Abstract

Lasing in dye-doped chiral nematic liquid crystal can be realized with low pump energy and relatively high efficiency, thanks to the high reflectivity of the periodic structure. When the helical axis is oriented perpendicular to the substrates, the main lasing peak is normal to the substrates. In some cases, ring lasing of a particular wavelength is observed into an emission cone with axial symmetry. In this paper we explain how scattering of light in the liquid crystal layer leads to optical coupling between normal modes and inclined modes. Based on a numerical model that takes into account spontaneous emission, gain and scattering we show that scattering leads to emission characteristics that are similar to experimental results.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Color cone lasing emission in a dye-doped cholesteric liquid crystal with a single pitch

C.-R. Lee, S.-H. Lin, H.-C. Yeh, T.-D. Ji, K.-L. Lin, T.-S. Mo, C.-T. Kuo, K.-Y. Lo, S.-H. Chang, Andy Y.-G. Fuh, and S.-Y. Huang
Opt. Express 17(15) 12910-12921 (2009)

Band-tunable color cone lasing emission based on dye-doped cholesteric liquid crystals with various pitches and a pitch gradient

C.-R. Lee, S.-H. Lin, H.-C. Yeh, and T.-D. Ji
Opt. Express 17(25) 22616-22623 (2009)

References

  • View by:
  • |
  • |
  • |

  1. J. H. Lin, P. Y. Chen, and J. J. Wu, “Mode competition of two bandedge lasing from dye doped cholesteric liquid crystal laser,” Opt. Express 22(8), 9932–9941 (2014).
    [Crossref] [PubMed]
  2. H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
    [Crossref]
  3. J. Ortega, C. L. Folcia, and J. Etxebarria, “Upgrading the Performance of Cholesteric Liquid Crystal Lasers: Improvement Margins and Limitations,” Materials (Basel) 11(1), 5 (2017).
    [Crossref] [PubMed]
  4. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23(21), 1707–1709 (1998).
    [Crossref] [PubMed]
  5. J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in a dye doped cholesteric polymer network,” Adv. Mater. 14(10), 746 (2002).
    [Crossref]
  6. C.-T. Wang, C.-W. Chen, T.-H. Yang, I. Nys, C.-C. Li, T.-H. Lin, K. Neyts, and J. Beeckman, “Electrically assisted bandedge mode selection of photonic crystal lasing in chiral nematic liquid crystals,” Appl. Phys. Lett. 112(4), 043301 (2018).
    [Crossref]
  7. T. Dadalyan, R. Alaverdyan, I. Nys, Z. Ninoyan, O. Willekens, J. Beeckman, and K. Neyts, “Tuning the lasing wavelength of dye-doped chiral nematic liquid crystal by fluid flow,” Liq. Cryst. 44, 372–378 (2017).
  8. C. R. Lee, S. H. Lin, H. C. Yeh, T. D. Ji, K. L. Lin, T. S. Mo, C. T. Kuo, K. Y. Lo, S. H. Chang, A. Y. G. Fuh, and S. Y. Huang, “Color cone lasing emission in a dye-doped cholesteric liquid crystal with a single pitch,” Opt. Express 17(15), 12910–12921 (2009).
    [Crossref] [PubMed]
  9. C. R. Lee, S. H. Lin, H. C. Yeh, and T. D. Ji, “Band-tunable color cone lasing emission based on dye-doped cholesteric liquid crystals with various pitches and a pitch gradient,” Opt. Express 17(25), 22616–22623 (2009).
    [Crossref] [PubMed]
  10. C. R. Lee, S. H. Lin, H. S. Ku, J. H. Liu, P. C. Yang, C. Y. Huang, H. C. Yeh, T. D. Ji, and C. H. Lin, “Spatially band-tunable color-cone lasing emission in a dye-doped cholesteric liquid crystal with a photoisomerizable chiral dopant,” Opt. Lett. 35(9), 1398–1400 (2010).
    [Crossref] [PubMed]
  11. S. P. Palto, N. M. Shtykov, B. A. Umanskii, and M. I. Barnik, “Multiwave out-of-normal band-edge lasing in cholesteric liquid crystals,” J. Appl. Phys. 112(1), 013105 (2012).
    [Crossref]
  12. L. Penninck, P. D. Visschere, J. Beeckman, and K. Neyts, “Simulating the Emission Properties of Luminescent Dyes within One-Dimensional Uniaxial Liquid Crystal Microcavities,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 560(1), 82–92 (2012).
    [Crossref]
  13. L. Penninck, P. De Visschere, J. Beeckman, and K. Neyts, “Dipole radiation within one-dimensional anisotropic microcavities: a simulation method,” Opt. Express 19(19), 18558–18576 (2011).
    [Crossref] [PubMed]
  14. L. Penninck, J. Beeckman, P. De Visschere, and K. Neyts, “Numerical simulation of stimulated emission and lasing in dye doped cholesteric liquid crystal films,” J. Appl. Phys. 113(6), 063106 (2013).
    [Crossref]
  15. S. H. Lin and C. R. Lee, “Novel dye-doped cholesteric liquid crystal cone lasers with various birefringences and associated tunabilities of lasing feature and performance,” Opt. Express 19(19), 18199–18206 (2011).
    [Crossref] [PubMed]
  16. D. Y. K. Ko and J. R. Sambles, “Scattering Matrix-Method for Propagation of Radiation in Stratified Media - Attenuated Total Reflection Studies of Liquid-Crystals,” J. Opt. Soc. Am. A 5(11), 1863–1866 (1988).
    [Crossref]
  17. L. Penninck, J. Beeckman, P. De Visschere, and K. Neyts, “Light emission from dye-doped cholesteric liquid crystals at oblique angles: Simulation and experiment,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(4 Pt 1), 041702 (2012).
    [Crossref] [PubMed]
  18. J. Li, C. H. Wen, S. Gauza, R. B. Lu, and S. T. Wu, “Refractive Indices of Liquid Crystals for Display Applications,” J. Disp. Technol. 1(1), 51–61 (2005).
    [Crossref]
  19. J. Etxebarria, J. Ortega, C. L. Folcia, G. Sanz-Enguita, and I. Aramburu, “Thermally induced light-scattering effects as responsible for the degradation of cholesteric liquid crystal lasers,” Opt. Lett. 40(7), 1262–1265 (2015).
    [Crossref] [PubMed]
  20. C. R. Lee, S. H. Lin, J. D. Lin, T. S. Mo, C. T. Kuo, and S. Y. Huang, “Unique spatial continuously tunable cone laser based on a dye-doped cholesteric liquid crystal with a birefringence gradient,” Appl. Phys. B 109(1), 159–163 (2012).
    [Crossref]
  21. C. R. Lee, S. H. Lin, H. S. Ku, J. H. Liu, P. C. Yang, C. Y. Huang, H. C. Yeh, and T. D. Ji, “Optically band-tunable color cone lasing emission in a dye-doped cholesteric liquid crystal with a photoisomerizable chiral dopant,” Appl. Phys. Lett. 96(11), 111105 (2010).
    [Crossref]
  22. S. T. Wu and K. C. Lim, “Absorption and Scattering Measurements of Nematic Liquid Crystals,” Appl. Opt. 26(9), 1722–1727 (1987).
    [Crossref] [PubMed]

2018 (1)

C.-T. Wang, C.-W. Chen, T.-H. Yang, I. Nys, C.-C. Li, T.-H. Lin, K. Neyts, and J. Beeckman, “Electrically assisted bandedge mode selection of photonic crystal lasing in chiral nematic liquid crystals,” Appl. Phys. Lett. 112(4), 043301 (2018).
[Crossref]

2017 (2)

T. Dadalyan, R. Alaverdyan, I. Nys, Z. Ninoyan, O. Willekens, J. Beeckman, and K. Neyts, “Tuning the lasing wavelength of dye-doped chiral nematic liquid crystal by fluid flow,” Liq. Cryst. 44, 372–378 (2017).

J. Ortega, C. L. Folcia, and J. Etxebarria, “Upgrading the Performance of Cholesteric Liquid Crystal Lasers: Improvement Margins and Limitations,” Materials (Basel) 11(1), 5 (2017).
[Crossref] [PubMed]

2015 (1)

J. Etxebarria, J. Ortega, C. L. Folcia, G. Sanz-Enguita, and I. Aramburu, “Thermally induced light-scattering effects as responsible for the degradation of cholesteric liquid crystal lasers,” Opt. Lett. 40(7), 1262–1265 (2015).
[Crossref] [PubMed]

2014 (1)

J. H. Lin, P. Y. Chen, and J. J. Wu, “Mode competition of two bandedge lasing from dye doped cholesteric liquid crystal laser,” Opt. Express 22(8), 9932–9941 (2014).
[Crossref] [PubMed]

2013 (1)

L. Penninck, J. Beeckman, P. De Visschere, and K. Neyts, “Numerical simulation of stimulated emission and lasing in dye doped cholesteric liquid crystal films,” J. Appl. Phys. 113(6), 063106 (2013).
[Crossref]

2012 (4)

L. Penninck, J. Beeckman, P. De Visschere, and K. Neyts, “Light emission from dye-doped cholesteric liquid crystals at oblique angles: Simulation and experiment,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(4 Pt 1), 041702 (2012).
[Crossref] [PubMed]

S. P. Palto, N. M. Shtykov, B. A. Umanskii, and M. I. Barnik, “Multiwave out-of-normal band-edge lasing in cholesteric liquid crystals,” J. Appl. Phys. 112(1), 013105 (2012).
[Crossref]

L. Penninck, P. D. Visschere, J. Beeckman, and K. Neyts, “Simulating the Emission Properties of Luminescent Dyes within One-Dimensional Uniaxial Liquid Crystal Microcavities,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 560(1), 82–92 (2012).
[Crossref]

C. R. Lee, S. H. Lin, J. D. Lin, T. S. Mo, C. T. Kuo, and S. Y. Huang, “Unique spatial continuously tunable cone laser based on a dye-doped cholesteric liquid crystal with a birefringence gradient,” Appl. Phys. B 109(1), 159–163 (2012).
[Crossref]

2011 (2)

L. Penninck, P. De Visschere, J. Beeckman, and K. Neyts, “Dipole radiation within one-dimensional anisotropic microcavities: a simulation method,” Opt. Express 19(19), 18558–18576 (2011).
[Crossref] [PubMed]

S. H. Lin and C. R. Lee, “Novel dye-doped cholesteric liquid crystal cone lasers with various birefringences and associated tunabilities of lasing feature and performance,” Opt. Express 19(19), 18199–18206 (2011).
[Crossref] [PubMed]

2010 (3)

C. R. Lee, S. H. Lin, H. S. Ku, J. H. Liu, P. C. Yang, C. Y. Huang, H. C. Yeh, T. D. Ji, and C. H. Lin, “Spatially band-tunable color-cone lasing emission in a dye-doped cholesteric liquid crystal with a photoisomerizable chiral dopant,” Opt. Lett. 35(9), 1398–1400 (2010).
[Crossref] [PubMed]

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

C. R. Lee, S. H. Lin, H. S. Ku, J. H. Liu, P. C. Yang, C. Y. Huang, H. C. Yeh, and T. D. Ji, “Optically band-tunable color cone lasing emission in a dye-doped cholesteric liquid crystal with a photoisomerizable chiral dopant,” Appl. Phys. Lett. 96(11), 111105 (2010).
[Crossref]

2009 (2)

C. R. Lee, S. H. Lin, H. C. Yeh, T. D. Ji, K. L. Lin, T. S. Mo, C. T. Kuo, K. Y. Lo, S. H. Chang, A. Y. G. Fuh, and S. Y. Huang, “Color cone lasing emission in a dye-doped cholesteric liquid crystal with a single pitch,” Opt. Express 17(15), 12910–12921 (2009).
[Crossref] [PubMed]

C. R. Lee, S. H. Lin, H. C. Yeh, and T. D. Ji, “Band-tunable color cone lasing emission based on dye-doped cholesteric liquid crystals with various pitches and a pitch gradient,” Opt. Express 17(25), 22616–22623 (2009).
[Crossref] [PubMed]

2005 (1)

J. Li, C. H. Wen, S. Gauza, R. B. Lu, and S. T. Wu, “Refractive Indices of Liquid Crystals for Display Applications,” J. Disp. Technol. 1(1), 51–61 (2005).
[Crossref]

2002 (1)

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in a dye doped cholesteric polymer network,” Adv. Mater. 14(10), 746 (2002).
[Crossref]

1998 (1)

V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23(21), 1707–1709 (1998).
[Crossref] [PubMed]

1988 (1)

D. Y. K. Ko and J. R. Sambles, “Scattering Matrix-Method for Propagation of Radiation in Stratified Media - Attenuated Total Reflection Studies of Liquid-Crystals,” J. Opt. Soc. Am. A 5(11), 1863–1866 (1988).
[Crossref]

1987 (1)

S. T. Wu and K. C. Lim, “Absorption and Scattering Measurements of Nematic Liquid Crystals,” Appl. Opt. 26(9), 1722–1727 (1987).
[Crossref] [PubMed]

Alaverdyan, R.

T. Dadalyan, R. Alaverdyan, I. Nys, Z. Ninoyan, O. Willekens, J. Beeckman, and K. Neyts, “Tuning the lasing wavelength of dye-doped chiral nematic liquid crystal by fluid flow,” Liq. Cryst. 44, 372–378 (2017).

Aramburu, I.

J. Etxebarria, J. Ortega, C. L. Folcia, G. Sanz-Enguita, and I. Aramburu, “Thermally induced light-scattering effects as responsible for the degradation of cholesteric liquid crystal lasers,” Opt. Lett. 40(7), 1262–1265 (2015).
[Crossref] [PubMed]

Barnik, M. I.

S. P. Palto, N. M. Shtykov, B. A. Umanskii, and M. I. Barnik, “Multiwave out-of-normal band-edge lasing in cholesteric liquid crystals,” J. Appl. Phys. 112(1), 013105 (2012).
[Crossref]

Beeckman, J.

C.-T. Wang, C.-W. Chen, T.-H. Yang, I. Nys, C.-C. Li, T.-H. Lin, K. Neyts, and J. Beeckman, “Electrically assisted bandedge mode selection of photonic crystal lasing in chiral nematic liquid crystals,” Appl. Phys. Lett. 112(4), 043301 (2018).
[Crossref]

T. Dadalyan, R. Alaverdyan, I. Nys, Z. Ninoyan, O. Willekens, J. Beeckman, and K. Neyts, “Tuning the lasing wavelength of dye-doped chiral nematic liquid crystal by fluid flow,” Liq. Cryst. 44, 372–378 (2017).

L. Penninck, J. Beeckman, P. De Visschere, and K. Neyts, “Numerical simulation of stimulated emission and lasing in dye doped cholesteric liquid crystal films,” J. Appl. Phys. 113(6), 063106 (2013).
[Crossref]

L. Penninck, P. D. Visschere, J. Beeckman, and K. Neyts, “Simulating the Emission Properties of Luminescent Dyes within One-Dimensional Uniaxial Liquid Crystal Microcavities,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 560(1), 82–92 (2012).
[Crossref]

L. Penninck, J. Beeckman, P. De Visschere, and K. Neyts, “Light emission from dye-doped cholesteric liquid crystals at oblique angles: Simulation and experiment,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(4 Pt 1), 041702 (2012).
[Crossref] [PubMed]

L. Penninck, P. De Visschere, J. Beeckman, and K. Neyts, “Dipole radiation within one-dimensional anisotropic microcavities: a simulation method,” Opt. Express 19(19), 18558–18576 (2011).
[Crossref] [PubMed]

Chang, S. H.

C. R. Lee, S. H. Lin, H. C. Yeh, T. D. Ji, K. L. Lin, T. S. Mo, C. T. Kuo, K. Y. Lo, S. H. Chang, A. Y. G. Fuh, and S. Y. Huang, “Color cone lasing emission in a dye-doped cholesteric liquid crystal with a single pitch,” Opt. Express 17(15), 12910–12921 (2009).
[Crossref] [PubMed]

Chen, C.-W.

C.-T. Wang, C.-W. Chen, T.-H. Yang, I. Nys, C.-C. Li, T.-H. Lin, K. Neyts, and J. Beeckman, “Electrically assisted bandedge mode selection of photonic crystal lasing in chiral nematic liquid crystals,” Appl. Phys. Lett. 112(4), 043301 (2018).
[Crossref]

Chen, P. Y.

J. H. Lin, P. Y. Chen, and J. J. Wu, “Mode competition of two bandedge lasing from dye doped cholesteric liquid crystal laser,” Opt. Express 22(8), 9932–9941 (2014).
[Crossref] [PubMed]

Coles, H.

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

Dadalyan, T.

T. Dadalyan, R. Alaverdyan, I. Nys, Z. Ninoyan, O. Willekens, J. Beeckman, and K. Neyts, “Tuning the lasing wavelength of dye-doped chiral nematic liquid crystal by fluid flow,” Liq. Cryst. 44, 372–378 (2017).

De Visschere, P.

L. Penninck, J. Beeckman, P. De Visschere, and K. Neyts, “Numerical simulation of stimulated emission and lasing in dye doped cholesteric liquid crystal films,” J. Appl. Phys. 113(6), 063106 (2013).
[Crossref]

L. Penninck, J. Beeckman, P. De Visschere, and K. Neyts, “Light emission from dye-doped cholesteric liquid crystals at oblique angles: Simulation and experiment,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(4 Pt 1), 041702 (2012).
[Crossref] [PubMed]

L. Penninck, P. De Visschere, J. Beeckman, and K. Neyts, “Dipole radiation within one-dimensional anisotropic microcavities: a simulation method,” Opt. Express 19(19), 18558–18576 (2011).
[Crossref] [PubMed]

Etxebarria, J.

J. Ortega, C. L. Folcia, and J. Etxebarria, “Upgrading the Performance of Cholesteric Liquid Crystal Lasers: Improvement Margins and Limitations,” Materials (Basel) 11(1), 5 (2017).
[Crossref] [PubMed]

J. Etxebarria, J. Ortega, C. L. Folcia, G. Sanz-Enguita, and I. Aramburu, “Thermally induced light-scattering effects as responsible for the degradation of cholesteric liquid crystal lasers,” Opt. Lett. 40(7), 1262–1265 (2015).
[Crossref] [PubMed]

Fan, B.

V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23(21), 1707–1709 (1998).
[Crossref] [PubMed]

Finkelmann, H.

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in a dye doped cholesteric polymer network,” Adv. Mater. 14(10), 746 (2002).
[Crossref]

Folcia, C. L.

J. Ortega, C. L. Folcia, and J. Etxebarria, “Upgrading the Performance of Cholesteric Liquid Crystal Lasers: Improvement Margins and Limitations,” Materials (Basel) 11(1), 5 (2017).
[Crossref] [PubMed]

J. Etxebarria, J. Ortega, C. L. Folcia, G. Sanz-Enguita, and I. Aramburu, “Thermally induced light-scattering effects as responsible for the degradation of cholesteric liquid crystal lasers,” Opt. Lett. 40(7), 1262–1265 (2015).
[Crossref] [PubMed]

Fuh, A. Y. G.

C. R. Lee, S. H. Lin, H. C. Yeh, T. D. Ji, K. L. Lin, T. S. Mo, C. T. Kuo, K. Y. Lo, S. H. Chang, A. Y. G. Fuh, and S. Y. Huang, “Color cone lasing emission in a dye-doped cholesteric liquid crystal with a single pitch,” Opt. Express 17(15), 12910–12921 (2009).
[Crossref] [PubMed]

Gauza, S.

J. Li, C. H. Wen, S. Gauza, R. B. Lu, and S. T. Wu, “Refractive Indices of Liquid Crystals for Display Applications,” J. Disp. Technol. 1(1), 51–61 (2005).
[Crossref]

Genack, A. Z.

V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23(21), 1707–1709 (1998).
[Crossref] [PubMed]

Huang, C. Y.

C. R. Lee, S. H. Lin, H. S. Ku, J. H. Liu, P. C. Yang, C. Y. Huang, H. C. Yeh, T. D. Ji, and C. H. Lin, “Spatially band-tunable color-cone lasing emission in a dye-doped cholesteric liquid crystal with a photoisomerizable chiral dopant,” Opt. Lett. 35(9), 1398–1400 (2010).
[Crossref] [PubMed]

C. R. Lee, S. H. Lin, H. S. Ku, J. H. Liu, P. C. Yang, C. Y. Huang, H. C. Yeh, and T. D. Ji, “Optically band-tunable color cone lasing emission in a dye-doped cholesteric liquid crystal with a photoisomerizable chiral dopant,” Appl. Phys. Lett. 96(11), 111105 (2010).
[Crossref]

Huang, S. Y.

C. R. Lee, S. H. Lin, J. D. Lin, T. S. Mo, C. T. Kuo, and S. Y. Huang, “Unique spatial continuously tunable cone laser based on a dye-doped cholesteric liquid crystal with a birefringence gradient,” Appl. Phys. B 109(1), 159–163 (2012).
[Crossref]

C. R. Lee, S. H. Lin, H. C. Yeh, T. D. Ji, K. L. Lin, T. S. Mo, C. T. Kuo, K. Y. Lo, S. H. Chang, A. Y. G. Fuh, and S. Y. Huang, “Color cone lasing emission in a dye-doped cholesteric liquid crystal with a single pitch,” Opt. Express 17(15), 12910–12921 (2009).
[Crossref] [PubMed]

Ji, T. D.

C. R. Lee, S. H. Lin, H. S. Ku, J. H. Liu, P. C. Yang, C. Y. Huang, H. C. Yeh, T. D. Ji, and C. H. Lin, “Spatially band-tunable color-cone lasing emission in a dye-doped cholesteric liquid crystal with a photoisomerizable chiral dopant,” Opt. Lett. 35(9), 1398–1400 (2010).
[Crossref] [PubMed]

C. R. Lee, S. H. Lin, H. S. Ku, J. H. Liu, P. C. Yang, C. Y. Huang, H. C. Yeh, and T. D. Ji, “Optically band-tunable color cone lasing emission in a dye-doped cholesteric liquid crystal with a photoisomerizable chiral dopant,” Appl. Phys. Lett. 96(11), 111105 (2010).
[Crossref]

C. R. Lee, S. H. Lin, H. C. Yeh, and T. D. Ji, “Band-tunable color cone lasing emission based on dye-doped cholesteric liquid crystals with various pitches and a pitch gradient,” Opt. Express 17(25), 22616–22623 (2009).
[Crossref] [PubMed]

C. R. Lee, S. H. Lin, H. C. Yeh, T. D. Ji, K. L. Lin, T. S. Mo, C. T. Kuo, K. Y. Lo, S. H. Chang, A. Y. G. Fuh, and S. Y. Huang, “Color cone lasing emission in a dye-doped cholesteric liquid crystal with a single pitch,” Opt. Express 17(15), 12910–12921 (2009).
[Crossref] [PubMed]

Kim, S. T.

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in a dye doped cholesteric polymer network,” Adv. Mater. 14(10), 746 (2002).
[Crossref]

Ko, D. Y. K.

D. Y. K. Ko and J. R. Sambles, “Scattering Matrix-Method for Propagation of Radiation in Stratified Media - Attenuated Total Reflection Studies of Liquid-Crystals,” J. Opt. Soc. Am. A 5(11), 1863–1866 (1988).
[Crossref]

Kopp, V. I.

V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23(21), 1707–1709 (1998).
[Crossref] [PubMed]

Ku, H. S.

C. R. Lee, S. H. Lin, H. S. Ku, J. H. Liu, P. C. Yang, C. Y. Huang, H. C. Yeh, T. D. Ji, and C. H. Lin, “Spatially band-tunable color-cone lasing emission in a dye-doped cholesteric liquid crystal with a photoisomerizable chiral dopant,” Opt. Lett. 35(9), 1398–1400 (2010).
[Crossref] [PubMed]

C. R. Lee, S. H. Lin, H. S. Ku, J. H. Liu, P. C. Yang, C. Y. Huang, H. C. Yeh, and T. D. Ji, “Optically band-tunable color cone lasing emission in a dye-doped cholesteric liquid crystal with a photoisomerizable chiral dopant,” Appl. Phys. Lett. 96(11), 111105 (2010).
[Crossref]

Kuo, C. T.

C. R. Lee, S. H. Lin, J. D. Lin, T. S. Mo, C. T. Kuo, and S. Y. Huang, “Unique spatial continuously tunable cone laser based on a dye-doped cholesteric liquid crystal with a birefringence gradient,” Appl. Phys. B 109(1), 159–163 (2012).
[Crossref]

C. R. Lee, S. H. Lin, H. C. Yeh, T. D. Ji, K. L. Lin, T. S. Mo, C. T. Kuo, K. Y. Lo, S. H. Chang, A. Y. G. Fuh, and S. Y. Huang, “Color cone lasing emission in a dye-doped cholesteric liquid crystal with a single pitch,” Opt. Express 17(15), 12910–12921 (2009).
[Crossref] [PubMed]

Lee, C. R.

C. R. Lee, S. H. Lin, J. D. Lin, T. S. Mo, C. T. Kuo, and S. Y. Huang, “Unique spatial continuously tunable cone laser based on a dye-doped cholesteric liquid crystal with a birefringence gradient,” Appl. Phys. B 109(1), 159–163 (2012).
[Crossref]

S. H. Lin and C. R. Lee, “Novel dye-doped cholesteric liquid crystal cone lasers with various birefringences and associated tunabilities of lasing feature and performance,” Opt. Express 19(19), 18199–18206 (2011).
[Crossref] [PubMed]

C. R. Lee, S. H. Lin, H. S. Ku, J. H. Liu, P. C. Yang, C. Y. Huang, H. C. Yeh, T. D. Ji, and C. H. Lin, “Spatially band-tunable color-cone lasing emission in a dye-doped cholesteric liquid crystal with a photoisomerizable chiral dopant,” Opt. Lett. 35(9), 1398–1400 (2010).
[Crossref] [PubMed]

C. R. Lee, S. H. Lin, H. S. Ku, J. H. Liu, P. C. Yang, C. Y. Huang, H. C. Yeh, and T. D. Ji, “Optically band-tunable color cone lasing emission in a dye-doped cholesteric liquid crystal with a photoisomerizable chiral dopant,” Appl. Phys. Lett. 96(11), 111105 (2010).
[Crossref]

C. R. Lee, S. H. Lin, H. C. Yeh, and T. D. Ji, “Band-tunable color cone lasing emission based on dye-doped cholesteric liquid crystals with various pitches and a pitch gradient,” Opt. Express 17(25), 22616–22623 (2009).
[Crossref] [PubMed]

C. R. Lee, S. H. Lin, H. C. Yeh, T. D. Ji, K. L. Lin, T. S. Mo, C. T. Kuo, K. Y. Lo, S. H. Chang, A. Y. G. Fuh, and S. Y. Huang, “Color cone lasing emission in a dye-doped cholesteric liquid crystal with a single pitch,” Opt. Express 17(15), 12910–12921 (2009).
[Crossref] [PubMed]

Li, C.-C.

C.-T. Wang, C.-W. Chen, T.-H. Yang, I. Nys, C.-C. Li, T.-H. Lin, K. Neyts, and J. Beeckman, “Electrically assisted bandedge mode selection of photonic crystal lasing in chiral nematic liquid crystals,” Appl. Phys. Lett. 112(4), 043301 (2018).
[Crossref]

Li, J.

J. Li, C. H. Wen, S. Gauza, R. B. Lu, and S. T. Wu, “Refractive Indices of Liquid Crystals for Display Applications,” J. Disp. Technol. 1(1), 51–61 (2005).
[Crossref]

Lim, K. C.

S. T. Wu and K. C. Lim, “Absorption and Scattering Measurements of Nematic Liquid Crystals,” Appl. Opt. 26(9), 1722–1727 (1987).
[Crossref] [PubMed]

Lin, C. H.

C. R. Lee, S. H. Lin, H. S. Ku, J. H. Liu, P. C. Yang, C. Y. Huang, H. C. Yeh, T. D. Ji, and C. H. Lin, “Spatially band-tunable color-cone lasing emission in a dye-doped cholesteric liquid crystal with a photoisomerizable chiral dopant,” Opt. Lett. 35(9), 1398–1400 (2010).
[Crossref] [PubMed]

Lin, J. D.

C. R. Lee, S. H. Lin, J. D. Lin, T. S. Mo, C. T. Kuo, and S. Y. Huang, “Unique spatial continuously tunable cone laser based on a dye-doped cholesteric liquid crystal with a birefringence gradient,” Appl. Phys. B 109(1), 159–163 (2012).
[Crossref]

Lin, J. H.

J. H. Lin, P. Y. Chen, and J. J. Wu, “Mode competition of two bandedge lasing from dye doped cholesteric liquid crystal laser,” Opt. Express 22(8), 9932–9941 (2014).
[Crossref] [PubMed]

Lin, K. L.

C. R. Lee, S. H. Lin, H. C. Yeh, T. D. Ji, K. L. Lin, T. S. Mo, C. T. Kuo, K. Y. Lo, S. H. Chang, A. Y. G. Fuh, and S. Y. Huang, “Color cone lasing emission in a dye-doped cholesteric liquid crystal with a single pitch,” Opt. Express 17(15), 12910–12921 (2009).
[Crossref] [PubMed]

Lin, S. H.

C. R. Lee, S. H. Lin, J. D. Lin, T. S. Mo, C. T. Kuo, and S. Y. Huang, “Unique spatial continuously tunable cone laser based on a dye-doped cholesteric liquid crystal with a birefringence gradient,” Appl. Phys. B 109(1), 159–163 (2012).
[Crossref]

S. H. Lin and C. R. Lee, “Novel dye-doped cholesteric liquid crystal cone lasers with various birefringences and associated tunabilities of lasing feature and performance,” Opt. Express 19(19), 18199–18206 (2011).
[Crossref] [PubMed]

C. R. Lee, S. H. Lin, H. S. Ku, J. H. Liu, P. C. Yang, C. Y. Huang, H. C. Yeh, T. D. Ji, and C. H. Lin, “Spatially band-tunable color-cone lasing emission in a dye-doped cholesteric liquid crystal with a photoisomerizable chiral dopant,” Opt. Lett. 35(9), 1398–1400 (2010).
[Crossref] [PubMed]

C. R. Lee, S. H. Lin, H. S. Ku, J. H. Liu, P. C. Yang, C. Y. Huang, H. C. Yeh, and T. D. Ji, “Optically band-tunable color cone lasing emission in a dye-doped cholesteric liquid crystal with a photoisomerizable chiral dopant,” Appl. Phys. Lett. 96(11), 111105 (2010).
[Crossref]

C. R. Lee, S. H. Lin, H. C. Yeh, and T. D. Ji, “Band-tunable color cone lasing emission based on dye-doped cholesteric liquid crystals with various pitches and a pitch gradient,” Opt. Express 17(25), 22616–22623 (2009).
[Crossref] [PubMed]

C. R. Lee, S. H. Lin, H. C. Yeh, T. D. Ji, K. L. Lin, T. S. Mo, C. T. Kuo, K. Y. Lo, S. H. Chang, A. Y. G. Fuh, and S. Y. Huang, “Color cone lasing emission in a dye-doped cholesteric liquid crystal with a single pitch,” Opt. Express 17(15), 12910–12921 (2009).
[Crossref] [PubMed]

Lin, T.-H.

C.-T. Wang, C.-W. Chen, T.-H. Yang, I. Nys, C.-C. Li, T.-H. Lin, K. Neyts, and J. Beeckman, “Electrically assisted bandedge mode selection of photonic crystal lasing in chiral nematic liquid crystals,” Appl. Phys. Lett. 112(4), 043301 (2018).
[Crossref]

Liu, J. H.

C. R. Lee, S. H. Lin, H. S. Ku, J. H. Liu, P. C. Yang, C. Y. Huang, H. C. Yeh, T. D. Ji, and C. H. Lin, “Spatially band-tunable color-cone lasing emission in a dye-doped cholesteric liquid crystal with a photoisomerizable chiral dopant,” Opt. Lett. 35(9), 1398–1400 (2010).
[Crossref] [PubMed]

C. R. Lee, S. H. Lin, H. S. Ku, J. H. Liu, P. C. Yang, C. Y. Huang, H. C. Yeh, and T. D. Ji, “Optically band-tunable color cone lasing emission in a dye-doped cholesteric liquid crystal with a photoisomerizable chiral dopant,” Appl. Phys. Lett. 96(11), 111105 (2010).
[Crossref]

Lo, K. Y.

C. R. Lee, S. H. Lin, H. C. Yeh, T. D. Ji, K. L. Lin, T. S. Mo, C. T. Kuo, K. Y. Lo, S. H. Chang, A. Y. G. Fuh, and S. Y. Huang, “Color cone lasing emission in a dye-doped cholesteric liquid crystal with a single pitch,” Opt. Express 17(15), 12910–12921 (2009).
[Crossref] [PubMed]

Lu, R. B.

J. Li, C. H. Wen, S. Gauza, R. B. Lu, and S. T. Wu, “Refractive Indices of Liquid Crystals for Display Applications,” J. Disp. Technol. 1(1), 51–61 (2005).
[Crossref]

Mo, T. S.

C. R. Lee, S. H. Lin, J. D. Lin, T. S. Mo, C. T. Kuo, and S. Y. Huang, “Unique spatial continuously tunable cone laser based on a dye-doped cholesteric liquid crystal with a birefringence gradient,” Appl. Phys. B 109(1), 159–163 (2012).
[Crossref]

C. R. Lee, S. H. Lin, H. C. Yeh, T. D. Ji, K. L. Lin, T. S. Mo, C. T. Kuo, K. Y. Lo, S. H. Chang, A. Y. G. Fuh, and S. Y. Huang, “Color cone lasing emission in a dye-doped cholesteric liquid crystal with a single pitch,” Opt. Express 17(15), 12910–12921 (2009).
[Crossref] [PubMed]

Morris, S.

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

Neyts, K.

C.-T. Wang, C.-W. Chen, T.-H. Yang, I. Nys, C.-C. Li, T.-H. Lin, K. Neyts, and J. Beeckman, “Electrically assisted bandedge mode selection of photonic crystal lasing in chiral nematic liquid crystals,” Appl. Phys. Lett. 112(4), 043301 (2018).
[Crossref]

T. Dadalyan, R. Alaverdyan, I. Nys, Z. Ninoyan, O. Willekens, J. Beeckman, and K. Neyts, “Tuning the lasing wavelength of dye-doped chiral nematic liquid crystal by fluid flow,” Liq. Cryst. 44, 372–378 (2017).

L. Penninck, J. Beeckman, P. De Visschere, and K. Neyts, “Numerical simulation of stimulated emission and lasing in dye doped cholesteric liquid crystal films,” J. Appl. Phys. 113(6), 063106 (2013).
[Crossref]

L. Penninck, P. D. Visschere, J. Beeckman, and K. Neyts, “Simulating the Emission Properties of Luminescent Dyes within One-Dimensional Uniaxial Liquid Crystal Microcavities,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 560(1), 82–92 (2012).
[Crossref]

L. Penninck, J. Beeckman, P. De Visschere, and K. Neyts, “Light emission from dye-doped cholesteric liquid crystals at oblique angles: Simulation and experiment,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(4 Pt 1), 041702 (2012).
[Crossref] [PubMed]

L. Penninck, P. De Visschere, J. Beeckman, and K. Neyts, “Dipole radiation within one-dimensional anisotropic microcavities: a simulation method,” Opt. Express 19(19), 18558–18576 (2011).
[Crossref] [PubMed]

Ninoyan, Z.

T. Dadalyan, R. Alaverdyan, I. Nys, Z. Ninoyan, O. Willekens, J. Beeckman, and K. Neyts, “Tuning the lasing wavelength of dye-doped chiral nematic liquid crystal by fluid flow,” Liq. Cryst. 44, 372–378 (2017).

Nys, I.

C.-T. Wang, C.-W. Chen, T.-H. Yang, I. Nys, C.-C. Li, T.-H. Lin, K. Neyts, and J. Beeckman, “Electrically assisted bandedge mode selection of photonic crystal lasing in chiral nematic liquid crystals,” Appl. Phys. Lett. 112(4), 043301 (2018).
[Crossref]

T. Dadalyan, R. Alaverdyan, I. Nys, Z. Ninoyan, O. Willekens, J. Beeckman, and K. Neyts, “Tuning the lasing wavelength of dye-doped chiral nematic liquid crystal by fluid flow,” Liq. Cryst. 44, 372–378 (2017).

Ortega, J.

J. Ortega, C. L. Folcia, and J. Etxebarria, “Upgrading the Performance of Cholesteric Liquid Crystal Lasers: Improvement Margins and Limitations,” Materials (Basel) 11(1), 5 (2017).
[Crossref] [PubMed]

J. Etxebarria, J. Ortega, C. L. Folcia, G. Sanz-Enguita, and I. Aramburu, “Thermally induced light-scattering effects as responsible for the degradation of cholesteric liquid crystal lasers,” Opt. Lett. 40(7), 1262–1265 (2015).
[Crossref] [PubMed]

Palto, S. P.

S. P. Palto, N. M. Shtykov, B. A. Umanskii, and M. I. Barnik, “Multiwave out-of-normal band-edge lasing in cholesteric liquid crystals,” J. Appl. Phys. 112(1), 013105 (2012).
[Crossref]

Penninck, L.

L. Penninck, J. Beeckman, P. De Visschere, and K. Neyts, “Numerical simulation of stimulated emission and lasing in dye doped cholesteric liquid crystal films,” J. Appl. Phys. 113(6), 063106 (2013).
[Crossref]

L. Penninck, P. D. Visschere, J. Beeckman, and K. Neyts, “Simulating the Emission Properties of Luminescent Dyes within One-Dimensional Uniaxial Liquid Crystal Microcavities,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 560(1), 82–92 (2012).
[Crossref]

L. Penninck, J. Beeckman, P. De Visschere, and K. Neyts, “Light emission from dye-doped cholesteric liquid crystals at oblique angles: Simulation and experiment,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(4 Pt 1), 041702 (2012).
[Crossref] [PubMed]

L. Penninck, P. De Visschere, J. Beeckman, and K. Neyts, “Dipole radiation within one-dimensional anisotropic microcavities: a simulation method,” Opt. Express 19(19), 18558–18576 (2011).
[Crossref] [PubMed]

Sambles, J. R.

D. Y. K. Ko and J. R. Sambles, “Scattering Matrix-Method for Propagation of Radiation in Stratified Media - Attenuated Total Reflection Studies of Liquid-Crystals,” J. Opt. Soc. Am. A 5(11), 1863–1866 (1988).
[Crossref]

Sanz-Enguita, G.

J. Etxebarria, J. Ortega, C. L. Folcia, G. Sanz-Enguita, and I. Aramburu, “Thermally induced light-scattering effects as responsible for the degradation of cholesteric liquid crystal lasers,” Opt. Lett. 40(7), 1262–1265 (2015).
[Crossref] [PubMed]

Schmidtke, J.

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in a dye doped cholesteric polymer network,” Adv. Mater. 14(10), 746 (2002).
[Crossref]

Shtykov, N. M.

S. P. Palto, N. M. Shtykov, B. A. Umanskii, and M. I. Barnik, “Multiwave out-of-normal band-edge lasing in cholesteric liquid crystals,” J. Appl. Phys. 112(1), 013105 (2012).
[Crossref]

Stille, W.

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in a dye doped cholesteric polymer network,” Adv. Mater. 14(10), 746 (2002).
[Crossref]

Umanskii, B. A.

S. P. Palto, N. M. Shtykov, B. A. Umanskii, and M. I. Barnik, “Multiwave out-of-normal band-edge lasing in cholesteric liquid crystals,” J. Appl. Phys. 112(1), 013105 (2012).
[Crossref]

Visschere, P. D.

L. Penninck, P. D. Visschere, J. Beeckman, and K. Neyts, “Simulating the Emission Properties of Luminescent Dyes within One-Dimensional Uniaxial Liquid Crystal Microcavities,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 560(1), 82–92 (2012).
[Crossref]

Vithana, H. K. M.

V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23(21), 1707–1709 (1998).
[Crossref] [PubMed]

Wang, C.-T.

C.-T. Wang, C.-W. Chen, T.-H. Yang, I. Nys, C.-C. Li, T.-H. Lin, K. Neyts, and J. Beeckman, “Electrically assisted bandedge mode selection of photonic crystal lasing in chiral nematic liquid crystals,” Appl. Phys. Lett. 112(4), 043301 (2018).
[Crossref]

Wen, C. H.

J. Li, C. H. Wen, S. Gauza, R. B. Lu, and S. T. Wu, “Refractive Indices of Liquid Crystals for Display Applications,” J. Disp. Technol. 1(1), 51–61 (2005).
[Crossref]

Willekens, O.

T. Dadalyan, R. Alaverdyan, I. Nys, Z. Ninoyan, O. Willekens, J. Beeckman, and K. Neyts, “Tuning the lasing wavelength of dye-doped chiral nematic liquid crystal by fluid flow,” Liq. Cryst. 44, 372–378 (2017).

Wu, J. J.

J. H. Lin, P. Y. Chen, and J. J. Wu, “Mode competition of two bandedge lasing from dye doped cholesteric liquid crystal laser,” Opt. Express 22(8), 9932–9941 (2014).
[Crossref] [PubMed]

Wu, S. T.

J. Li, C. H. Wen, S. Gauza, R. B. Lu, and S. T. Wu, “Refractive Indices of Liquid Crystals for Display Applications,” J. Disp. Technol. 1(1), 51–61 (2005).
[Crossref]

S. T. Wu and K. C. Lim, “Absorption and Scattering Measurements of Nematic Liquid Crystals,” Appl. Opt. 26(9), 1722–1727 (1987).
[Crossref] [PubMed]

Yang, P. C.

C. R. Lee, S. H. Lin, H. S. Ku, J. H. Liu, P. C. Yang, C. Y. Huang, H. C. Yeh, and T. D. Ji, “Optically band-tunable color cone lasing emission in a dye-doped cholesteric liquid crystal with a photoisomerizable chiral dopant,” Appl. Phys. Lett. 96(11), 111105 (2010).
[Crossref]

C. R. Lee, S. H. Lin, H. S. Ku, J. H. Liu, P. C. Yang, C. Y. Huang, H. C. Yeh, T. D. Ji, and C. H. Lin, “Spatially band-tunable color-cone lasing emission in a dye-doped cholesteric liquid crystal with a photoisomerizable chiral dopant,” Opt. Lett. 35(9), 1398–1400 (2010).
[Crossref] [PubMed]

Yang, T.-H.

C.-T. Wang, C.-W. Chen, T.-H. Yang, I. Nys, C.-C. Li, T.-H. Lin, K. Neyts, and J. Beeckman, “Electrically assisted bandedge mode selection of photonic crystal lasing in chiral nematic liquid crystals,” Appl. Phys. Lett. 112(4), 043301 (2018).
[Crossref]

Yeh, H. C.

C. R. Lee, S. H. Lin, H. S. Ku, J. H. Liu, P. C. Yang, C. Y. Huang, H. C. Yeh, T. D. Ji, and C. H. Lin, “Spatially band-tunable color-cone lasing emission in a dye-doped cholesteric liquid crystal with a photoisomerizable chiral dopant,” Opt. Lett. 35(9), 1398–1400 (2010).
[Crossref] [PubMed]

C. R. Lee, S. H. Lin, H. S. Ku, J. H. Liu, P. C. Yang, C. Y. Huang, H. C. Yeh, and T. D. Ji, “Optically band-tunable color cone lasing emission in a dye-doped cholesteric liquid crystal with a photoisomerizable chiral dopant,” Appl. Phys. Lett. 96(11), 111105 (2010).
[Crossref]

C. R. Lee, S. H. Lin, H. C. Yeh, and T. D. Ji, “Band-tunable color cone lasing emission based on dye-doped cholesteric liquid crystals with various pitches and a pitch gradient,” Opt. Express 17(25), 22616–22623 (2009).
[Crossref] [PubMed]

C. R. Lee, S. H. Lin, H. C. Yeh, T. D. Ji, K. L. Lin, T. S. Mo, C. T. Kuo, K. Y. Lo, S. H. Chang, A. Y. G. Fuh, and S. Y. Huang, “Color cone lasing emission in a dye-doped cholesteric liquid crystal with a single pitch,” Opt. Express 17(15), 12910–12921 (2009).
[Crossref] [PubMed]

Adv. Mater. (1)

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in a dye doped cholesteric polymer network,” Adv. Mater. 14(10), 746 (2002).
[Crossref]

Appl. Opt. (1)

S. T. Wu and K. C. Lim, “Absorption and Scattering Measurements of Nematic Liquid Crystals,” Appl. Opt. 26(9), 1722–1727 (1987).
[Crossref] [PubMed]

Appl. Phys. B (1)

C. R. Lee, S. H. Lin, J. D. Lin, T. S. Mo, C. T. Kuo, and S. Y. Huang, “Unique spatial continuously tunable cone laser based on a dye-doped cholesteric liquid crystal with a birefringence gradient,” Appl. Phys. B 109(1), 159–163 (2012).
[Crossref]

Appl. Phys. Lett. (2)

C. R. Lee, S. H. Lin, H. S. Ku, J. H. Liu, P. C. Yang, C. Y. Huang, H. C. Yeh, and T. D. Ji, “Optically band-tunable color cone lasing emission in a dye-doped cholesteric liquid crystal with a photoisomerizable chiral dopant,” Appl. Phys. Lett. 96(11), 111105 (2010).
[Crossref]

C.-T. Wang, C.-W. Chen, T.-H. Yang, I. Nys, C.-C. Li, T.-H. Lin, K. Neyts, and J. Beeckman, “Electrically assisted bandedge mode selection of photonic crystal lasing in chiral nematic liquid crystals,” Appl. Phys. Lett. 112(4), 043301 (2018).
[Crossref]

J. Appl. Phys. (2)

S. P. Palto, N. M. Shtykov, B. A. Umanskii, and M. I. Barnik, “Multiwave out-of-normal band-edge lasing in cholesteric liquid crystals,” J. Appl. Phys. 112(1), 013105 (2012).
[Crossref]

L. Penninck, J. Beeckman, P. De Visschere, and K. Neyts, “Numerical simulation of stimulated emission and lasing in dye doped cholesteric liquid crystal films,” J. Appl. Phys. 113(6), 063106 (2013).
[Crossref]

J. Disp. Technol. (1)

J. Li, C. H. Wen, S. Gauza, R. B. Lu, and S. T. Wu, “Refractive Indices of Liquid Crystals for Display Applications,” J. Disp. Technol. 1(1), 51–61 (2005).
[Crossref]

J. Opt. Soc. Am. A (1)

D. Y. K. Ko and J. R. Sambles, “Scattering Matrix-Method for Propagation of Radiation in Stratified Media - Attenuated Total Reflection Studies of Liquid-Crystals,” J. Opt. Soc. Am. A 5(11), 1863–1866 (1988).
[Crossref]

Liq. Cryst. (1)

T. Dadalyan, R. Alaverdyan, I. Nys, Z. Ninoyan, O. Willekens, J. Beeckman, and K. Neyts, “Tuning the lasing wavelength of dye-doped chiral nematic liquid crystal by fluid flow,” Liq. Cryst. 44, 372–378 (2017).

Materials (Basel) (1)

J. Ortega, C. L. Folcia, and J. Etxebarria, “Upgrading the Performance of Cholesteric Liquid Crystal Lasers: Improvement Margins and Limitations,” Materials (Basel) 11(1), 5 (2017).
[Crossref] [PubMed]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

L. Penninck, P. D. Visschere, J. Beeckman, and K. Neyts, “Simulating the Emission Properties of Luminescent Dyes within One-Dimensional Uniaxial Liquid Crystal Microcavities,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 560(1), 82–92 (2012).
[Crossref]

Nat. Photonics (1)

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

Opt. Express (5)

J. H. Lin, P. Y. Chen, and J. J. Wu, “Mode competition of two bandedge lasing from dye doped cholesteric liquid crystal laser,” Opt. Express 22(8), 9932–9941 (2014).
[Crossref] [PubMed]

C. R. Lee, S. H. Lin, H. C. Yeh, T. D. Ji, K. L. Lin, T. S. Mo, C. T. Kuo, K. Y. Lo, S. H. Chang, A. Y. G. Fuh, and S. Y. Huang, “Color cone lasing emission in a dye-doped cholesteric liquid crystal with a single pitch,” Opt. Express 17(15), 12910–12921 (2009).
[Crossref] [PubMed]

C. R. Lee, S. H. Lin, H. C. Yeh, and T. D. Ji, “Band-tunable color cone lasing emission based on dye-doped cholesteric liquid crystals with various pitches and a pitch gradient,” Opt. Express 17(25), 22616–22623 (2009).
[Crossref] [PubMed]

L. Penninck, P. De Visschere, J. Beeckman, and K. Neyts, “Dipole radiation within one-dimensional anisotropic microcavities: a simulation method,” Opt. Express 19(19), 18558–18576 (2011).
[Crossref] [PubMed]

S. H. Lin and C. R. Lee, “Novel dye-doped cholesteric liquid crystal cone lasers with various birefringences and associated tunabilities of lasing feature and performance,” Opt. Express 19(19), 18199–18206 (2011).
[Crossref] [PubMed]

Opt. Lett. (3)

J. Etxebarria, J. Ortega, C. L. Folcia, G. Sanz-Enguita, and I. Aramburu, “Thermally induced light-scattering effects as responsible for the degradation of cholesteric liquid crystal lasers,” Opt. Lett. 40(7), 1262–1265 (2015).
[Crossref] [PubMed]

C. R. Lee, S. H. Lin, H. S. Ku, J. H. Liu, P. C. Yang, C. Y. Huang, H. C. Yeh, T. D. Ji, and C. H. Lin, “Spatially band-tunable color-cone lasing emission in a dye-doped cholesteric liquid crystal with a photoisomerizable chiral dopant,” Opt. Lett. 35(9), 1398–1400 (2010).
[Crossref] [PubMed]

V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23(21), 1707–1709 (1998).
[Crossref] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

L. Penninck, J. Beeckman, P. De Visschere, and K. Neyts, “Light emission from dye-doped cholesteric liquid crystals at oblique angles: Simulation and experiment,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(4 Pt 1), 041702 (2012).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Reflection spectra of the CLC cell, showing a blue shift of the reflection band for increasing angles of incidence (measured in air). (b) Setup for the measurement of the angle- and wavelength- dependency of emission and lasing from a dye-doped CLC cell that is excited by a pulsed laser (532 nm). The inset illustrates the orientation of the CLC helical axis (only one of the 26 pitches is shown). A spectrometer measures the emission spectrum as a function of the angle θ.
Fig. 2
Fig. 2 Measured emission as a function of wavelength and emission angle θ in air for the same dye-doped CLC device at different excitation levels. (a) low excitation level (11 μm beam diameter); (b) medium excitation level (10 μm beam diameter); (c) high excitation level (8 μm beam diameter). The color scale (in nW/nm on the spectrophotometer) is logarithmic. The dashed lines indicate the angle dependency according to Eq. (1). The inset shows a picture of the excited cell and the projection of the emission on a screen.
Fig. 3
Fig. 3 Amplitude (left) and phase (right, in degrees) of the complex eigenvalue μ with the largest amplitude, as a function of the wavelength λ (horizontal axis) and the emission angle in air θ (vertical axis).
Fig. 4
Fig. 4 Simulated emission (log10 color scale) for dye-doped CLC as a function of the wavelength (horizontal axis) and the emission angle θ in air (vertical axis) (a) without gain or scattering; (b) with gain (no scattering); (c) with scattering (no gain); (d) with both gain and scattering. All simulations are made for a gain value below the threshold for lasing.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

λ SWE ( θ air )= n o P 1 sin 2 ( θ air ) n o 2 λ LWE ( θ air )= n e P 1 sin 2 ( θ air ) n e 2
E o/e,± exp( jωtjκxj k z,o/e z )
k z,o 2 = ( 2π λ ) 2 n o c2 κ 2 k z,e 2 = ( 2π λ ) 2 n e c2 ( 1 n o c2 n e c2 ) cos 2 2πz p κ 2 κ 2
[ E r,o, E r,e, ]=[ r oo r oe r eo r ee ][ E i,o,+ E i,e,+ ]and[ E r,o,+ E r,e,+ ]=[ r oo r oe r eo r ee ][ E i,o, E i,e, ]
[ E tot,o,+ E tot,e,+ ]=[ E i,o,+ E i,e,+ ]+[ r oo r oe r eo r ee ][ E i,o, E i,e, ]+[ r oo r oe r eo r ee ][ r oo r oe r eo r ee ][ E tot,o,+ E tot,e,+ ]
( [ 1 0 0 1 ][ r oo r oe r eo r ee ][ r oo r oe r eo r ee ] )[ E tot,o,+ E tot,e,+ ]=[ E i,o,+ E i,e,+ ]+[ r oo r oe r eo r ee ][ E i,o, E i,e, ]
[ r oo r oe r eo r ee ][ r oo r oe r eo r ee ]=[ J 1o J 2o J 1e J 2e ][ μ 1 0 0 μ 2 ] [ J 1o J 2o J 1e J 2e ] 1
[ 1 μ 1 0 0 1 μ 2 ] [ J 1o J 2o J 1e J 2e ] 1 [ E tot,o,+ E tot,e,+ ]= [ J 1o J 2o J 1e J 2e ] 1 ( [ E i,o,+ E i,e,+ ]+[ r oo r oe r eo r ee ][ E i,o, E i,e, ] )
[ 1 μ 1 0 0 1 μ 2 ][ E tot,1,+ E tot,2,+ ]=[ E i,1,+ E i,2,+ ]
[ E t,o,+ E t,e,+ ]=[ t oo t oe t eo t ee ][ E tot,o,+ E tot,e,+ ]
S= 1 2ωμ Re( E×( k * × E * ) )
| 1 μ m ( θ ) | 2 S tot,m,+ ( θ )= S i,m,+ ( θ )+ c scat 0 θ ' max ( S tot,1,+ ( θ' )+ S tot,2,+ ( θ' ) )2πsinθ'dθ'
| 1 μ m ( θ i ) | 2 S tot,m,+ ( θ i )= S i,m,+ ( θ i )+ c scat j n S tot,n,+ ( θ j ) 2πsin θ j Δθ
| | 1 μ 1 ( θ A ) | 2 c scat 2πsin θ A Δθ c scat 2πsin θ B Δθ c scat 2πsin θ A Δθ | 1 μ 2 ( θ B ) | 2 c scat 2πsin θ B Δθ |=0
θ * =arcsin n e 2 n o 2

Metrics