Abstract

In this paper, we propose a holographic zoom micro-projection system based on three spatial light modulators (SLMs). Three color lasers, three filters, and three solid lenses form the system’s collimated light sources. Three beam splitters and a prism are used in the system for beam deflection. The SLMs are used as the micro-displays in order to realize phase modulation. A liquid lens, which consists of a circular hole in the center of the middle substrate and several holes around the center, is developed in the system and it. A receiving screen is located behind the liquid lens. When the voltage applied to the liquid lens is changed, the focal length changes accordingly due to electrowetting effect. Three color holograms are loaded on the SLMs, respectively. When three color lasers are used to illuminate the corresponding holograms, the position and size of each color reproduction image can be adjusted by changing the focal length of the liquid lens and holograms loaded onto the SLMs. Therefore, three color images can be reconstructed together perfectly. The proposed system can realize function of zoom micro-projection without chromatic aberration. The experimental results verify its feasibility.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Method of chromatic aberration elimination in holographic display based on zoomable liquid lens

Di Wang, Chao Liu, and Qiong-Hua Wang
Opt. Express 27(7) 10058-10066 (2019)

Active optical zoom system

Di Wang, Qiong-Hua Wang, Chuan Shen, Xin Zhou, and Chun-Mei Liu
Appl. Opt. 53(31) 7402-7406 (2014)

A holographic projection system with an electrically tuning and continuously adjustable optical zoom

Hung-Chun Lin, Neil Collings, Ming-Syuan Chen, and Yi-Hsin Lin
Opt. Express 20(25) 27222-27229 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. Shiraki, N. Takada, M. Niwa, Y. Ichihashi, T. Shimobaba, N. Masuda, and T. Ito, “Simplified electroholographic color reconstruction system using graphics processing unit and liquid crystal display projector,” Opt. Express 17(18), 16038–16045 (2009).
    [Crossref] [PubMed]
  2. H. H. Chou, C. Y. Tsai, and J. S. Jiang, “An experimental study of a micro-projection enabled optical terminal for short-range bidirectional multi-wavelength visible light communications,” Sensors (Basel) 18(4), 983 (2018).
    [Crossref] [PubMed]
  3. Y. Wu, C. P. Chen, L. Mi, W. Zhang, J. Zhao, Y. Lu, W. Guo, B. Yu, Y. Li, and N. Maitlo, “Design of retinal-projection-based near-eye display with contact lens,” Opt. Express 26(9), 11553–11567 (2018).
    [Crossref] [PubMed]
  4. D. Raboud, T. Barras, F. Lo Conte, L. Fabre, L. Kilcher, F. Kechana, N. Abelé, and M. Kayal, “MEMS based color-VGA micro-projector system,” Procedia Eng. 5, 260–263 (2010).
    [Crossref]
  5. H. Zhang, L. Li, D. L. Mccray, D. Yao, and A. Y. Yi, “A microlens array on curved substrates by 3D micro projection and reflow process,” Sens. Actuators A Phys. 179, 242–250 (2012).
    [Crossref]
  6. E. Buckley, “Holographic laser projection,” J. Disp. Technol. 7(3), 135–140 (2011).
    [Crossref]
  7. Y. Pan, Y. Wang, J. Liu, X. Li, and J. Jia, “Fast polygon-based method for calculating computer-generated holograms in three-dimensional display,” Appl. Opt. 52(1), A290–A299 (2013).
    [Crossref] [PubMed]
  8. M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, M. Sypek, and A. Kolodziejczyk,“Simple holographic projection in color,” Opt. Express 20(22), 25130–25136 (2012).
    [Crossref] [PubMed]
  9. D. Wang, Q. H. Wang, C. Shen, X. Zhou, and C. M. Liu, “Active optical zoom system,” Appl. Opt. 53(31), 7402–7406 (2014).
    [Crossref] [PubMed]
  10. Y. Tsuchiyama and K. Matsushima, “Full-color large-scaled computer-generated holograms using RGB color filters,” Opt. Express 25(3), 2016–2030 (2017).
    [Crossref] [PubMed]
  11. T. Shimobaba, M. Makowski, T. Kakue, M. Oikawa, N. Okada, Y. Endo, R. Hirayama, and T. Ito, “Lensless zoomable holographic projection using scaled Fresnel diffraction,” Opt. Express 21(21), 25285–25290 (2013).
    [Crossref] [PubMed]
  12. K. Wei, N. W. Domicone, and Y. Zhao, “Electroactive liquid lens driven by an annular membrane,” Opt. Lett. 39(5), 1318–1321 (2014).
    [Crossref] [PubMed]
  13. X. Shen, Y. J. Wang, H. S. Chen, X. Xiao, Y. H. Lin, and B. Javidi, “Extended depth-of-focus 3D micro integral imaging display using a bifocal liquid crystal lens,” Opt. Lett. 40(4), 538–541 (2015).
    [Crossref] [PubMed]
  14. C. Liu and D. Wang, “Light intensity and FOV-controlled adaptive fluidic iris,” Appl. Opt. 57(18), D27–D31 (2018).
    [Crossref] [PubMed]
  15. H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
    [Crossref]
  16. H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
    [Crossref] [PubMed]
  17. J. S. Lee, Y. K. Kim, and Y. H. Won, “Time multiplexing technique of holographic view and Maxwellian view using a liquid lens in the optical see-through head mounted display,” Opt. Express 26(2), 2149–2159 (2018).
    [Crossref] [PubMed]
  18. A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Colour hologram projection with an SLM by exploiting its full phase modulation range,” Opt. Express 22(17), 20530–20541 (2014).
    [Crossref] [PubMed]
  19. T. Kozacki and M. Chlipala, “Color holographic display with white light LED source and single phase only SLM,” Opt. Express 24(3), 2189–2199 (2016).
    [Crossref] [PubMed]
  20. H. Zhang, J. Xie, J. Liu, and Y. Wang, “Elimination of a zero-order beam induced by a pixelated spatial light modulator for holographic projection,” Appl. Opt. 48(30), 5834–5841 (2009).
    [Crossref] [PubMed]
  21. T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing- zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” J. Disp. Technol. 7(7), 382–390 (2011).
    [Crossref]
  22. D. Wang, C. Liu, L. Li, X. Zhou, and Q. H. Wang, “Adjustable liquid aperture to eliminate undesirable light in holographic projection,” Opt. Express 24(3), 2098–2105 (2016).
    [Crossref] [PubMed]
  23. M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” J. Disp. Technol. 10(6), 450–455 (2014).
    [Crossref]
  24. Y. Takaki and Y. Hayashi, “Increased horizontal viewing zone angle of a hologram by resolution redistribution of a spatial light modulator,” Appl. Opt. 47(19), D6–D11 (2008).
    [Crossref] [PubMed]
  25. C. Wang, D. Wang, and Q. H. Wang, “A method of chromatic aberration compensation in holographic projection display based on a single spatial light modulator,” J. Soc. Inf. Disp. 23(1), 14–18 (2015).
    [Crossref]
  26. D. Teng, L. Liu, Y. Zhang, Z. Pang, S. Chang, J. Zhang, and B. Wang, “Spatiotemporal multiplexing for holographic display with multiple planar aligned spatial-light-modulators,” Opt. Express 22(13), 15791–15803 (2014).
    [Crossref] [PubMed]
  27. F. Yaras and L. Onural, “Color holographic reconstruction using multiple SLMs and LED illumination,” Proc. SPIE 7237, 72370O (2009).
    [Crossref]

2018 (4)

H. H. Chou, C. Y. Tsai, and J. S. Jiang, “An experimental study of a micro-projection enabled optical terminal for short-range bidirectional multi-wavelength visible light communications,” Sensors (Basel) 18(4), 983 (2018).
[Crossref] [PubMed]

Y. Wu, C. P. Chen, L. Mi, W. Zhang, J. Zhao, Y. Lu, W. Guo, B. Yu, Y. Li, and N. Maitlo, “Design of retinal-projection-based near-eye display with contact lens,” Opt. Express 26(9), 11553–11567 (2018).
[Crossref] [PubMed]

C. Liu and D. Wang, “Light intensity and FOV-controlled adaptive fluidic iris,” Appl. Opt. 57(18), D27–D31 (2018).
[Crossref] [PubMed]

J. S. Lee, Y. K. Kim, and Y. H. Won, “Time multiplexing technique of holographic view and Maxwellian view using a liquid lens in the optical see-through head mounted display,” Opt. Express 26(2), 2149–2159 (2018).
[Crossref] [PubMed]

2017 (1)

Y. Tsuchiyama and K. Matsushima, “Full-color large-scaled computer-generated holograms using RGB color filters,” Opt. Express 25(3), 2016–2030 (2017).
[Crossref] [PubMed]

2016 (2)

T. Kozacki and M. Chlipala, “Color holographic display with white light LED source and single phase only SLM,” Opt. Express 24(3), 2189–2199 (2016).
[Crossref] [PubMed]

D. Wang, C. Liu, L. Li, X. Zhou, and Q. H. Wang, “Adjustable liquid aperture to eliminate undesirable light in holographic projection,” Opt. Express 24(3), 2098–2105 (2016).
[Crossref] [PubMed]

2015 (2)

C. Wang, D. Wang, and Q. H. Wang, “A method of chromatic aberration compensation in holographic projection display based on a single spatial light modulator,” J. Soc. Inf. Disp. 23(1), 14–18 (2015).
[Crossref]

X. Shen, Y. J. Wang, H. S. Chen, X. Xiao, Y. H. Lin, and B. Javidi, “Extended depth-of-focus 3D micro integral imaging display using a bifocal liquid crystal lens,” Opt. Lett. 40(4), 538–541 (2015).
[Crossref] [PubMed]

2014 (5)

K. Wei, N. W. Domicone, and Y. Zhao, “Electroactive liquid lens driven by an annular membrane,” Opt. Lett. 39(5), 1318–1321 (2014).
[Crossref] [PubMed]

A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Colour hologram projection with an SLM by exploiting its full phase modulation range,” Opt. Express 22(17), 20530–20541 (2014).
[Crossref] [PubMed]

D. Wang, Q. H. Wang, C. Shen, X. Zhou, and C. M. Liu, “Active optical zoom system,” Appl. Opt. 53(31), 7402–7406 (2014).
[Crossref] [PubMed]

D. Teng, L. Liu, Y. Zhang, Z. Pang, S. Chang, J. Zhang, and B. Wang, “Spatiotemporal multiplexing for holographic display with multiple planar aligned spatial-light-modulators,” Opt. Express 22(13), 15791–15803 (2014).
[Crossref] [PubMed]

M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” J. Disp. Technol. 10(6), 450–455 (2014).
[Crossref]

2013 (2)

Y. Pan, Y. Wang, J. Liu, X. Li, and J. Jia, “Fast polygon-based method for calculating computer-generated holograms in three-dimensional display,” Appl. Opt. 52(1), A290–A299 (2013).
[Crossref] [PubMed]

T. Shimobaba, M. Makowski, T. Kakue, M. Oikawa, N. Okada, Y. Endo, R. Hirayama, and T. Ito, “Lensless zoomable holographic projection using scaled Fresnel diffraction,” Opt. Express 21(21), 25285–25290 (2013).
[Crossref] [PubMed]

2012 (3)

M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, M. Sypek, and A. Kolodziejczyk,“Simple holographic projection in color,” Opt. Express 20(22), 25130–25136 (2012).
[Crossref] [PubMed]

H. Zhang, L. Li, D. L. Mccray, D. Yao, and A. Y. Yi, “A microlens array on curved substrates by 3D micro projection and reflow process,” Sens. Actuators A Phys. 179, 242–250 (2012).
[Crossref]

H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[Crossref] [PubMed]

2011 (2)

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing- zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” J. Disp. Technol. 7(7), 382–390 (2011).
[Crossref]

E. Buckley, “Holographic laser projection,” J. Disp. Technol. 7(3), 135–140 (2011).
[Crossref]

2010 (1)

D. Raboud, T. Barras, F. Lo Conte, L. Fabre, L. Kilcher, F. Kechana, N. Abelé, and M. Kayal, “MEMS based color-VGA micro-projector system,” Procedia Eng. 5, 260–263 (2010).
[Crossref]

2009 (3)

A. Shiraki, N. Takada, M. Niwa, Y. Ichihashi, T. Shimobaba, N. Masuda, and T. Ito, “Simplified electroholographic color reconstruction system using graphics processing unit and liquid crystal display projector,” Opt. Express 17(18), 16038–16045 (2009).
[Crossref] [PubMed]

H. Zhang, J. Xie, J. Liu, and Y. Wang, “Elimination of a zero-order beam induced by a pixelated spatial light modulator for holographic projection,” Appl. Opt. 48(30), 5834–5841 (2009).
[Crossref] [PubMed]

F. Yaras and L. Onural, “Color holographic reconstruction using multiple SLMs and LED illumination,” Proc. SPIE 7237, 72370O (2009).
[Crossref]

2008 (1)

Y. Takaki and Y. Hayashi, “Increased horizontal viewing zone angle of a hologram by resolution redistribution of a spatial light modulator,” Appl. Opt. 47(19), D6–D11 (2008).
[Crossref] [PubMed]

2004 (1)

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Abelé, N.

D. Raboud, T. Barras, F. Lo Conte, L. Fabre, L. Kilcher, F. Kechana, N. Abelé, and M. Kayal, “MEMS based color-VGA micro-projector system,” Procedia Eng. 5, 260–263 (2010).
[Crossref]

Barras, T.

D. Raboud, T. Barras, F. Lo Conte, L. Fabre, L. Kilcher, F. Kechana, N. Abelé, and M. Kayal, “MEMS based color-VGA micro-projector system,” Procedia Eng. 5, 260–263 (2010).
[Crossref]

Bernet, S.

A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Colour hologram projection with an SLM by exploiting its full phase modulation range,” Opt. Express 22(17), 20530–20541 (2014).
[Crossref] [PubMed]

Buckley, E.

E. Buckley, “Holographic laser projection,” J. Disp. Technol. 7(3), 135–140 (2011).
[Crossref]

Chang, S.

D. Teng, L. Liu, Y. Zhang, Z. Pang, S. Chang, J. Zhang, and B. Wang, “Spatiotemporal multiplexing for holographic display with multiple planar aligned spatial-light-modulators,” Opt. Express 22(13), 15791–15803 (2014).
[Crossref] [PubMed]

Chen, C. P.

Y. Wu, C. P. Chen, L. Mi, W. Zhang, J. Zhao, Y. Lu, W. Guo, B. Yu, Y. Li, and N. Maitlo, “Design of retinal-projection-based near-eye display with contact lens,” Opt. Express 26(9), 11553–11567 (2018).
[Crossref] [PubMed]

Chen, H. S.

X. Shen, Y. J. Wang, H. S. Chen, X. Xiao, Y. H. Lin, and B. Javidi, “Extended depth-of-focus 3D micro integral imaging display using a bifocal liquid crystal lens,” Opt. Lett. 40(4), 538–541 (2015).
[Crossref] [PubMed]

Chen, M. S.

M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” J. Disp. Technol. 10(6), 450–455 (2014).
[Crossref]

H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[Crossref] [PubMed]

Chlipala, M.

T. Kozacki and M. Chlipala, “Color holographic display with white light LED source and single phase only SLM,” Opt. Express 24(3), 2189–2199 (2016).
[Crossref] [PubMed]

Chou, H. H.

H. H. Chou, C. Y. Tsai, and J. S. Jiang, “An experimental study of a micro-projection enabled optical terminal for short-range bidirectional multi-wavelength visible light communications,” Sensors (Basel) 18(4), 983 (2018).
[Crossref] [PubMed]

Collings, N.

M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” J. Disp. Technol. 10(6), 450–455 (2014).
[Crossref]

H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[Crossref] [PubMed]

Domicone, N. W.

K. Wei, N. W. Domicone, and Y. Zhao, “Electroactive liquid lens driven by an annular membrane,” Opt. Lett. 39(5), 1318–1321 (2014).
[Crossref] [PubMed]

Ducin, I.

M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, M. Sypek, and A. Kolodziejczyk,“Simple holographic projection in color,” Opt. Express 20(22), 25130–25136 (2012).
[Crossref] [PubMed]

Endo, Y.

T. Shimobaba, M. Makowski, T. Kakue, M. Oikawa, N. Okada, Y. Endo, R. Hirayama, and T. Ito, “Lensless zoomable holographic projection using scaled Fresnel diffraction,” Opt. Express 21(21), 25285–25290 (2013).
[Crossref] [PubMed]

Fabre, L.

D. Raboud, T. Barras, F. Lo Conte, L. Fabre, L. Kilcher, F. Kechana, N. Abelé, and M. Kayal, “MEMS based color-VGA micro-projector system,” Procedia Eng. 5, 260–263 (2010).
[Crossref]

Fan, Y.-H.

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Gauza, S.

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Guo, W.

Y. Wu, C. P. Chen, L. Mi, W. Zhang, J. Zhao, Y. Lu, W. Guo, B. Yu, Y. Li, and N. Maitlo, “Design of retinal-projection-based near-eye display with contact lens,” Opt. Express 26(9), 11553–11567 (2018).
[Crossref] [PubMed]

Hayashi, Y.

Y. Takaki and Y. Hayashi, “Increased horizontal viewing zone angle of a hologram by resolution redistribution of a spatial light modulator,” Appl. Opt. 47(19), D6–D11 (2008).
[Crossref] [PubMed]

Hirayama, R.

T. Shimobaba, M. Makowski, T. Kakue, M. Oikawa, N. Okada, Y. Endo, R. Hirayama, and T. Ito, “Lensless zoomable holographic projection using scaled Fresnel diffraction,” Opt. Express 21(21), 25285–25290 (2013).
[Crossref] [PubMed]

Ichihashi, Y.

A. Shiraki, N. Takada, M. Niwa, Y. Ichihashi, T. Shimobaba, N. Masuda, and T. Ito, “Simplified electroholographic color reconstruction system using graphics processing unit and liquid crystal display projector,” Opt. Express 17(18), 16038–16045 (2009).
[Crossref] [PubMed]

Ito, T.

T. Shimobaba, M. Makowski, T. Kakue, M. Oikawa, N. Okada, Y. Endo, R. Hirayama, and T. Ito, “Lensless zoomable holographic projection using scaled Fresnel diffraction,” Opt. Express 21(21), 25285–25290 (2013).
[Crossref] [PubMed]

A. Shiraki, N. Takada, M. Niwa, Y. Ichihashi, T. Shimobaba, N. Masuda, and T. Ito, “Simplified electroholographic color reconstruction system using graphics processing unit and liquid crystal display projector,” Opt. Express 17(18), 16038–16045 (2009).
[Crossref] [PubMed]

Javidi, B.

X. Shen, Y. J. Wang, H. S. Chen, X. Xiao, Y. H. Lin, and B. Javidi, “Extended depth-of-focus 3D micro integral imaging display using a bifocal liquid crystal lens,” Opt. Lett. 40(4), 538–541 (2015).
[Crossref] [PubMed]

Jesacher, A.

A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Colour hologram projection with an SLM by exploiting its full phase modulation range,” Opt. Express 22(17), 20530–20541 (2014).
[Crossref] [PubMed]

Jia, J.

Y. Pan, Y. Wang, J. Liu, X. Li, and J. Jia, “Fast polygon-based method for calculating computer-generated holograms in three-dimensional display,” Appl. Opt. 52(1), A290–A299 (2013).
[Crossref] [PubMed]

Jiang, J. S.

H. H. Chou, C. Y. Tsai, and J. S. Jiang, “An experimental study of a micro-projection enabled optical terminal for short-range bidirectional multi-wavelength visible light communications,” Sensors (Basel) 18(4), 983 (2018).
[Crossref] [PubMed]

Kakarenko, K.

M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, M. Sypek, and A. Kolodziejczyk,“Simple holographic projection in color,” Opt. Express 20(22), 25130–25136 (2012).
[Crossref] [PubMed]

Kakue, T.

T. Shimobaba, M. Makowski, T. Kakue, M. Oikawa, N. Okada, Y. Endo, R. Hirayama, and T. Ito, “Lensless zoomable holographic projection using scaled Fresnel diffraction,” Opt. Express 21(21), 25285–25290 (2013).
[Crossref] [PubMed]

Kayal, M.

D. Raboud, T. Barras, F. Lo Conte, L. Fabre, L. Kilcher, F. Kechana, N. Abelé, and M. Kayal, “MEMS based color-VGA micro-projector system,” Procedia Eng. 5, 260–263 (2010).
[Crossref]

Kechana, F.

D. Raboud, T. Barras, F. Lo Conte, L. Fabre, L. Kilcher, F. Kechana, N. Abelé, and M. Kayal, “MEMS based color-VGA micro-projector system,” Procedia Eng. 5, 260–263 (2010).
[Crossref]

Kilcher, L.

D. Raboud, T. Barras, F. Lo Conte, L. Fabre, L. Kilcher, F. Kechana, N. Abelé, and M. Kayal, “MEMS based color-VGA micro-projector system,” Procedia Eng. 5, 260–263 (2010).
[Crossref]

Kim, Y. K.

J. S. Lee, Y. K. Kim, and Y. H. Won, “Time multiplexing technique of holographic view and Maxwellian view using a liquid lens in the optical see-through head mounted display,” Opt. Express 26(2), 2149–2159 (2018).
[Crossref] [PubMed]

Kolodziejczyk, A.

M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, M. Sypek, and A. Kolodziejczyk,“Simple holographic projection in color,” Opt. Express 20(22), 25130–25136 (2012).
[Crossref] [PubMed]

Kozacki, T.

T. Kozacki and M. Chlipala, “Color holographic display with white light LED source and single phase only SLM,” Opt. Express 24(3), 2189–2199 (2016).
[Crossref] [PubMed]

Kurita, T.

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing- zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” J. Disp. Technol. 7(7), 382–390 (2011).
[Crossref]

Lee, J. S.

J. S. Lee, Y. K. Kim, and Y. H. Won, “Time multiplexing technique of holographic view and Maxwellian view using a liquid lens in the optical see-through head mounted display,” Opt. Express 26(2), 2149–2159 (2018).
[Crossref] [PubMed]

Li, L.

D. Wang, C. Liu, L. Li, X. Zhou, and Q. H. Wang, “Adjustable liquid aperture to eliminate undesirable light in holographic projection,” Opt. Express 24(3), 2098–2105 (2016).
[Crossref] [PubMed]

H. Zhang, L. Li, D. L. Mccray, D. Yao, and A. Y. Yi, “A microlens array on curved substrates by 3D micro projection and reflow process,” Sens. Actuators A Phys. 179, 242–250 (2012).
[Crossref]

Li, X.

Y. Pan, Y. Wang, J. Liu, X. Li, and J. Jia, “Fast polygon-based method for calculating computer-generated holograms in three-dimensional display,” Appl. Opt. 52(1), A290–A299 (2013).
[Crossref] [PubMed]

Li, Y.

Y. Wu, C. P. Chen, L. Mi, W. Zhang, J. Zhao, Y. Lu, W. Guo, B. Yu, Y. Li, and N. Maitlo, “Design of retinal-projection-based near-eye display with contact lens,” Opt. Express 26(9), 11553–11567 (2018).
[Crossref] [PubMed]

Lin, H. C.

M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” J. Disp. Technol. 10(6), 450–455 (2014).
[Crossref]

H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[Crossref] [PubMed]

Lin, Y. H.

X. Shen, Y. J. Wang, H. S. Chen, X. Xiao, Y. H. Lin, and B. Javidi, “Extended depth-of-focus 3D micro integral imaging display using a bifocal liquid crystal lens,” Opt. Lett. 40(4), 538–541 (2015).
[Crossref] [PubMed]

M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” J. Disp. Technol. 10(6), 450–455 (2014).
[Crossref]

H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[Crossref] [PubMed]

Liu, C.

C. Liu and D. Wang, “Light intensity and FOV-controlled adaptive fluidic iris,” Appl. Opt. 57(18), D27–D31 (2018).
[Crossref] [PubMed]

D. Wang, C. Liu, L. Li, X. Zhou, and Q. H. Wang, “Adjustable liquid aperture to eliminate undesirable light in holographic projection,” Opt. Express 24(3), 2098–2105 (2016).
[Crossref] [PubMed]

Liu, C. M.

D. Wang, Q. H. Wang, C. Shen, X. Zhou, and C. M. Liu, “Active optical zoom system,” Appl. Opt. 53(31), 7402–7406 (2014).
[Crossref] [PubMed]

Liu, J.

Y. Pan, Y. Wang, J. Liu, X. Li, and J. Jia, “Fast polygon-based method for calculating computer-generated holograms in three-dimensional display,” Appl. Opt. 52(1), A290–A299 (2013).
[Crossref] [PubMed]

H. Zhang, J. Xie, J. Liu, and Y. Wang, “Elimination of a zero-order beam induced by a pixelated spatial light modulator for holographic projection,” Appl. Opt. 48(30), 5834–5841 (2009).
[Crossref] [PubMed]

Liu, L.

D. Teng, L. Liu, Y. Zhang, Z. Pang, S. Chang, J. Zhang, and B. Wang, “Spatiotemporal multiplexing for holographic display with multiple planar aligned spatial-light-modulators,” Opt. Express 22(13), 15791–15803 (2014).
[Crossref] [PubMed]

Lo Conte, F.

D. Raboud, T. Barras, F. Lo Conte, L. Fabre, L. Kilcher, F. Kechana, N. Abelé, and M. Kayal, “MEMS based color-VGA micro-projector system,” Procedia Eng. 5, 260–263 (2010).
[Crossref]

Lu, Y.

Y. Wu, C. P. Chen, L. Mi, W. Zhang, J. Zhao, Y. Lu, W. Guo, B. Yu, Y. Li, and N. Maitlo, “Design of retinal-projection-based near-eye display with contact lens,” Opt. Express 26(9), 11553–11567 (2018).
[Crossref] [PubMed]

Maitlo, N.

Y. Wu, C. P. Chen, L. Mi, W. Zhang, J. Zhao, Y. Lu, W. Guo, B. Yu, Y. Li, and N. Maitlo, “Design of retinal-projection-based near-eye display with contact lens,” Opt. Express 26(9), 11553–11567 (2018).
[Crossref] [PubMed]

Makowski, M.

T. Shimobaba, M. Makowski, T. Kakue, M. Oikawa, N. Okada, Y. Endo, R. Hirayama, and T. Ito, “Lensless zoomable holographic projection using scaled Fresnel diffraction,” Opt. Express 21(21), 25285–25290 (2013).
[Crossref] [PubMed]

M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, M. Sypek, and A. Kolodziejczyk,“Simple holographic projection in color,” Opt. Express 20(22), 25130–25136 (2012).
[Crossref] [PubMed]

Masuda, N.

A. Shiraki, N. Takada, M. Niwa, Y. Ichihashi, T. Shimobaba, N. Masuda, and T. Ito, “Simplified electroholographic color reconstruction system using graphics processing unit and liquid crystal display projector,” Opt. Express 17(18), 16038–16045 (2009).
[Crossref] [PubMed]

Matsushima, K.

Y. Tsuchiyama and K. Matsushima, “Full-color large-scaled computer-generated holograms using RGB color filters,” Opt. Express 25(3), 2016–2030 (2017).
[Crossref] [PubMed]

Mccray, D. L.

H. Zhang, L. Li, D. L. Mccray, D. Yao, and A. Y. Yi, “A microlens array on curved substrates by 3D micro projection and reflow process,” Sens. Actuators A Phys. 179, 242–250 (2012).
[Crossref]

Mi, L.

Y. Wu, C. P. Chen, L. Mi, W. Zhang, J. Zhao, Y. Lu, W. Guo, B. Yu, Y. Li, and N. Maitlo, “Design of retinal-projection-based near-eye display with contact lens,” Opt. Express 26(9), 11553–11567 (2018).
[Crossref] [PubMed]

Mishina, T.

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing- zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” J. Disp. Technol. 7(7), 382–390 (2011).
[Crossref]

Niwa, M.

A. Shiraki, N. Takada, M. Niwa, Y. Ichihashi, T. Shimobaba, N. Masuda, and T. Ito, “Simplified electroholographic color reconstruction system using graphics processing unit and liquid crystal display projector,” Opt. Express 17(18), 16038–16045 (2009).
[Crossref] [PubMed]

Oi, R.

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing- zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” J. Disp. Technol. 7(7), 382–390 (2011).
[Crossref]

Oikawa, M.

T. Shimobaba, M. Makowski, T. Kakue, M. Oikawa, N. Okada, Y. Endo, R. Hirayama, and T. Ito, “Lensless zoomable holographic projection using scaled Fresnel diffraction,” Opt. Express 21(21), 25285–25290 (2013).
[Crossref] [PubMed]

Okada, N.

T. Shimobaba, M. Makowski, T. Kakue, M. Oikawa, N. Okada, Y. Endo, R. Hirayama, and T. Ito, “Lensless zoomable holographic projection using scaled Fresnel diffraction,” Opt. Express 21(21), 25285–25290 (2013).
[Crossref] [PubMed]

Onural, L.

F. Yaras and L. Onural, “Color holographic reconstruction using multiple SLMs and LED illumination,” Proc. SPIE 7237, 72370O (2009).
[Crossref]

Pan, Y.

Y. Pan, Y. Wang, J. Liu, X. Li, and J. Jia, “Fast polygon-based method for calculating computer-generated holograms in three-dimensional display,” Appl. Opt. 52(1), A290–A299 (2013).
[Crossref] [PubMed]

Pang, Z.

D. Teng, L. Liu, Y. Zhang, Z. Pang, S. Chang, J. Zhang, and B. Wang, “Spatiotemporal multiplexing for holographic display with multiple planar aligned spatial-light-modulators,” Opt. Express 22(13), 15791–15803 (2014).
[Crossref] [PubMed]

Raboud, D.

D. Raboud, T. Barras, F. Lo Conte, L. Fabre, L. Kilcher, F. Kechana, N. Abelé, and M. Kayal, “MEMS based color-VGA micro-projector system,” Procedia Eng. 5, 260–263 (2010).
[Crossref]

Ren, H.

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Ritsch-Marte, M.

A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Colour hologram projection with an SLM by exploiting its full phase modulation range,” Opt. Express 22(17), 20530–20541 (2014).
[Crossref] [PubMed]

Senoh, T.

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing- zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” J. Disp. Technol. 7(7), 382–390 (2011).
[Crossref]

Shen, C.

D. Wang, Q. H. Wang, C. Shen, X. Zhou, and C. M. Liu, “Active optical zoom system,” Appl. Opt. 53(31), 7402–7406 (2014).
[Crossref] [PubMed]

Shen, X.

X. Shen, Y. J. Wang, H. S. Chen, X. Xiao, Y. H. Lin, and B. Javidi, “Extended depth-of-focus 3D micro integral imaging display using a bifocal liquid crystal lens,” Opt. Lett. 40(4), 538–541 (2015).
[Crossref] [PubMed]

Shimobaba, T.

T. Shimobaba, M. Makowski, T. Kakue, M. Oikawa, N. Okada, Y. Endo, R. Hirayama, and T. Ito, “Lensless zoomable holographic projection using scaled Fresnel diffraction,” Opt. Express 21(21), 25285–25290 (2013).
[Crossref] [PubMed]

A. Shiraki, N. Takada, M. Niwa, Y. Ichihashi, T. Shimobaba, N. Masuda, and T. Ito, “Simplified electroholographic color reconstruction system using graphics processing unit and liquid crystal display projector,” Opt. Express 17(18), 16038–16045 (2009).
[Crossref] [PubMed]

Shiraki, A.

A. Shiraki, N. Takada, M. Niwa, Y. Ichihashi, T. Shimobaba, N. Masuda, and T. Ito, “Simplified electroholographic color reconstruction system using graphics processing unit and liquid crystal display projector,” Opt. Express 17(18), 16038–16045 (2009).
[Crossref] [PubMed]

Suszek, J.

M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, M. Sypek, and A. Kolodziejczyk,“Simple holographic projection in color,” Opt. Express 20(22), 25130–25136 (2012).
[Crossref] [PubMed]

Sypek, M.

M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, M. Sypek, and A. Kolodziejczyk,“Simple holographic projection in color,” Opt. Express 20(22), 25130–25136 (2012).
[Crossref] [PubMed]

Takada, N.

A. Shiraki, N. Takada, M. Niwa, Y. Ichihashi, T. Shimobaba, N. Masuda, and T. Ito, “Simplified electroholographic color reconstruction system using graphics processing unit and liquid crystal display projector,” Opt. Express 17(18), 16038–16045 (2009).
[Crossref] [PubMed]

Takaki, Y.

Y. Takaki and Y. Hayashi, “Increased horizontal viewing zone angle of a hologram by resolution redistribution of a spatial light modulator,” Appl. Opt. 47(19), D6–D11 (2008).
[Crossref] [PubMed]

Teng, D.

D. Teng, L. Liu, Y. Zhang, Z. Pang, S. Chang, J. Zhang, and B. Wang, “Spatiotemporal multiplexing for holographic display with multiple planar aligned spatial-light-modulators,” Opt. Express 22(13), 15791–15803 (2014).
[Crossref] [PubMed]

Tsai, C. Y.

H. H. Chou, C. Y. Tsai, and J. S. Jiang, “An experimental study of a micro-projection enabled optical terminal for short-range bidirectional multi-wavelength visible light communications,” Sensors (Basel) 18(4), 983 (2018).
[Crossref] [PubMed]

Tsuchiyama, Y.

Y. Tsuchiyama and K. Matsushima, “Full-color large-scaled computer-generated holograms using RGB color filters,” Opt. Express 25(3), 2016–2030 (2017).
[Crossref] [PubMed]

Wang, B.

D. Teng, L. Liu, Y. Zhang, Z. Pang, S. Chang, J. Zhang, and B. Wang, “Spatiotemporal multiplexing for holographic display with multiple planar aligned spatial-light-modulators,” Opt. Express 22(13), 15791–15803 (2014).
[Crossref] [PubMed]

Wang, C.

C. Wang, D. Wang, and Q. H. Wang, “A method of chromatic aberration compensation in holographic projection display based on a single spatial light modulator,” J. Soc. Inf. Disp. 23(1), 14–18 (2015).
[Crossref]

Wang, D.

C. Liu and D. Wang, “Light intensity and FOV-controlled adaptive fluidic iris,” Appl. Opt. 57(18), D27–D31 (2018).
[Crossref] [PubMed]

D. Wang, C. Liu, L. Li, X. Zhou, and Q. H. Wang, “Adjustable liquid aperture to eliminate undesirable light in holographic projection,” Opt. Express 24(3), 2098–2105 (2016).
[Crossref] [PubMed]

C. Wang, D. Wang, and Q. H. Wang, “A method of chromatic aberration compensation in holographic projection display based on a single spatial light modulator,” J. Soc. Inf. Disp. 23(1), 14–18 (2015).
[Crossref]

D. Wang, Q. H. Wang, C. Shen, X. Zhou, and C. M. Liu, “Active optical zoom system,” Appl. Opt. 53(31), 7402–7406 (2014).
[Crossref] [PubMed]

Wang, Q. H.

D. Wang, C. Liu, L. Li, X. Zhou, and Q. H. Wang, “Adjustable liquid aperture to eliminate undesirable light in holographic projection,” Opt. Express 24(3), 2098–2105 (2016).
[Crossref] [PubMed]

C. Wang, D. Wang, and Q. H. Wang, “A method of chromatic aberration compensation in holographic projection display based on a single spatial light modulator,” J. Soc. Inf. Disp. 23(1), 14–18 (2015).
[Crossref]

D. Wang, Q. H. Wang, C. Shen, X. Zhou, and C. M. Liu, “Active optical zoom system,” Appl. Opt. 53(31), 7402–7406 (2014).
[Crossref] [PubMed]

Wang, Y.

Y. Pan, Y. Wang, J. Liu, X. Li, and J. Jia, “Fast polygon-based method for calculating computer-generated holograms in three-dimensional display,” Appl. Opt. 52(1), A290–A299 (2013).
[Crossref] [PubMed]

H. Zhang, J. Xie, J. Liu, and Y. Wang, “Elimination of a zero-order beam induced by a pixelated spatial light modulator for holographic projection,” Appl. Opt. 48(30), 5834–5841 (2009).
[Crossref] [PubMed]

Wang, Y. J.

X. Shen, Y. J. Wang, H. S. Chen, X. Xiao, Y. H. Lin, and B. Javidi, “Extended depth-of-focus 3D micro integral imaging display using a bifocal liquid crystal lens,” Opt. Lett. 40(4), 538–541 (2015).
[Crossref] [PubMed]

Wei, K.

K. Wei, N. W. Domicone, and Y. Zhao, “Electroactive liquid lens driven by an annular membrane,” Opt. Lett. 39(5), 1318–1321 (2014).
[Crossref] [PubMed]

Won, Y. H.

J. S. Lee, Y. K. Kim, and Y. H. Won, “Time multiplexing technique of holographic view and Maxwellian view using a liquid lens in the optical see-through head mounted display,” Opt. Express 26(2), 2149–2159 (2018).
[Crossref] [PubMed]

Wu, S.-T.

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Wu, Y.

Y. Wu, C. P. Chen, L. Mi, W. Zhang, J. Zhao, Y. Lu, W. Guo, B. Yu, Y. Li, and N. Maitlo, “Design of retinal-projection-based near-eye display with contact lens,” Opt. Express 26(9), 11553–11567 (2018).
[Crossref] [PubMed]

Xiao, X.

X. Shen, Y. J. Wang, H. S. Chen, X. Xiao, Y. H. Lin, and B. Javidi, “Extended depth-of-focus 3D micro integral imaging display using a bifocal liquid crystal lens,” Opt. Lett. 40(4), 538–541 (2015).
[Crossref] [PubMed]

Xie, J.

H. Zhang, J. Xie, J. Liu, and Y. Wang, “Elimination of a zero-order beam induced by a pixelated spatial light modulator for holographic projection,” Appl. Opt. 48(30), 5834–5841 (2009).
[Crossref] [PubMed]

Yamamoto, K.

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing- zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” J. Disp. Technol. 7(7), 382–390 (2011).
[Crossref]

Yao, D.

H. Zhang, L. Li, D. L. Mccray, D. Yao, and A. Y. Yi, “A microlens array on curved substrates by 3D micro projection and reflow process,” Sens. Actuators A Phys. 179, 242–250 (2012).
[Crossref]

Yaras, F.

F. Yaras and L. Onural, “Color holographic reconstruction using multiple SLMs and LED illumination,” Proc. SPIE 7237, 72370O (2009).
[Crossref]

Yi, A. Y.

H. Zhang, L. Li, D. L. Mccray, D. Yao, and A. Y. Yi, “A microlens array on curved substrates by 3D micro projection and reflow process,” Sens. Actuators A Phys. 179, 242–250 (2012).
[Crossref]

Yu, B.

Y. Wu, C. P. Chen, L. Mi, W. Zhang, J. Zhao, Y. Lu, W. Guo, B. Yu, Y. Li, and N. Maitlo, “Design of retinal-projection-based near-eye display with contact lens,” Opt. Express 26(9), 11553–11567 (2018).
[Crossref] [PubMed]

Zhang, H.

H. Zhang, L. Li, D. L. Mccray, D. Yao, and A. Y. Yi, “A microlens array on curved substrates by 3D micro projection and reflow process,” Sens. Actuators A Phys. 179, 242–250 (2012).
[Crossref]

H. Zhang, J. Xie, J. Liu, and Y. Wang, “Elimination of a zero-order beam induced by a pixelated spatial light modulator for holographic projection,” Appl. Opt. 48(30), 5834–5841 (2009).
[Crossref] [PubMed]

Zhang, J.

D. Teng, L. Liu, Y. Zhang, Z. Pang, S. Chang, J. Zhang, and B. Wang, “Spatiotemporal multiplexing for holographic display with multiple planar aligned spatial-light-modulators,” Opt. Express 22(13), 15791–15803 (2014).
[Crossref] [PubMed]

Zhang, W.

Y. Wu, C. P. Chen, L. Mi, W. Zhang, J. Zhao, Y. Lu, W. Guo, B. Yu, Y. Li, and N. Maitlo, “Design of retinal-projection-based near-eye display with contact lens,” Opt. Express 26(9), 11553–11567 (2018).
[Crossref] [PubMed]

Zhang, Y.

D. Teng, L. Liu, Y. Zhang, Z. Pang, S. Chang, J. Zhang, and B. Wang, “Spatiotemporal multiplexing for holographic display with multiple planar aligned spatial-light-modulators,” Opt. Express 22(13), 15791–15803 (2014).
[Crossref] [PubMed]

Zhao, J.

Y. Wu, C. P. Chen, L. Mi, W. Zhang, J. Zhao, Y. Lu, W. Guo, B. Yu, Y. Li, and N. Maitlo, “Design of retinal-projection-based near-eye display with contact lens,” Opt. Express 26(9), 11553–11567 (2018).
[Crossref] [PubMed]

Zhao, Y.

K. Wei, N. W. Domicone, and Y. Zhao, “Electroactive liquid lens driven by an annular membrane,” Opt. Lett. 39(5), 1318–1321 (2014).
[Crossref] [PubMed]

Zhou, X.

D. Wang, C. Liu, L. Li, X. Zhou, and Q. H. Wang, “Adjustable liquid aperture to eliminate undesirable light in holographic projection,” Opt. Express 24(3), 2098–2105 (2016).
[Crossref] [PubMed]

D. Wang, Q. H. Wang, C. Shen, X. Zhou, and C. M. Liu, “Active optical zoom system,” Appl. Opt. 53(31), 7402–7406 (2014).
[Crossref] [PubMed]

Appl. Opt. (5)

D. Wang, Q. H. Wang, C. Shen, X. Zhou, and C. M. Liu, “Active optical zoom system,” Appl. Opt. 53(31), 7402–7406 (2014).
[Crossref] [PubMed]

C. Liu and D. Wang, “Light intensity and FOV-controlled adaptive fluidic iris,” Appl. Opt. 57(18), D27–D31 (2018).
[Crossref] [PubMed]

Y. Pan, Y. Wang, J. Liu, X. Li, and J. Jia, “Fast polygon-based method for calculating computer-generated holograms in three-dimensional display,” Appl. Opt. 52(1), A290–A299 (2013).
[Crossref] [PubMed]

H. Zhang, J. Xie, J. Liu, and Y. Wang, “Elimination of a zero-order beam induced by a pixelated spatial light modulator for holographic projection,” Appl. Opt. 48(30), 5834–5841 (2009).
[Crossref] [PubMed]

Y. Takaki and Y. Hayashi, “Increased horizontal viewing zone angle of a hologram by resolution redistribution of a spatial light modulator,” Appl. Opt. 47(19), D6–D11 (2008).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

J. Disp. Technol. (3)

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing- zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” J. Disp. Technol. 7(7), 382–390 (2011).
[Crossref]

E. Buckley, “Holographic laser projection,” J. Disp. Technol. 7(3), 135–140 (2011).
[Crossref]

M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” J. Disp. Technol. 10(6), 450–455 (2014).
[Crossref]

J. Soc. Inf. Disp. (1)

C. Wang, D. Wang, and Q. H. Wang, “A method of chromatic aberration compensation in holographic projection display based on a single spatial light modulator,” J. Soc. Inf. Disp. 23(1), 14–18 (2015).
[Crossref]

Opt. Express (11)

D. Teng, L. Liu, Y. Zhang, Z. Pang, S. Chang, J. Zhang, and B. Wang, “Spatiotemporal multiplexing for holographic display with multiple planar aligned spatial-light-modulators,” Opt. Express 22(13), 15791–15803 (2014).
[Crossref] [PubMed]

D. Wang, C. Liu, L. Li, X. Zhou, and Q. H. Wang, “Adjustable liquid aperture to eliminate undesirable light in holographic projection,” Opt. Express 24(3), 2098–2105 (2016).
[Crossref] [PubMed]

M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, M. Sypek, and A. Kolodziejczyk,“Simple holographic projection in color,” Opt. Express 20(22), 25130–25136 (2012).
[Crossref] [PubMed]

H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[Crossref] [PubMed]

J. S. Lee, Y. K. Kim, and Y. H. Won, “Time multiplexing technique of holographic view and Maxwellian view using a liquid lens in the optical see-through head mounted display,” Opt. Express 26(2), 2149–2159 (2018).
[Crossref] [PubMed]

A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Colour hologram projection with an SLM by exploiting its full phase modulation range,” Opt. Express 22(17), 20530–20541 (2014).
[Crossref] [PubMed]

T. Kozacki and M. Chlipala, “Color holographic display with white light LED source and single phase only SLM,” Opt. Express 24(3), 2189–2199 (2016).
[Crossref] [PubMed]

Y. Tsuchiyama and K. Matsushima, “Full-color large-scaled computer-generated holograms using RGB color filters,” Opt. Express 25(3), 2016–2030 (2017).
[Crossref] [PubMed]

T. Shimobaba, M. Makowski, T. Kakue, M. Oikawa, N. Okada, Y. Endo, R. Hirayama, and T. Ito, “Lensless zoomable holographic projection using scaled Fresnel diffraction,” Opt. Express 21(21), 25285–25290 (2013).
[Crossref] [PubMed]

A. Shiraki, N. Takada, M. Niwa, Y. Ichihashi, T. Shimobaba, N. Masuda, and T. Ito, “Simplified electroholographic color reconstruction system using graphics processing unit and liquid crystal display projector,” Opt. Express 17(18), 16038–16045 (2009).
[Crossref] [PubMed]

Y. Wu, C. P. Chen, L. Mi, W. Zhang, J. Zhao, Y. Lu, W. Guo, B. Yu, Y. Li, and N. Maitlo, “Design of retinal-projection-based near-eye display with contact lens,” Opt. Express 26(9), 11553–11567 (2018).
[Crossref] [PubMed]

Opt. Lett. (2)

K. Wei, N. W. Domicone, and Y. Zhao, “Electroactive liquid lens driven by an annular membrane,” Opt. Lett. 39(5), 1318–1321 (2014).
[Crossref] [PubMed]

X. Shen, Y. J. Wang, H. S. Chen, X. Xiao, Y. H. Lin, and B. Javidi, “Extended depth-of-focus 3D micro integral imaging display using a bifocal liquid crystal lens,” Opt. Lett. 40(4), 538–541 (2015).
[Crossref] [PubMed]

Proc. SPIE (1)

F. Yaras and L. Onural, “Color holographic reconstruction using multiple SLMs and LED illumination,” Proc. SPIE 7237, 72370O (2009).
[Crossref]

Procedia Eng. (1)

D. Raboud, T. Barras, F. Lo Conte, L. Fabre, L. Kilcher, F. Kechana, N. Abelé, and M. Kayal, “MEMS based color-VGA micro-projector system,” Procedia Eng. 5, 260–263 (2010).
[Crossref]

Sens. Actuators A Phys. (1)

H. Zhang, L. Li, D. L. Mccray, D. Yao, and A. Y. Yi, “A microlens array on curved substrates by 3D micro projection and reflow process,” Sens. Actuators A Phys. 179, 242–250 (2012).
[Crossref]

Sensors (Basel) (1)

H. H. Chou, C. Y. Tsai, and J. S. Jiang, “An experimental study of a micro-projection enabled optical terminal for short-range bidirectional multi-wavelength visible light communications,” Sensors (Basel) 18(4), 983 (2018).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Principle of the holographic micro-projection system.
Fig. 2
Fig. 2 Principle of the electrowetting effect. (a) State I without applied voltage; (b) state II with applied voltage.
Fig. 3
Fig. 3 Structure of the developed new liquid lens. (a) Top view of the liquid lens when U = 0; (b) side view of the liquid lens when U = 0; (c) top view of the liquid lens with applied voltage; (d) side view of the liquid lens with applied voltage.
Fig. 4
Fig. 4 Chromatic aberration in the traditional holographic system. (a) Sizes and center positions of the color reproduction images; (b) focus positions of the color reproduction images.
Fig. 5
Fig. 5 Zoom effect of the liquid lens. (a)-(c) are different images when the voltage of the liquid lens changes.
Fig. 6
Fig. 6 Relationship between the voltage and the focal length of the liquid lens.
Fig. 7
Fig. 7 Green reconstructed images on the receiving screen. (a) M = 1.1; (b) M = 1; (c) M = 0.6.
Fig. 8
Fig. 8 Blue reconstructed images on the receiving screen. (a) M = 1.2; (b) M = 1; (c) M = 0.8.
Fig. 9
Fig. 9 Red reconstructed images on the receiving screen. (a) M = 1.4; (b) M = 1.25; (c) M = 1.
Fig. 10
Fig. 10 Relationship between the magnification of the system and the focal length of the digital lens.
Fig. 11
Fig. 11 Color holographic micro-projection result. (a) Reconstructed images with chromatic aberration; (b) color reconstructed image with eliminated chromatic aberration.
Fig. 12
Fig. 12 Schematic diagram of holographic micro-projection system after integrating three panels together.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

cos θ 0 =cos θ 1 + ε 0 ε d 2d( γ D2 +F) U 2 ,
U f (x,y)= e ik f 1 iλ f 1 exp[ iπ λ f 1 ( x 2 + y 2 )] [U(u,v)]exp [ 2iπ λ f 1 (xu+yv)]dudv,
1 d 2 + 1 d 1 f 1 = 1 f 2 ,
H= f 1 λ d 2 p( f 1 d 1 ) ,
M= f 1 f 1 d 1 .
f= r 2(n1) ,

Metrics