Abstract

A novel configuration of photonic sensors based on a single-channel bimodal interferometer is proposed. The design consists of a subwavelength grating (SWG) periodic structure supporting two dispersive TE-like modes that interfere at the output to create fringes in the transmission spectrum. Dispersion relations of the bimodal periodic structures have been computed in order to study the sensing performance, obtaining a theoretical bulk sensitivity of ~1300nm/RIU and a surface sensitivity of ~6.1nm/nm. Finite-Difference Time Domain (FDTD) analysis has been also carried out in order to confirm the previously obtained sensitivity results, thus showing a perfect agreement between theoretical modelling and simulation.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Experimental study of subwavelength grating bimodal waveguides as ultrasensitive interferometric sensors

L. Torrijos-Morán, A. Griol, and J. García-Rupérez
Opt. Lett. 44(19) 4702-4705 (2019)

Improving the detection limit for on-chip photonic sensors based on subwavelength grating racetrack resonators

Lijun Huang, Hai Yan, Xiaochuan Xu, Swapnajit Chakravarty, Naimei Tang, Huiping Tian, and Ray T. Chen
Opt. Express 25(9) 10527-10535 (2017)

Single-channel Mach-Zehnder interferometric biochemical sensor based on two-lateral-mode spiral waveguide

Qing Liu, Kyung Woo Kim, Zhonghua Gu, Jack Sheng Kee, and Mi Kyoung Park
Opt. Express 22(23) 27910-27920 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” JETP, Sov. Phys. 2(3), 466–475 (1956).
  2. J. Topol’ančik, P. Bhattacharya, J. Sabarinathan, and P. C. Yu, “Fluid detection with photonic crystal-based multichannel waveguides,” Appl. Phys. Lett. 82(8), 1143–1145 (2003).
    [Crossref]
  3. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature 386(6621), 143–149 (1997).
    [Crossref]
  4. M. Soljačić, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19(9), 2052–2059 (2002).
    [Crossref]
  5. M. Povinelli, S. Johnson, and J. Joannopoulos, “Slow-light, band-edge waveguides for tunable time delays,” Opt. Express 13(18), 7145–7159 (2005).
    [Crossref] [PubMed]
  6. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29(10), 1093–1095 (2004).
    [Crossref] [PubMed]
  7. N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express 15(6), 3169–3176 (2007).
    [Crossref] [PubMed]
  8. J. G. Castelló, V. Toccafondo, P. Pérez-Millán, N. S. Losilla, J. L. Cruz, M. V. Andrés, and J. García-Rupérez, “Real-time and low-cost sensing technique based on photonic bandgap structures,” Opt. Lett. 36(14), 2707–2709 (2011).
    [Crossref] [PubMed]
  9. P. Cheben, R. Halir, J. H. Schmid, H. A. Atwater, and D. R. Smith, “Subwavelength integrated photonics,” Nature 560(7720), 565–572 (2018).
    [Crossref] [PubMed]
  10. R. Halir, P. Cheben, J. M. Luque-González, J. D. Sarmiento-Merenguel, J. H. Schmid, G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and Í. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
    [Crossref]
  11. D. Benedikovic, M. Berciano, C. Alonso-Ramos, X. Le Roux, E. Cassan, D. Marris-Morini, and L. Vivien, “Dispersion control of silicon nanophotonic waveguides using sub-wavelength grating metamaterials in near- and mid-IR wavelengths,” Opt. Express 25(16), 19468–19478 (2017).
    [Crossref] [PubMed]
  12. J. M. Luque-González, A. Herrero-Bermello, A. Ortega-Moñux, Í. Molina-Fernández, A. V. Velasco, P. Cheben, J. H. Schmid, S. Wang, and R. Halir, “Tilted subwavelength gratings: controlling anisotropy in metamaterial nanophotonic waveguides,” Opt. Lett. 43(19), 4691–4694 (2018).
    [Crossref] [PubMed]
  13. J. Flueckiger, S. Schmidt, V. Donzella, A. Sherwali, D. M. Ratner, L. Chrostowski, and K. C. Cheung, “Sub-wavelength grating for enhanced ring resonator biosensor,” Opt. Express 24(14), 15672–15686 (2016).
    [Crossref] [PubMed]
  14. J. Gonzalo Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D.-X. Xu, and J. H. Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39(15), 4442–4445 (2014).
    [Crossref] [PubMed]
  15. J. G. Wangüemert-Pérez, A. Hadij-ElHouati, A. Sánchez-Postigo, J. Leuermann, D. X. Xu, P. Cheben, A. Ortega-Moñux, R. Halir, and Í. Molina-Fernández, “Subwavelength structures for silicon photonics biosensing,” Opt. Laser Technol. 109, 437–448 (2019).
    [Crossref]
  16. P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: a comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
    [Crossref] [PubMed]
  17. Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. J. Yoon, G. Q. Lo, and M. K. Park, “Highly sensitive Mach-Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
    [Crossref]
  18. D. Sarkar, N. S. K. Gunda, I. Jamal, and S. K. Mitra, “Optical biosensors with an integrated Mach-Zehnder Interferometer for detection of Listeria monocytogenes,” Biomed. Microdevices 16(4), 509–520 (2014).
    [Crossref] [PubMed]
  19. R. Levy and S. Ruschin, “Critical sensitivity in hetero-modal interferometric sensor using spectral interrogation,” Opt. Express 16(25), 20516–20521 (2008).
    [Crossref] [PubMed]
  20. R. Levy, S. Ruschin, and D. Goldring, “Critical sensitivity effect in an interferometer sensor,” Opt. Lett. 34(19), 3023–3025 (2009).
    [Crossref] [PubMed]
  21. R. Levy and S. Ruschin, “Design of a single-channel modal interferometer waveguide sensor,” IEEE Sens. J. 9(2), 1 (2009).
    [Crossref]
  22. K. E. Zinoviev, A. B. González-Guerrero, C. Domínguez, and L. M. Lechuga, “Integrated bimodal waveguide interferometric biosensor for label-free analysis,” J. Lit. Technol. 29(13), 1926–1930 (2011).
    [Crossref]
  23. D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12(11), 1987–1994 (2012).
    [Crossref] [PubMed]
  24. C. S. Huertas, D. Fariña, and L. M. Lechuga, “Direct and label-free quantification of micro-RNA-181a at attomolar level in complex media using a nanophotonic biosensor,” ACS Sens. 1(6), 748–756 (2016).
    [Crossref]
  25. C. S. Huertas, S. Domínguez-Zotes, and L. M. Lechuga, “Analysis of alternative splicing events for cancer diagnosis using a multiplexing nanophotonic biosensor,” Sci. Rep. 7(1), 41368 (2017).
    [Crossref] [PubMed]
  26. P. Lalanne and M. Hutley, “Artificial media optical properties – subwavelength scale,” Encycl. Opt. Eng. 1, 62–71 (2003).
  27. P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18(19), 20251–20262 (2010).
    [Crossref] [PubMed]
  28. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” 15(12), 7610–7615 (2007).
  29. L. Chrostowski, S. Grist, J. Flueckiger, W. Shi, X. Wang, E. Ouellet, H. Yun, M. Webb, B. Nie, Z. Liang, K. C. Cheung, S. A. Schmidt, D. M. Ratner, and N. A. F. Jaeger, “Silicon photonic resonator sensors and devices,” Proc. SPIE 8236, 823620 1–16 (2012).
  30. S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001).
    [Crossref] [PubMed]
  31. E. Luan, H. Yun, L. Laplatine, K. Cheung, Y. Dattner, D. Ratner, J. Flückiger, and L. Chrostowski, “Sub-wavelength multi-box waveguide-based label-free sensors,” Integr. Opt. Devices, Mater. Technol. XXII 10535, 105350H (2018).
  32. W. Zhang, S. Serna, X. Le Roux, L. Vivien, and E. Cassan, “Highly sensitive refractive index sensing by fast detuning the critical coupling condition of slot waveguide ring resonators,” Opt. Lett. 41(3), 532–535 (2016).
    [Crossref] [PubMed]
  33. A. Fernández Gavela, D. Grajales García, J. C. Ramirez, and L. M. Lechuga, “Last advances in silicon-based optical biosensors,” Sensors (Basel) 16(3), 285 (2016).
    [Crossref] [PubMed]
  34. E. Luan, H. Yun, L. Laplatine, Y. Dattner, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Enhanced sensitivity of subwavelength multibox waveguide microring resonator label-free biosensors,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–11 (2019).
    [Crossref]

2019 (2)

J. G. Wangüemert-Pérez, A. Hadij-ElHouati, A. Sánchez-Postigo, J. Leuermann, D. X. Xu, P. Cheben, A. Ortega-Moñux, R. Halir, and Í. Molina-Fernández, “Subwavelength structures for silicon photonics biosensing,” Opt. Laser Technol. 109, 437–448 (2019).
[Crossref]

E. Luan, H. Yun, L. Laplatine, Y. Dattner, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Enhanced sensitivity of subwavelength multibox waveguide microring resonator label-free biosensors,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–11 (2019).
[Crossref]

2018 (3)

E. Luan, H. Yun, L. Laplatine, K. Cheung, Y. Dattner, D. Ratner, J. Flückiger, and L. Chrostowski, “Sub-wavelength multi-box waveguide-based label-free sensors,” Integr. Opt. Devices, Mater. Technol. XXII 10535, 105350H (2018).

P. Cheben, R. Halir, J. H. Schmid, H. A. Atwater, and D. R. Smith, “Subwavelength integrated photonics,” Nature 560(7720), 565–572 (2018).
[Crossref] [PubMed]

J. M. Luque-González, A. Herrero-Bermello, A. Ortega-Moñux, Í. Molina-Fernández, A. V. Velasco, P. Cheben, J. H. Schmid, S. Wang, and R. Halir, “Tilted subwavelength gratings: controlling anisotropy in metamaterial nanophotonic waveguides,” Opt. Lett. 43(19), 4691–4694 (2018).
[Crossref] [PubMed]

2017 (2)

D. Benedikovic, M. Berciano, C. Alonso-Ramos, X. Le Roux, E. Cassan, D. Marris-Morini, and L. Vivien, “Dispersion control of silicon nanophotonic waveguides using sub-wavelength grating metamaterials in near- and mid-IR wavelengths,” Opt. Express 25(16), 19468–19478 (2017).
[Crossref] [PubMed]

C. S. Huertas, S. Domínguez-Zotes, and L. M. Lechuga, “Analysis of alternative splicing events for cancer diagnosis using a multiplexing nanophotonic biosensor,” Sci. Rep. 7(1), 41368 (2017).
[Crossref] [PubMed]

2016 (5)

C. S. Huertas, D. Fariña, and L. M. Lechuga, “Direct and label-free quantification of micro-RNA-181a at attomolar level in complex media using a nanophotonic biosensor,” ACS Sens. 1(6), 748–756 (2016).
[Crossref]

W. Zhang, S. Serna, X. Le Roux, L. Vivien, and E. Cassan, “Highly sensitive refractive index sensing by fast detuning the critical coupling condition of slot waveguide ring resonators,” Opt. Lett. 41(3), 532–535 (2016).
[Crossref] [PubMed]

A. Fernández Gavela, D. Grajales García, J. C. Ramirez, and L. M. Lechuga, “Last advances in silicon-based optical biosensors,” Sensors (Basel) 16(3), 285 (2016).
[Crossref] [PubMed]

J. Flueckiger, S. Schmidt, V. Donzella, A. Sherwali, D. M. Ratner, L. Chrostowski, and K. C. Cheung, “Sub-wavelength grating for enhanced ring resonator biosensor,” Opt. Express 24(14), 15672–15686 (2016).
[Crossref] [PubMed]

R. Halir, P. Cheben, J. M. Luque-González, J. D. Sarmiento-Merenguel, J. H. Schmid, G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and Í. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
[Crossref]

2014 (3)

J. Gonzalo Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D.-X. Xu, and J. H. Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39(15), 4442–4445 (2014).
[Crossref] [PubMed]

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: a comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref] [PubMed]

D. Sarkar, N. S. K. Gunda, I. Jamal, and S. K. Mitra, “Optical biosensors with an integrated Mach-Zehnder Interferometer for detection of Listeria monocytogenes,” Biomed. Microdevices 16(4), 509–520 (2014).
[Crossref] [PubMed]

2013 (1)

Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. J. Yoon, G. Q. Lo, and M. K. Park, “Highly sensitive Mach-Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
[Crossref]

2012 (1)

D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12(11), 1987–1994 (2012).
[Crossref] [PubMed]

2011 (2)

K. E. Zinoviev, A. B. González-Guerrero, C. Domínguez, and L. M. Lechuga, “Integrated bimodal waveguide interferometric biosensor for label-free analysis,” J. Lit. Technol. 29(13), 1926–1930 (2011).
[Crossref]

J. G. Castelló, V. Toccafondo, P. Pérez-Millán, N. S. Losilla, J. L. Cruz, M. V. Andrés, and J. García-Rupérez, “Real-time and low-cost sensing technique based on photonic bandgap structures,” Opt. Lett. 36(14), 2707–2709 (2011).
[Crossref] [PubMed]

2010 (1)

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18(19), 20251–20262 (2010).
[Crossref] [PubMed]

2009 (2)

R. Levy, S. Ruschin, and D. Goldring, “Critical sensitivity effect in an interferometer sensor,” Opt. Lett. 34(19), 3023–3025 (2009).
[Crossref] [PubMed]

R. Levy and S. Ruschin, “Design of a single-channel modal interferometer waveguide sensor,” IEEE Sens. J. 9(2), 1 (2009).
[Crossref]

2008 (1)

R. Levy and S. Ruschin, “Critical sensitivity in hetero-modal interferometric sensor using spectral interrogation,” Opt. Express 16(25), 20516–20521 (2008).
[Crossref] [PubMed]

2007 (1)

N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express 15(6), 3169–3176 (2007).
[Crossref] [PubMed]

2005 (1)

M. Povinelli, S. Johnson, and J. Joannopoulos, “Slow-light, band-edge waveguides for tunable time delays,” Opt. Express 13(18), 7145–7159 (2005).
[Crossref] [PubMed]

2004 (1)

E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29(10), 1093–1095 (2004).
[Crossref] [PubMed]

2003 (2)

J. Topol’ančik, P. Bhattacharya, J. Sabarinathan, and P. C. Yu, “Fluid detection with photonic crystal-based multichannel waveguides,” Appl. Phys. Lett. 82(8), 1143–1145 (2003).
[Crossref]

P. Lalanne and M. Hutley, “Artificial media optical properties – subwavelength scale,” Encycl. Opt. Eng. 1, 62–71 (2003).

2002 (1)

M. Soljačić, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19(9), 2052–2059 (2002).
[Crossref]

2001 (1)

S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001).
[Crossref] [PubMed]

1997 (1)

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

1956 (1)

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” JETP, Sov. Phys. 2(3), 466–475 (1956).

Aers, G. C.

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18(19), 20251–20262 (2010).
[Crossref] [PubMed]

Alonso-Ramos, C.

D. Benedikovic, M. Berciano, C. Alonso-Ramos, X. Le Roux, E. Cassan, D. Marris-Morini, and L. Vivien, “Dispersion control of silicon nanophotonic waveguides using sub-wavelength grating metamaterials in near- and mid-IR wavelengths,” Opt. Express 25(16), 19468–19478 (2017).
[Crossref] [PubMed]

J. Gonzalo Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D.-X. Xu, and J. H. Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39(15), 4442–4445 (2014).
[Crossref] [PubMed]

Andrés, M. V.

J. G. Castelló, V. Toccafondo, P. Pérez-Millán, N. S. Losilla, J. L. Cruz, M. V. Andrés, and J. García-Rupérez, “Real-time and low-cost sensing technique based on photonic bandgap structures,” Opt. Lett. 36(14), 2707–2709 (2011).
[Crossref] [PubMed]

Atwater, H. A.

P. Cheben, R. Halir, J. H. Schmid, H. A. Atwater, and D. R. Smith, “Subwavelength integrated photonics,” Nature 560(7720), 565–572 (2018).
[Crossref] [PubMed]

Benedikovic, D.

D. Benedikovic, M. Berciano, C. Alonso-Ramos, X. Le Roux, E. Cassan, D. Marris-Morini, and L. Vivien, “Dispersion control of silicon nanophotonic waveguides using sub-wavelength grating metamaterials in near- and mid-IR wavelengths,” Opt. Express 25(16), 19468–19478 (2017).
[Crossref] [PubMed]

Berciano, M.

D. Benedikovic, M. Berciano, C. Alonso-Ramos, X. Le Roux, E. Cassan, D. Marris-Morini, and L. Vivien, “Dispersion control of silicon nanophotonic waveguides using sub-wavelength grating metamaterials in near- and mid-IR wavelengths,” Opt. Express 25(16), 19468–19478 (2017).
[Crossref] [PubMed]

Bhattacharya, P.

J. Topol’ančik, P. Bhattacharya, J. Sabarinathan, and P. C. Yu, “Fluid detection with photonic crystal-based multichannel waveguides,” Appl. Phys. Lett. 82(8), 1143–1145 (2003).
[Crossref]

Bier, F. F.

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: a comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref] [PubMed]

Bock, P. J.

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18(19), 20251–20262 (2010).
[Crossref] [PubMed]

Borel, P. I.

N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express 15(6), 3169–3176 (2007).
[Crossref] [PubMed]

Cassan, E.

D. Benedikovic, M. Berciano, C. Alonso-Ramos, X. Le Roux, E. Cassan, D. Marris-Morini, and L. Vivien, “Dispersion control of silicon nanophotonic waveguides using sub-wavelength grating metamaterials in near- and mid-IR wavelengths,” Opt. Express 25(16), 19468–19478 (2017).
[Crossref] [PubMed]

W. Zhang, S. Serna, X. Le Roux, L. Vivien, and E. Cassan, “Highly sensitive refractive index sensing by fast detuning the critical coupling condition of slot waveguide ring resonators,” Opt. Lett. 41(3), 532–535 (2016).
[Crossref] [PubMed]

Castelló, J. G.

J. G. Castelló, V. Toccafondo, P. Pérez-Millán, N. S. Losilla, J. L. Cruz, M. V. Andrés, and J. García-Rupérez, “Real-time and low-cost sensing technique based on photonic bandgap structures,” Opt. Lett. 36(14), 2707–2709 (2011).
[Crossref] [PubMed]

Cheben, P.

J. G. Wangüemert-Pérez, A. Hadij-ElHouati, A. Sánchez-Postigo, J. Leuermann, D. X. Xu, P. Cheben, A. Ortega-Moñux, R. Halir, and Í. Molina-Fernández, “Subwavelength structures for silicon photonics biosensing,” Opt. Laser Technol. 109, 437–448 (2019).
[Crossref]

P. Cheben, R. Halir, J. H. Schmid, H. A. Atwater, and D. R. Smith, “Subwavelength integrated photonics,” Nature 560(7720), 565–572 (2018).
[Crossref] [PubMed]

J. M. Luque-González, A. Herrero-Bermello, A. Ortega-Moñux, Í. Molina-Fernández, A. V. Velasco, P. Cheben, J. H. Schmid, S. Wang, and R. Halir, “Tilted subwavelength gratings: controlling anisotropy in metamaterial nanophotonic waveguides,” Opt. Lett. 43(19), 4691–4694 (2018).
[Crossref] [PubMed]

R. Halir, P. Cheben, J. M. Luque-González, J. D. Sarmiento-Merenguel, J. H. Schmid, G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and Í. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
[Crossref]

J. Gonzalo Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D.-X. Xu, and J. H. Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39(15), 4442–4445 (2014).
[Crossref] [PubMed]

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18(19), 20251–20262 (2010).
[Crossref] [PubMed]

Cheung, K.

E. Luan, H. Yun, L. Laplatine, K. Cheung, Y. Dattner, D. Ratner, J. Flückiger, and L. Chrostowski, “Sub-wavelength multi-box waveguide-based label-free sensors,” Integr. Opt. Devices, Mater. Technol. XXII 10535, 105350H (2018).

Cheung, K. C.

E. Luan, H. Yun, L. Laplatine, Y. Dattner, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Enhanced sensitivity of subwavelength multibox waveguide microring resonator label-free biosensors,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–11 (2019).
[Crossref]

J. Flueckiger, S. Schmidt, V. Donzella, A. Sherwali, D. M. Ratner, L. Chrostowski, and K. C. Cheung, “Sub-wavelength grating for enhanced ring resonator biosensor,” Opt. Express 24(14), 15672–15686 (2016).
[Crossref] [PubMed]

Chow, E.

E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29(10), 1093–1095 (2004).
[Crossref] [PubMed]

Chrostowski, L.

E. Luan, H. Yun, L. Laplatine, Y. Dattner, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Enhanced sensitivity of subwavelength multibox waveguide microring resonator label-free biosensors,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–11 (2019).
[Crossref]

E. Luan, H. Yun, L. Laplatine, K. Cheung, Y. Dattner, D. Ratner, J. Flückiger, and L. Chrostowski, “Sub-wavelength multi-box waveguide-based label-free sensors,” Integr. Opt. Devices, Mater. Technol. XXII 10535, 105350H (2018).

J. Flueckiger, S. Schmidt, V. Donzella, A. Sherwali, D. M. Ratner, L. Chrostowski, and K. C. Cheung, “Sub-wavelength grating for enhanced ring resonator biosensor,” Opt. Express 24(14), 15672–15686 (2016).
[Crossref] [PubMed]

Cruz, J. L.

J. G. Castelló, V. Toccafondo, P. Pérez-Millán, N. S. Losilla, J. L. Cruz, M. V. Andrés, and J. García-Rupérez, “Real-time and low-cost sensing technique based on photonic bandgap structures,” Opt. Lett. 36(14), 2707–2709 (2011).
[Crossref] [PubMed]

Dante, S.

D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12(11), 1987–1994 (2012).
[Crossref] [PubMed]

Dattner, Y.

E. Luan, H. Yun, L. Laplatine, Y. Dattner, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Enhanced sensitivity of subwavelength multibox waveguide microring resonator label-free biosensors,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–11 (2019).
[Crossref]

E. Luan, H. Yun, L. Laplatine, K. Cheung, Y. Dattner, D. Ratner, J. Flückiger, and L. Chrostowski, “Sub-wavelength multi-box waveguide-based label-free sensors,” Integr. Opt. Devices, Mater. Technol. XXII 10535, 105350H (2018).

Delâge, A.

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18(19), 20251–20262 (2010).
[Crossref] [PubMed]

Densmore, A.

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18(19), 20251–20262 (2010).
[Crossref] [PubMed]

Domínguez, C.

D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12(11), 1987–1994 (2012).
[Crossref] [PubMed]

K. E. Zinoviev, A. B. González-Guerrero, C. Domínguez, and L. M. Lechuga, “Integrated bimodal waveguide interferometric biosensor for label-free analysis,” J. Lit. Technol. 29(13), 1926–1930 (2011).
[Crossref]

Domínguez-Zotes, S.

C. S. Huertas, S. Domínguez-Zotes, and L. M. Lechuga, “Analysis of alternative splicing events for cancer diagnosis using a multiplexing nanophotonic biosensor,” Sci. Rep. 7(1), 41368 (2017).
[Crossref] [PubMed]

Donzella, V.

J. Flueckiger, S. Schmidt, V. Donzella, A. Sherwali, D. M. Ratner, L. Chrostowski, and K. C. Cheung, “Sub-wavelength grating for enhanced ring resonator biosensor,” Opt. Express 24(14), 15672–15686 (2016).
[Crossref] [PubMed]

Duval, D.

D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12(11), 1987–1994 (2012).
[Crossref] [PubMed]

Ehrentreich-Förster, E.

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: a comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref] [PubMed]

Fan, S.

M. Soljačić, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19(9), 2052–2059 (2002).
[Crossref]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

Fariña, D.

C. S. Huertas, D. Fariña, and L. M. Lechuga, “Direct and label-free quantification of micro-RNA-181a at attomolar level in complex media using a nanophotonic biosensor,” ACS Sens. 1(6), 748–756 (2016).
[Crossref]

Fernández, L. J.

D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12(11), 1987–1994 (2012).
[Crossref] [PubMed]

Fernández Gavela, A.

A. Fernández Gavela, D. Grajales García, J. C. Ramirez, and L. M. Lechuga, “Last advances in silicon-based optical biosensors,” Sensors (Basel) 16(3), 285 (2016).
[Crossref] [PubMed]

Flückiger, J.

E. Luan, H. Yun, L. Laplatine, K. Cheung, Y. Dattner, D. Ratner, J. Flückiger, and L. Chrostowski, “Sub-wavelength multi-box waveguide-based label-free sensors,” Integr. Opt. Devices, Mater. Technol. XXII 10535, 105350H (2018).

Flueckiger, J.

J. Flueckiger, S. Schmidt, V. Donzella, A. Sherwali, D. M. Ratner, L. Chrostowski, and K. C. Cheung, “Sub-wavelength grating for enhanced ring resonator biosensor,” Opt. Express 24(14), 15672–15686 (2016).
[Crossref] [PubMed]

Frandsen, L. H.

N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express 15(6), 3169–3176 (2007).
[Crossref] [PubMed]

García-Rupérez, J.

J. G. Castelló, V. Toccafondo, P. Pérez-Millán, N. S. Losilla, J. L. Cruz, M. V. Andrés, and J. García-Rupérez, “Real-time and low-cost sensing technique based on photonic bandgap structures,” Opt. Lett. 36(14), 2707–2709 (2011).
[Crossref] [PubMed]

Girolami, G.

E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29(10), 1093–1095 (2004).
[Crossref] [PubMed]

Goldring, D.

R. Levy, S. Ruschin, and D. Goldring, “Critical sensitivity effect in an interferometer sensor,” Opt. Lett. 34(19), 3023–3025 (2009).
[Crossref] [PubMed]

González-Guerrero, A. B.

D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12(11), 1987–1994 (2012).
[Crossref] [PubMed]

K. E. Zinoviev, A. B. González-Guerrero, C. Domínguez, and L. M. Lechuga, “Integrated bimodal waveguide interferometric biosensor for label-free analysis,” J. Lit. Technol. 29(13), 1926–1930 (2011).
[Crossref]

Gonzalo Wangüemert-Pérez, J.

J. Gonzalo Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D.-X. Xu, and J. H. Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39(15), 4442–4445 (2014).
[Crossref] [PubMed]

Grajales García, D.

A. Fernández Gavela, D. Grajales García, J. C. Ramirez, and L. M. Lechuga, “Last advances in silicon-based optical biosensors,” Sensors (Basel) 16(3), 285 (2016).
[Crossref] [PubMed]

Grot, A.

E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29(10), 1093–1095 (2004).
[Crossref] [PubMed]

Gunda, N. S. K.

D. Sarkar, N. S. K. Gunda, I. Jamal, and S. K. Mitra, “Optical biosensors with an integrated Mach-Zehnder Interferometer for detection of Listeria monocytogenes,” Biomed. Microdevices 16(4), 509–520 (2014).
[Crossref] [PubMed]

Hadij-ElHouati, A.

J. G. Wangüemert-Pérez, A. Hadij-ElHouati, A. Sánchez-Postigo, J. Leuermann, D. X. Xu, P. Cheben, A. Ortega-Moñux, R. Halir, and Í. Molina-Fernández, “Subwavelength structures for silicon photonics biosensing,” Opt. Laser Technol. 109, 437–448 (2019).
[Crossref]

Halir, R.

J. G. Wangüemert-Pérez, A. Hadij-ElHouati, A. Sánchez-Postigo, J. Leuermann, D. X. Xu, P. Cheben, A. Ortega-Moñux, R. Halir, and Í. Molina-Fernández, “Subwavelength structures for silicon photonics biosensing,” Opt. Laser Technol. 109, 437–448 (2019).
[Crossref]

P. Cheben, R. Halir, J. H. Schmid, H. A. Atwater, and D. R. Smith, “Subwavelength integrated photonics,” Nature 560(7720), 565–572 (2018).
[Crossref] [PubMed]

J. M. Luque-González, A. Herrero-Bermello, A. Ortega-Moñux, Í. Molina-Fernández, A. V. Velasco, P. Cheben, J. H. Schmid, S. Wang, and R. Halir, “Tilted subwavelength gratings: controlling anisotropy in metamaterial nanophotonic waveguides,” Opt. Lett. 43(19), 4691–4694 (2018).
[Crossref] [PubMed]

R. Halir, P. Cheben, J. M. Luque-González, J. D. Sarmiento-Merenguel, J. H. Schmid, G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and Í. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
[Crossref]

J. Gonzalo Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D.-X. Xu, and J. H. Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39(15), 4442–4445 (2014).
[Crossref] [PubMed]

Hall, T. J.

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18(19), 20251–20262 (2010).
[Crossref] [PubMed]

Han, K.

Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. J. Yoon, G. Q. Lo, and M. K. Park, “Highly sensitive Mach-Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
[Crossref]

Herrero-Bermello, A.

J. M. Luque-González, A. Herrero-Bermello, A. Ortega-Moñux, Í. Molina-Fernández, A. V. Velasco, P. Cheben, J. H. Schmid, S. Wang, and R. Halir, “Tilted subwavelength gratings: controlling anisotropy in metamaterial nanophotonic waveguides,” Opt. Lett. 43(19), 4691–4694 (2018).
[Crossref] [PubMed]

Huertas, C. S.

C. S. Huertas, S. Domínguez-Zotes, and L. M. Lechuga, “Analysis of alternative splicing events for cancer diagnosis using a multiplexing nanophotonic biosensor,” Sci. Rep. 7(1), 41368 (2017).
[Crossref] [PubMed]

C. S. Huertas, D. Fariña, and L. M. Lechuga, “Direct and label-free quantification of micro-RNA-181a at attomolar level in complex media using a nanophotonic biosensor,” ACS Sens. 1(6), 748–756 (2016).
[Crossref]

Hutley, M.

P. Lalanne and M. Hutley, “Artificial media optical properties – subwavelength scale,” Encycl. Opt. Eng. 1, 62–71 (2003).

Ibanescu, M.

M. Soljačić, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19(9), 2052–2059 (2002).
[Crossref]

Ippen, E.

M. Soljačić, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19(9), 2052–2059 (2002).
[Crossref]

Jamal, I.

D. Sarkar, N. S. K. Gunda, I. Jamal, and S. K. Mitra, “Optical biosensors with an integrated Mach-Zehnder Interferometer for detection of Listeria monocytogenes,” Biomed. Microdevices 16(4), 509–520 (2014).
[Crossref] [PubMed]

Janz, S.

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18(19), 20251–20262 (2010).
[Crossref] [PubMed]

Joannopoulos, J.

M. Povinelli, S. Johnson, and J. Joannopoulos, “Slow-light, band-edge waveguides for tunable time delays,” Opt. Express 13(18), 7145–7159 (2005).
[Crossref] [PubMed]

S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001).
[Crossref] [PubMed]

Joannopoulos, J. D.

M. Soljačić, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19(9), 2052–2059 (2002).
[Crossref]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

Johnson, S.

M. Povinelli, S. Johnson, and J. Joannopoulos, “Slow-light, band-edge waveguides for tunable time delays,” Opt. Express 13(18), 7145–7159 (2005).
[Crossref] [PubMed]

S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001).
[Crossref] [PubMed]

Johnson, S. G.

M. Soljačić, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19(9), 2052–2059 (2002).
[Crossref]

Kee, J. S.

Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. J. Yoon, G. Q. Lo, and M. K. Park, “Highly sensitive Mach-Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
[Crossref]

Kehl, F.

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: a comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref] [PubMed]

Kim, K. W.

Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. J. Yoon, G. Q. Lo, and M. K. Park, “Highly sensitive Mach-Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
[Crossref]

Kjems, J.

N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express 15(6), 3169–3176 (2007).
[Crossref] [PubMed]

Kozma, P.

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: a comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref] [PubMed]

Kristensen, M.

N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express 15(6), 3169–3176 (2007).
[Crossref] [PubMed]

Lalanne, P.

P. Lalanne and M. Hutley, “Artificial media optical properties – subwavelength scale,” Encycl. Opt. Eng. 1, 62–71 (2003).

Laplatine, L.

E. Luan, H. Yun, L. Laplatine, Y. Dattner, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Enhanced sensitivity of subwavelength multibox waveguide microring resonator label-free biosensors,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–11 (2019).
[Crossref]

E. Luan, H. Yun, L. Laplatine, K. Cheung, Y. Dattner, D. Ratner, J. Flückiger, and L. Chrostowski, “Sub-wavelength multi-box waveguide-based label-free sensors,” Integr. Opt. Devices, Mater. Technol. XXII 10535, 105350H (2018).

Lapointe, J.

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18(19), 20251–20262 (2010).
[Crossref] [PubMed]

Le Roux, X.

D. Benedikovic, M. Berciano, C. Alonso-Ramos, X. Le Roux, E. Cassan, D. Marris-Morini, and L. Vivien, “Dispersion control of silicon nanophotonic waveguides using sub-wavelength grating metamaterials in near- and mid-IR wavelengths,” Opt. Express 25(16), 19468–19478 (2017).
[Crossref] [PubMed]

W. Zhang, S. Serna, X. Le Roux, L. Vivien, and E. Cassan, “Highly sensitive refractive index sensing by fast detuning the critical coupling condition of slot waveguide ring resonators,” Opt. Lett. 41(3), 532–535 (2016).
[Crossref] [PubMed]

Lechuga, L. M.

C. S. Huertas, S. Domínguez-Zotes, and L. M. Lechuga, “Analysis of alternative splicing events for cancer diagnosis using a multiplexing nanophotonic biosensor,” Sci. Rep. 7(1), 41368 (2017).
[Crossref] [PubMed]

C. S. Huertas, D. Fariña, and L. M. Lechuga, “Direct and label-free quantification of micro-RNA-181a at attomolar level in complex media using a nanophotonic biosensor,” ACS Sens. 1(6), 748–756 (2016).
[Crossref]

A. Fernández Gavela, D. Grajales García, J. C. Ramirez, and L. M. Lechuga, “Last advances in silicon-based optical biosensors,” Sensors (Basel) 16(3), 285 (2016).
[Crossref] [PubMed]

D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12(11), 1987–1994 (2012).
[Crossref] [PubMed]

K. E. Zinoviev, A. B. González-Guerrero, C. Domínguez, and L. M. Lechuga, “Integrated bimodal waveguide interferometric biosensor for label-free analysis,” J. Lit. Technol. 29(13), 1926–1930 (2011).
[Crossref]

Leuermann, J.

J. G. Wangüemert-Pérez, A. Hadij-ElHouati, A. Sánchez-Postigo, J. Leuermann, D. X. Xu, P. Cheben, A. Ortega-Moñux, R. Halir, and Í. Molina-Fernández, “Subwavelength structures for silicon photonics biosensing,” Opt. Laser Technol. 109, 437–448 (2019).
[Crossref]

Levy, R.

R. Levy and S. Ruschin, “Design of a single-channel modal interferometer waveguide sensor,” IEEE Sens. J. 9(2), 1 (2009).
[Crossref]

R. Levy, S. Ruschin, and D. Goldring, “Critical sensitivity effect in an interferometer sensor,” Opt. Lett. 34(19), 3023–3025 (2009).
[Crossref] [PubMed]

R. Levy and S. Ruschin, “Critical sensitivity in hetero-modal interferometric sensor using spectral interrogation,” Opt. Express 16(25), 20516–20521 (2008).
[Crossref] [PubMed]

Liu, Q.

Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. J. Yoon, G. Q. Lo, and M. K. Park, “Highly sensitive Mach-Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
[Crossref]

Lo, G. Q.

Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. J. Yoon, G. Q. Lo, and M. K. Park, “Highly sensitive Mach-Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
[Crossref]

Losilla, N. S.

J. G. Castelló, V. Toccafondo, P. Pérez-Millán, N. S. Losilla, J. L. Cruz, M. V. Andrés, and J. García-Rupérez, “Real-time and low-cost sensing technique based on photonic bandgap structures,” Opt. Lett. 36(14), 2707–2709 (2011).
[Crossref] [PubMed]

Luan, E.

E. Luan, H. Yun, L. Laplatine, Y. Dattner, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Enhanced sensitivity of subwavelength multibox waveguide microring resonator label-free biosensors,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–11 (2019).
[Crossref]

E. Luan, H. Yun, L. Laplatine, K. Cheung, Y. Dattner, D. Ratner, J. Flückiger, and L. Chrostowski, “Sub-wavelength multi-box waveguide-based label-free sensors,” Integr. Opt. Devices, Mater. Technol. XXII 10535, 105350H (2018).

Luque-González, J. M.

J. M. Luque-González, A. Herrero-Bermello, A. Ortega-Moñux, Í. Molina-Fernández, A. V. Velasco, P. Cheben, J. H. Schmid, S. Wang, and R. Halir, “Tilted subwavelength gratings: controlling anisotropy in metamaterial nanophotonic waveguides,” Opt. Lett. 43(19), 4691–4694 (2018).
[Crossref] [PubMed]

R. Halir, P. Cheben, J. M. Luque-González, J. D. Sarmiento-Merenguel, J. H. Schmid, G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and Í. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
[Crossref]

Marris-Morini, D.

D. Benedikovic, M. Berciano, C. Alonso-Ramos, X. Le Roux, E. Cassan, D. Marris-Morini, and L. Vivien, “Dispersion control of silicon nanophotonic waveguides using sub-wavelength grating metamaterials in near- and mid-IR wavelengths,” Opt. Express 25(16), 19468–19478 (2017).
[Crossref] [PubMed]

Mirkarimi, L. W.

E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29(10), 1093–1095 (2004).
[Crossref] [PubMed]

Mitra, S. K.

D. Sarkar, N. S. K. Gunda, I. Jamal, and S. K. Mitra, “Optical biosensors with an integrated Mach-Zehnder Interferometer for detection of Listeria monocytogenes,” Biomed. Microdevices 16(4), 509–520 (2014).
[Crossref] [PubMed]

Molina-Fernández, I.

J. Gonzalo Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D.-X. Xu, and J. H. Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39(15), 4442–4445 (2014).
[Crossref] [PubMed]

Molina-Fernández, Í.

J. G. Wangüemert-Pérez, A. Hadij-ElHouati, A. Sánchez-Postigo, J. Leuermann, D. X. Xu, P. Cheben, A. Ortega-Moñux, R. Halir, and Í. Molina-Fernández, “Subwavelength structures for silicon photonics biosensing,” Opt. Laser Technol. 109, 437–448 (2019).
[Crossref]

J. M. Luque-González, A. Herrero-Bermello, A. Ortega-Moñux, Í. Molina-Fernández, A. V. Velasco, P. Cheben, J. H. Schmid, S. Wang, and R. Halir, “Tilted subwavelength gratings: controlling anisotropy in metamaterial nanophotonic waveguides,” Opt. Lett. 43(19), 4691–4694 (2018).
[Crossref] [PubMed]

R. Halir, P. Cheben, J. M. Luque-González, J. D. Sarmiento-Merenguel, J. H. Schmid, G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and Í. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
[Crossref]

Monge, R.

D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12(11), 1987–1994 (2012).
[Crossref] [PubMed]

Ortega-Moñux, A.

J. G. Wangüemert-Pérez, A. Hadij-ElHouati, A. Sánchez-Postigo, J. Leuermann, D. X. Xu, P. Cheben, A. Ortega-Moñux, R. Halir, and Í. Molina-Fernández, “Subwavelength structures for silicon photonics biosensing,” Opt. Laser Technol. 109, 437–448 (2019).
[Crossref]

J. M. Luque-González, A. Herrero-Bermello, A. Ortega-Moñux, Í. Molina-Fernández, A. V. Velasco, P. Cheben, J. H. Schmid, S. Wang, and R. Halir, “Tilted subwavelength gratings: controlling anisotropy in metamaterial nanophotonic waveguides,” Opt. Lett. 43(19), 4691–4694 (2018).
[Crossref] [PubMed]

R. Halir, P. Cheben, J. M. Luque-González, J. D. Sarmiento-Merenguel, J. H. Schmid, G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and Í. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
[Crossref]

J. Gonzalo Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D.-X. Xu, and J. H. Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39(15), 4442–4445 (2014).
[Crossref] [PubMed]

Osmond, J.

D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12(11), 1987–1994 (2012).
[Crossref] [PubMed]

Park, M. K.

Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. J. Yoon, G. Q. Lo, and M. K. Park, “Highly sensitive Mach-Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
[Crossref]

Pérez-Galacho, D.

J. Gonzalo Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D.-X. Xu, and J. H. Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39(15), 4442–4445 (2014).
[Crossref] [PubMed]

Pérez-Millán, P.

J. G. Castelló, V. Toccafondo, P. Pérez-Millán, N. S. Losilla, J. L. Cruz, M. V. Andrés, and J. García-Rupérez, “Real-time and low-cost sensing technique based on photonic bandgap structures,” Opt. Lett. 36(14), 2707–2709 (2011).
[Crossref] [PubMed]

Povinelli, M.

M. Povinelli, S. Johnson, and J. Joannopoulos, “Slow-light, band-edge waveguides for tunable time delays,” Opt. Express 13(18), 7145–7159 (2005).
[Crossref] [PubMed]

Ramirez, J. C.

A. Fernández Gavela, D. Grajales García, J. C. Ramirez, and L. M. Lechuga, “Last advances in silicon-based optical biosensors,” Sensors (Basel) 16(3), 285 (2016).
[Crossref] [PubMed]

Ratner, D.

E. Luan, H. Yun, L. Laplatine, K. Cheung, Y. Dattner, D. Ratner, J. Flückiger, and L. Chrostowski, “Sub-wavelength multi-box waveguide-based label-free sensors,” Integr. Opt. Devices, Mater. Technol. XXII 10535, 105350H (2018).

Ratner, D. M.

E. Luan, H. Yun, L. Laplatine, Y. Dattner, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Enhanced sensitivity of subwavelength multibox waveguide microring resonator label-free biosensors,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–11 (2019).
[Crossref]

J. Flueckiger, S. Schmidt, V. Donzella, A. Sherwali, D. M. Ratner, L. Chrostowski, and K. C. Cheung, “Sub-wavelength grating for enhanced ring resonator biosensor,” Opt. Express 24(14), 15672–15686 (2016).
[Crossref] [PubMed]

Ruschin, S.

R. Levy, S. Ruschin, and D. Goldring, “Critical sensitivity effect in an interferometer sensor,” Opt. Lett. 34(19), 3023–3025 (2009).
[Crossref] [PubMed]

R. Levy and S. Ruschin, “Design of a single-channel modal interferometer waveguide sensor,” IEEE Sens. J. 9(2), 1 (2009).
[Crossref]

R. Levy and S. Ruschin, “Critical sensitivity in hetero-modal interferometric sensor using spectral interrogation,” Opt. Express 16(25), 20516–20521 (2008).
[Crossref] [PubMed]

Rytov, S. M.

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” JETP, Sov. Phys. 2(3), 466–475 (1956).

Sabarinathan, J.

J. Topol’ančik, P. Bhattacharya, J. Sabarinathan, and P. C. Yu, “Fluid detection with photonic crystal-based multichannel waveguides,” Appl. Phys. Lett. 82(8), 1143–1145 (2003).
[Crossref]

Sánchez-Postigo, A.

J. G. Wangüemert-Pérez, A. Hadij-ElHouati, A. Sánchez-Postigo, J. Leuermann, D. X. Xu, P. Cheben, A. Ortega-Moñux, R. Halir, and Í. Molina-Fernández, “Subwavelength structures for silicon photonics biosensing,” Opt. Laser Technol. 109, 437–448 (2019).
[Crossref]

Sarkar, D.

D. Sarkar, N. S. K. Gunda, I. Jamal, and S. K. Mitra, “Optical biosensors with an integrated Mach-Zehnder Interferometer for detection of Listeria monocytogenes,” Biomed. Microdevices 16(4), 509–520 (2014).
[Crossref] [PubMed]

Sarmiento-Merenguel, J. D.

R. Halir, P. Cheben, J. M. Luque-González, J. D. Sarmiento-Merenguel, J. H. Schmid, G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and Í. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
[Crossref]

Schmid, J. H.

J. M. Luque-González, A. Herrero-Bermello, A. Ortega-Moñux, Í. Molina-Fernández, A. V. Velasco, P. Cheben, J. H. Schmid, S. Wang, and R. Halir, “Tilted subwavelength gratings: controlling anisotropy in metamaterial nanophotonic waveguides,” Opt. Lett. 43(19), 4691–4694 (2018).
[Crossref] [PubMed]

P. Cheben, R. Halir, J. H. Schmid, H. A. Atwater, and D. R. Smith, “Subwavelength integrated photonics,” Nature 560(7720), 565–572 (2018).
[Crossref] [PubMed]

R. Halir, P. Cheben, J. M. Luque-González, J. D. Sarmiento-Merenguel, J. H. Schmid, G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and Í. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
[Crossref]

J. Gonzalo Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D.-X. Xu, and J. H. Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39(15), 4442–4445 (2014).
[Crossref] [PubMed]

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18(19), 20251–20262 (2010).
[Crossref] [PubMed]

Schmidt, S.

J. Flueckiger, S. Schmidt, V. Donzella, A. Sherwali, D. M. Ratner, L. Chrostowski, and K. C. Cheung, “Sub-wavelength grating for enhanced ring resonator biosensor,” Opt. Express 24(14), 15672–15686 (2016).
[Crossref] [PubMed]

Serna, S.

W. Zhang, S. Serna, X. Le Roux, L. Vivien, and E. Cassan, “Highly sensitive refractive index sensing by fast detuning the critical coupling condition of slot waveguide ring resonators,” Opt. Lett. 41(3), 532–535 (2016).
[Crossref] [PubMed]

Sherwali, A.

J. Flueckiger, S. Schmidt, V. Donzella, A. Sherwali, D. M. Ratner, L. Chrostowski, and K. C. Cheung, “Sub-wavelength grating for enhanced ring resonator biosensor,” Opt. Express 24(14), 15672–15686 (2016).
[Crossref] [PubMed]

Shin, Y.

Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. J. Yoon, G. Q. Lo, and M. K. Park, “Highly sensitive Mach-Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
[Crossref]

Sigalas, M.

E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29(10), 1093–1095 (2004).
[Crossref] [PubMed]

Skivesen, N.

N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express 15(6), 3169–3176 (2007).
[Crossref] [PubMed]

Smith, D. R.

P. Cheben, R. Halir, J. H. Schmid, H. A. Atwater, and D. R. Smith, “Subwavelength integrated photonics,” Nature 560(7720), 565–572 (2018).
[Crossref] [PubMed]

Soljacic, M.

M. Soljačić, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19(9), 2052–2059 (2002).
[Crossref]

Stamm, C.

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: a comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref] [PubMed]

Têtu, A.

N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express 15(6), 3169–3176 (2007).
[Crossref] [PubMed]

Toccafondo, V.

J. G. Castelló, V. Toccafondo, P. Pérez-Millán, N. S. Losilla, J. L. Cruz, M. V. Andrés, and J. García-Rupérez, “Real-time and low-cost sensing technique based on photonic bandgap structures,” Opt. Lett. 36(14), 2707–2709 (2011).
[Crossref] [PubMed]

Topol’ancik, J.

J. Topol’ančik, P. Bhattacharya, J. Sabarinathan, and P. C. Yu, “Fluid detection with photonic crystal-based multichannel waveguides,” Appl. Phys. Lett. 82(8), 1143–1145 (2003).
[Crossref]

Tu, X.

Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. J. Yoon, G. Q. Lo, and M. K. Park, “Highly sensitive Mach-Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
[Crossref]

Velasco, A. V.

J. M. Luque-González, A. Herrero-Bermello, A. Ortega-Moñux, Í. Molina-Fernández, A. V. Velasco, P. Cheben, J. H. Schmid, S. Wang, and R. Halir, “Tilted subwavelength gratings: controlling anisotropy in metamaterial nanophotonic waveguides,” Opt. Lett. 43(19), 4691–4694 (2018).
[Crossref] [PubMed]

Villeneuve, P. R.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

Vivien, L.

D. Benedikovic, M. Berciano, C. Alonso-Ramos, X. Le Roux, E. Cassan, D. Marris-Morini, and L. Vivien, “Dispersion control of silicon nanophotonic waveguides using sub-wavelength grating metamaterials in near- and mid-IR wavelengths,” Opt. Express 25(16), 19468–19478 (2017).
[Crossref] [PubMed]

W. Zhang, S. Serna, X. Le Roux, L. Vivien, and E. Cassan, “Highly sensitive refractive index sensing by fast detuning the critical coupling condition of slot waveguide ring resonators,” Opt. Lett. 41(3), 532–535 (2016).
[Crossref] [PubMed]

Wang, S.

J. M. Luque-González, A. Herrero-Bermello, A. Ortega-Moñux, Í. Molina-Fernández, A. V. Velasco, P. Cheben, J. H. Schmid, S. Wang, and R. Halir, “Tilted subwavelength gratings: controlling anisotropy in metamaterial nanophotonic waveguides,” Opt. Lett. 43(19), 4691–4694 (2018).
[Crossref] [PubMed]

R. Halir, P. Cheben, J. M. Luque-González, J. D. Sarmiento-Merenguel, J. H. Schmid, G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and Í. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
[Crossref]

Wangüemert-Pérez, G.

R. Halir, P. Cheben, J. M. Luque-González, J. D. Sarmiento-Merenguel, J. H. Schmid, G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and Í. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
[Crossref]

Wangüemert-Pérez, J. G.

J. G. Wangüemert-Pérez, A. Hadij-ElHouati, A. Sánchez-Postigo, J. Leuermann, D. X. Xu, P. Cheben, A. Ortega-Moñux, R. Halir, and Í. Molina-Fernández, “Subwavelength structures for silicon photonics biosensing,” Opt. Laser Technol. 109, 437–448 (2019).
[Crossref]

Xu, D. X.

J. G. Wangüemert-Pérez, A. Hadij-ElHouati, A. Sánchez-Postigo, J. Leuermann, D. X. Xu, P. Cheben, A. Ortega-Moñux, R. Halir, and Í. Molina-Fernández, “Subwavelength structures for silicon photonics biosensing,” Opt. Laser Technol. 109, 437–448 (2019).
[Crossref]

R. Halir, P. Cheben, J. M. Luque-González, J. D. Sarmiento-Merenguel, J. H. Schmid, G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and Í. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
[Crossref]

Xu, D.-X.

J. Gonzalo Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D.-X. Xu, and J. H. Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39(15), 4442–4445 (2014).
[Crossref] [PubMed]

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18(19), 20251–20262 (2010).
[Crossref] [PubMed]

Yoon, Y. J.

Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. J. Yoon, G. Q. Lo, and M. K. Park, “Highly sensitive Mach-Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
[Crossref]

Yu, P. C.

J. Topol’ančik, P. Bhattacharya, J. Sabarinathan, and P. C. Yu, “Fluid detection with photonic crystal-based multichannel waveguides,” Appl. Phys. Lett. 82(8), 1143–1145 (2003).
[Crossref]

Yun, H.

E. Luan, H. Yun, L. Laplatine, Y. Dattner, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Enhanced sensitivity of subwavelength multibox waveguide microring resonator label-free biosensors,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–11 (2019).
[Crossref]

E. Luan, H. Yun, L. Laplatine, K. Cheung, Y. Dattner, D. Ratner, J. Flückiger, and L. Chrostowski, “Sub-wavelength multi-box waveguide-based label-free sensors,” Integr. Opt. Devices, Mater. Technol. XXII 10535, 105350H (2018).

Zhang, W.

W. Zhang, S. Serna, X. Le Roux, L. Vivien, and E. Cassan, “Highly sensitive refractive index sensing by fast detuning the critical coupling condition of slot waveguide ring resonators,” Opt. Lett. 41(3), 532–535 (2016).
[Crossref] [PubMed]

Zinoviev, K. E.

D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12(11), 1987–1994 (2012).
[Crossref] [PubMed]

K. E. Zinoviev, A. B. González-Guerrero, C. Domínguez, and L. M. Lechuga, “Integrated bimodal waveguide interferometric biosensor for label-free analysis,” J. Lit. Technol. 29(13), 1926–1930 (2011).
[Crossref]

ACS Sens. (1)

C. S. Huertas, D. Fariña, and L. M. Lechuga, “Direct and label-free quantification of micro-RNA-181a at attomolar level in complex media using a nanophotonic biosensor,” ACS Sens. 1(6), 748–756 (2016).
[Crossref]

Appl. Phys. Lett. (1)

J. Topol’ančik, P. Bhattacharya, J. Sabarinathan, and P. C. Yu, “Fluid detection with photonic crystal-based multichannel waveguides,” Appl. Phys. Lett. 82(8), 1143–1145 (2003).
[Crossref]

Biomed. Microdevices (1)

D. Sarkar, N. S. K. Gunda, I. Jamal, and S. K. Mitra, “Optical biosensors with an integrated Mach-Zehnder Interferometer for detection of Listeria monocytogenes,” Biomed. Microdevices 16(4), 509–520 (2014).
[Crossref] [PubMed]

Biosens. Bioelectron. (1)

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: a comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref] [PubMed]

Encycl. Opt. Eng. (1)

P. Lalanne and M. Hutley, “Artificial media optical properties – subwavelength scale,” Encycl. Opt. Eng. 1, 62–71 (2003).

IEEE J. Sel. Top. Quantum Electron. (1)

E. Luan, H. Yun, L. Laplatine, Y. Dattner, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Enhanced sensitivity of subwavelength multibox waveguide microring resonator label-free biosensors,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–11 (2019).
[Crossref]

IEEE Sens. J. (1)

R. Levy and S. Ruschin, “Design of a single-channel modal interferometer waveguide sensor,” IEEE Sens. J. 9(2), 1 (2009).
[Crossref]

Integr. Opt. Devices, Mater. Technol. XXII (1)

E. Luan, H. Yun, L. Laplatine, K. Cheung, Y. Dattner, D. Ratner, J. Flückiger, and L. Chrostowski, “Sub-wavelength multi-box waveguide-based label-free sensors,” Integr. Opt. Devices, Mater. Technol. XXII 10535, 105350H (2018).

J. Lit. Technol. (1)

K. E. Zinoviev, A. B. González-Guerrero, C. Domínguez, and L. M. Lechuga, “Integrated bimodal waveguide interferometric biosensor for label-free analysis,” J. Lit. Technol. 29(13), 1926–1930 (2011).
[Crossref]

J. Opt. Soc. Am. B (1)

M. Soljačić, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19(9), 2052–2059 (2002).
[Crossref]

JETP, Sov. Phys. (1)

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” JETP, Sov. Phys. 2(3), 466–475 (1956).

Lab Chip (1)

D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12(11), 1987–1994 (2012).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

R. Halir, P. Cheben, J. M. Luque-González, J. D. Sarmiento-Merenguel, J. H. Schmid, G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and Í. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
[Crossref]

Nature (2)

P. Cheben, R. Halir, J. H. Schmid, H. A. Atwater, and D. R. Smith, “Subwavelength integrated photonics,” Nature 560(7720), 565–572 (2018).
[Crossref] [PubMed]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

Opt. Express (7)

M. Povinelli, S. Johnson, and J. Joannopoulos, “Slow-light, band-edge waveguides for tunable time delays,” Opt. Express 13(18), 7145–7159 (2005).
[Crossref] [PubMed]

N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express 15(6), 3169–3176 (2007).
[Crossref] [PubMed]

D. Benedikovic, M. Berciano, C. Alonso-Ramos, X. Le Roux, E. Cassan, D. Marris-Morini, and L. Vivien, “Dispersion control of silicon nanophotonic waveguides using sub-wavelength grating metamaterials in near- and mid-IR wavelengths,” Opt. Express 25(16), 19468–19478 (2017).
[Crossref] [PubMed]

J. Flueckiger, S. Schmidt, V. Donzella, A. Sherwali, D. M. Ratner, L. Chrostowski, and K. C. Cheung, “Sub-wavelength grating for enhanced ring resonator biosensor,” Opt. Express 24(14), 15672–15686 (2016).
[Crossref] [PubMed]

R. Levy and S. Ruschin, “Critical sensitivity in hetero-modal interferometric sensor using spectral interrogation,” Opt. Express 16(25), 20516–20521 (2008).
[Crossref] [PubMed]

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18(19), 20251–20262 (2010).
[Crossref] [PubMed]

S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

J. G. Wangüemert-Pérez, A. Hadij-ElHouati, A. Sánchez-Postigo, J. Leuermann, D. X. Xu, P. Cheben, A. Ortega-Moñux, R. Halir, and Í. Molina-Fernández, “Subwavelength structures for silicon photonics biosensing,” Opt. Laser Technol. 109, 437–448 (2019).
[Crossref]

Opt. Lett. (6)

W. Zhang, S. Serna, X. Le Roux, L. Vivien, and E. Cassan, “Highly sensitive refractive index sensing by fast detuning the critical coupling condition of slot waveguide ring resonators,” Opt. Lett. 41(3), 532–535 (2016).
[Crossref] [PubMed]

R. Levy, S. Ruschin, and D. Goldring, “Critical sensitivity effect in an interferometer sensor,” Opt. Lett. 34(19), 3023–3025 (2009).
[Crossref] [PubMed]

J. Gonzalo Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D.-X. Xu, and J. H. Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39(15), 4442–4445 (2014).
[Crossref] [PubMed]

J. M. Luque-González, A. Herrero-Bermello, A. Ortega-Moñux, Í. Molina-Fernández, A. V. Velasco, P. Cheben, J. H. Schmid, S. Wang, and R. Halir, “Tilted subwavelength gratings: controlling anisotropy in metamaterial nanophotonic waveguides,” Opt. Lett. 43(19), 4691–4694 (2018).
[Crossref] [PubMed]

J. G. Castelló, V. Toccafondo, P. Pérez-Millán, N. S. Losilla, J. L. Cruz, M. V. Andrés, and J. García-Rupérez, “Real-time and low-cost sensing technique based on photonic bandgap structures,” Opt. Lett. 36(14), 2707–2709 (2011).
[Crossref] [PubMed]

E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29(10), 1093–1095 (2004).
[Crossref] [PubMed]

Sci. Rep. (1)

C. S. Huertas, S. Domínguez-Zotes, and L. M. Lechuga, “Analysis of alternative splicing events for cancer diagnosis using a multiplexing nanophotonic biosensor,” Sci. Rep. 7(1), 41368 (2017).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. J. Yoon, G. Q. Lo, and M. K. Park, “Highly sensitive Mach-Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
[Crossref]

Sensors (Basel) (1)

A. Fernández Gavela, D. Grajales García, J. C. Ramirez, and L. M. Lechuga, “Last advances in silicon-based optical biosensors,” Sensors (Basel) 16(3), 285 (2016).
[Crossref] [PubMed]

Other (2)

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” 15(12), 7610–7615 (2007).

L. Chrostowski, S. Grist, J. Flueckiger, W. Shi, X. Wang, E. Ouellet, H. Yun, M. Webb, B. Nie, Z. Liang, K. C. Cheung, S. A. Schmidt, D. M. Ratner, and N. A. F. Jaeger, “Silicon photonic resonator sensors and devices,” Proc. SPIE 8236, 823620 1–16 (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic representation of the proposed SWG bimodal sensor where ‘Λ’ is the period, ‘DC’ the duty cycle of the SWG elements, ‘w’ the width of the SWG elements, ‘h’ the height and ‘ws’ the width of the input and output waveguides. The length ‘L’ is determined by the number of elements N: L = (N-1 + DC)*Λ. The inset schematically shows the profile of the propagating modes.
Fig. 2
Fig. 2 (a) Dispersion relations of the even and odd TE-like modes of a SWG bimodal structure of period Λ = 290nm, DC = 50%, w = 1400nm and h = 220nm, under an aqueous environment as cladding (n = 1.36). (b) Phase shift as a function of wavelength between both modes for a cladding of 1.36RIU and for a RI change of Δn = 0.07RIU; N = 40 periods have been considered.
Fig. 3
Fig. 3 (a) Phase shift between both modes of the SWG bimodal structure for different duty cycles. Dashed and solid lines show the phase shift for a cladding RI of 1.36RIU and 1.37RIU, respectively. Design parameters are Λ = 290nm, DC = 50%, w = 1400nm and h = 220nm. (b) Numerical wavelength shift as a function of the cladding RI for different duty cycles at 1665nm. Note that the spectral features located in the critical sensitivity region are shifted towards lower wavelengths for increments of the cladding RI, so absolute values of the wavelength shift are considered. (c) Bulk sensitivity comparison between the numerical and the semi-analytic calculations obtained using Eq. (3) at an operation wavelength of 1665nm.
Fig. 4
Fig. 4 (a) Surface sensitivity as a function of the layer thickness ρ for the SWG bimodal sensor in an aqueous environment for different duty cycles. The inset depicts the cross section of the transversal SWG elements in the y-z plane with the deposited layer. A RI of 1.48RIU is considered for the deposited layer. (b) Surface sensitivity as a function of wavelength for different layer thicknesses and a duty cycle of 60%. The layer thickness goes from 10nm (light blue) to 100nm (purple). Note that sensitivity values have been calculated considering only wavevectors for which the modes remain above the light cone of the silica lower cladding.
Fig. 5
Fig. 5 (a) Electric field magnitude distribution of a periodic cell of the SWG structure in different planes for even and odd modes. The white dashed rectangles represent the SWG element. Design parameters are Λ = 290nm, DC = 50%, w = 1400nm and h = 220nm for a silica lower cladding and an aqueous environment of 1.36RIU. (b) Mode profile of the x-component of the electric field for both modes in the x-axis at y = 0 and z = 0. (c) Transmission spectra for a 50% duty cycle SWG bimodal structure as a function of the displacement ‘d’ of a single mode waveguide of width ws = 450nm at the input and output. A length of N = 120 elements has been considered for the calculations.
Fig. 6
Fig. 6 (a) Spectral shift as a function of cladding RI variations for 50% and 60% duty cycles with N = 120 and N = 220 periods, respectively. Design parameters are Λ = 290nm, w = 1400nm, h = 220nm and d = 375nm with a silica lower cladding and under an aqueous environment of 1.36RIU. (b) Transmission spectra for 50% duty cycle (top) and 60% duty cycle (bottom) at different RI scenarios. The shaded areas represent the spectral shift of the interference fringes for a cladding RI increment from 1.35RIU to 1.37RIU. (c) x-component of the electric field at y = 0 slice, for N = 36 periods and 50%DC. The upper contour map represents maximum transmission for a wavelength exhibiting constructive interference. The lower contour map depicts minimum transmission for a wavelength where a spectral dip is located (i.e., destructive interference). Note that for this number of SWG elements N, spectral dips are located at different wavelengths regarding the previous spectrum.
Fig. 7
Fig. 7 Comparison between the sensitivity results obtained in MPB and CST for the SWG sensor having a duty cycle of 50% and 60%. Semi-analytical curves (solid and dashed lines) represent the theoretical bulk sensitivity as a function of wavelength obtained using MPB and Eq. (3). Diamonds and circle markers show the sensitivity of certain spectral fringes in the spectrum obtained from the FDTD simulations. The parameters of the SWG sensor are N = 120 for 50%DC, N = 220 for 60%DC, Λ = 290nm, w = 1400nm and h = 220nm in silica lower cladding (n = 1.44) and under an aqueous environment of 1.36RIU. The gray shaded area represents the region where the sign of the spectral sensitivity changes.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δφ=L| δ k 1 δ k 2 |,
S b = δ λ f δ n c ,
S b = δφ/δ n c δφ/δ λ f .
S s = Δ λ f ρ layer ,

Metrics