Abstract

We demonstrate a high-sensitivity relative humidity (RH) sensor taking advantage of single-band narrow plasmon resonance of a single Au nanorod coupled to a whispering gallery cavity mode of a polyacrylamide microfiber. From the resonance peak shift, the sensor could achieve a sensitivity up to 0.51 nm/% RH with a cavity size of about 2 μm. By coupling multiple Au nanorods along the microfiber axis, we demonstrate a position-dependent microfiber optical humidity sensor with a 1.5-mm spatial resolution, which can be potentially reduced to micrometer level, paving a way toward high-resolution distributed microfiber optical sensors.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Polymer microfiber rings for high-sensitivity optical humidity sensing

Pan Wang, Fuxing Gu, Lei Zhang, and Limin Tong
Appl. Opt. 50(31) G7-G10 (2011)

Nanocomposite polyacrylamide based open cavity fiber Fabry–Perot humidity sensor

Jun Yao, Tao Zhu, De-Wen Duan, and Ming Deng
Appl. Opt. 51(31) 7643-7647 (2012)

Analysis of immersed silica optical microfiber knot resonator and its application as a moisture sensor

Marcelo A. Gouveia, Paloma E. S. Pellegrini, Juliana S. dos Santos, Ivo M. Raimundo, and Cristiano M. B. Cordeiro
Appl. Opt. 53(31) 7454-7461 (2014)

References

  • View by:
  • |
  • |
  • |

  1. L. Tong, “Micro/nanofibre optical sensors: challenges and prospects,” Sensors (Basel) 18(3), 903–929 (2018).
    [Crossref] [PubMed]
  2. G. Y. Chen, D. G. Lancaster, and T. M. Monro, “Optical microfiber technology for current, temperature, acceleration, acoustic, humidity and ultraviolet light sensing,” Sensors (Basel) 18(2), 72–96 (2017).
    [Crossref] [PubMed]
  3. S. Sikarwar and B. C. Yadav, “Opto-electronic humidity sensor: a review,” Sens. Actuators A Phys. 233, 54–70 (2015).
    [Crossref]
  4. G. Brambilla, “Optical microfibre devices,” Opt. Laser Technol. 78, 76–80 (2016).
    [Crossref]
  5. J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors (Basel) 14(4), 5823–5844 (2014).
    [Crossref] [PubMed]
  6. Y. Peng, Y. Zhao, M. Q. Chen, and F. Xia, “Research advances in microfiber humidity sensors,” Small 14(29), e1800524 (2018).
    [Crossref] [PubMed]
  7. L. T. Gai, J. Li, and Y. Zhao, “Preparation and application of microfiber resonant ring sensors: a review,” Opt. Laser Technol. 89, 126–136 (2017).
    [Crossref]
  8. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, “The microfiber loop resonator: theory, experiment, and application,” J. Lightwave Technol. 24(1), 242–250 (2006).
    [Crossref]
  9. N. Irawati, H. A. Rahman, H. Ahmad, and S. W. Harun, “A PMMA microfiber loop resonator based humidity sensor with ZnO nanorods coating,” Measurement 99, 128–133 (2017).
    [Crossref]
  10. P. Wang, F. Gu, L. Zhang, and L. Tong, “Polymer microfiber rings for high-sensitivity optical humidity sensing,” Appl. Opt. 50(31), G7–G10 (2011).
    [Crossref] [PubMed]
  11. J. C. Shin, M. S. Yoon, and Y. G. Han, “Relative humidity sensor based on an optical microfiber knot resonator with a polyvinyl alcohol overlay,” J. Lightwave Technol. 34(19), 4511–4515 (2016).
    [Crossref]
  12. M. A. Gouveia, P. E. S. Pellegrini, J. S. Dos Santos, I. M. Raimundo, and C. M. B. Cordeiro, “Analysis of immersed silica optical microfiber knot resonator and its application as a moisture sensor,” Appl. Opt. 53(31), 7454–7461 (2014).
    [Crossref] [PubMed]
  13. A. D. D. Le and Y. G. Han, “Relative humidity sensor based on a few-mode microfiber knot resonator by mitigating the group index difference of a few-mode microfiber,” J. Lightwave Technol. 36(4), 904–909 (2018).
    [Crossref]
  14. F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92(10), 101126 (2008).
    [Crossref]
  15. Y. Yin, J. B. Yu, Y. X. Jiang, S. Li, J. Ren, G. Farrell, E. Lewis, and P. F. Wang, “Investigation of temperature dependence of microfiber coil resonators,” J. Lightwave Technol. 36(20), 4887–4893 (2018).
    [Crossref]
  16. N. Irawati, T. N. R. Abdullah, H. A. Rahman, H. Ahmad, and S. W. Harun, “PMMA microfiber loop resonator for humidity sensor,” Sens. Actuators A Phys. 260, 112–116 (2017).
    [Crossref]
  17. H. Ahmad, M. T. Rahman, S. N. A. Sakeh, M. Z. A. Razak, and M. Z. Zulkifli, “Humidity sensor based on microfiber resonator with reduced graphene oxide,” Optik (Stuttg.) 127(5), 3158–3161 (2016).
    [Crossref]
  18. M. J. Faruki, M. Z. Ab Razak, S. R. Azzuhri, M. T. Rahman, M. R. K. Soltanian, G. Brambilla, B. M. Rahman, K. T. Grattan, R. De La Rue, and H. Ahmad, “Effect of titanium dioxide (TiO2) nanoparticle coating on the detection performance of microfiber knot resonator sensors for relative humidity measurement,” Mater. Express 6(6), 501–508 (2016).
    [Crossref]
  19. Y. Wu, T. H. Zhang, Y. J. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sens. Actuator B Chem. 155(1), 258–263 (2011).
    [Crossref]
  20. Q. Tian, H. Z. Yang, Q. Z. Rong, Z. Y. Feng, R. H. Wang, M. K. A. B. Zaini, K. S. Lim, H. Ahmad, P. Zhang, X. Z. Ding, K. Lu, and Y. D. He, “Highly sensitive micro-hygrometer based on microfiber knot resonator,” Opt. Commun. 431, 88–92 (2019).
    [Crossref]
  21. J. Shi, W. Xu, D. Xu, Y. Wang, C. Zhang, C. Yan, D. Yan, Y. He, L. Tang, W. Zhang, and J. Yao, “Humidity sensor based on intracavity sensing of fiber ring laser,” J. Phys. D Appl. Phys. 50(42), 425105 (2017).
    [Crossref]
  22. P. Wang, Y. Wang, Z. Yang, X. Guo, X. Lin, X. C. Yu, Y. F. Xiao, W. Fang, L. Zhang, G. Lu, Q. Gong, and L. Tong, “Single-band 2-nm-line-width plasmon resonance in a strongly coupled Au nanorod,” Nano Lett. 15(11), 7581–7586 (2015).
    [Crossref] [PubMed]
  23. Q. Ai, L. Gui, D. Paone, B. Metzger, M. Mayer, K. Weber, A. Fery, and H. Giessen, “Ultranarrow second-harmonic resonances in hybrid plasmon-fiber cavities,” Nano Lett. 18(9), 5576–5582 (2018).
    [Crossref] [PubMed]
  24. F. X. Gu, L. Zhang, Y. B. Zhu, and H. P. Zeng, “Free‐space coupling of nanoantennas and whispering‐gallery microcavities with narrowed linewidth and enhanced sensitivity,” Laser Photonics Rev. 9(6), 682–688 (2015).
    [Crossref]
  25. F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
    [Crossref] [PubMed]
  26. R. A. Barry and P. Wiltzius, “Humidity-sensing inverse opal hydrogels,” Langmuir 22(3), 1369–1374 (2006).
    [Crossref] [PubMed]
  27. F. Gu, H. Zeng, L. Tong, and S. Zhuang, “Metal single-nanowire plasmonic sensors,” Opt. Lett. 38(11), 1826–1828 (2013).
    [Crossref] [PubMed]
  28. Y. Shao, Y. Wang, S. Cao, Y. Huang, L. Zhang, F. Zhang, C. Liao, and Y. Wang, “Mechanism and characteristics of humidity sensing with polyvinyl alcohol-coated fiber surface plasmon resonance sensor,” Sensors (Basel) 18(7), 2029–2037 (2018).
    [Crossref] [PubMed]
  29. L. Bo, P. F. Wang, Y. Semenova, and G. Farrell, “Optical microfiber coupler based humidity sensor with a polyethylene oxide coating,” Microw. Opt. Technol. Lett. 57(2), 457–460 (2015).
    [Crossref]
  30. L. P. Sun, J. Li, L. Jin, Y. Ran, and B. O. Guan, “High-birefringence microfiber sagnac interferometer based humidity sensor,” Sens. Actuator B Chem. 231, 696–700 (2016).
    [Crossref]
  31. B. Gu, M. Yin, A. P. Zhang, J. Qian, and S. He, “Optical fiber relative humidity sensor based on FBG incorporated thin-core fiber modal interferometer,” Opt. Express 19(5), 4140–4146 (2011).
    [Crossref] [PubMed]
  32. P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, and Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett. 12(6), 3145–3150 (2012).
    [Crossref] [PubMed]
  33. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
    [Crossref] [PubMed]
  34. L. Labrador-Páez, K. Soler-Carracedo, M. Hernández-Rodríguez, I. R. Martín, T. Carmon, and L. L. Martin, “Liquid whispering-gallery-mode resonator as a humidity sensor,” Opt. Express 25(2), 1165–1172 (2017).
    [Crossref] [PubMed]
  35. A. Bozzola, S. Perotto, and F. De Angelis, “Hybrid plasmonic-photonic whispering gallery mode resonators for sensing: a critical review,” Analyst (Lond.) 142(6), 883–898 (2017).
    [Crossref] [PubMed]
  36. M. Batumalay, S. W. Harun, N. Irawati, H. Ahmad, and H. Arof, “A study of relative humidity fiber-optic sensors,” IEEE Sens. J. 15(3), 1945–1950 (2015).
    [Crossref]
  37. G. Y. Chen, X. Wu, Y. Q. Kang, L. Yu, T. M. Monro, D. G. Lancaster, X. Liu, and H. Xu, “Ultra-fast hygrometer based on U-shaped optical microfiber with nanoporous polyelectrolyte coating,” Sci. Rep. 7(1), 7943–7949 (2017).
    [Crossref] [PubMed]
  38. Y. Luo, C. Chen, K. Xia, S. Peng, H. Guan, J. Tang, H. Lu, J. Yu, J. Zhang, Y. Xiao, and Z. Chen, “Tungsten disulfide (WS2) based all-fiber-optic humidity sensor,” Opt. Express 24(8), 8956–8966 (2016).
    [Crossref] [PubMed]
  39. N. Irawati, H. A. Rahman, M. Yasin, S. Al-Askari, B. A. Hamida, H. Ahmad, and S. W. Harun, “Relative humidity sensing using a PMMA doped agarose gel microfiber,” J. Lightwave Technol. 35(18), 3940–3944 (2017).
    [Crossref]
  40. J. Qin, Y. H. Chen, B. Y. Ding, R. J. Blaikie, and M. Qiu, “Efficient plasmonic gas sensing based on cavity-coupled metallic nanoparticles,” J. Phys. Chem. C 121(44), 24740–24744 (2017).
    [Crossref]
  41. A. W. Powell, D. M. Coles, R. A. Taylor, A. A. R. Watt, H. E. Assender, and J. M. Smith, “Plasmonic gas sensing using nanocube patch antennas,” Adv. Opt. Mater. 4(4), 634–642 (2016).
    [Crossref]
  42. Z. Ding, C. Wang, K. Liu, J. Jiang, D. Yang, G. Pan, Z. Pu, and T. Liu, “Distributed optical fiber sensors based on optical frequency domain reflectometry: a review,” Sensors (Basel) 18(4), 1072–1102 (2018).
    [Crossref] [PubMed]
  43. H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
    [Crossref] [PubMed]
  44. H. Wei, D. Pan, S. Zhang, Z. Li, Q. Li, N. Liu, W. Wang, and H. Xu, “Plasmon waveguiding in nanowires,” Chem. Rev. 118(6), 2882–2926 (2018).
    [Crossref] [PubMed]

2019 (1)

Q. Tian, H. Z. Yang, Q. Z. Rong, Z. Y. Feng, R. H. Wang, M. K. A. B. Zaini, K. S. Lim, H. Ahmad, P. Zhang, X. Z. Ding, K. Lu, and Y. D. He, “Highly sensitive micro-hygrometer based on microfiber knot resonator,” Opt. Commun. 431, 88–92 (2019).
[Crossref]

2018 (8)

Y. Shao, Y. Wang, S. Cao, Y. Huang, L. Zhang, F. Zhang, C. Liao, and Y. Wang, “Mechanism and characteristics of humidity sensing with polyvinyl alcohol-coated fiber surface plasmon resonance sensor,” Sensors (Basel) 18(7), 2029–2037 (2018).
[Crossref] [PubMed]

Q. Ai, L. Gui, D. Paone, B. Metzger, M. Mayer, K. Weber, A. Fery, and H. Giessen, “Ultranarrow second-harmonic resonances in hybrid plasmon-fiber cavities,” Nano Lett. 18(9), 5576–5582 (2018).
[Crossref] [PubMed]

L. Tong, “Micro/nanofibre optical sensors: challenges and prospects,” Sensors (Basel) 18(3), 903–929 (2018).
[Crossref] [PubMed]

Y. Peng, Y. Zhao, M. Q. Chen, and F. Xia, “Research advances in microfiber humidity sensors,” Small 14(29), e1800524 (2018).
[Crossref] [PubMed]

A. D. D. Le and Y. G. Han, “Relative humidity sensor based on a few-mode microfiber knot resonator by mitigating the group index difference of a few-mode microfiber,” J. Lightwave Technol. 36(4), 904–909 (2018).
[Crossref]

Y. Yin, J. B. Yu, Y. X. Jiang, S. Li, J. Ren, G. Farrell, E. Lewis, and P. F. Wang, “Investigation of temperature dependence of microfiber coil resonators,” J. Lightwave Technol. 36(20), 4887–4893 (2018).
[Crossref]

Z. Ding, C. Wang, K. Liu, J. Jiang, D. Yang, G. Pan, Z. Pu, and T. Liu, “Distributed optical fiber sensors based on optical frequency domain reflectometry: a review,” Sensors (Basel) 18(4), 1072–1102 (2018).
[Crossref] [PubMed]

H. Wei, D. Pan, S. Zhang, Z. Li, Q. Li, N. Liu, W. Wang, and H. Xu, “Plasmon waveguiding in nanowires,” Chem. Rev. 118(6), 2882–2926 (2018).
[Crossref] [PubMed]

2017 (10)

N. Irawati, H. A. Rahman, M. Yasin, S. Al-Askari, B. A. Hamida, H. Ahmad, and S. W. Harun, “Relative humidity sensing using a PMMA doped agarose gel microfiber,” J. Lightwave Technol. 35(18), 3940–3944 (2017).
[Crossref]

J. Qin, Y. H. Chen, B. Y. Ding, R. J. Blaikie, and M. Qiu, “Efficient plasmonic gas sensing based on cavity-coupled metallic nanoparticles,” J. Phys. Chem. C 121(44), 24740–24744 (2017).
[Crossref]

N. Irawati, T. N. R. Abdullah, H. A. Rahman, H. Ahmad, and S. W. Harun, “PMMA microfiber loop resonator for humidity sensor,” Sens. Actuators A Phys. 260, 112–116 (2017).
[Crossref]

L. T. Gai, J. Li, and Y. Zhao, “Preparation and application of microfiber resonant ring sensors: a review,” Opt. Laser Technol. 89, 126–136 (2017).
[Crossref]

N. Irawati, H. A. Rahman, H. Ahmad, and S. W. Harun, “A PMMA microfiber loop resonator based humidity sensor with ZnO nanorods coating,” Measurement 99, 128–133 (2017).
[Crossref]

G. Y. Chen, D. G. Lancaster, and T. M. Monro, “Optical microfiber technology for current, temperature, acceleration, acoustic, humidity and ultraviolet light sensing,” Sensors (Basel) 18(2), 72–96 (2017).
[Crossref] [PubMed]

J. Shi, W. Xu, D. Xu, Y. Wang, C. Zhang, C. Yan, D. Yan, Y. He, L. Tang, W. Zhang, and J. Yao, “Humidity sensor based on intracavity sensing of fiber ring laser,” J. Phys. D Appl. Phys. 50(42), 425105 (2017).
[Crossref]

L. Labrador-Páez, K. Soler-Carracedo, M. Hernández-Rodríguez, I. R. Martín, T. Carmon, and L. L. Martin, “Liquid whispering-gallery-mode resonator as a humidity sensor,” Opt. Express 25(2), 1165–1172 (2017).
[Crossref] [PubMed]

A. Bozzola, S. Perotto, and F. De Angelis, “Hybrid plasmonic-photonic whispering gallery mode resonators for sensing: a critical review,” Analyst (Lond.) 142(6), 883–898 (2017).
[Crossref] [PubMed]

G. Y. Chen, X. Wu, Y. Q. Kang, L. Yu, T. M. Monro, D. G. Lancaster, X. Liu, and H. Xu, “Ultra-fast hygrometer based on U-shaped optical microfiber with nanoporous polyelectrolyte coating,” Sci. Rep. 7(1), 7943–7949 (2017).
[Crossref] [PubMed]

2016 (7)

Y. Luo, C. Chen, K. Xia, S. Peng, H. Guan, J. Tang, H. Lu, J. Yu, J. Zhang, Y. Xiao, and Z. Chen, “Tungsten disulfide (WS2) based all-fiber-optic humidity sensor,” Opt. Express 24(8), 8956–8966 (2016).
[Crossref] [PubMed]

L. P. Sun, J. Li, L. Jin, Y. Ran, and B. O. Guan, “High-birefringence microfiber sagnac interferometer based humidity sensor,” Sens. Actuator B Chem. 231, 696–700 (2016).
[Crossref]

G. Brambilla, “Optical microfibre devices,” Opt. Laser Technol. 78, 76–80 (2016).
[Crossref]

H. Ahmad, M. T. Rahman, S. N. A. Sakeh, M. Z. A. Razak, and M. Z. Zulkifli, “Humidity sensor based on microfiber resonator with reduced graphene oxide,” Optik (Stuttg.) 127(5), 3158–3161 (2016).
[Crossref]

M. J. Faruki, M. Z. Ab Razak, S. R. Azzuhri, M. T. Rahman, M. R. K. Soltanian, G. Brambilla, B. M. Rahman, K. T. Grattan, R. De La Rue, and H. Ahmad, “Effect of titanium dioxide (TiO2) nanoparticle coating on the detection performance of microfiber knot resonator sensors for relative humidity measurement,” Mater. Express 6(6), 501–508 (2016).
[Crossref]

J. C. Shin, M. S. Yoon, and Y. G. Han, “Relative humidity sensor based on an optical microfiber knot resonator with a polyvinyl alcohol overlay,” J. Lightwave Technol. 34(19), 4511–4515 (2016).
[Crossref]

A. W. Powell, D. M. Coles, R. A. Taylor, A. A. R. Watt, H. E. Assender, and J. M. Smith, “Plasmonic gas sensing using nanocube patch antennas,” Adv. Opt. Mater. 4(4), 634–642 (2016).
[Crossref]

2015 (5)

S. Sikarwar and B. C. Yadav, “Opto-electronic humidity sensor: a review,” Sens. Actuators A Phys. 233, 54–70 (2015).
[Crossref]

M. Batumalay, S. W. Harun, N. Irawati, H. Ahmad, and H. Arof, “A study of relative humidity fiber-optic sensors,” IEEE Sens. J. 15(3), 1945–1950 (2015).
[Crossref]

P. Wang, Y. Wang, Z. Yang, X. Guo, X. Lin, X. C. Yu, Y. F. Xiao, W. Fang, L. Zhang, G. Lu, Q. Gong, and L. Tong, “Single-band 2-nm-line-width plasmon resonance in a strongly coupled Au nanorod,” Nano Lett. 15(11), 7581–7586 (2015).
[Crossref] [PubMed]

L. Bo, P. F. Wang, Y. Semenova, and G. Farrell, “Optical microfiber coupler based humidity sensor with a polyethylene oxide coating,” Microw. Opt. Technol. Lett. 57(2), 457–460 (2015).
[Crossref]

F. X. Gu, L. Zhang, Y. B. Zhu, and H. P. Zeng, “Free‐space coupling of nanoantennas and whispering‐gallery microcavities with narrowed linewidth and enhanced sensitivity,” Laser Photonics Rev. 9(6), 682–688 (2015).
[Crossref]

2014 (2)

J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors (Basel) 14(4), 5823–5844 (2014).
[Crossref] [PubMed]

M. A. Gouveia, P. E. S. Pellegrini, J. S. Dos Santos, I. M. Raimundo, and C. M. B. Cordeiro, “Analysis of immersed silica optical microfiber knot resonator and its application as a moisture sensor,” Appl. Opt. 53(31), 7454–7461 (2014).
[Crossref] [PubMed]

2013 (2)

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

F. Gu, H. Zeng, L. Tong, and S. Zhuang, “Metal single-nanowire plasmonic sensors,” Opt. Lett. 38(11), 1826–1828 (2013).
[Crossref] [PubMed]

2012 (1)

P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, and Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett. 12(6), 3145–3150 (2012).
[Crossref] [PubMed]

2011 (3)

B. Gu, M. Yin, A. P. Zhang, J. Qian, and S. He, “Optical fiber relative humidity sensor based on FBG incorporated thin-core fiber modal interferometer,” Opt. Express 19(5), 4140–4146 (2011).
[Crossref] [PubMed]

Y. Wu, T. H. Zhang, Y. J. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sens. Actuator B Chem. 155(1), 258–263 (2011).
[Crossref]

P. Wang, F. Gu, L. Zhang, and L. Tong, “Polymer microfiber rings for high-sensitivity optical humidity sensing,” Appl. Opt. 50(31), G7–G10 (2011).
[Crossref] [PubMed]

2008 (3)

F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92(10), 101126 (2008).
[Crossref]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[Crossref] [PubMed]

2006 (2)

R. A. Barry and P. Wiltzius, “Humidity-sensing inverse opal hydrogels,” Langmuir 22(3), 1369–1374 (2006).
[Crossref] [PubMed]

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, “The microfiber loop resonator: theory, experiment, and application,” J. Lightwave Technol. 24(1), 242–250 (2006).
[Crossref]

Ab Razak, M. Z.

M. J. Faruki, M. Z. Ab Razak, S. R. Azzuhri, M. T. Rahman, M. R. K. Soltanian, G. Brambilla, B. M. Rahman, K. T. Grattan, R. De La Rue, and H. Ahmad, “Effect of titanium dioxide (TiO2) nanoparticle coating on the detection performance of microfiber knot resonator sensors for relative humidity measurement,” Mater. Express 6(6), 501–508 (2016).
[Crossref]

Abdullah, T. N. R.

N. Irawati, T. N. R. Abdullah, H. A. Rahman, H. Ahmad, and S. W. Harun, “PMMA microfiber loop resonator for humidity sensor,” Sens. Actuators A Phys. 260, 112–116 (2017).
[Crossref]

Ahmad, H.

Q. Tian, H. Z. Yang, Q. Z. Rong, Z. Y. Feng, R. H. Wang, M. K. A. B. Zaini, K. S. Lim, H. Ahmad, P. Zhang, X. Z. Ding, K. Lu, and Y. D. He, “Highly sensitive micro-hygrometer based on microfiber knot resonator,” Opt. Commun. 431, 88–92 (2019).
[Crossref]

N. Irawati, T. N. R. Abdullah, H. A. Rahman, H. Ahmad, and S. W. Harun, “PMMA microfiber loop resonator for humidity sensor,” Sens. Actuators A Phys. 260, 112–116 (2017).
[Crossref]

N. Irawati, H. A. Rahman, H. Ahmad, and S. W. Harun, “A PMMA microfiber loop resonator based humidity sensor with ZnO nanorods coating,” Measurement 99, 128–133 (2017).
[Crossref]

N. Irawati, H. A. Rahman, M. Yasin, S. Al-Askari, B. A. Hamida, H. Ahmad, and S. W. Harun, “Relative humidity sensing using a PMMA doped agarose gel microfiber,” J. Lightwave Technol. 35(18), 3940–3944 (2017).
[Crossref]

H. Ahmad, M. T. Rahman, S. N. A. Sakeh, M. Z. A. Razak, and M. Z. Zulkifli, “Humidity sensor based on microfiber resonator with reduced graphene oxide,” Optik (Stuttg.) 127(5), 3158–3161 (2016).
[Crossref]

M. J. Faruki, M. Z. Ab Razak, S. R. Azzuhri, M. T. Rahman, M. R. K. Soltanian, G. Brambilla, B. M. Rahman, K. T. Grattan, R. De La Rue, and H. Ahmad, “Effect of titanium dioxide (TiO2) nanoparticle coating on the detection performance of microfiber knot resonator sensors for relative humidity measurement,” Mater. Express 6(6), 501–508 (2016).
[Crossref]

M. Batumalay, S. W. Harun, N. Irawati, H. Ahmad, and H. Arof, “A study of relative humidity fiber-optic sensors,” IEEE Sens. J. 15(3), 1945–1950 (2015).
[Crossref]

Ai, Q.

Q. Ai, L. Gui, D. Paone, B. Metzger, M. Mayer, K. Weber, A. Fery, and H. Giessen, “Ultranarrow second-harmonic resonances in hybrid plasmon-fiber cavities,” Nano Lett. 18(9), 5576–5582 (2018).
[Crossref] [PubMed]

Al-Askari, S.

N. Irawati, H. A. Rahman, M. Yasin, S. Al-Askari, B. A. Hamida, H. Ahmad, and S. W. Harun, “Relative humidity sensing using a PMMA doped agarose gel microfiber,” J. Lightwave Technol. 35(18), 3940–3944 (2017).
[Crossref]

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Arof, H.

M. Batumalay, S. W. Harun, N. Irawati, H. Ahmad, and H. Arof, “A study of relative humidity fiber-optic sensors,” IEEE Sens. J. 15(3), 1945–1950 (2015).
[Crossref]

Assender, H. E.

A. W. Powell, D. M. Coles, R. A. Taylor, A. A. R. Watt, H. E. Assender, and J. M. Smith, “Plasmonic gas sensing using nanocube patch antennas,” Adv. Opt. Mater. 4(4), 634–642 (2016).
[Crossref]

Azzuhri, S. R.

M. J. Faruki, M. Z. Ab Razak, S. R. Azzuhri, M. T. Rahman, M. R. K. Soltanian, G. Brambilla, B. M. Rahman, K. T. Grattan, R. De La Rue, and H. Ahmad, “Effect of titanium dioxide (TiO2) nanoparticle coating on the detection performance of microfiber knot resonator sensors for relative humidity measurement,” Mater. Express 6(6), 501–508 (2016).
[Crossref]

Barry, R. A.

R. A. Barry and P. Wiltzius, “Humidity-sensing inverse opal hydrogels,” Langmuir 22(3), 1369–1374 (2006).
[Crossref] [PubMed]

Batumalay, M.

M. Batumalay, S. W. Harun, N. Irawati, H. Ahmad, and H. Arof, “A study of relative humidity fiber-optic sensors,” IEEE Sens. J. 15(3), 1945–1950 (2015).
[Crossref]

Blaikie, R. J.

J. Qin, Y. H. Chen, B. Y. Ding, R. J. Blaikie, and M. Qiu, “Efficient plasmonic gas sensing based on cavity-coupled metallic nanoparticles,” J. Phys. Chem. C 121(44), 24740–24744 (2017).
[Crossref]

Bo, L.

L. Bo, P. F. Wang, Y. Semenova, and G. Farrell, “Optical microfiber coupler based humidity sensor with a polyethylene oxide coating,” Microw. Opt. Technol. Lett. 57(2), 457–460 (2015).
[Crossref]

Bozzola, A.

A. Bozzola, S. Perotto, and F. De Angelis, “Hybrid plasmonic-photonic whispering gallery mode resonators for sensing: a critical review,” Analyst (Lond.) 142(6), 883–898 (2017).
[Crossref] [PubMed]

Brambilla, G.

M. J. Faruki, M. Z. Ab Razak, S. R. Azzuhri, M. T. Rahman, M. R. K. Soltanian, G. Brambilla, B. M. Rahman, K. T. Grattan, R. De La Rue, and H. Ahmad, “Effect of titanium dioxide (TiO2) nanoparticle coating on the detection performance of microfiber knot resonator sensors for relative humidity measurement,” Mater. Express 6(6), 501–508 (2016).
[Crossref]

G. Brambilla, “Optical microfibre devices,” Opt. Laser Technol. 78, 76–80 (2016).
[Crossref]

F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92(10), 101126 (2008).
[Crossref]

Cao, S.

Y. Shao, Y. Wang, S. Cao, Y. Huang, L. Zhang, F. Zhang, C. Liao, and Y. Wang, “Mechanism and characteristics of humidity sensing with polyvinyl alcohol-coated fiber surface plasmon resonance sensor,” Sensors (Basel) 18(7), 2029–2037 (2018).
[Crossref] [PubMed]

Carmon, T.

L. Labrador-Páez, K. Soler-Carracedo, M. Hernández-Rodríguez, I. R. Martín, T. Carmon, and L. L. Martin, “Liquid whispering-gallery-mode resonator as a humidity sensor,” Opt. Express 25(2), 1165–1172 (2017).
[Crossref] [PubMed]

Chen, C.

Y. Luo, C. Chen, K. Xia, S. Peng, H. Guan, J. Tang, H. Lu, J. Yu, J. Zhang, Y. Xiao, and Z. Chen, “Tungsten disulfide (WS2) based all-fiber-optic humidity sensor,” Opt. Express 24(8), 8956–8966 (2016).
[Crossref] [PubMed]

Chen, G. Y.

G. Y. Chen, X. Wu, Y. Q. Kang, L. Yu, T. M. Monro, D. G. Lancaster, X. Liu, and H. Xu, “Ultra-fast hygrometer based on U-shaped optical microfiber with nanoporous polyelectrolyte coating,” Sci. Rep. 7(1), 7943–7949 (2017).
[Crossref] [PubMed]

G. Y. Chen, D. G. Lancaster, and T. M. Monro, “Optical microfiber technology for current, temperature, acceleration, acoustic, humidity and ultraviolet light sensing,” Sensors (Basel) 18(2), 72–96 (2017).
[Crossref] [PubMed]

Chen, H.

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

Chen, M. Q.

Y. Peng, Y. Zhao, M. Q. Chen, and F. Xia, “Research advances in microfiber humidity sensors,” Small 14(29), e1800524 (2018).
[Crossref] [PubMed]

Chen, Y. H.

J. Qin, Y. H. Chen, B. Y. Ding, R. J. Blaikie, and M. Qiu, “Efficient plasmonic gas sensing based on cavity-coupled metallic nanoparticles,” J. Phys. Chem. C 121(44), 24740–24744 (2017).
[Crossref]

Chen, Z.

Y. Luo, C. Chen, K. Xia, S. Peng, H. Guan, J. Tang, H. Lu, J. Yu, J. Zhang, Y. Xiao, and Z. Chen, “Tungsten disulfide (WS2) based all-fiber-optic humidity sensor,” Opt. Express 24(8), 8956–8966 (2016).
[Crossref] [PubMed]

Coles, D. M.

A. W. Powell, D. M. Coles, R. A. Taylor, A. A. R. Watt, H. E. Assender, and J. M. Smith, “Plasmonic gas sensing using nanocube patch antennas,” Adv. Opt. Mater. 4(4), 634–642 (2016).
[Crossref]

Cordeiro, C. M. B.

M. A. Gouveia, P. E. S. Pellegrini, J. S. Dos Santos, I. M. Raimundo, and C. M. B. Cordeiro, “Analysis of immersed silica optical microfiber knot resonator and its application as a moisture sensor,” Appl. Opt. 53(31), 7454–7461 (2014).
[Crossref] [PubMed]

De Angelis, F.

A. Bozzola, S. Perotto, and F. De Angelis, “Hybrid plasmonic-photonic whispering gallery mode resonators for sensing: a critical review,” Analyst (Lond.) 142(6), 883–898 (2017).
[Crossref] [PubMed]

De La Rue, R.

M. J. Faruki, M. Z. Ab Razak, S. R. Azzuhri, M. T. Rahman, M. R. K. Soltanian, G. Brambilla, B. M. Rahman, K. T. Grattan, R. De La Rue, and H. Ahmad, “Effect of titanium dioxide (TiO2) nanoparticle coating on the detection performance of microfiber knot resonator sensors for relative humidity measurement,” Mater. Express 6(6), 501–508 (2016).
[Crossref]

DiGiovanni, D. J.

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, “The microfiber loop resonator: theory, experiment, and application,” J. Lightwave Technol. 24(1), 242–250 (2006).
[Crossref]

Ding, B. Y.

J. Qin, Y. H. Chen, B. Y. Ding, R. J. Blaikie, and M. Qiu, “Efficient plasmonic gas sensing based on cavity-coupled metallic nanoparticles,” J. Phys. Chem. C 121(44), 24740–24744 (2017).
[Crossref]

Ding, X. Z.

Q. Tian, H. Z. Yang, Q. Z. Rong, Z. Y. Feng, R. H. Wang, M. K. A. B. Zaini, K. S. Lim, H. Ahmad, P. Zhang, X. Z. Ding, K. Lu, and Y. D. He, “Highly sensitive micro-hygrometer based on microfiber knot resonator,” Opt. Commun. 431, 88–92 (2019).
[Crossref]

Ding, Z.

Z. Ding, C. Wang, K. Liu, J. Jiang, D. Yang, G. Pan, Z. Pu, and T. Liu, “Distributed optical fiber sensors based on optical frequency domain reflectometry: a review,” Sensors (Basel) 18(4), 1072–1102 (2018).
[Crossref] [PubMed]

Dos Santos, J. S.

M. A. Gouveia, P. E. S. Pellegrini, J. S. Dos Santos, I. M. Raimundo, and C. M. B. Cordeiro, “Analysis of immersed silica optical microfiber knot resonator and its application as a moisture sensor,” Appl. Opt. 53(31), 7454–7461 (2014).
[Crossref] [PubMed]

Dulashko, Y.

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, “The microfiber loop resonator: theory, experiment, and application,” J. Lightwave Technol. 24(1), 242–250 (2006).
[Crossref]

Fang, W.

P. Wang, Y. Wang, Z. Yang, X. Guo, X. Lin, X. C. Yu, Y. F. Xiao, W. Fang, L. Zhang, G. Lu, Q. Gong, and L. Tong, “Single-band 2-nm-line-width plasmon resonance in a strongly coupled Au nanorod,” Nano Lett. 15(11), 7581–7586 (2015).
[Crossref] [PubMed]

Farrell, G.

Y. Yin, J. B. Yu, Y. X. Jiang, S. Li, J. Ren, G. Farrell, E. Lewis, and P. F. Wang, “Investigation of temperature dependence of microfiber coil resonators,” J. Lightwave Technol. 36(20), 4887–4893 (2018).
[Crossref]

L. Bo, P. F. Wang, Y. Semenova, and G. Farrell, “Optical microfiber coupler based humidity sensor with a polyethylene oxide coating,” Microw. Opt. Technol. Lett. 57(2), 457–460 (2015).
[Crossref]

Faruki, M. J.

M. J. Faruki, M. Z. Ab Razak, S. R. Azzuhri, M. T. Rahman, M. R. K. Soltanian, G. Brambilla, B. M. Rahman, K. T. Grattan, R. De La Rue, and H. Ahmad, “Effect of titanium dioxide (TiO2) nanoparticle coating on the detection performance of microfiber knot resonator sensors for relative humidity measurement,” Mater. Express 6(6), 501–508 (2016).
[Crossref]

Feng, Z. Y.

Q. Tian, H. Z. Yang, Q. Z. Rong, Z. Y. Feng, R. H. Wang, M. K. A. B. Zaini, K. S. Lim, H. Ahmad, P. Zhang, X. Z. Ding, K. Lu, and Y. D. He, “Highly sensitive micro-hygrometer based on microfiber knot resonator,” Opt. Commun. 431, 88–92 (2019).
[Crossref]

Fery, A.

Q. Ai, L. Gui, D. Paone, B. Metzger, M. Mayer, K. Weber, A. Fery, and H. Giessen, “Ultranarrow second-harmonic resonances in hybrid plasmon-fiber cavities,” Nano Lett. 18(9), 5576–5582 (2018).
[Crossref] [PubMed]

Fini, J. M.

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, “The microfiber loop resonator: theory, experiment, and application,” J. Lightwave Technol. 24(1), 242–250 (2006).
[Crossref]

Gai, L. T.

L. T. Gai, J. Li, and Y. Zhao, “Preparation and application of microfiber resonant ring sensors: a review,” Opt. Laser Technol. 89, 126–136 (2017).
[Crossref]

Giessen, H.

Q. Ai, L. Gui, D. Paone, B. Metzger, M. Mayer, K. Weber, A. Fery, and H. Giessen, “Ultranarrow second-harmonic resonances in hybrid plasmon-fiber cavities,” Nano Lett. 18(9), 5576–5582 (2018).
[Crossref] [PubMed]

Gong, Q.

P. Wang, Y. Wang, Z. Yang, X. Guo, X. Lin, X. C. Yu, Y. F. Xiao, W. Fang, L. Zhang, G. Lu, Q. Gong, and L. Tong, “Single-band 2-nm-line-width plasmon resonance in a strongly coupled Au nanorod,” Nano Lett. 15(11), 7581–7586 (2015).
[Crossref] [PubMed]

Gong, Y.

Y. Wu, T. H. Zhang, Y. J. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sens. Actuator B Chem. 155(1), 258–263 (2011).
[Crossref]

Gouveia, M. A.

M. A. Gouveia, P. E. S. Pellegrini, J. S. Dos Santos, I. M. Raimundo, and C. M. B. Cordeiro, “Analysis of immersed silica optical microfiber knot resonator and its application as a moisture sensor,” Appl. Opt. 53(31), 7454–7461 (2014).
[Crossref] [PubMed]

Grattan, K. T.

M. J. Faruki, M. Z. Ab Razak, S. R. Azzuhri, M. T. Rahman, M. R. K. Soltanian, G. Brambilla, B. M. Rahman, K. T. Grattan, R. De La Rue, and H. Ahmad, “Effect of titanium dioxide (TiO2) nanoparticle coating on the detection performance of microfiber knot resonator sensors for relative humidity measurement,” Mater. Express 6(6), 501–508 (2016).
[Crossref]

Gu, B.

B. Gu, M. Yin, A. P. Zhang, J. Qian, and S. He, “Optical fiber relative humidity sensor based on FBG incorporated thin-core fiber modal interferometer,” Opt. Express 19(5), 4140–4146 (2011).
[Crossref] [PubMed]

Gu, F.

F. Gu, H. Zeng, L. Tong, and S. Zhuang, “Metal single-nanowire plasmonic sensors,” Opt. Lett. 38(11), 1826–1828 (2013).
[Crossref] [PubMed]

P. Wang, F. Gu, L. Zhang, and L. Tong, “Polymer microfiber rings for high-sensitivity optical humidity sensing,” Appl. Opt. 50(31), G7–G10 (2011).
[Crossref] [PubMed]

F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[Crossref] [PubMed]

Gu, F. X.

F. X. Gu, L. Zhang, Y. B. Zhu, and H. P. Zeng, “Free‐space coupling of nanoantennas and whispering‐gallery microcavities with narrowed linewidth and enhanced sensitivity,” Laser Photonics Rev. 9(6), 682–688 (2015).
[Crossref]

Guan, B. O.

L. P. Sun, J. Li, L. Jin, Y. Ran, and B. O. Guan, “High-birefringence microfiber sagnac interferometer based humidity sensor,” Sens. Actuator B Chem. 231, 696–700 (2016).
[Crossref]

Guan, H.

Y. Luo, C. Chen, K. Xia, S. Peng, H. Guan, J. Tang, H. Lu, J. Yu, J. Zhang, Y. Xiao, and Z. Chen, “Tungsten disulfide (WS2) based all-fiber-optic humidity sensor,” Opt. Express 24(8), 8956–8966 (2016).
[Crossref] [PubMed]

Gui, L.

Q. Ai, L. Gui, D. Paone, B. Metzger, M. Mayer, K. Weber, A. Fery, and H. Giessen, “Ultranarrow second-harmonic resonances in hybrid plasmon-fiber cavities,” Nano Lett. 18(9), 5576–5582 (2018).
[Crossref] [PubMed]

Guo, X.

P. Wang, Y. Wang, Z. Yang, X. Guo, X. Lin, X. C. Yu, Y. F. Xiao, W. Fang, L. Zhang, G. Lu, Q. Gong, and L. Tong, “Single-band 2-nm-line-width plasmon resonance in a strongly coupled Au nanorod,” Nano Lett. 15(11), 7581–7586 (2015).
[Crossref] [PubMed]

Hale, A.

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, “The microfiber loop resonator: theory, experiment, and application,” J. Lightwave Technol. 24(1), 242–250 (2006).
[Crossref]

Hamida, B. A.

N. Irawati, H. A. Rahman, M. Yasin, S. Al-Askari, B. A. Hamida, H. Ahmad, and S. W. Harun, “Relative humidity sensing using a PMMA doped agarose gel microfiber,” J. Lightwave Technol. 35(18), 3940–3944 (2017).
[Crossref]

Han, Y. G.

A. D. D. Le and Y. G. Han, “Relative humidity sensor based on a few-mode microfiber knot resonator by mitigating the group index difference of a few-mode microfiber,” J. Lightwave Technol. 36(4), 904–909 (2018).
[Crossref]

J. C. Shin, M. S. Yoon, and Y. G. Han, “Relative humidity sensor based on an optical microfiber knot resonator with a polyvinyl alcohol overlay,” J. Lightwave Technol. 34(19), 4511–4515 (2016).
[Crossref]

Harun, S. W.

N. Irawati, T. N. R. Abdullah, H. A. Rahman, H. Ahmad, and S. W. Harun, “PMMA microfiber loop resonator for humidity sensor,” Sens. Actuators A Phys. 260, 112–116 (2017).
[Crossref]

N. Irawati, H. A. Rahman, H. Ahmad, and S. W. Harun, “A PMMA microfiber loop resonator based humidity sensor with ZnO nanorods coating,” Measurement 99, 128–133 (2017).
[Crossref]

N. Irawati, H. A. Rahman, M. Yasin, S. Al-Askari, B. A. Hamida, H. Ahmad, and S. W. Harun, “Relative humidity sensing using a PMMA doped agarose gel microfiber,” J. Lightwave Technol. 35(18), 3940–3944 (2017).
[Crossref]

M. Batumalay, S. W. Harun, N. Irawati, H. Ahmad, and H. Arof, “A study of relative humidity fiber-optic sensors,” IEEE Sens. J. 15(3), 1945–1950 (2015).
[Crossref]

He, S.

B. Gu, M. Yin, A. P. Zhang, J. Qian, and S. He, “Optical fiber relative humidity sensor based on FBG incorporated thin-core fiber modal interferometer,” Opt. Express 19(5), 4140–4146 (2011).
[Crossref] [PubMed]

He, Y.

J. Shi, W. Xu, D. Xu, Y. Wang, C. Zhang, C. Yan, D. Yan, Y. He, L. Tang, W. Zhang, and J. Yao, “Humidity sensor based on intracavity sensing of fiber ring laser,” J. Phys. D Appl. Phys. 50(42), 425105 (2017).
[Crossref]

He, Y. D.

Q. Tian, H. Z. Yang, Q. Z. Rong, Z. Y. Feng, R. H. Wang, M. K. A. B. Zaini, K. S. Lim, H. Ahmad, P. Zhang, X. Z. Ding, K. Lu, and Y. D. He, “Highly sensitive micro-hygrometer based on microfiber knot resonator,” Opt. Commun. 431, 88–92 (2019).
[Crossref]

Hernández-Rodríguez, M.

L. Labrador-Páez, K. Soler-Carracedo, M. Hernández-Rodríguez, I. R. Martín, T. Carmon, and L. L. Martin, “Liquid whispering-gallery-mode resonator as a humidity sensor,” Opt. Express 25(2), 1165–1172 (2017).
[Crossref] [PubMed]

Huang, Y.

Y. Shao, Y. Wang, S. Cao, Y. Huang, L. Zhang, F. Zhang, C. Liao, and Y. Wang, “Mechanism and characteristics of humidity sensing with polyvinyl alcohol-coated fiber surface plasmon resonance sensor,” Sensors (Basel) 18(7), 2029–2037 (2018).
[Crossref] [PubMed]

Irawati, N.

N. Irawati, H. A. Rahman, H. Ahmad, and S. W. Harun, “A PMMA microfiber loop resonator based humidity sensor with ZnO nanorods coating,” Measurement 99, 128–133 (2017).
[Crossref]

N. Irawati, T. N. R. Abdullah, H. A. Rahman, H. Ahmad, and S. W. Harun, “PMMA microfiber loop resonator for humidity sensor,” Sens. Actuators A Phys. 260, 112–116 (2017).
[Crossref]

N. Irawati, H. A. Rahman, M. Yasin, S. Al-Askari, B. A. Hamida, H. Ahmad, and S. W. Harun, “Relative humidity sensing using a PMMA doped agarose gel microfiber,” J. Lightwave Technol. 35(18), 3940–3944 (2017).
[Crossref]

M. Batumalay, S. W. Harun, N. Irawati, H. Ahmad, and H. Arof, “A study of relative humidity fiber-optic sensors,” IEEE Sens. J. 15(3), 1945–1950 (2015).
[Crossref]

Jiang, J.

Z. Ding, C. Wang, K. Liu, J. Jiang, D. Yang, G. Pan, Z. Pu, and T. Liu, “Distributed optical fiber sensors based on optical frequency domain reflectometry: a review,” Sensors (Basel) 18(4), 1072–1102 (2018).
[Crossref] [PubMed]

Jiang, Y. X.

Y. Yin, J. B. Yu, Y. X. Jiang, S. Li, J. Ren, G. Farrell, E. Lewis, and P. F. Wang, “Investigation of temperature dependence of microfiber coil resonators,” J. Lightwave Technol. 36(20), 4887–4893 (2018).
[Crossref]

Jin, L.

L. P. Sun, J. Li, L. Jin, Y. Ran, and B. O. Guan, “High-birefringence microfiber sagnac interferometer based humidity sensor,” Sens. Actuator B Chem. 231, 696–700 (2016).
[Crossref]

Kang, Y. Q.

G. Y. Chen, X. Wu, Y. Q. Kang, L. Yu, T. M. Monro, D. G. Lancaster, X. Liu, and H. Xu, “Ultra-fast hygrometer based on U-shaped optical microfiber with nanoporous polyelectrolyte coating,” Sci. Rep. 7(1), 7943–7949 (2017).
[Crossref] [PubMed]

Labrador-Páez, L.

L. Labrador-Páez, K. Soler-Carracedo, M. Hernández-Rodríguez, I. R. Martín, T. Carmon, and L. L. Martin, “Liquid whispering-gallery-mode resonator as a humidity sensor,” Opt. Express 25(2), 1165–1172 (2017).
[Crossref] [PubMed]

Lancaster, D. G.

G. Y. Chen, X. Wu, Y. Q. Kang, L. Yu, T. M. Monro, D. G. Lancaster, X. Liu, and H. Xu, “Ultra-fast hygrometer based on U-shaped optical microfiber with nanoporous polyelectrolyte coating,” Sci. Rep. 7(1), 7943–7949 (2017).
[Crossref] [PubMed]

G. Y. Chen, D. G. Lancaster, and T. M. Monro, “Optical microfiber technology for current, temperature, acceleration, acoustic, humidity and ultraviolet light sensing,” Sensors (Basel) 18(2), 72–96 (2017).
[Crossref] [PubMed]

Le, A. D. D.

A. D. D. Le and Y. G. Han, “Relative humidity sensor based on a few-mode microfiber knot resonator by mitigating the group index difference of a few-mode microfiber,” J. Lightwave Technol. 36(4), 904–909 (2018).
[Crossref]

Lewis, E.

Y. Yin, J. B. Yu, Y. X. Jiang, S. Li, J. Ren, G. Farrell, E. Lewis, and P. F. Wang, “Investigation of temperature dependence of microfiber coil resonators,” J. Lightwave Technol. 36(20), 4887–4893 (2018).
[Crossref]

Li, J.

L. T. Gai, J. Li, and Y. Zhao, “Preparation and application of microfiber resonant ring sensors: a review,” Opt. Laser Technol. 89, 126–136 (2017).
[Crossref]

L. P. Sun, J. Li, L. Jin, Y. Ran, and B. O. Guan, “High-birefringence microfiber sagnac interferometer based humidity sensor,” Sens. Actuator B Chem. 231, 696–700 (2016).
[Crossref]

Li, Q.

H. Wei, D. Pan, S. Zhang, Z. Li, Q. Li, N. Liu, W. Wang, and H. Xu, “Plasmon waveguiding in nanowires,” Chem. Rev. 118(6), 2882–2926 (2018).
[Crossref] [PubMed]

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

Li, S.

Y. Yin, J. B. Yu, Y. X. Jiang, S. Li, J. Ren, G. Farrell, E. Lewis, and P. F. Wang, “Investigation of temperature dependence of microfiber coil resonators,” J. Lightwave Technol. 36(20), 4887–4893 (2018).
[Crossref]

Li, Z.

H. Wei, D. Pan, S. Zhang, Z. Li, Q. Li, N. Liu, W. Wang, and H. Xu, “Plasmon waveguiding in nanowires,” Chem. Rev. 118(6), 2882–2926 (2018).
[Crossref] [PubMed]

Liao, C.

Y. Shao, Y. Wang, S. Cao, Y. Huang, L. Zhang, F. Zhang, C. Liao, and Y. Wang, “Mechanism and characteristics of humidity sensing with polyvinyl alcohol-coated fiber surface plasmon resonance sensor,” Sensors (Basel) 18(7), 2029–2037 (2018).
[Crossref] [PubMed]

Lim, K. S.

Q. Tian, H. Z. Yang, Q. Z. Rong, Z. Y. Feng, R. H. Wang, M. K. A. B. Zaini, K. S. Lim, H. Ahmad, P. Zhang, X. Z. Ding, K. Lu, and Y. D. He, “Highly sensitive micro-hygrometer based on microfiber knot resonator,” Opt. Commun. 431, 88–92 (2019).
[Crossref]

Lin, X.

P. Wang, Y. Wang, Z. Yang, X. Guo, X. Lin, X. C. Yu, Y. F. Xiao, W. Fang, L. Zhang, G. Lu, Q. Gong, and L. Tong, “Single-band 2-nm-line-width plasmon resonance in a strongly coupled Au nanorod,” Nano Lett. 15(11), 7581–7586 (2015).
[Crossref] [PubMed]

Liu, K.

Z. Ding, C. Wang, K. Liu, J. Jiang, D. Yang, G. Pan, Z. Pu, and T. Liu, “Distributed optical fiber sensors based on optical frequency domain reflectometry: a review,” Sensors (Basel) 18(4), 1072–1102 (2018).
[Crossref] [PubMed]

Liu, N.

H. Wei, D. Pan, S. Zhang, Z. Li, Q. Li, N. Liu, W. Wang, and H. Xu, “Plasmon waveguiding in nanowires,” Chem. Rev. 118(6), 2882–2926 (2018).
[Crossref] [PubMed]

Liu, T.

Z. Ding, C. Wang, K. Liu, J. Jiang, D. Yang, G. Pan, Z. Pu, and T. Liu, “Distributed optical fiber sensors based on optical frequency domain reflectometry: a review,” Sensors (Basel) 18(4), 1072–1102 (2018).
[Crossref] [PubMed]

Liu, X.

G. Y. Chen, X. Wu, Y. Q. Kang, L. Yu, T. M. Monro, D. G. Lancaster, X. Liu, and H. Xu, “Ultra-fast hygrometer based on U-shaped optical microfiber with nanoporous polyelectrolyte coating,” Sci. Rep. 7(1), 7943–7949 (2017).
[Crossref] [PubMed]

Lou, J.

J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors (Basel) 14(4), 5823–5844 (2014).
[Crossref] [PubMed]

Lu, G.

P. Wang, Y. Wang, Z. Yang, X. Guo, X. Lin, X. C. Yu, Y. F. Xiao, W. Fang, L. Zhang, G. Lu, Q. Gong, and L. Tong, “Single-band 2-nm-line-width plasmon resonance in a strongly coupled Au nanorod,” Nano Lett. 15(11), 7581–7586 (2015).
[Crossref] [PubMed]

Lu, H.

Y. Luo, C. Chen, K. Xia, S. Peng, H. Guan, J. Tang, H. Lu, J. Yu, J. Zhang, Y. Xiao, and Z. Chen, “Tungsten disulfide (WS2) based all-fiber-optic humidity sensor,” Opt. Express 24(8), 8956–8966 (2016).
[Crossref] [PubMed]

Lu, K.

Q. Tian, H. Z. Yang, Q. Z. Rong, Z. Y. Feng, R. H. Wang, M. K. A. B. Zaini, K. S. Lim, H. Ahmad, P. Zhang, X. Z. Ding, K. Lu, and Y. D. He, “Highly sensitive micro-hygrometer based on microfiber knot resonator,” Opt. Commun. 431, 88–92 (2019).
[Crossref]

Luo, Y.

Y. Luo, C. Chen, K. Xia, S. Peng, H. Guan, J. Tang, H. Lu, J. Yu, J. Zhang, Y. Xiao, and Z. Chen, “Tungsten disulfide (WS2) based all-fiber-optic humidity sensor,” Opt. Express 24(8), 8956–8966 (2016).
[Crossref] [PubMed]

Martin, L. L.

L. Labrador-Páez, K. Soler-Carracedo, M. Hernández-Rodríguez, I. R. Martín, T. Carmon, and L. L. Martin, “Liquid whispering-gallery-mode resonator as a humidity sensor,” Opt. Express 25(2), 1165–1172 (2017).
[Crossref] [PubMed]

Martín, I. R.

L. Labrador-Páez, K. Soler-Carracedo, M. Hernández-Rodríguez, I. R. Martín, T. Carmon, and L. L. Martin, “Liquid whispering-gallery-mode resonator as a humidity sensor,” Opt. Express 25(2), 1165–1172 (2017).
[Crossref] [PubMed]

Mayer, M.

Q. Ai, L. Gui, D. Paone, B. Metzger, M. Mayer, K. Weber, A. Fery, and H. Giessen, “Ultranarrow second-harmonic resonances in hybrid plasmon-fiber cavities,” Nano Lett. 18(9), 5576–5582 (2018).
[Crossref] [PubMed]

Metzger, B.

Q. Ai, L. Gui, D. Paone, B. Metzger, M. Mayer, K. Weber, A. Fery, and H. Giessen, “Ultranarrow second-harmonic resonances in hybrid plasmon-fiber cavities,” Nano Lett. 18(9), 5576–5582 (2018).
[Crossref] [PubMed]

Monro, T. M.

G. Y. Chen, D. G. Lancaster, and T. M. Monro, “Optical microfiber technology for current, temperature, acceleration, acoustic, humidity and ultraviolet light sensing,” Sensors (Basel) 18(2), 72–96 (2017).
[Crossref] [PubMed]

G. Y. Chen, X. Wu, Y. Q. Kang, L. Yu, T. M. Monro, D. G. Lancaster, X. Liu, and H. Xu, “Ultra-fast hygrometer based on U-shaped optical microfiber with nanoporous polyelectrolyte coating,” Sci. Rep. 7(1), 7943–7949 (2017).
[Crossref] [PubMed]

Pan, D.

H. Wei, D. Pan, S. Zhang, Z. Li, Q. Li, N. Liu, W. Wang, and H. Xu, “Plasmon waveguiding in nanowires,” Chem. Rev. 118(6), 2882–2926 (2018).
[Crossref] [PubMed]

Pan, G.

Z. Ding, C. Wang, K. Liu, J. Jiang, D. Yang, G. Pan, Z. Pu, and T. Liu, “Distributed optical fiber sensors based on optical frequency domain reflectometry: a review,” Sensors (Basel) 18(4), 1072–1102 (2018).
[Crossref] [PubMed]

Paone, D.

Q. Ai, L. Gui, D. Paone, B. Metzger, M. Mayer, K. Weber, A. Fery, and H. Giessen, “Ultranarrow second-harmonic resonances in hybrid plasmon-fiber cavities,” Nano Lett. 18(9), 5576–5582 (2018).
[Crossref] [PubMed]

Pellegrini, P. E. S.

M. A. Gouveia, P. E. S. Pellegrini, J. S. Dos Santos, I. M. Raimundo, and C. M. B. Cordeiro, “Analysis of immersed silica optical microfiber knot resonator and its application as a moisture sensor,” Appl. Opt. 53(31), 7454–7461 (2014).
[Crossref] [PubMed]

Peng, S.

Y. Luo, C. Chen, K. Xia, S. Peng, H. Guan, J. Tang, H. Lu, J. Yu, J. Zhang, Y. Xiao, and Z. Chen, “Tungsten disulfide (WS2) based all-fiber-optic humidity sensor,” Opt. Express 24(8), 8956–8966 (2016).
[Crossref] [PubMed]

Peng, Y.

Y. Peng, Y. Zhao, M. Q. Chen, and F. Xia, “Research advances in microfiber humidity sensors,” Small 14(29), e1800524 (2018).
[Crossref] [PubMed]

Perotto, S.

A. Bozzola, S. Perotto, and F. De Angelis, “Hybrid plasmonic-photonic whispering gallery mode resonators for sensing: a critical review,” Analyst (Lond.) 142(6), 883–898 (2017).
[Crossref] [PubMed]

Powell, A. W.

A. W. Powell, D. M. Coles, R. A. Taylor, A. A. R. Watt, H. E. Assender, and J. M. Smith, “Plasmonic gas sensing using nanocube patch antennas,” Adv. Opt. Mater. 4(4), 634–642 (2016).
[Crossref]

Pu, Z.

Z. Ding, C. Wang, K. Liu, J. Jiang, D. Yang, G. Pan, Z. Pu, and T. Liu, “Distributed optical fiber sensors based on optical frequency domain reflectometry: a review,” Sensors (Basel) 18(4), 1072–1102 (2018).
[Crossref] [PubMed]

Qian, J.

B. Gu, M. Yin, A. P. Zhang, J. Qian, and S. He, “Optical fiber relative humidity sensor based on FBG incorporated thin-core fiber modal interferometer,” Opt. Express 19(5), 4140–4146 (2011).
[Crossref] [PubMed]

Qin, J.

J. Qin, Y. H. Chen, B. Y. Ding, R. J. Blaikie, and M. Qiu, “Efficient plasmonic gas sensing based on cavity-coupled metallic nanoparticles,” J. Phys. Chem. C 121(44), 24740–24744 (2017).
[Crossref]

Qiu, M.

J. Qin, Y. H. Chen, B. Y. Ding, R. J. Blaikie, and M. Qiu, “Efficient plasmonic gas sensing based on cavity-coupled metallic nanoparticles,” J. Phys. Chem. C 121(44), 24740–24744 (2017).
[Crossref]

Rahman, B. M.

M. J. Faruki, M. Z. Ab Razak, S. R. Azzuhri, M. T. Rahman, M. R. K. Soltanian, G. Brambilla, B. M. Rahman, K. T. Grattan, R. De La Rue, and H. Ahmad, “Effect of titanium dioxide (TiO2) nanoparticle coating on the detection performance of microfiber knot resonator sensors for relative humidity measurement,” Mater. Express 6(6), 501–508 (2016).
[Crossref]

Rahman, H. A.

N. Irawati, T. N. R. Abdullah, H. A. Rahman, H. Ahmad, and S. W. Harun, “PMMA microfiber loop resonator for humidity sensor,” Sens. Actuators A Phys. 260, 112–116 (2017).
[Crossref]

N. Irawati, H. A. Rahman, H. Ahmad, and S. W. Harun, “A PMMA microfiber loop resonator based humidity sensor with ZnO nanorods coating,” Measurement 99, 128–133 (2017).
[Crossref]

N. Irawati, H. A. Rahman, M. Yasin, S. Al-Askari, B. A. Hamida, H. Ahmad, and S. W. Harun, “Relative humidity sensing using a PMMA doped agarose gel microfiber,” J. Lightwave Technol. 35(18), 3940–3944 (2017).
[Crossref]

Rahman, M. T.

H. Ahmad, M. T. Rahman, S. N. A. Sakeh, M. Z. A. Razak, and M. Z. Zulkifli, “Humidity sensor based on microfiber resonator with reduced graphene oxide,” Optik (Stuttg.) 127(5), 3158–3161 (2016).
[Crossref]

M. J. Faruki, M. Z. Ab Razak, S. R. Azzuhri, M. T. Rahman, M. R. K. Soltanian, G. Brambilla, B. M. Rahman, K. T. Grattan, R. De La Rue, and H. Ahmad, “Effect of titanium dioxide (TiO2) nanoparticle coating on the detection performance of microfiber knot resonator sensors for relative humidity measurement,” Mater. Express 6(6), 501–508 (2016).
[Crossref]

Raimundo, I. M.

M. A. Gouveia, P. E. S. Pellegrini, J. S. Dos Santos, I. M. Raimundo, and C. M. B. Cordeiro, “Analysis of immersed silica optical microfiber knot resonator and its application as a moisture sensor,” Appl. Opt. 53(31), 7454–7461 (2014).
[Crossref] [PubMed]

Ran, Y.

L. P. Sun, J. Li, L. Jin, Y. Ran, and B. O. Guan, “High-birefringence microfiber sagnac interferometer based humidity sensor,” Sens. Actuator B Chem. 231, 696–700 (2016).
[Crossref]

Rao, Y. J.

Y. Wu, T. H. Zhang, Y. J. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sens. Actuator B Chem. 155(1), 258–263 (2011).
[Crossref]

Razak, M. Z. A.

H. Ahmad, M. T. Rahman, S. N. A. Sakeh, M. Z. A. Razak, and M. Z. Zulkifli, “Humidity sensor based on microfiber resonator with reduced graphene oxide,” Optik (Stuttg.) 127(5), 3158–3161 (2016).
[Crossref]

Ren, J.

Y. Yin, J. B. Yu, Y. X. Jiang, S. Li, J. Ren, G. Farrell, E. Lewis, and P. F. Wang, “Investigation of temperature dependence of microfiber coil resonators,” J. Lightwave Technol. 36(20), 4887–4893 (2018).
[Crossref]

Rong, Q. Z.

Q. Tian, H. Z. Yang, Q. Z. Rong, Z. Y. Feng, R. H. Wang, M. K. A. B. Zaini, K. S. Lim, H. Ahmad, P. Zhang, X. Z. Ding, K. Lu, and Y. D. He, “Highly sensitive micro-hygrometer based on microfiber knot resonator,” Opt. Commun. 431, 88–92 (2019).
[Crossref]

Sakeh, S. N. A.

H. Ahmad, M. T. Rahman, S. N. A. Sakeh, M. Z. A. Razak, and M. Z. Zulkifli, “Humidity sensor based on microfiber resonator with reduced graphene oxide,” Optik (Stuttg.) 127(5), 3158–3161 (2016).
[Crossref]

Semenova, Y.

L. Bo, P. F. Wang, Y. Semenova, and G. Farrell, “Optical microfiber coupler based humidity sensor with a polyethylene oxide coating,” Microw. Opt. Technol. Lett. 57(2), 457–460 (2015).
[Crossref]

Shao, L.

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

Shao, Y.

Y. Shao, Y. Wang, S. Cao, Y. Huang, L. Zhang, F. Zhang, C. Liao, and Y. Wang, “Mechanism and characteristics of humidity sensing with polyvinyl alcohol-coated fiber surface plasmon resonance sensor,” Sensors (Basel) 18(7), 2029–2037 (2018).
[Crossref] [PubMed]

Shi, J.

J. Shi, W. Xu, D. Xu, Y. Wang, C. Zhang, C. Yan, D. Yan, Y. He, L. Tang, W. Zhang, and J. Yao, “Humidity sensor based on intracavity sensing of fiber ring laser,” J. Phys. D Appl. Phys. 50(42), 425105 (2017).
[Crossref]

Shin, J. C.

J. C. Shin, M. S. Yoon, and Y. G. Han, “Relative humidity sensor based on an optical microfiber knot resonator with a polyvinyl alcohol overlay,” J. Lightwave Technol. 34(19), 4511–4515 (2016).
[Crossref]

Sikarwar, S.

S. Sikarwar and B. C. Yadav, “Opto-electronic humidity sensor: a review,” Sens. Actuators A Phys. 233, 54–70 (2015).
[Crossref]

Smith, J. M.

A. W. Powell, D. M. Coles, R. A. Taylor, A. A. R. Watt, H. E. Assender, and J. M. Smith, “Plasmonic gas sensing using nanocube patch antennas,” Adv. Opt. Mater. 4(4), 634–642 (2016).
[Crossref]

Soler-Carracedo, K.

L. Labrador-Páez, K. Soler-Carracedo, M. Hernández-Rodríguez, I. R. Martín, T. Carmon, and L. L. Martin, “Liquid whispering-gallery-mode resonator as a humidity sensor,” Opt. Express 25(2), 1165–1172 (2017).
[Crossref] [PubMed]

Soltanian, M. R. K.

M. J. Faruki, M. Z. Ab Razak, S. R. Azzuhri, M. T. Rahman, M. R. K. Soltanian, G. Brambilla, B. M. Rahman, K. T. Grattan, R. De La Rue, and H. Ahmad, “Effect of titanium dioxide (TiO2) nanoparticle coating on the detection performance of microfiber knot resonator sensors for relative humidity measurement,” Mater. Express 6(6), 501–508 (2016).
[Crossref]

Sumetsky, M.

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, “The microfiber loop resonator: theory, experiment, and application,” J. Lightwave Technol. 24(1), 242–250 (2006).
[Crossref]

Sun, L. P.

L. P. Sun, J. Li, L. Jin, Y. Ran, and B. O. Guan, “High-birefringence microfiber sagnac interferometer based humidity sensor,” Sens. Actuator B Chem. 231, 696–700 (2016).
[Crossref]

Tang, J.

Y. Luo, C. Chen, K. Xia, S. Peng, H. Guan, J. Tang, H. Lu, J. Yu, J. Zhang, Y. Xiao, and Z. Chen, “Tungsten disulfide (WS2) based all-fiber-optic humidity sensor,” Opt. Express 24(8), 8956–8966 (2016).
[Crossref] [PubMed]

Tang, L.

J. Shi, W. Xu, D. Xu, Y. Wang, C. Zhang, C. Yan, D. Yan, Y. He, L. Tang, W. Zhang, and J. Yao, “Humidity sensor based on intracavity sensing of fiber ring laser,” J. Phys. D Appl. Phys. 50(42), 425105 (2017).
[Crossref]

Taylor, R. A.

A. W. Powell, D. M. Coles, R. A. Taylor, A. A. R. Watt, H. E. Assender, and J. M. Smith, “Plasmonic gas sensing using nanocube patch antennas,” Adv. Opt. Mater. 4(4), 634–642 (2016).
[Crossref]

Tian, Q.

Q. Tian, H. Z. Yang, Q. Z. Rong, Z. Y. Feng, R. H. Wang, M. K. A. B. Zaini, K. S. Lim, H. Ahmad, P. Zhang, X. Z. Ding, K. Lu, and Y. D. He, “Highly sensitive micro-hygrometer based on microfiber knot resonator,” Opt. Commun. 431, 88–92 (2019).
[Crossref]

Tong, L.

L. Tong, “Micro/nanofibre optical sensors: challenges and prospects,” Sensors (Basel) 18(3), 903–929 (2018).
[Crossref] [PubMed]

P. Wang, Y. Wang, Z. Yang, X. Guo, X. Lin, X. C. Yu, Y. F. Xiao, W. Fang, L. Zhang, G. Lu, Q. Gong, and L. Tong, “Single-band 2-nm-line-width plasmon resonance in a strongly coupled Au nanorod,” Nano Lett. 15(11), 7581–7586 (2015).
[Crossref] [PubMed]

J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors (Basel) 14(4), 5823–5844 (2014).
[Crossref] [PubMed]

F. Gu, H. Zeng, L. Tong, and S. Zhuang, “Metal single-nanowire plasmonic sensors,” Opt. Lett. 38(11), 1826–1828 (2013).
[Crossref] [PubMed]

P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, and Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett. 12(6), 3145–3150 (2012).
[Crossref] [PubMed]

P. Wang, F. Gu, L. Zhang, and L. Tong, “Polymer microfiber rings for high-sensitivity optical humidity sensing,” Appl. Opt. 50(31), G7–G10 (2011).
[Crossref] [PubMed]

F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[Crossref] [PubMed]

Vollmer, F.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Wang, C.

Z. Ding, C. Wang, K. Liu, J. Jiang, D. Yang, G. Pan, Z. Pu, and T. Liu, “Distributed optical fiber sensors based on optical frequency domain reflectometry: a review,” Sensors (Basel) 18(4), 1072–1102 (2018).
[Crossref] [PubMed]

Wang, J.

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

Wang, P.

P. Wang, Y. Wang, Z. Yang, X. Guo, X. Lin, X. C. Yu, Y. F. Xiao, W. Fang, L. Zhang, G. Lu, Q. Gong, and L. Tong, “Single-band 2-nm-line-width plasmon resonance in a strongly coupled Au nanorod,” Nano Lett. 15(11), 7581–7586 (2015).
[Crossref] [PubMed]

P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, and Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett. 12(6), 3145–3150 (2012).
[Crossref] [PubMed]

P. Wang, F. Gu, L. Zhang, and L. Tong, “Polymer microfiber rings for high-sensitivity optical humidity sensing,” Appl. Opt. 50(31), G7–G10 (2011).
[Crossref] [PubMed]

Wang, P. F.

Y. Yin, J. B. Yu, Y. X. Jiang, S. Li, J. Ren, G. Farrell, E. Lewis, and P. F. Wang, “Investigation of temperature dependence of microfiber coil resonators,” J. Lightwave Technol. 36(20), 4887–4893 (2018).
[Crossref]

L. Bo, P. F. Wang, Y. Semenova, and G. Farrell, “Optical microfiber coupler based humidity sensor with a polyethylene oxide coating,” Microw. Opt. Technol. Lett. 57(2), 457–460 (2015).
[Crossref]

Wang, R. H.

Q. Tian, H. Z. Yang, Q. Z. Rong, Z. Y. Feng, R. H. Wang, M. K. A. B. Zaini, K. S. Lim, H. Ahmad, P. Zhang, X. Z. Ding, K. Lu, and Y. D. He, “Highly sensitive micro-hygrometer based on microfiber knot resonator,” Opt. Commun. 431, 88–92 (2019).
[Crossref]

Wang, W.

H. Wei, D. Pan, S. Zhang, Z. Li, Q. Li, N. Liu, W. Wang, and H. Xu, “Plasmon waveguiding in nanowires,” Chem. Rev. 118(6), 2882–2926 (2018).
[Crossref] [PubMed]

Wang, Y.

Y. Shao, Y. Wang, S. Cao, Y. Huang, L. Zhang, F. Zhang, C. Liao, and Y. Wang, “Mechanism and characteristics of humidity sensing with polyvinyl alcohol-coated fiber surface plasmon resonance sensor,” Sensors (Basel) 18(7), 2029–2037 (2018).
[Crossref] [PubMed]

Y. Shao, Y. Wang, S. Cao, Y. Huang, L. Zhang, F. Zhang, C. Liao, and Y. Wang, “Mechanism and characteristics of humidity sensing with polyvinyl alcohol-coated fiber surface plasmon resonance sensor,” Sensors (Basel) 18(7), 2029–2037 (2018).
[Crossref] [PubMed]

J. Shi, W. Xu, D. Xu, Y. Wang, C. Zhang, C. Yan, D. Yan, Y. He, L. Tang, W. Zhang, and J. Yao, “Humidity sensor based on intracavity sensing of fiber ring laser,” J. Phys. D Appl. Phys. 50(42), 425105 (2017).
[Crossref]

P. Wang, Y. Wang, Z. Yang, X. Guo, X. Lin, X. C. Yu, Y. F. Xiao, W. Fang, L. Zhang, G. Lu, Q. Gong, and L. Tong, “Single-band 2-nm-line-width plasmon resonance in a strongly coupled Au nanorod,” Nano Lett. 15(11), 7581–7586 (2015).
[Crossref] [PubMed]

J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors (Basel) 14(4), 5823–5844 (2014).
[Crossref] [PubMed]

Watt, A. A. R.

A. W. Powell, D. M. Coles, R. A. Taylor, A. A. R. Watt, H. E. Assender, and J. M. Smith, “Plasmonic gas sensing using nanocube patch antennas,” Adv. Opt. Mater. 4(4), 634–642 (2016).
[Crossref]

Weber, K.

Q. Ai, L. Gui, D. Paone, B. Metzger, M. Mayer, K. Weber, A. Fery, and H. Giessen, “Ultranarrow second-harmonic resonances in hybrid plasmon-fiber cavities,” Nano Lett. 18(9), 5576–5582 (2018).
[Crossref] [PubMed]

Wei, H.

H. Wei, D. Pan, S. Zhang, Z. Li, Q. Li, N. Liu, W. Wang, and H. Xu, “Plasmon waveguiding in nanowires,” Chem. Rev. 118(6), 2882–2926 (2018).
[Crossref] [PubMed]

Wiltzius, P.

R. A. Barry and P. Wiltzius, “Humidity-sensing inverse opal hydrogels,” Langmuir 22(3), 1369–1374 (2006).
[Crossref] [PubMed]

Wu, X.

G. Y. Chen, X. Wu, Y. Q. Kang, L. Yu, T. M. Monro, D. G. Lancaster, X. Liu, and H. Xu, “Ultra-fast hygrometer based on U-shaped optical microfiber with nanoporous polyelectrolyte coating,” Sci. Rep. 7(1), 7943–7949 (2017).
[Crossref] [PubMed]

Wu, Y.

Y. Wu, T. H. Zhang, Y. J. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sens. Actuator B Chem. 155(1), 258–263 (2011).
[Crossref]

Xia, F.

Y. Peng, Y. Zhao, M. Q. Chen, and F. Xia, “Research advances in microfiber humidity sensors,” Small 14(29), e1800524 (2018).
[Crossref] [PubMed]

Xia, K.

Y. Luo, C. Chen, K. Xia, S. Peng, H. Guan, J. Tang, H. Lu, J. Yu, J. Zhang, Y. Xiao, and Z. Chen, “Tungsten disulfide (WS2) based all-fiber-optic humidity sensor,” Opt. Express 24(8), 8956–8966 (2016).
[Crossref] [PubMed]

Xia, Y.

P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, and Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett. 12(6), 3145–3150 (2012).
[Crossref] [PubMed]

Xiao, Y.

Y. Luo, C. Chen, K. Xia, S. Peng, H. Guan, J. Tang, H. Lu, J. Yu, J. Zhang, Y. Xiao, and Z. Chen, “Tungsten disulfide (WS2) based all-fiber-optic humidity sensor,” Opt. Express 24(8), 8956–8966 (2016).
[Crossref] [PubMed]

Xiao, Y. F.

P. Wang, Y. Wang, Z. Yang, X. Guo, X. Lin, X. C. Yu, Y. F. Xiao, W. Fang, L. Zhang, G. Lu, Q. Gong, and L. Tong, “Single-band 2-nm-line-width plasmon resonance in a strongly coupled Au nanorod,” Nano Lett. 15(11), 7581–7586 (2015).
[Crossref] [PubMed]

Xu, D.

J. Shi, W. Xu, D. Xu, Y. Wang, C. Zhang, C. Yan, D. Yan, Y. He, L. Tang, W. Zhang, and J. Yao, “Humidity sensor based on intracavity sensing of fiber ring laser,” J. Phys. D Appl. Phys. 50(42), 425105 (2017).
[Crossref]

Xu, F.

F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92(10), 101126 (2008).
[Crossref]

Xu, H.

H. Wei, D. Pan, S. Zhang, Z. Li, Q. Li, N. Liu, W. Wang, and H. Xu, “Plasmon waveguiding in nanowires,” Chem. Rev. 118(6), 2882–2926 (2018).
[Crossref] [PubMed]

G. Y. Chen, X. Wu, Y. Q. Kang, L. Yu, T. M. Monro, D. G. Lancaster, X. Liu, and H. Xu, “Ultra-fast hygrometer based on U-shaped optical microfiber with nanoporous polyelectrolyte coating,” Sci. Rep. 7(1), 7943–7949 (2017).
[Crossref] [PubMed]

Xu, W.

J. Shi, W. Xu, D. Xu, Y. Wang, C. Zhang, C. Yan, D. Yan, Y. He, L. Tang, W. Zhang, and J. Yao, “Humidity sensor based on intracavity sensing of fiber ring laser,” J. Phys. D Appl. Phys. 50(42), 425105 (2017).
[Crossref]

Xu, X.

P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, and Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett. 12(6), 3145–3150 (2012).
[Crossref] [PubMed]

Yadav, B. C.

S. Sikarwar and B. C. Yadav, “Opto-electronic humidity sensor: a review,” Sens. Actuators A Phys. 233, 54–70 (2015).
[Crossref]

Yan, C.

J. Shi, W. Xu, D. Xu, Y. Wang, C. Zhang, C. Yan, D. Yan, Y. He, L. Tang, W. Zhang, and J. Yao, “Humidity sensor based on intracavity sensing of fiber ring laser,” J. Phys. D Appl. Phys. 50(42), 425105 (2017).
[Crossref]

Yan, D.

J. Shi, W. Xu, D. Xu, Y. Wang, C. Zhang, C. Yan, D. Yan, Y. He, L. Tang, W. Zhang, and J. Yao, “Humidity sensor based on intracavity sensing of fiber ring laser,” J. Phys. D Appl. Phys. 50(42), 425105 (2017).
[Crossref]

Yang, D.

Z. Ding, C. Wang, K. Liu, J. Jiang, D. Yang, G. Pan, Z. Pu, and T. Liu, “Distributed optical fiber sensors based on optical frequency domain reflectometry: a review,” Sensors (Basel) 18(4), 1072–1102 (2018).
[Crossref] [PubMed]

Yang, H. Z.

Q. Tian, H. Z. Yang, Q. Z. Rong, Z. Y. Feng, R. H. Wang, M. K. A. B. Zaini, K. S. Lim, H. Ahmad, P. Zhang, X. Z. Ding, K. Lu, and Y. D. He, “Highly sensitive micro-hygrometer based on microfiber knot resonator,” Opt. Commun. 431, 88–92 (2019).
[Crossref]

Yang, Z.

P. Wang, Y. Wang, Z. Yang, X. Guo, X. Lin, X. C. Yu, Y. F. Xiao, W. Fang, L. Zhang, G. Lu, Q. Gong, and L. Tong, “Single-band 2-nm-line-width plasmon resonance in a strongly coupled Au nanorod,” Nano Lett. 15(11), 7581–7586 (2015).
[Crossref] [PubMed]

Yao, J.

J. Shi, W. Xu, D. Xu, Y. Wang, C. Zhang, C. Yan, D. Yan, Y. He, L. Tang, W. Zhang, and J. Yao, “Humidity sensor based on intracavity sensing of fiber ring laser,” J. Phys. D Appl. Phys. 50(42), 425105 (2017).
[Crossref]

Yasin, M.

N. Irawati, H. A. Rahman, M. Yasin, S. Al-Askari, B. A. Hamida, H. Ahmad, and S. W. Harun, “Relative humidity sensing using a PMMA doped agarose gel microfiber,” J. Lightwave Technol. 35(18), 3940–3944 (2017).
[Crossref]

Yin, M.

B. Gu, M. Yin, A. P. Zhang, J. Qian, and S. He, “Optical fiber relative humidity sensor based on FBG incorporated thin-core fiber modal interferometer,” Opt. Express 19(5), 4140–4146 (2011).
[Crossref] [PubMed]

Yin, X.

F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[Crossref] [PubMed]

Yin, Y.

Y. Yin, J. B. Yu, Y. X. Jiang, S. Li, J. Ren, G. Farrell, E. Lewis, and P. F. Wang, “Investigation of temperature dependence of microfiber coil resonators,” J. Lightwave Technol. 36(20), 4887–4893 (2018).
[Crossref]

Ying, Y.

P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, and Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett. 12(6), 3145–3150 (2012).
[Crossref] [PubMed]

Yoon, M. S.

J. C. Shin, M. S. Yoon, and Y. G. Han, “Relative humidity sensor based on an optical microfiber knot resonator with a polyvinyl alcohol overlay,” J. Lightwave Technol. 34(19), 4511–4515 (2016).
[Crossref]

Yu, J.

Y. Luo, C. Chen, K. Xia, S. Peng, H. Guan, J. Tang, H. Lu, J. Yu, J. Zhang, Y. Xiao, and Z. Chen, “Tungsten disulfide (WS2) based all-fiber-optic humidity sensor,” Opt. Express 24(8), 8956–8966 (2016).
[Crossref] [PubMed]

Yu, J. B.

Y. Yin, J. B. Yu, Y. X. Jiang, S. Li, J. Ren, G. Farrell, E. Lewis, and P. F. Wang, “Investigation of temperature dependence of microfiber coil resonators,” J. Lightwave Technol. 36(20), 4887–4893 (2018).
[Crossref]

Yu, L.

G. Y. Chen, X. Wu, Y. Q. Kang, L. Yu, T. M. Monro, D. G. Lancaster, X. Liu, and H. Xu, “Ultra-fast hygrometer based on U-shaped optical microfiber with nanoporous polyelectrolyte coating,” Sci. Rep. 7(1), 7943–7949 (2017).
[Crossref] [PubMed]

Yu, X. C.

P. Wang, Y. Wang, Z. Yang, X. Guo, X. Lin, X. C. Yu, Y. F. Xiao, W. Fang, L. Zhang, G. Lu, Q. Gong, and L. Tong, “Single-band 2-nm-line-width plasmon resonance in a strongly coupled Au nanorod,” Nano Lett. 15(11), 7581–7586 (2015).
[Crossref] [PubMed]

Zaini, M. K. A. B.

Q. Tian, H. Z. Yang, Q. Z. Rong, Z. Y. Feng, R. H. Wang, M. K. A. B. Zaini, K. S. Lim, H. Ahmad, P. Zhang, X. Z. Ding, K. Lu, and Y. D. He, “Highly sensitive micro-hygrometer based on microfiber knot resonator,” Opt. Commun. 431, 88–92 (2019).
[Crossref]

Zeng, H.

F. Gu, H. Zeng, L. Tong, and S. Zhuang, “Metal single-nanowire plasmonic sensors,” Opt. Lett. 38(11), 1826–1828 (2013).
[Crossref] [PubMed]

Zeng, H. P.

F. X. Gu, L. Zhang, Y. B. Zhu, and H. P. Zeng, “Free‐space coupling of nanoantennas and whispering‐gallery microcavities with narrowed linewidth and enhanced sensitivity,” Laser Photonics Rev. 9(6), 682–688 (2015).
[Crossref]

Zhang, A. P.

B. Gu, M. Yin, A. P. Zhang, J. Qian, and S. He, “Optical fiber relative humidity sensor based on FBG incorporated thin-core fiber modal interferometer,” Opt. Express 19(5), 4140–4146 (2011).
[Crossref] [PubMed]

Zhang, C.

J. Shi, W. Xu, D. Xu, Y. Wang, C. Zhang, C. Yan, D. Yan, Y. He, L. Tang, W. Zhang, and J. Yao, “Humidity sensor based on intracavity sensing of fiber ring laser,” J. Phys. D Appl. Phys. 50(42), 425105 (2017).
[Crossref]

Zhang, F.

Y. Shao, Y. Wang, S. Cao, Y. Huang, L. Zhang, F. Zhang, C. Liao, and Y. Wang, “Mechanism and characteristics of humidity sensing with polyvinyl alcohol-coated fiber surface plasmon resonance sensor,” Sensors (Basel) 18(7), 2029–2037 (2018).
[Crossref] [PubMed]

Zhang, J.

Y. Luo, C. Chen, K. Xia, S. Peng, H. Guan, J. Tang, H. Lu, J. Yu, J. Zhang, Y. Xiao, and Z. Chen, “Tungsten disulfide (WS2) based all-fiber-optic humidity sensor,” Opt. Express 24(8), 8956–8966 (2016).
[Crossref] [PubMed]

Zhang, L.

Y. Shao, Y. Wang, S. Cao, Y. Huang, L. Zhang, F. Zhang, C. Liao, and Y. Wang, “Mechanism and characteristics of humidity sensing with polyvinyl alcohol-coated fiber surface plasmon resonance sensor,” Sensors (Basel) 18(7), 2029–2037 (2018).
[Crossref] [PubMed]

F. X. Gu, L. Zhang, Y. B. Zhu, and H. P. Zeng, “Free‐space coupling of nanoantennas and whispering‐gallery microcavities with narrowed linewidth and enhanced sensitivity,” Laser Photonics Rev. 9(6), 682–688 (2015).
[Crossref]

P. Wang, Y. Wang, Z. Yang, X. Guo, X. Lin, X. C. Yu, Y. F. Xiao, W. Fang, L. Zhang, G. Lu, Q. Gong, and L. Tong, “Single-band 2-nm-line-width plasmon resonance in a strongly coupled Au nanorod,” Nano Lett. 15(11), 7581–7586 (2015).
[Crossref] [PubMed]

P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, and Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett. 12(6), 3145–3150 (2012).
[Crossref] [PubMed]

P. Wang, F. Gu, L. Zhang, and L. Tong, “Polymer microfiber rings for high-sensitivity optical humidity sensing,” Appl. Opt. 50(31), G7–G10 (2011).
[Crossref] [PubMed]

F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[Crossref] [PubMed]

Zhang, P.

Q. Tian, H. Z. Yang, Q. Z. Rong, Z. Y. Feng, R. H. Wang, M. K. A. B. Zaini, K. S. Lim, H. Ahmad, P. Zhang, X. Z. Ding, K. Lu, and Y. D. He, “Highly sensitive micro-hygrometer based on microfiber knot resonator,” Opt. Commun. 431, 88–92 (2019).
[Crossref]

Zhang, S.

H. Wei, D. Pan, S. Zhang, Z. Li, Q. Li, N. Liu, W. Wang, and H. Xu, “Plasmon waveguiding in nanowires,” Chem. Rev. 118(6), 2882–2926 (2018).
[Crossref] [PubMed]

Zhang, T. H.

Y. Wu, T. H. Zhang, Y. J. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sens. Actuator B Chem. 155(1), 258–263 (2011).
[Crossref]

Zhang, W.

J. Shi, W. Xu, D. Xu, Y. Wang, C. Zhang, C. Yan, D. Yan, Y. He, L. Tang, W. Zhang, and J. Yao, “Humidity sensor based on intracavity sensing of fiber ring laser,” J. Phys. D Appl. Phys. 50(42), 425105 (2017).
[Crossref]

Zhao, Y.

Y. Peng, Y. Zhao, M. Q. Chen, and F. Xia, “Research advances in microfiber humidity sensors,” Small 14(29), e1800524 (2018).
[Crossref] [PubMed]

L. T. Gai, J. Li, and Y. Zhao, “Preparation and application of microfiber resonant ring sensors: a review,” Opt. Laser Technol. 89, 126–136 (2017).
[Crossref]

Zhu, Y. B.

F. X. Gu, L. Zhang, Y. B. Zhu, and H. P. Zeng, “Free‐space coupling of nanoantennas and whispering‐gallery microcavities with narrowed linewidth and enhanced sensitivity,” Laser Photonics Rev. 9(6), 682–688 (2015).
[Crossref]

Zhuang, S.

F. Gu, H. Zeng, L. Tong, and S. Zhuang, “Metal single-nanowire plasmonic sensors,” Opt. Lett. 38(11), 1826–1828 (2013).
[Crossref] [PubMed]

Zulkifli, M. Z.

H. Ahmad, M. T. Rahman, S. N. A. Sakeh, M. Z. A. Razak, and M. Z. Zulkifli, “Humidity sensor based on microfiber resonator with reduced graphene oxide,” Optik (Stuttg.) 127(5), 3158–3161 (2016).
[Crossref]

Adv. Opt. Mater. (1)

A. W. Powell, D. M. Coles, R. A. Taylor, A. A. R. Watt, H. E. Assender, and J. M. Smith, “Plasmonic gas sensing using nanocube patch antennas,” Adv. Opt. Mater. 4(4), 634–642 (2016).
[Crossref]

Analyst (Lond.) (1)

A. Bozzola, S. Perotto, and F. De Angelis, “Hybrid plasmonic-photonic whispering gallery mode resonators for sensing: a critical review,” Analyst (Lond.) 142(6), 883–898 (2017).
[Crossref] [PubMed]

Appl. Opt. (2)

P. Wang, F. Gu, L. Zhang, and L. Tong, “Polymer microfiber rings for high-sensitivity optical humidity sensing,” Appl. Opt. 50(31), G7–G10 (2011).
[Crossref] [PubMed]

M. A. Gouveia, P. E. S. Pellegrini, J. S. Dos Santos, I. M. Raimundo, and C. M. B. Cordeiro, “Analysis of immersed silica optical microfiber knot resonator and its application as a moisture sensor,” Appl. Opt. 53(31), 7454–7461 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92(10), 101126 (2008).
[Crossref]

Chem. Rev. (1)

H. Wei, D. Pan, S. Zhang, Z. Li, Q. Li, N. Liu, W. Wang, and H. Xu, “Plasmon waveguiding in nanowires,” Chem. Rev. 118(6), 2882–2926 (2018).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

IEEE Sens. J. (1)

M. Batumalay, S. W. Harun, N. Irawati, H. Ahmad, and H. Arof, “A study of relative humidity fiber-optic sensors,” IEEE Sens. J. 15(3), 1945–1950 (2015).
[Crossref]

J. Lightwave Technol. (5)

Y. Yin, J. B. Yu, Y. X. Jiang, S. Li, J. Ren, G. Farrell, E. Lewis, and P. F. Wang, “Investigation of temperature dependence of microfiber coil resonators,” J. Lightwave Technol. 36(20), 4887–4893 (2018).
[Crossref]

A. D. D. Le and Y. G. Han, “Relative humidity sensor based on a few-mode microfiber knot resonator by mitigating the group index difference of a few-mode microfiber,” J. Lightwave Technol. 36(4), 904–909 (2018).
[Crossref]

J. C. Shin, M. S. Yoon, and Y. G. Han, “Relative humidity sensor based on an optical microfiber knot resonator with a polyvinyl alcohol overlay,” J. Lightwave Technol. 34(19), 4511–4515 (2016).
[Crossref]

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, “The microfiber loop resonator: theory, experiment, and application,” J. Lightwave Technol. 24(1), 242–250 (2006).
[Crossref]

N. Irawati, H. A. Rahman, M. Yasin, S. Al-Askari, B. A. Hamida, H. Ahmad, and S. W. Harun, “Relative humidity sensing using a PMMA doped agarose gel microfiber,” J. Lightwave Technol. 35(18), 3940–3944 (2017).
[Crossref]

J. Phys. Chem. C (1)

J. Qin, Y. H. Chen, B. Y. Ding, R. J. Blaikie, and M. Qiu, “Efficient plasmonic gas sensing based on cavity-coupled metallic nanoparticles,” J. Phys. Chem. C 121(44), 24740–24744 (2017).
[Crossref]

J. Phys. D Appl. Phys. (1)

J. Shi, W. Xu, D. Xu, Y. Wang, C. Zhang, C. Yan, D. Yan, Y. He, L. Tang, W. Zhang, and J. Yao, “Humidity sensor based on intracavity sensing of fiber ring laser,” J. Phys. D Appl. Phys. 50(42), 425105 (2017).
[Crossref]

Langmuir (1)

R. A. Barry and P. Wiltzius, “Humidity-sensing inverse opal hydrogels,” Langmuir 22(3), 1369–1374 (2006).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

F. X. Gu, L. Zhang, Y. B. Zhu, and H. P. Zeng, “Free‐space coupling of nanoantennas and whispering‐gallery microcavities with narrowed linewidth and enhanced sensitivity,” Laser Photonics Rev. 9(6), 682–688 (2015).
[Crossref]

Mater. Express (1)

M. J. Faruki, M. Z. Ab Razak, S. R. Azzuhri, M. T. Rahman, M. R. K. Soltanian, G. Brambilla, B. M. Rahman, K. T. Grattan, R. De La Rue, and H. Ahmad, “Effect of titanium dioxide (TiO2) nanoparticle coating on the detection performance of microfiber knot resonator sensors for relative humidity measurement,” Mater. Express 6(6), 501–508 (2016).
[Crossref]

Measurement (1)

N. Irawati, H. A. Rahman, H. Ahmad, and S. W. Harun, “A PMMA microfiber loop resonator based humidity sensor with ZnO nanorods coating,” Measurement 99, 128–133 (2017).
[Crossref]

Microw. Opt. Technol. Lett. (1)

L. Bo, P. F. Wang, Y. Semenova, and G. Farrell, “Optical microfiber coupler based humidity sensor with a polyethylene oxide coating,” Microw. Opt. Technol. Lett. 57(2), 457–460 (2015).
[Crossref]

Nano Lett. (4)

P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, and Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett. 12(6), 3145–3150 (2012).
[Crossref] [PubMed]

F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[Crossref] [PubMed]

P. Wang, Y. Wang, Z. Yang, X. Guo, X. Lin, X. C. Yu, Y. F. Xiao, W. Fang, L. Zhang, G. Lu, Q. Gong, and L. Tong, “Single-band 2-nm-line-width plasmon resonance in a strongly coupled Au nanorod,” Nano Lett. 15(11), 7581–7586 (2015).
[Crossref] [PubMed]

Q. Ai, L. Gui, D. Paone, B. Metzger, M. Mayer, K. Weber, A. Fery, and H. Giessen, “Ultranarrow second-harmonic resonances in hybrid plasmon-fiber cavities,” Nano Lett. 18(9), 5576–5582 (2018).
[Crossref] [PubMed]

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Opt. Commun. (1)

Q. Tian, H. Z. Yang, Q. Z. Rong, Z. Y. Feng, R. H. Wang, M. K. A. B. Zaini, K. S. Lim, H. Ahmad, P. Zhang, X. Z. Ding, K. Lu, and Y. D. He, “Highly sensitive micro-hygrometer based on microfiber knot resonator,” Opt. Commun. 431, 88–92 (2019).
[Crossref]

Opt. Express (3)

L. Labrador-Páez, K. Soler-Carracedo, M. Hernández-Rodríguez, I. R. Martín, T. Carmon, and L. L. Martin, “Liquid whispering-gallery-mode resonator as a humidity sensor,” Opt. Express 25(2), 1165–1172 (2017).
[Crossref] [PubMed]

B. Gu, M. Yin, A. P. Zhang, J. Qian, and S. He, “Optical fiber relative humidity sensor based on FBG incorporated thin-core fiber modal interferometer,” Opt. Express 19(5), 4140–4146 (2011).
[Crossref] [PubMed]

Y. Luo, C. Chen, K. Xia, S. Peng, H. Guan, J. Tang, H. Lu, J. Yu, J. Zhang, Y. Xiao, and Z. Chen, “Tungsten disulfide (WS2) based all-fiber-optic humidity sensor,” Opt. Express 24(8), 8956–8966 (2016).
[Crossref] [PubMed]

Opt. Laser Technol. (2)

L. T. Gai, J. Li, and Y. Zhao, “Preparation and application of microfiber resonant ring sensors: a review,” Opt. Laser Technol. 89, 126–136 (2017).
[Crossref]

G. Brambilla, “Optical microfibre devices,” Opt. Laser Technol. 78, 76–80 (2016).
[Crossref]

Opt. Lett. (1)

F. Gu, H. Zeng, L. Tong, and S. Zhuang, “Metal single-nanowire plasmonic sensors,” Opt. Lett. 38(11), 1826–1828 (2013).
[Crossref] [PubMed]

Optik (Stuttg.) (1)

H. Ahmad, M. T. Rahman, S. N. A. Sakeh, M. Z. A. Razak, and M. Z. Zulkifli, “Humidity sensor based on microfiber resonator with reduced graphene oxide,” Optik (Stuttg.) 127(5), 3158–3161 (2016).
[Crossref]

Sci. Rep. (1)

G. Y. Chen, X. Wu, Y. Q. Kang, L. Yu, T. M. Monro, D. G. Lancaster, X. Liu, and H. Xu, “Ultra-fast hygrometer based on U-shaped optical microfiber with nanoporous polyelectrolyte coating,” Sci. Rep. 7(1), 7943–7949 (2017).
[Crossref] [PubMed]

Sens. Actuator B Chem. (2)

L. P. Sun, J. Li, L. Jin, Y. Ran, and B. O. Guan, “High-birefringence microfiber sagnac interferometer based humidity sensor,” Sens. Actuator B Chem. 231, 696–700 (2016).
[Crossref]

Y. Wu, T. H. Zhang, Y. J. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sens. Actuator B Chem. 155(1), 258–263 (2011).
[Crossref]

Sens. Actuators A Phys. (2)

N. Irawati, T. N. R. Abdullah, H. A. Rahman, H. Ahmad, and S. W. Harun, “PMMA microfiber loop resonator for humidity sensor,” Sens. Actuators A Phys. 260, 112–116 (2017).
[Crossref]

S. Sikarwar and B. C. Yadav, “Opto-electronic humidity sensor: a review,” Sens. Actuators A Phys. 233, 54–70 (2015).
[Crossref]

Sensors (Basel) (5)

J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors (Basel) 14(4), 5823–5844 (2014).
[Crossref] [PubMed]

L. Tong, “Micro/nanofibre optical sensors: challenges and prospects,” Sensors (Basel) 18(3), 903–929 (2018).
[Crossref] [PubMed]

G. Y. Chen, D. G. Lancaster, and T. M. Monro, “Optical microfiber technology for current, temperature, acceleration, acoustic, humidity and ultraviolet light sensing,” Sensors (Basel) 18(2), 72–96 (2017).
[Crossref] [PubMed]

Y. Shao, Y. Wang, S. Cao, Y. Huang, L. Zhang, F. Zhang, C. Liao, and Y. Wang, “Mechanism and characteristics of humidity sensing with polyvinyl alcohol-coated fiber surface plasmon resonance sensor,” Sensors (Basel) 18(7), 2029–2037 (2018).
[Crossref] [PubMed]

Z. Ding, C. Wang, K. Liu, J. Jiang, D. Yang, G. Pan, Z. Pu, and T. Liu, “Distributed optical fiber sensors based on optical frequency domain reflectometry: a review,” Sensors (Basel) 18(4), 1072–1102 (2018).
[Crossref] [PubMed]

Small (1)

Y. Peng, Y. Zhao, M. Q. Chen, and F. Xia, “Research advances in microfiber humidity sensors,” Small 14(29), e1800524 (2018).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic illustration of the experimental setup for RH sensing.
Fig. 2
Fig. 2 Scattering spectra of a single Au NR before and after coupling to a PAM microfiber. (a) Scattering spectrum of an Au NR deposited on a glass slide. Top-left inset is the dark-field microscopy image (circled with a blue dotted line) and top-right inset is the transmission electron microscopy (TEM) image. (b) Scattering spectrum of an Au NR coupled to a PAM microfiber with diameter of 2.1 μm. Top-left inset is the dark-field microscopy image (the blue dotted lines outline the microfiber) and top-right inset is the corresponding SEM image.
Fig. 3
Fig. 3 Optical RH sensing based on a single hybrid cavity. (a) Normalized scattering spectra of the sensor with increasing RH. (b) Scattering peak wavelength as a function of RH with increasing (black dots) and decreasing (red dots) RH. The black and red lines are the linear fitting curves.
Fig. 4
Fig. 4 Distributed optical RH sensing based on multiple hybrid cavities. (a) Schematic illustration of the experimental setup. (b) Normalized scattering spectra of 3 hybrid cavities at three different positions (denoted as P1, P2 and P3) before (RH = 57.7%) and after being exposed to water vapor. The insets are the corresponding dark-field microscopy images after being exposed to water vapor. The scale bars are 2 μm. (c) Position-dependent RH value measured by an electronic hygrometer (EH, circles) and this optical sensor (asterisks) before (balck) and after (red) being exposed to water vapor, respectively.

Metrics