Abstract

Two 2nd order PQ:PMMA reflecting VBGs with Bragg wavelengths of 488.8 nm and 525.6 nm were recorded using 532 nm as the recording wavelength. The formation of 2nd order PQ:PMMA VBG is explained and simulated based on the diffusion model of the PQ molecules in the PMMA matrix. The 525.6 nm VBG successfully served as the ECDL cavity mirror of a 522 nm diode laser and achieved more than 10000-fold output spectrum narrowing,

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Cationic photo-initiator titanocene dispersed PMMA photopolymers for holographic memories

Peng Liu, Linlin Wang, Yu Zhao, Zeren Li, and Xiudong Sun
OSA Continuum 1(3) 783-795 (2018)

Holographic memory performances of titanocene dispersed poly (methyl methacrylate) photopolymer with different preparation conditions

Peng Liu, Linlin Wang, Yu Zhao, Zeren Li, and Xiudong Sun
Opt. Mater. Express 8(6) 1441-1453 (2018)

Ultimate efficiency of spectral beam combining by volume Bragg gratings

Derrek R. Drachenberg, Oleksiy Andrusyak, George Venus, Vadim Smirnov, Julien Lumeau, and Leonid B. Glebov
Appl. Opt. 52(30) 7233-7242 (2013)

References

  • View by:
  • |
  • |
  • |

  1. G. J. Steckman, I. Solomatine, G. Zhou, and D. Psaltis, “Characterization of phenanthrenequinone-doped poly(methyl methacrylate) for holographic memory,” Opt. Lett. 23(16), 1310–1312 (1998).
    [Crossref] [PubMed]
  2. S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25(7), 451–453 (2000).
    [Crossref] [PubMed]
  3. K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42(5), 1390–1396 (2003).
    [Crossref]
  4. T. Y. Chung, C. Y. Chiang, and C. W. Liang, “Volume Bragg grating-based 70 nm tunable and narrow output spectra from a Ti:Sapphire laser,” Jpn. J. Appl. Phys. 50(9R), 092701 (2011).
    [Crossref]
  5. T. Y. Chung, C. J. Liao, Y. H. Lien, S. S. Yang, and J. T. Shy, “Special laser wavelength generation using a volume bragg grating as nd:Gdvo4 laser mirror,” Jpn. J. Appl. Phys. 49, 062503 - 062503–062505 (2010).
  6. T. Y. Chung, A. Rapaport, V. Smirnov, L. B. Glebov, M. C. Richardson, and M. Bass, “Solid-state laser spectral narrowing using a volumetric photothermal refractive Bragg grating cavity mirror,” Opt. Lett. 31(2), 229–231 (2006).
    [Crossref] [PubMed]
  7. B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Single-longitudinal-mode nd-laser with a bragg-grating fabry-perot cavity,” Opt. Express 14(20), 9284–9292 (2006).
    [Crossref] [PubMed]
  8. S. Giet, H. D. Sun, S. Calvez, M. D. Dawson, S. Suomalainen, A. Harkonen, M. Guina, O. Okhotnikov, and M. Pessa, “Spectral narrowing and locking of a vertical-external-cavity surface-emitting laser using an intracavity volume bragg grating,” IEEE Photonics Technol. Lett. 18(16), 1786–1788 (2006).
    [Crossref]
  9. O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, “High-efficiency bragg gratings in photothermorefractive glass,” Appl. Opt. 38(4), 619–627 (1999).
    [Crossref] [PubMed]
  10. Y. H. Hsieh, T. Y. Chung, L. C. Du, and S. H. Lin, “A high power, narrow linewidth and wavelength tunable semiconductor laser using a photopolymer bragg grating as one of the cavity mirrors,” presented at the Frontiers in Optics 2014/Laser Science XXVII, Tucson, AZ, USA2014.
    [Crossref]
  11. G. H. Zhao and P. Mouroulis, “Diffusion-model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41(10), 1929–1939 (1994).
    [Crossref]
  12. G. H. Zhao and P. Mouroulis, “2nd-order grating formation in dry holographic photopolymers,” Opt. Commun. 115(5-6), 528–532 (1995).
    [Crossref]
  13. C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11(16), 1835–1843 (2003).
    [Crossref] [PubMed]
  14. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. B 71(7), 811–818 (1981).
    [Crossref]
  15. B. J. Shih, C. W. Chen, Y. H. Hsieh, T. Y. Chung, and S. H. Lin, “Modeling the diffraction efficiency of reflective-type PQ-PMMA VBG using simplified rate equations,” IEEE Photonics J. 10(6), 1–7 (2018).
    [Crossref]
  16. S. H. Lin, P. L. Chen, Y. N. Hsiao, and W. T. Whang, “Fabrication and characterization of poly(methyl methacrylate) photopolymer doped with 9,10-phenanthrenequinone (PQ) based derivatives for volume holographic data storage,” Opt. Commun. 281(4), 559–566 (2008).
    [Crossref]
  17. A. Yariv and P. Yeh, Optical waves in crystals: Propagation and control of laser radiation (John Wiley and Sons, 2003).

2018 (1)

B. J. Shih, C. W. Chen, Y. H. Hsieh, T. Y. Chung, and S. H. Lin, “Modeling the diffraction efficiency of reflective-type PQ-PMMA VBG using simplified rate equations,” IEEE Photonics J. 10(6), 1–7 (2018).
[Crossref]

2011 (1)

T. Y. Chung, C. Y. Chiang, and C. W. Liang, “Volume Bragg grating-based 70 nm tunable and narrow output spectra from a Ti:Sapphire laser,” Jpn. J. Appl. Phys. 50(9R), 092701 (2011).
[Crossref]

2008 (1)

S. H. Lin, P. L. Chen, Y. N. Hsiao, and W. T. Whang, “Fabrication and characterization of poly(methyl methacrylate) photopolymer doped with 9,10-phenanthrenequinone (PQ) based derivatives for volume holographic data storage,” Opt. Commun. 281(4), 559–566 (2008).
[Crossref]

2006 (3)

T. Y. Chung, A. Rapaport, V. Smirnov, L. B. Glebov, M. C. Richardson, and M. Bass, “Solid-state laser spectral narrowing using a volumetric photothermal refractive Bragg grating cavity mirror,” Opt. Lett. 31(2), 229–231 (2006).
[Crossref] [PubMed]

B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Single-longitudinal-mode nd-laser with a bragg-grating fabry-perot cavity,” Opt. Express 14(20), 9284–9292 (2006).
[Crossref] [PubMed]

S. Giet, H. D. Sun, S. Calvez, M. D. Dawson, S. Suomalainen, A. Harkonen, M. Guina, O. Okhotnikov, and M. Pessa, “Spectral narrowing and locking of a vertical-external-cavity surface-emitting laser using an intracavity volume bragg grating,” IEEE Photonics Technol. Lett. 18(16), 1786–1788 (2006).
[Crossref]

2003 (2)

K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42(5), 1390–1396 (2003).
[Crossref]

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11(16), 1835–1843 (2003).
[Crossref] [PubMed]

2000 (1)

S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25(7), 451–453 (2000).
[Crossref] [PubMed]

1999 (1)

O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, “High-efficiency bragg gratings in photothermorefractive glass,” Appl. Opt. 38(4), 619–627 (1999).
[Crossref] [PubMed]

1998 (1)

G. J. Steckman, I. Solomatine, G. Zhou, and D. Psaltis, “Characterization of phenanthrenequinone-doped poly(methyl methacrylate) for holographic memory,” Opt. Lett. 23(16), 1310–1312 (1998).
[Crossref] [PubMed]

1995 (1)

G. H. Zhao and P. Mouroulis, “2nd-order grating formation in dry holographic photopolymers,” Opt. Commun. 115(5-6), 528–532 (1995).
[Crossref]

1994 (1)

G. H. Zhao and P. Mouroulis, “Diffusion-model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41(10), 1929–1939 (1994).
[Crossref]

1981 (1)

M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. B 71(7), 811–818 (1981).
[Crossref]

Bass, M.

T. Y. Chung, A. Rapaport, V. Smirnov, L. B. Glebov, M. C. Richardson, and M. Bass, “Solid-state laser spectral narrowing using a volumetric photothermal refractive Bragg grating cavity mirror,” Opt. Lett. 31(2), 229–231 (2006).
[Crossref] [PubMed]

Beléndez, A.

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11(16), 1835–1843 (2003).
[Crossref] [PubMed]

Calvez, S.

S. Giet, H. D. Sun, S. Calvez, M. D. Dawson, S. Suomalainen, A. Harkonen, M. Guina, O. Okhotnikov, and M. Pessa, “Spectral narrowing and locking of a vertical-external-cavity surface-emitting laser using an intracavity volume bragg grating,” IEEE Photonics Technol. Lett. 18(16), 1786–1788 (2006).
[Crossref]

Chen, C. W.

B. J. Shih, C. W. Chen, Y. H. Hsieh, T. Y. Chung, and S. H. Lin, “Modeling the diffraction efficiency of reflective-type PQ-PMMA VBG using simplified rate equations,” IEEE Photonics J. 10(6), 1–7 (2018).
[Crossref]

Chen, P. L.

S. H. Lin, P. L. Chen, Y. N. Hsiao, and W. T. Whang, “Fabrication and characterization of poly(methyl methacrylate) photopolymer doped with 9,10-phenanthrenequinone (PQ) based derivatives for volume holographic data storage,” Opt. Commun. 281(4), 559–566 (2008).
[Crossref]

Chen, W. Z.

S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25(7), 451–453 (2000).
[Crossref] [PubMed]

Chiang, C. Y.

T. Y. Chung, C. Y. Chiang, and C. W. Liang, “Volume Bragg grating-based 70 nm tunable and narrow output spectra from a Ti:Sapphire laser,” Jpn. J. Appl. Phys. 50(9R), 092701 (2011).
[Crossref]

Chung, T. Y.

B. J. Shih, C. W. Chen, Y. H. Hsieh, T. Y. Chung, and S. H. Lin, “Modeling the diffraction efficiency of reflective-type PQ-PMMA VBG using simplified rate equations,” IEEE Photonics J. 10(6), 1–7 (2018).
[Crossref]

T. Y. Chung, C. Y. Chiang, and C. W. Liang, “Volume Bragg grating-based 70 nm tunable and narrow output spectra from a Ti:Sapphire laser,” Jpn. J. Appl. Phys. 50(9R), 092701 (2011).
[Crossref]

T. Y. Chung, A. Rapaport, V. Smirnov, L. B. Glebov, M. C. Richardson, and M. Bass, “Solid-state laser spectral narrowing using a volumetric photothermal refractive Bragg grating cavity mirror,” Opt. Lett. 31(2), 229–231 (2006).
[Crossref] [PubMed]

Dawson, M. D.

S. Giet, H. D. Sun, S. Calvez, M. D. Dawson, S. Suomalainen, A. Harkonen, M. Guina, O. Okhotnikov, and M. Pessa, “Spectral narrowing and locking of a vertical-external-cavity surface-emitting laser using an intracavity volume bragg grating,” IEEE Photonics Technol. Lett. 18(16), 1786–1788 (2006).
[Crossref]

Efimov, O. M.

O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, “High-efficiency bragg gratings in photothermorefractive glass,” Appl. Opt. 38(4), 619–627 (1999).
[Crossref] [PubMed]

Gallego, S.

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11(16), 1835–1843 (2003).
[Crossref] [PubMed]

Gaylord, T. K.

M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. B 71(7), 811–818 (1981).
[Crossref]

Giet, S.

S. Giet, H. D. Sun, S. Calvez, M. D. Dawson, S. Suomalainen, A. Harkonen, M. Guina, O. Okhotnikov, and M. Pessa, “Spectral narrowing and locking of a vertical-external-cavity surface-emitting laser using an intracavity volume bragg grating,” IEEE Photonics Technol. Lett. 18(16), 1786–1788 (2006).
[Crossref]

Glebov, L. B.

T. Y. Chung, A. Rapaport, V. Smirnov, L. B. Glebov, M. C. Richardson, and M. Bass, “Solid-state laser spectral narrowing using a volumetric photothermal refractive Bragg grating cavity mirror,” Opt. Lett. 31(2), 229–231 (2006).
[Crossref] [PubMed]

O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, “High-efficiency bragg gratings in photothermorefractive glass,” Appl. Opt. 38(4), 619–627 (1999).
[Crossref] [PubMed]

Glebova, L. N.

O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, “High-efficiency bragg gratings in photothermorefractive glass,” Appl. Opt. 38(4), 619–627 (1999).
[Crossref] [PubMed]

Guina, M.

S. Giet, H. D. Sun, S. Calvez, M. D. Dawson, S. Suomalainen, A. Harkonen, M. Guina, O. Okhotnikov, and M. Pessa, “Spectral narrowing and locking of a vertical-external-cavity surface-emitting laser using an intracavity volume bragg grating,” IEEE Photonics Technol. Lett. 18(16), 1786–1788 (2006).
[Crossref]

Harkonen, A.

S. Giet, H. D. Sun, S. Calvez, M. D. Dawson, S. Suomalainen, A. Harkonen, M. Guina, O. Okhotnikov, and M. Pessa, “Spectral narrowing and locking of a vertical-external-cavity surface-emitting laser using an intracavity volume bragg grating,” IEEE Photonics Technol. Lett. 18(16), 1786–1788 (2006).
[Crossref]

Hsiao, Y. N.

S. H. Lin, P. L. Chen, Y. N. Hsiao, and W. T. Whang, “Fabrication and characterization of poly(methyl methacrylate) photopolymer doped with 9,10-phenanthrenequinone (PQ) based derivatives for volume holographic data storage,” Opt. Commun. 281(4), 559–566 (2008).
[Crossref]

K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42(5), 1390–1396 (2003).
[Crossref]

Hsieh, Y. H.

B. J. Shih, C. W. Chen, Y. H. Hsieh, T. Y. Chung, and S. H. Lin, “Modeling the diffraction efficiency of reflective-type PQ-PMMA VBG using simplified rate equations,” IEEE Photonics J. 10(6), 1–7 (2018).
[Crossref]

Hsu, K. Y.

K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42(5), 1390–1396 (2003).
[Crossref]

S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25(7), 451–453 (2000).
[Crossref] [PubMed]

Jacobsson, B.

B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Single-longitudinal-mode nd-laser with a bragg-grating fabry-perot cavity,” Opt. Express 14(20), 9284–9292 (2006).
[Crossref] [PubMed]

Laurell, F.

B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Single-longitudinal-mode nd-laser with a bragg-grating fabry-perot cavity,” Opt. Express 14(20), 9284–9292 (2006).
[Crossref] [PubMed]

Liang, C. W.

T. Y. Chung, C. Y. Chiang, and C. W. Liang, “Volume Bragg grating-based 70 nm tunable and narrow output spectra from a Ti:Sapphire laser,” Jpn. J. Appl. Phys. 50(9R), 092701 (2011).
[Crossref]

Lin, S. H.

B. J. Shih, C. W. Chen, Y. H. Hsieh, T. Y. Chung, and S. H. Lin, “Modeling the diffraction efficiency of reflective-type PQ-PMMA VBG using simplified rate equations,” IEEE Photonics J. 10(6), 1–7 (2018).
[Crossref]

S. H. Lin, P. L. Chen, Y. N. Hsiao, and W. T. Whang, “Fabrication and characterization of poly(methyl methacrylate) photopolymer doped with 9,10-phenanthrenequinone (PQ) based derivatives for volume holographic data storage,” Opt. Commun. 281(4), 559–566 (2008).
[Crossref]

K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42(5), 1390–1396 (2003).
[Crossref]

S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25(7), 451–453 (2000).
[Crossref] [PubMed]

Moharam, M. G.

M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. B 71(7), 811–818 (1981).
[Crossref]

Mouroulis, P.

G. H. Zhao and P. Mouroulis, “2nd-order grating formation in dry holographic photopolymers,” Opt. Commun. 115(5-6), 528–532 (1995).
[Crossref]

G. H. Zhao and P. Mouroulis, “Diffusion-model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41(10), 1929–1939 (1994).
[Crossref]

Neipp, C.

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11(16), 1835–1843 (2003).
[Crossref] [PubMed]

Okhotnikov, O.

S. Giet, H. D. Sun, S. Calvez, M. D. Dawson, S. Suomalainen, A. Harkonen, M. Guina, O. Okhotnikov, and M. Pessa, “Spectral narrowing and locking of a vertical-external-cavity surface-emitting laser using an intracavity volume bragg grating,” IEEE Photonics Technol. Lett. 18(16), 1786–1788 (2006).
[Crossref]

Ortuño, M.

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11(16), 1835–1843 (2003).
[Crossref] [PubMed]

Pascual, I.

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11(16), 1835–1843 (2003).
[Crossref] [PubMed]

Pasiskevicius, V.

B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Single-longitudinal-mode nd-laser with a bragg-grating fabry-perot cavity,” Opt. Express 14(20), 9284–9292 (2006).
[Crossref] [PubMed]

Pessa, M.

S. Giet, H. D. Sun, S. Calvez, M. D. Dawson, S. Suomalainen, A. Harkonen, M. Guina, O. Okhotnikov, and M. Pessa, “Spectral narrowing and locking of a vertical-external-cavity surface-emitting laser using an intracavity volume bragg grating,” IEEE Photonics Technol. Lett. 18(16), 1786–1788 (2006).
[Crossref]

Psaltis, D.

G. J. Steckman, I. Solomatine, G. Zhou, and D. Psaltis, “Characterization of phenanthrenequinone-doped poly(methyl methacrylate) for holographic memory,” Opt. Lett. 23(16), 1310–1312 (1998).
[Crossref] [PubMed]

Rapaport, A.

T. Y. Chung, A. Rapaport, V. Smirnov, L. B. Glebov, M. C. Richardson, and M. Bass, “Solid-state laser spectral narrowing using a volumetric photothermal refractive Bragg grating cavity mirror,” Opt. Lett. 31(2), 229–231 (2006).
[Crossref] [PubMed]

Richardson, K. C.

O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, “High-efficiency bragg gratings in photothermorefractive glass,” Appl. Opt. 38(4), 619–627 (1999).
[Crossref] [PubMed]

Richardson, M. C.

T. Y. Chung, A. Rapaport, V. Smirnov, L. B. Glebov, M. C. Richardson, and M. Bass, “Solid-state laser spectral narrowing using a volumetric photothermal refractive Bragg grating cavity mirror,” Opt. Lett. 31(2), 229–231 (2006).
[Crossref] [PubMed]

Sheridan, J.

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11(16), 1835–1843 (2003).
[Crossref] [PubMed]

Shih, B. J.

B. J. Shih, C. W. Chen, Y. H. Hsieh, T. Y. Chung, and S. H. Lin, “Modeling the diffraction efficiency of reflective-type PQ-PMMA VBG using simplified rate equations,” IEEE Photonics J. 10(6), 1–7 (2018).
[Crossref]

Smirnov, V.

T. Y. Chung, A. Rapaport, V. Smirnov, L. B. Glebov, M. C. Richardson, and M. Bass, “Solid-state laser spectral narrowing using a volumetric photothermal refractive Bragg grating cavity mirror,” Opt. Lett. 31(2), 229–231 (2006).
[Crossref] [PubMed]

Smirnov, V. I.

O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, “High-efficiency bragg gratings in photothermorefractive glass,” Appl. Opt. 38(4), 619–627 (1999).
[Crossref] [PubMed]

Solomatine, I.

G. J. Steckman, I. Solomatine, G. Zhou, and D. Psaltis, “Characterization of phenanthrenequinone-doped poly(methyl methacrylate) for holographic memory,” Opt. Lett. 23(16), 1310–1312 (1998).
[Crossref] [PubMed]

Steckman, G. J.

G. J. Steckman, I. Solomatine, G. Zhou, and D. Psaltis, “Characterization of phenanthrenequinone-doped poly(methyl methacrylate) for holographic memory,” Opt. Lett. 23(16), 1310–1312 (1998).
[Crossref] [PubMed]

Sun, H. D.

S. Giet, H. D. Sun, S. Calvez, M. D. Dawson, S. Suomalainen, A. Harkonen, M. Guina, O. Okhotnikov, and M. Pessa, “Spectral narrowing and locking of a vertical-external-cavity surface-emitting laser using an intracavity volume bragg grating,” IEEE Photonics Technol. Lett. 18(16), 1786–1788 (2006).
[Crossref]

Suomalainen, S.

S. Giet, H. D. Sun, S. Calvez, M. D. Dawson, S. Suomalainen, A. Harkonen, M. Guina, O. Okhotnikov, and M. Pessa, “Spectral narrowing and locking of a vertical-external-cavity surface-emitting laser using an intracavity volume bragg grating,” IEEE Photonics Technol. Lett. 18(16), 1786–1788 (2006).
[Crossref]

Whang, W. T.

S. H. Lin, P. L. Chen, Y. N. Hsiao, and W. T. Whang, “Fabrication and characterization of poly(methyl methacrylate) photopolymer doped with 9,10-phenanthrenequinone (PQ) based derivatives for volume holographic data storage,” Opt. Commun. 281(4), 559–566 (2008).
[Crossref]

K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42(5), 1390–1396 (2003).
[Crossref]

S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25(7), 451–453 (2000).
[Crossref] [PubMed]

Zhao, G. H.

G. H. Zhao and P. Mouroulis, “2nd-order grating formation in dry holographic photopolymers,” Opt. Commun. 115(5-6), 528–532 (1995).
[Crossref]

G. H. Zhao and P. Mouroulis, “Diffusion-model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41(10), 1929–1939 (1994).
[Crossref]

Zhou, G.

G. J. Steckman, I. Solomatine, G. Zhou, and D. Psaltis, “Characterization of phenanthrenequinone-doped poly(methyl methacrylate) for holographic memory,” Opt. Lett. 23(16), 1310–1312 (1998).
[Crossref] [PubMed]

Appl. Opt. (1)

O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, “High-efficiency bragg gratings in photothermorefractive glass,” Appl. Opt. 38(4), 619–627 (1999).
[Crossref] [PubMed]

IEEE Photonics J. (1)

B. J. Shih, C. W. Chen, Y. H. Hsieh, T. Y. Chung, and S. H. Lin, “Modeling the diffraction efficiency of reflective-type PQ-PMMA VBG using simplified rate equations,” IEEE Photonics J. 10(6), 1–7 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. Giet, H. D. Sun, S. Calvez, M. D. Dawson, S. Suomalainen, A. Harkonen, M. Guina, O. Okhotnikov, and M. Pessa, “Spectral narrowing and locking of a vertical-external-cavity surface-emitting laser using an intracavity volume bragg grating,” IEEE Photonics Technol. Lett. 18(16), 1786–1788 (2006).
[Crossref]

J. Mod. Opt. (1)

G. H. Zhao and P. Mouroulis, “Diffusion-model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41(10), 1929–1939 (1994).
[Crossref]

J. Opt. Soc. Am. B (1)

M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. B 71(7), 811–818 (1981).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Y. Chung, C. Y. Chiang, and C. W. Liang, “Volume Bragg grating-based 70 nm tunable and narrow output spectra from a Ti:Sapphire laser,” Jpn. J. Appl. Phys. 50(9R), 092701 (2011).
[Crossref]

Opt. Commun. (2)

S. H. Lin, P. L. Chen, Y. N. Hsiao, and W. T. Whang, “Fabrication and characterization of poly(methyl methacrylate) photopolymer doped with 9,10-phenanthrenequinone (PQ) based derivatives for volume holographic data storage,” Opt. Commun. 281(4), 559–566 (2008).
[Crossref]

G. H. Zhao and P. Mouroulis, “2nd-order grating formation in dry holographic photopolymers,” Opt. Commun. 115(5-6), 528–532 (1995).
[Crossref]

Opt. Eng. (1)

K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42(5), 1390–1396 (2003).
[Crossref]

Opt. Express (2)

B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Single-longitudinal-mode nd-laser with a bragg-grating fabry-perot cavity,” Opt. Express 14(20), 9284–9292 (2006).
[Crossref] [PubMed]

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11(16), 1835–1843 (2003).
[Crossref] [PubMed]

Opt. Lett. (3)

T. Y. Chung, A. Rapaport, V. Smirnov, L. B. Glebov, M. C. Richardson, and M. Bass, “Solid-state laser spectral narrowing using a volumetric photothermal refractive Bragg grating cavity mirror,” Opt. Lett. 31(2), 229–231 (2006).
[Crossref] [PubMed]

G. J. Steckman, I. Solomatine, G. Zhou, and D. Psaltis, “Characterization of phenanthrenequinone-doped poly(methyl methacrylate) for holographic memory,” Opt. Lett. 23(16), 1310–1312 (1998).
[Crossref] [PubMed]

S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25(7), 451–453 (2000).
[Crossref] [PubMed]

Other (3)

T. Y. Chung, C. J. Liao, Y. H. Lien, S. S. Yang, and J. T. Shy, “Special laser wavelength generation using a volume bragg grating as nd:Gdvo4 laser mirror,” Jpn. J. Appl. Phys. 49, 062503 - 062503–062505 (2010).

Y. H. Hsieh, T. Y. Chung, L. C. Du, and S. H. Lin, “A high power, narrow linewidth and wavelength tunable semiconductor laser using a photopolymer bragg grating as one of the cavity mirrors,” presented at the Frontiers in Optics 2014/Laser Science XXVII, Tucson, AZ, USA2014.
[Crossref]

A. Yariv and P. Yeh, Optical waves in crystals: Propagation and control of laser radiation (John Wiley and Sons, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 The solid black curve and dashed red curve are the absorption coefficient spectra of PQ:PMMA before and after exposure, correspondingly. The dotted blue curve is the absorption spectrum of pure PMMA sample.
Fig. 2
Fig. 2 (a) The simulated refractive index distribution as a function of time and position. (b) The green curve with open triangle indicates the recording laser intensity distribution. The red curve with open circle indicates the refractive index variation after 7000 sec continuous exposure.
Fig. 3
Fig. 3 (a) Fourier components of the refractive index distribution in Fig. 2(b). The 1st order and the 2nd order components are about the same amplitude yet in opposite phase. (b) The blue curve with solid triangle is the refractive index distribution under the recording light irradiance of 0.9 W/cm2. The black curve with solid circle is the refractive index distribution under the recording irradiance of 0.015 W/cm2. The red curve with open circle is identical with the one in Fig. 2. The total recording time in all three cases are 7000 sec.
Fig. 4
Fig. 4 Two-beam interference recording scheme for recording reflecting VBG. All mirrors are protected silver mirrors. A collimated 650 nm diode laser output is collinear to the 532 nm recording beam for aligning purpose.
Fig. 5
Fig. 5 (a) The 1st order spectrum with λB of 1044.3 nm and FWHM is about 610 pm which is about the resolution limit of the OSA. (b) The 2nd order spectrum with λB of 525.6 nm and the FWHM is about 420 pm which is about the resolution limit of the spectrometer.
Fig. 6
Fig. 6 (a) A homemade Fabry-Perot interferometer measures the reflected 525.6 nm VBG spectrum which has spectral width about 23 pm. The maximum diffraction efficiency is about 0.21. (b) The grating was sandwiched between two wedge prisms with index matching fluid and was illuminated by a white LED. The white and yellow spots are the front and back surface reflection of the wedge prisms. The green spot is the diffraction of the 2nd order grating.
Fig. 7
Fig. 7 (a) Selected Δn2 with different irradiance and exposure time. (b) Δn1, Δn2 and Δn2/Δn1 under different exposure irradiances. (c) The experimental and simulated Δn2 of different exposure time with two exposure irradiances show great agreement.
Fig. 8
Fig. 8 (a) The measured 2nd order grating spectrum with λB centered at 488.8 nm. The FWHM is about 0.6 nm. (b) The grating was sandwiched between two wedge prisms with index matching fluid and was illuminated by a white LED. The blue spot is the diffraction of the 488.8 nm 2nd order grating.
Fig. 9
Fig. 9 Experimental setup of using 2nd order PQ:PMMA VBG as the external cavity mirror for 520 nm ECDL.
Fig. 10
Fig. 10 (a) Scanning Fabry-Perot trace of the ECDL using 525.6 nm 2nd order PQ:PMMA VBG as the cavity mirror. 1.5 GHz is the free spectral range (FSR) of the scanning Fabry-Perot interferometer. (b) Diode laser and ECDL output power versus input current.

Tables (1)

Tables Icon

Table 1 Simulation parameters

Metrics