

H. C. Yang, S. Y. Wang, C. H. Chen, J. T. Jeng, J. H. Chen, and H. E. Horng, “Research and Some Applications of High-Tc SQUIDs,” J. Low Temp. Phys. 131, 509–520 (2003).
[Crossref]

Yashchuk, V. V.

M. Auzinsh, D. Budker, D. F. Kimball, S. M. Rochester, J. E. Stalnaker, A. O. Sushkov, and V. V. Yashchuk, “Can a Quantum Nondemolition Measurement Improve the Sensitivity of an Atomic Magnetometer?” Phys. Rev. Lett. 93, 173002 (2004).
[Crossref] [PubMed]

Yuan, H.

J. Fang, T. Wang, W. Quan, H. Yuan, H. Zhang, Y. Li, and S. Zou, “In situ magnetic compesation for potassium spin-exchange relation-free magnetometer considering probe beam pumping effect,” Rev. Sci. Instrum. 85, 063108 (2014).
[Crossref]

Zhang, H.

J. Fang, T. Wang, W. Quan, H. Yuan, H. Zhang, Y. Li, and S. Zou, “In situ magnetic compesation for potassium spin-exchange relation-free magnetometer considering probe beam pumping effect,” Rev. Sci. Instrum. 85, 063108 (2014).
[Crossref]

J. Fang, T. Wang, H. Zhang, Y. Li, and S. Zou, “Optimization of spin-exchange relaxation-free magnetometer based on potassium and rubidium hybrid optical pumping,” Rev. Sci. Instrum. 83, 123104 (2014).
[Crossref]

Zou, S.

J. Fang, T. Wang, H. Zhang, Y. Li, and S. Zou, “Optimization of spin-exchange relaxation-free magnetometer based on potassium and rubidium hybrid optical pumping,” Rev. Sci. Instrum. 83, 123104 (2014).
[Crossref]

J. Fang, T. Wang, W. Quan, H. Yuan, H. Zhang, Y. Li, and S. Zou, “In situ magnetic compesation for potassium spin-exchange relation-free magnetometer considering probe beam pumping effect,” Rev. Sci. Instrum. 85, 063108 (2014).
[Crossref]

Appl. Phys. Lett. (1)

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97, 151110 (2010).
[Crossref]

Can. Metall. Q. (1)

C. B. Alcock, V. P. Itkin, and M. K. Horrigan, “Vapour Pressure Equations for the Metallic Elements: 298–2500K,” Can. Metall. Q. 23, 309–313 (1984).
[Crossref]

IEEE Trans. Magn. (2)

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Effect of spatial homogeneity of spin polarization on magnetic field response of an optically pumped atomic magnetometer using a hybrid cell of K and Rb atoms,” IEEE Trans. Magn. 48, 3715–3718 (2012).
[Crossref]

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Sensitivity Improvement of Spin-Exchange Relaxation Free Atomic Magnetometers by Hybrid Optical Pumping of Potassium and Rubidium,” IEEE Trans. Magn. 47, 3550–3553 (2011).
[Crossref]

J. Low Temp. Phys. (1)

H. C. Yang, S. Y. Wang, C. H. Chen, J. T. Jeng, J. H. Chen, and H. E. Horng, “Research and Some Applications of High-Tc SQUIDs,” J. Low Temp. Phys. 131, 509–520 (2003).
[Crossref]

Nature (1)

K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596–599 (2003).
[Crossref] [PubMed]

Opt. Express (2)

K. Nishi, Y. Ito, and T. Kobayashi, “High-sensitivity multi-channel probe beam detector towards MEG measurements of small animals with an optically pumped K-Rb hybrid magnetometer,” Opt. Express 26, 1988–1996 (2018).
[Crossref] [PubMed]

Y. Ito, D. Sato, K. Kamada, and T. Kobayashi, “Optimal densities of alkali metal atoms in an optically pumped K-Rb hybrid atomic magnetometer considering the spatial distribution of spin polarization,” Opt. Express 24, 15391–15402 (2016).
[Crossref] [PubMed]

Phys. Rev. A (1)

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. A 89, 130801 (2002).

Phys. Rev. Lett. (3)

E. Babcock, I. Nelson, S. Kadlecek, B. Driehuys, L. W. Anderson, F. W. Hersman, and T. G. Walker, “Hybrid Spin-Exchange Optical Pumping of 3He,” Phys. Rev. Lett. 91, 123003 (2003).
[Crossref] [PubMed]

M. V. Romalis, “Hybrid Optical Pumping of Optically Dense Alkali-Metal Vapor without Quenching Gas,” Phys. Rev. Lett. 105, 243001 (2010).
[Crossref]

M. Auzinsh, D. Budker, D. F. Kimball, S. M. Rochester, J. E. Stalnaker, A. O. Sushkov, and V. V. Yashchuk, “Can a Quantum Nondemolition Measurement Improve the Sensitivity of an Atomic Magnetometer?” Phys. Rev. Lett. 93, 173002 (2004).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

M. Hämäläinen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, “Magnetoencephalography theory, instrumentation, and applications to noninvasive studies of the working human brain,” Rev. Mod. Phys. 65, 413–497 (1993).
[Crossref]

Rev. Sci. Instrum. (2)

J. Fang, T. Wang, W. Quan, H. Yuan, H. Zhang, Y. Li, and S. Zou, “In situ magnetic compesation for potassium spin-exchange relation-free magnetometer considering probe beam pumping effect,” Rev. Sci. Instrum. 85, 063108 (2014).
[Crossref]

J. Fang, T. Wang, H. Zhang, Y. Li, and S. Zou, “Optimization of spin-exchange relaxation-free magnetometer based on potassium and rubidium hybrid optical pumping,” Rev. Sci. Instrum. 83, 123104 (2014).
[Crossref]

Sci. Rep. (1)

J. Liu, D. Jing, L. Wang, Y. Li, W. Quan, J. Fang, and W. Liu, “The polarization and the fundamental sensitivity of 39K (133Cs)-85Rb-4He hybrid optical pumping spin exchange relaxation free atomic magnetometers,” Sci. Rep. 7, 6776 (2017).
[Crossref]

Other (1)

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Rate-equation approach to optimal density ratio of K-Rb hybrid cells for optically pumped atomic magnetometers,” Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (IEEE, 2013), pp. 3254–3257

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1:
Fig. 1: The experimental setup of OPMs. The hybrid cell and three pairs of coils were placed in a three-layered mu-metal magnetic shield.
Fig. 2:
Fig. 2: The numerical calculation model.
Fig. 3:
Fig. 3: The temperature dependence of the output signal of OPMs. (a) depicts the experimental results as a function of the temperature of the hybrid cell, and (b) depicts the numerical calculation results plotted against the temperature based on Eqs. (1), (2), (6), and (7).
Fig. 4:
Fig. 4: (a) depicts the dependence on the probe beam power of transmitted light intensity, and (b) depicts the output signal of OPMs as a function of the probe beam power.
Fig. 5:
Fig. 5: Measured data of nK/nRb = 4.85 and calculated results considering the relaxation of the absorption of the probe beam plotted against the temperature. The relaxation rate was varied and the calculated result with RPR = 1.5 × 103 s−1 agreed with the measured data.
Fig. 6:
Fig. 6: Numerically calculated output signal and OPM sensitivity as a function of the temperature of the hybrid cell (No. 3)

Tables (3)

Tables Icon

Table 1: The densities of K and Rb.

Tables Icon

Table 2: The parameters used for performing the numerical calculation.

Tables Icon

Table 3: The mole fraction of K (nK/nRb = 2.11 (No.2)).

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

d d t S Rb = D Rb 2 S Rb + γ e q Rb × B × 1 q Rb R SE RbK S K + R OP 2 q Rb z 1 q Rb ( R OP + R SD Rb + R SE RbK + R SE RbRb ) S Rb ,
d d t S K = D K 2 S K + γ e q K S K × B + 1 q K R SE KRb S Rb 1 q K ( R SD K + R SE KRb + R SE KK ) S K ,
R OP = σ ( ν ) Ψ ( ν ) d ν ,
Ψ ( ν ) = 2 I pump π ln 2 A pump π ν 0 Rb δ ν exp [ 4 ( ν ν 0 Rb ) 2 ln 2 δ ν 2 ] ,
d R OP ( z ) d z = n Rb σ ( ν ) R OP ( z ) ( 1 2 S z Rb ( z ) ) .
S out 2 η I probe e α l θ ,
θ = n K c r e f ( ν probe ν 0 K ) ( ν probe ν 0 K ) 2 + ( Γ k 2 ) 2 ,
R SE SS = n S σ SE SS ν ¯
R SE SS = ( γ e B z q S ) 2 ( q s ) 2 ( 2 I + 1 ) 2 2 R SE SS
R SE SS = n S σ SE SS ν ¯
R SD S = 2 ( n S σ SD SS ν ¯ + n S σ SD SS ν ¯ + n He σ SD SHe ν ¯ + n N 2 σ SD SN 2 ν ¯ ) ,
D = [ ( D He S ( T / 273 ) 3 / 2 P He / 1 atm ) 1 + ( D N 2 S ( T / 273 ) 3 / 2 P N 2 / 1 atm ) 1 ] 1 ,
n K 0 = 10 26.268 4453 T T
n Rb 0 = 10 26.188 4040 T T
n K = f K n K 0 ,
n Rb = f Rb n Rb 0 ,
d d t S K = D K 2 S K + γ e q K S K × B + 1 q K R SE K S Rb 1 q K ( R SD K + R SE KRb + R SE KK + R PR ) S K

Metrics