Abstract

High-fidelity qubit initialization is of significance for efficient error correction in fault tolerant quantum algorithms. Combining two best worlds, speed and robustness, to achieve high-fidelity state preparation and manipulation is challenging in quantum systems, where qubits are closely spaced in frequency. Motivated by the concept of shortcut to adiabaticity, we theoretically propose the shortcut pulses via inverse engineering and further optimize the pulses with respect to systematic errors in frequency detuning and Rabi frequency. Such protocol, relevant to frequency selectivity, is applied to rare-earth ions qubit system, where the excitation of frequency-neighboring qubits should be prevented as well. Furthermore, comparison with adiabatic complex hyperbolic secant pulses shows that these dedicated initialization pulses can reduce the time that ions spend in the excited state by a factor of 6, which is important in coherence time limited systems to approach an error rate manageable by quantum error correction. The approach may also be applicable to superconducting qubits, and any other systems where qubits are addressed in frequency.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fast creation and transfer of coherence in triple quantum dots by using shortcuts to adiabaticity

Yue Ban, Li-Xin Jiang, Yi-Chao Li, Lin-Jun Wang, and Xi Chen
Opt. Express 26(24) 31137-31149 (2018)

Shortcuts to adiabaticity in non-Hermitian quantum systems without rotating-wave approximation

Hong Li, H. Z. Shen, S. L. Wu, and X. X. Yi
Opt. Express 25(24) 30135-30148 (2017)

Construction of robust Rydberg controlled-phase gates

Cai-Peng Shen, Jin-Lei Wu, Shi-Lei Su, and Erjun Liang
Opt. Lett. 44(8) 2036-2039 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, “Surface codes: Towards practical large-scale quantum computation,” Phys. Rev. A 86, 032324 (2012).
    [Crossref]
  2. J. Bylander, Microtechnology and Nanoscience, Chalmers University of Technology, Kemivägen 9, Gothenburg, Sweden, SE-41296 (personal communication, 2018).
  3. N. Didier, E. A. Sete, M. P. da Silva, and C. Rigetti, “Analytical modeling of parametrically modulated transmon qubits,” Phys. Rev. A 97, 022330 (2018).
    [Crossref]
  4. N. Ohlsson, R. K. Mohan, and S. Kröll, “Quantum computer hardware based on rare-earth-ion-doped inorganic crystals,” Opt. Commun. 201(1–3), 71–77 (2002).
    [Crossref]
  5. L. Rippe, B. Julsgaard, A. Walther, Y. Ying, and S. Kröll, “Experimental quantum-state tomography of a solid-state qubit,” Phys. Rev. A 77, 022307 (2008).
    [Crossref]
  6. K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003 (1998).
    [Crossref]
  7. N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-induced population transfer by adiabatic passage techniques,” Rnnu. Rev. Phus. Chem. 52, 763 (2001).
    [Crossref]
  8. P. Král, I. Thanopulos, and M. Shapiro, “Colloquium: Coherently controlled adiabatic passage,” Rev. Mod. Phys. 79(1), 53 (2007).
    [Crossref]
  9. M. H. Levitt, “Composite pulses,” Progress in NMR Spectroscopy 18, 61–122 (1986).
    [Crossref]
  10. B. T. Torosov, S. Guérin, and N. V. Vitanov, “High-Fidelity Adiabatic Passage by Composite Sequences of Chirped Pulses,” Phys. Rev. Lett. 106, 233001 (2011).
    [Crossref] [PubMed]
  11. V. S. Mallinovsky and D. J. Tannor, “Simple and robust extension of the stimulated Raman adiabatic passage technique to N-level systems,” Phys. Rev. A 56, 4929 (1997).
    [Crossref]
  12. G. S. Vasilev, A. Kuhn, and N. V. Vitanov, “Optimum pulse shapes for stimulated Raman adiabatic passage,” Phys. Rev. A 80, 013417 (2009).
    [Crossref]
  13. A. Walther, B. Julsgaard, L. Rippe, Y. Ying, S. Kröll, R. Fisher, and S. Glaser, “Extracting high fidelity quantum computer hardware from random systems,” Phys. Scr. T137, 014009 (2009).
    [Crossref]
  14. K. Kobzar, S. Ehni, T. E. Skinner, S. J. Glaser, and B. Luy, “Exploring the limits of broadband 90° and 180° universal rotation pulses,” J. Magn. Reson. 225, 142–160 (2012).
    [Crossref] [PubMed]
  15. T. Nöbauer, A. Angerer, B. Bartels, M. Trupke, S. Rotter, J. Schmiedmayer, Florian Mintert, and J. Majer, “Smooth optimal quantum control for robust solid-state spin magnetometry,” Phys. Rev. Lett. 115, 190801 (2015).
    [Crossref] [PubMed]
  16. L. Van-Damme, D. Schraft, Genko T. Genov, D. Sugny, T. Halfmann, and S. Guérin, “Robust NOT gate by single-shot-shaped pulses: Demonstration of the efficiency of the pulses in rephasing atomic coherences,” Phys. Rev. A 96, 022309 (2017).
    [Crossref]
  17. X. Chen, A. Ruschhaupt, S. Schmidt, A. del Campo, D. Guéry-Odelin, and J. G. Muga, “Fast Optimal Frictionless Atom Cooling in Harmonic Traps: Shortcut to Adiabaticity,” Phys. Rev. Lett. 104, 063002 (2010).
    [Crossref] [PubMed]
  18. X. Chen and J. G. Muga, “Engineering of fast population transfer in three-level systems,”, Phys. Rev. A 86, 033405 (2012).
    [Crossref]
  19. X. Chen, E. Torrontegui, and J. G. Muga, “Lewis-Riescenfeld invariants and transitionless quantum driving,” Phys. Rev. A 83, 062116 (2011).
    [Crossref]
  20. M V Berry, “Transitionless quantum driving,” J. Phys. A: Math. Theor. 42(36), 365303 (2009).
    [Crossref]
  21. X. Chen, I. Lizuain, A. Ruschhaupt, D. Guéry-Odelin, and J. G. Muga, “Shortcut to adiabatic passage in two and three level atoms,” Phys. Rev. Lett. 105, 123003 (2010).
    [Crossref]
  22. S. Masuda and K. Nakamura, “Fast-forward of adiabatic dynamics in quantum mechanics,” Proc. R. Soc. A 466(2116), 1135–1154 (2010).
    [Crossref]
  23. A. Ruschhaupt, X. Chen, D. Alonso, and J. G. Muga, “Optimally robust shortcuts to population inversion in two-level quantum systems,” New J. Phys. 14, 093040 (2012).
    [Crossref]
  24. D. Daems, A. Ruschhaupt, D. Sugny, and S. Guerin, “Robust quantum control by a single-shot shaped pulse,” Phys. Rev. Lett. 111, 050404 (2013).
    [Crossref] [PubMed]
  25. Y. Du, Z. Liang, Y. Chao, X. Yue, Q. Lv, W. Huang, X. Chen, H. Yan, and S. Zhu, “Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms,” Nat. Commun. 7, 12479 (2016).
    [Crossref] [PubMed]
  26. Y. C. Li and X. Chen, “Shortcut to adiabatic population transfer in quantum three-level systems: effective two-level problems and feasible counter-diabatic driving,” Phys. Rev A 94, 063411 (2016).
    [Crossref]
  27. A. Baksic, Hugo Ribeiro, and A. A. Clerk, “Speeding up adiabatic quantum state transfer by using dressed states,” Phys. Rev. Lett. 116, 230503 (2016).
    [Crossref] [PubMed]
  28. B. B. Zhou, A. Baksic, Hugo Ribeiro, C. G. Yale, F. J. Heremans, Paul C. Jerger, A. Auer, G. Burkard, A. A. Clerk, and D. Awschalom, “Accelerated quantum controal sign superadiabatic dynamics in a solid-state lambda system,” Nature Phys. 13, 330 (2017).
    [Crossref]
  29. H. L. Mortensen, J. Jakob, W. H. Sørensen, K. Mølmer, and J. F. Sherson, “Fast state transfer in a Λ-system: a shortcut-to-adiabaticity approach to robust and resource optimized control,” New J. Phys. 20, 025009 (2018).
    [Crossref]
  30. Y. Ban, L. Jiang, Y. Li, L. Wang, and X. Chen, “Fast creation and transfer of coherence in triple quantum dots by using shortcuts to adiabaticity,” Opt. Express 26(24), 31137 (2018).
    [Crossref]
  31. “Quantum Technologies foster a new initiative in Europe,” (2018). https://qt.eu/news/quantum-technologies-launch-press-release/ .
  32. M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Witting, J. J. Longdell, and M. J. Sellars, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature 517, 177–180 (2015).
    [Crossref] [PubMed]
  33. R. W. Equall, Y. Sun, R. L. Cone, and R. M. Macfarlane, “Ultraslow optical dephasing in Eu3+:Y2SiO5,” Phys. Rev. Lett. 72, 2179 (1994).
    [Crossref] [PubMed]
  34. A. Walther, L. Rippe, Y. Yan, J. Karlsson, D. Serrano, A. N. Nilsson, S. Bengtsson, and S. Kröll, “High-fidelity readout scheme for rare-earth solid-state quantum computing,” Phys. Rev. A. 92, 022319 (2015).
    [Crossref]
  35. I. Roos and K. Mølmer, “Quantum computing with an inhomogeneously broadened ensemble of ions: Suppression of errors from detuning variations by specially adapted pulses and coherent population trapping,” Phys. Rev. A 69, 022321 (2004).
    [Crossref]
  36. K. Paul and A. K. Sarma, “Shortcut to adiabatic passage in a waveguide coupler with a complex-hyperbolic-secant scheme,” Phys. Rev. A 91, 053406 (2015).
    [Crossref]
  37. S. Tseng and X. Chen, “Engineering of fast mode conversion in multimode waveguides,” Opt. Lett. 37(24), 5118–5120 (2012).
    [Crossref] [PubMed]
  38. K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003 (1998).
    [Crossref]
  39. H. R. Lewis and W. B. Riesenfeld, “An exact quantum theory of the time dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field,” J. Math. Phys. 10, 1458 (1969).
    [Crossref]
  40. Y. Z. Lai, J. Q. Liang, H. J. W. Müller-Kirsten, and J. G. Zhou, “Time-dependent quantum systems and the invariant Hermitian operator,” Phys. Rev. A 53, 3691 (1996).
    [Crossref] [PubMed]
  41. R. W. Equall, R. L. Cone, and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B 52, 3963 (1995).
    [Crossref]
  42. N. V. Vitanov, K.-A. Suominen, and B.W. Shore, “Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage,” J. Phys. B 32, 4535–4546 (1999).
    [Crossref]
  43. U. Güngördü, Y. Wan, M. A. Fashihi, and M. Nakahara, “Dynamical invariants for quantum control of four-level systems,” Phys. Rev. A 86, 062312 (2012).
    [Crossref]
  44. N. V. Vitanov, K.-A. Suominen, and B.W. Shore, “Hamiltonian design to prepare arbitrary states of four-level systems,” Phys. Rev. A 97, 013830 (2018).
    [Crossref]
  45. Y. C. Li, X. Chen, J G Muga, and E Ya Sherman, “ubit gates with simultaneous transport in double quantum dots,” New J. Phys. 20, 113029 (2018).
    [Crossref]

2018 (5)

N. Didier, E. A. Sete, M. P. da Silva, and C. Rigetti, “Analytical modeling of parametrically modulated transmon qubits,” Phys. Rev. A 97, 022330 (2018).
[Crossref]

H. L. Mortensen, J. Jakob, W. H. Sørensen, K. Mølmer, and J. F. Sherson, “Fast state transfer in a Λ-system: a shortcut-to-adiabaticity approach to robust and resource optimized control,” New J. Phys. 20, 025009 (2018).
[Crossref]

Y. Ban, L. Jiang, Y. Li, L. Wang, and X. Chen, “Fast creation and transfer of coherence in triple quantum dots by using shortcuts to adiabaticity,” Opt. Express 26(24), 31137 (2018).
[Crossref]

N. V. Vitanov, K.-A. Suominen, and B.W. Shore, “Hamiltonian design to prepare arbitrary states of four-level systems,” Phys. Rev. A 97, 013830 (2018).
[Crossref]

Y. C. Li, X. Chen, J G Muga, and E Ya Sherman, “ubit gates with simultaneous transport in double quantum dots,” New J. Phys. 20, 113029 (2018).
[Crossref]

2017 (2)

B. B. Zhou, A. Baksic, Hugo Ribeiro, C. G. Yale, F. J. Heremans, Paul C. Jerger, A. Auer, G. Burkard, A. A. Clerk, and D. Awschalom, “Accelerated quantum controal sign superadiabatic dynamics in a solid-state lambda system,” Nature Phys. 13, 330 (2017).
[Crossref]

L. Van-Damme, D. Schraft, Genko T. Genov, D. Sugny, T. Halfmann, and S. Guérin, “Robust NOT gate by single-shot-shaped pulses: Demonstration of the efficiency of the pulses in rephasing atomic coherences,” Phys. Rev. A 96, 022309 (2017).
[Crossref]

2016 (3)

Y. Du, Z. Liang, Y. Chao, X. Yue, Q. Lv, W. Huang, X. Chen, H. Yan, and S. Zhu, “Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms,” Nat. Commun. 7, 12479 (2016).
[Crossref] [PubMed]

Y. C. Li and X. Chen, “Shortcut to adiabatic population transfer in quantum three-level systems: effective two-level problems and feasible counter-diabatic driving,” Phys. Rev A 94, 063411 (2016).
[Crossref]

A. Baksic, Hugo Ribeiro, and A. A. Clerk, “Speeding up adiabatic quantum state transfer by using dressed states,” Phys. Rev. Lett. 116, 230503 (2016).
[Crossref] [PubMed]

2015 (4)

M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Witting, J. J. Longdell, and M. J. Sellars, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature 517, 177–180 (2015).
[Crossref] [PubMed]

K. Paul and A. K. Sarma, “Shortcut to adiabatic passage in a waveguide coupler with a complex-hyperbolic-secant scheme,” Phys. Rev. A 91, 053406 (2015).
[Crossref]

T. Nöbauer, A. Angerer, B. Bartels, M. Trupke, S. Rotter, J. Schmiedmayer, Florian Mintert, and J. Majer, “Smooth optimal quantum control for robust solid-state spin magnetometry,” Phys. Rev. Lett. 115, 190801 (2015).
[Crossref] [PubMed]

A. Walther, L. Rippe, Y. Yan, J. Karlsson, D. Serrano, A. N. Nilsson, S. Bengtsson, and S. Kröll, “High-fidelity readout scheme for rare-earth solid-state quantum computing,” Phys. Rev. A. 92, 022319 (2015).
[Crossref]

2013 (1)

D. Daems, A. Ruschhaupt, D. Sugny, and S. Guerin, “Robust quantum control by a single-shot shaped pulse,” Phys. Rev. Lett. 111, 050404 (2013).
[Crossref] [PubMed]

2012 (6)

A. Ruschhaupt, X. Chen, D. Alonso, and J. G. Muga, “Optimally robust shortcuts to population inversion in two-level quantum systems,” New J. Phys. 14, 093040 (2012).
[Crossref]

X. Chen and J. G. Muga, “Engineering of fast population transfer in three-level systems,”, Phys. Rev. A 86, 033405 (2012).
[Crossref]

S. Tseng and X. Chen, “Engineering of fast mode conversion in multimode waveguides,” Opt. Lett. 37(24), 5118–5120 (2012).
[Crossref] [PubMed]

K. Kobzar, S. Ehni, T. E. Skinner, S. J. Glaser, and B. Luy, “Exploring the limits of broadband 90° and 180° universal rotation pulses,” J. Magn. Reson. 225, 142–160 (2012).
[Crossref] [PubMed]

A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, “Surface codes: Towards practical large-scale quantum computation,” Phys. Rev. A 86, 032324 (2012).
[Crossref]

U. Güngördü, Y. Wan, M. A. Fashihi, and M. Nakahara, “Dynamical invariants for quantum control of four-level systems,” Phys. Rev. A 86, 062312 (2012).
[Crossref]

2011 (2)

B. T. Torosov, S. Guérin, and N. V. Vitanov, “High-Fidelity Adiabatic Passage by Composite Sequences of Chirped Pulses,” Phys. Rev. Lett. 106, 233001 (2011).
[Crossref] [PubMed]

X. Chen, E. Torrontegui, and J. G. Muga, “Lewis-Riescenfeld invariants and transitionless quantum driving,” Phys. Rev. A 83, 062116 (2011).
[Crossref]

2010 (3)

X. Chen, I. Lizuain, A. Ruschhaupt, D. Guéry-Odelin, and J. G. Muga, “Shortcut to adiabatic passage in two and three level atoms,” Phys. Rev. Lett. 105, 123003 (2010).
[Crossref]

S. Masuda and K. Nakamura, “Fast-forward of adiabatic dynamics in quantum mechanics,” Proc. R. Soc. A 466(2116), 1135–1154 (2010).
[Crossref]

X. Chen, A. Ruschhaupt, S. Schmidt, A. del Campo, D. Guéry-Odelin, and J. G. Muga, “Fast Optimal Frictionless Atom Cooling in Harmonic Traps: Shortcut to Adiabaticity,” Phys. Rev. Lett. 104, 063002 (2010).
[Crossref] [PubMed]

2009 (3)

G. S. Vasilev, A. Kuhn, and N. V. Vitanov, “Optimum pulse shapes for stimulated Raman adiabatic passage,” Phys. Rev. A 80, 013417 (2009).
[Crossref]

A. Walther, B. Julsgaard, L. Rippe, Y. Ying, S. Kröll, R. Fisher, and S. Glaser, “Extracting high fidelity quantum computer hardware from random systems,” Phys. Scr. T137, 014009 (2009).
[Crossref]

M V Berry, “Transitionless quantum driving,” J. Phys. A: Math. Theor. 42(36), 365303 (2009).
[Crossref]

2008 (1)

L. Rippe, B. Julsgaard, A. Walther, Y. Ying, and S. Kröll, “Experimental quantum-state tomography of a solid-state qubit,” Phys. Rev. A 77, 022307 (2008).
[Crossref]

2007 (1)

P. Král, I. Thanopulos, and M. Shapiro, “Colloquium: Coherently controlled adiabatic passage,” Rev. Mod. Phys. 79(1), 53 (2007).
[Crossref]

2004 (1)

I. Roos and K. Mølmer, “Quantum computing with an inhomogeneously broadened ensemble of ions: Suppression of errors from detuning variations by specially adapted pulses and coherent population trapping,” Phys. Rev. A 69, 022321 (2004).
[Crossref]

2002 (1)

N. Ohlsson, R. K. Mohan, and S. Kröll, “Quantum computer hardware based on rare-earth-ion-doped inorganic crystals,” Opt. Commun. 201(1–3), 71–77 (2002).
[Crossref]

2001 (1)

N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-induced population transfer by adiabatic passage techniques,” Rnnu. Rev. Phus. Chem. 52, 763 (2001).
[Crossref]

1999 (1)

N. V. Vitanov, K.-A. Suominen, and B.W. Shore, “Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage,” J. Phys. B 32, 4535–4546 (1999).
[Crossref]

1998 (2)

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003 (1998).
[Crossref]

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003 (1998).
[Crossref]

1997 (1)

V. S. Mallinovsky and D. J. Tannor, “Simple and robust extension of the stimulated Raman adiabatic passage technique to N-level systems,” Phys. Rev. A 56, 4929 (1997).
[Crossref]

1996 (1)

Y. Z. Lai, J. Q. Liang, H. J. W. Müller-Kirsten, and J. G. Zhou, “Time-dependent quantum systems and the invariant Hermitian operator,” Phys. Rev. A 53, 3691 (1996).
[Crossref] [PubMed]

1995 (1)

R. W. Equall, R. L. Cone, and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B 52, 3963 (1995).
[Crossref]

1994 (1)

R. W. Equall, Y. Sun, R. L. Cone, and R. M. Macfarlane, “Ultraslow optical dephasing in Eu3+:Y2SiO5,” Phys. Rev. Lett. 72, 2179 (1994).
[Crossref] [PubMed]

1986 (1)

M. H. Levitt, “Composite pulses,” Progress in NMR Spectroscopy 18, 61–122 (1986).
[Crossref]

1969 (1)

H. R. Lewis and W. B. Riesenfeld, “An exact quantum theory of the time dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field,” J. Math. Phys. 10, 1458 (1969).
[Crossref]

Ahlefeldt, R. L.

M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Witting, J. J. Longdell, and M. J. Sellars, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature 517, 177–180 (2015).
[Crossref] [PubMed]

Alonso, D.

A. Ruschhaupt, X. Chen, D. Alonso, and J. G. Muga, “Optimally robust shortcuts to population inversion in two-level quantum systems,” New J. Phys. 14, 093040 (2012).
[Crossref]

Angerer, A.

T. Nöbauer, A. Angerer, B. Bartels, M. Trupke, S. Rotter, J. Schmiedmayer, Florian Mintert, and J. Majer, “Smooth optimal quantum control for robust solid-state spin magnetometry,” Phys. Rev. Lett. 115, 190801 (2015).
[Crossref] [PubMed]

Auer, A.

B. B. Zhou, A. Baksic, Hugo Ribeiro, C. G. Yale, F. J. Heremans, Paul C. Jerger, A. Auer, G. Burkard, A. A. Clerk, and D. Awschalom, “Accelerated quantum controal sign superadiabatic dynamics in a solid-state lambda system,” Nature Phys. 13, 330 (2017).
[Crossref]

Awschalom, D.

B. B. Zhou, A. Baksic, Hugo Ribeiro, C. G. Yale, F. J. Heremans, Paul C. Jerger, A. Auer, G. Burkard, A. A. Clerk, and D. Awschalom, “Accelerated quantum controal sign superadiabatic dynamics in a solid-state lambda system,” Nature Phys. 13, 330 (2017).
[Crossref]

Baksic, A.

B. B. Zhou, A. Baksic, Hugo Ribeiro, C. G. Yale, F. J. Heremans, Paul C. Jerger, A. Auer, G. Burkard, A. A. Clerk, and D. Awschalom, “Accelerated quantum controal sign superadiabatic dynamics in a solid-state lambda system,” Nature Phys. 13, 330 (2017).
[Crossref]

A. Baksic, Hugo Ribeiro, and A. A. Clerk, “Speeding up adiabatic quantum state transfer by using dressed states,” Phys. Rev. Lett. 116, 230503 (2016).
[Crossref] [PubMed]

Ban, Y.

Y. Ban, L. Jiang, Y. Li, L. Wang, and X. Chen, “Fast creation and transfer of coherence in triple quantum dots by using shortcuts to adiabaticity,” Opt. Express 26(24), 31137 (2018).
[Crossref]

Bartels, B.

T. Nöbauer, A. Angerer, B. Bartels, M. Trupke, S. Rotter, J. Schmiedmayer, Florian Mintert, and J. Majer, “Smooth optimal quantum control for robust solid-state spin magnetometry,” Phys. Rev. Lett. 115, 190801 (2015).
[Crossref] [PubMed]

Bartholomew, J. G.

M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Witting, J. J. Longdell, and M. J. Sellars, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature 517, 177–180 (2015).
[Crossref] [PubMed]

Beavan, S. E.

M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Witting, J. J. Longdell, and M. J. Sellars, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature 517, 177–180 (2015).
[Crossref] [PubMed]

Bengtsson, S.

A. Walther, L. Rippe, Y. Yan, J. Karlsson, D. Serrano, A. N. Nilsson, S. Bengtsson, and S. Kröll, “High-fidelity readout scheme for rare-earth solid-state quantum computing,” Phys. Rev. A. 92, 022319 (2015).
[Crossref]

Bergmann, K.

N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-induced population transfer by adiabatic passage techniques,” Rnnu. Rev. Phus. Chem. 52, 763 (2001).
[Crossref]

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003 (1998).
[Crossref]

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003 (1998).
[Crossref]

Berry, M V

M V Berry, “Transitionless quantum driving,” J. Phys. A: Math. Theor. 42(36), 365303 (2009).
[Crossref]

Burkard, G.

B. B. Zhou, A. Baksic, Hugo Ribeiro, C. G. Yale, F. J. Heremans, Paul C. Jerger, A. Auer, G. Burkard, A. A. Clerk, and D. Awschalom, “Accelerated quantum controal sign superadiabatic dynamics in a solid-state lambda system,” Nature Phys. 13, 330 (2017).
[Crossref]

Bylander, J.

J. Bylander, Microtechnology and Nanoscience, Chalmers University of Technology, Kemivägen 9, Gothenburg, Sweden, SE-41296 (personal communication, 2018).

Chao, Y.

Y. Du, Z. Liang, Y. Chao, X. Yue, Q. Lv, W. Huang, X. Chen, H. Yan, and S. Zhu, “Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms,” Nat. Commun. 7, 12479 (2016).
[Crossref] [PubMed]

Chen, X.

Y. Ban, L. Jiang, Y. Li, L. Wang, and X. Chen, “Fast creation and transfer of coherence in triple quantum dots by using shortcuts to adiabaticity,” Opt. Express 26(24), 31137 (2018).
[Crossref]

Y. C. Li, X. Chen, J G Muga, and E Ya Sherman, “ubit gates with simultaneous transport in double quantum dots,” New J. Phys. 20, 113029 (2018).
[Crossref]

Y. C. Li and X. Chen, “Shortcut to adiabatic population transfer in quantum three-level systems: effective two-level problems and feasible counter-diabatic driving,” Phys. Rev A 94, 063411 (2016).
[Crossref]

Y. Du, Z. Liang, Y. Chao, X. Yue, Q. Lv, W. Huang, X. Chen, H. Yan, and S. Zhu, “Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms,” Nat. Commun. 7, 12479 (2016).
[Crossref] [PubMed]

A. Ruschhaupt, X. Chen, D. Alonso, and J. G. Muga, “Optimally robust shortcuts to population inversion in two-level quantum systems,” New J. Phys. 14, 093040 (2012).
[Crossref]

X. Chen and J. G. Muga, “Engineering of fast population transfer in three-level systems,”, Phys. Rev. A 86, 033405 (2012).
[Crossref]

S. Tseng and X. Chen, “Engineering of fast mode conversion in multimode waveguides,” Opt. Lett. 37(24), 5118–5120 (2012).
[Crossref] [PubMed]

X. Chen, E. Torrontegui, and J. G. Muga, “Lewis-Riescenfeld invariants and transitionless quantum driving,” Phys. Rev. A 83, 062116 (2011).
[Crossref]

X. Chen, I. Lizuain, A. Ruschhaupt, D. Guéry-Odelin, and J. G. Muga, “Shortcut to adiabatic passage in two and three level atoms,” Phys. Rev. Lett. 105, 123003 (2010).
[Crossref]

X. Chen, A. Ruschhaupt, S. Schmidt, A. del Campo, D. Guéry-Odelin, and J. G. Muga, “Fast Optimal Frictionless Atom Cooling in Harmonic Traps: Shortcut to Adiabaticity,” Phys. Rev. Lett. 104, 063002 (2010).
[Crossref] [PubMed]

Cleland, A. N.

A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, “Surface codes: Towards practical large-scale quantum computation,” Phys. Rev. A 86, 032324 (2012).
[Crossref]

Clerk, A. A.

B. B. Zhou, A. Baksic, Hugo Ribeiro, C. G. Yale, F. J. Heremans, Paul C. Jerger, A. Auer, G. Burkard, A. A. Clerk, and D. Awschalom, “Accelerated quantum controal sign superadiabatic dynamics in a solid-state lambda system,” Nature Phys. 13, 330 (2017).
[Crossref]

A. Baksic, Hugo Ribeiro, and A. A. Clerk, “Speeding up adiabatic quantum state transfer by using dressed states,” Phys. Rev. Lett. 116, 230503 (2016).
[Crossref] [PubMed]

Cone, R. L.

R. W. Equall, R. L. Cone, and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B 52, 3963 (1995).
[Crossref]

R. W. Equall, Y. Sun, R. L. Cone, and R. M. Macfarlane, “Ultraslow optical dephasing in Eu3+:Y2SiO5,” Phys. Rev. Lett. 72, 2179 (1994).
[Crossref] [PubMed]

da Silva, M. P.

N. Didier, E. A. Sete, M. P. da Silva, and C. Rigetti, “Analytical modeling of parametrically modulated transmon qubits,” Phys. Rev. A 97, 022330 (2018).
[Crossref]

Daems, D.

D. Daems, A. Ruschhaupt, D. Sugny, and S. Guerin, “Robust quantum control by a single-shot shaped pulse,” Phys. Rev. Lett. 111, 050404 (2013).
[Crossref] [PubMed]

del Campo, A.

X. Chen, A. Ruschhaupt, S. Schmidt, A. del Campo, D. Guéry-Odelin, and J. G. Muga, “Fast Optimal Frictionless Atom Cooling in Harmonic Traps: Shortcut to Adiabaticity,” Phys. Rev. Lett. 104, 063002 (2010).
[Crossref] [PubMed]

Didier, N.

N. Didier, E. A. Sete, M. P. da Silva, and C. Rigetti, “Analytical modeling of parametrically modulated transmon qubits,” Phys. Rev. A 97, 022330 (2018).
[Crossref]

Du, Y.

Y. Du, Z. Liang, Y. Chao, X. Yue, Q. Lv, W. Huang, X. Chen, H. Yan, and S. Zhu, “Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms,” Nat. Commun. 7, 12479 (2016).
[Crossref] [PubMed]

Ehni, S.

K. Kobzar, S. Ehni, T. E. Skinner, S. J. Glaser, and B. Luy, “Exploring the limits of broadband 90° and 180° universal rotation pulses,” J. Magn. Reson. 225, 142–160 (2012).
[Crossref] [PubMed]

Equall, R. W.

R. W. Equall, R. L. Cone, and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B 52, 3963 (1995).
[Crossref]

R. W. Equall, Y. Sun, R. L. Cone, and R. M. Macfarlane, “Ultraslow optical dephasing in Eu3+:Y2SiO5,” Phys. Rev. Lett. 72, 2179 (1994).
[Crossref] [PubMed]

Fashihi, M. A.

U. Güngördü, Y. Wan, M. A. Fashihi, and M. Nakahara, “Dynamical invariants for quantum control of four-level systems,” Phys. Rev. A 86, 062312 (2012).
[Crossref]

Fisher, R.

A. Walther, B. Julsgaard, L. Rippe, Y. Ying, S. Kröll, R. Fisher, and S. Glaser, “Extracting high fidelity quantum computer hardware from random systems,” Phys. Scr. T137, 014009 (2009).
[Crossref]

Fowler, A. G.

A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, “Surface codes: Towards practical large-scale quantum computation,” Phys. Rev. A 86, 032324 (2012).
[Crossref]

Genov, Genko T.

L. Van-Damme, D. Schraft, Genko T. Genov, D. Sugny, T. Halfmann, and S. Guérin, “Robust NOT gate by single-shot-shaped pulses: Demonstration of the efficiency of the pulses in rephasing atomic coherences,” Phys. Rev. A 96, 022309 (2017).
[Crossref]

Glaser, S.

A. Walther, B. Julsgaard, L. Rippe, Y. Ying, S. Kröll, R. Fisher, and S. Glaser, “Extracting high fidelity quantum computer hardware from random systems,” Phys. Scr. T137, 014009 (2009).
[Crossref]

Glaser, S. J.

K. Kobzar, S. Ehni, T. E. Skinner, S. J. Glaser, and B. Luy, “Exploring the limits of broadband 90° and 180° universal rotation pulses,” J. Magn. Reson. 225, 142–160 (2012).
[Crossref] [PubMed]

Guerin, S.

D. Daems, A. Ruschhaupt, D. Sugny, and S. Guerin, “Robust quantum control by a single-shot shaped pulse,” Phys. Rev. Lett. 111, 050404 (2013).
[Crossref] [PubMed]

Guérin, S.

L. Van-Damme, D. Schraft, Genko T. Genov, D. Sugny, T. Halfmann, and S. Guérin, “Robust NOT gate by single-shot-shaped pulses: Demonstration of the efficiency of the pulses in rephasing atomic coherences,” Phys. Rev. A 96, 022309 (2017).
[Crossref]

B. T. Torosov, S. Guérin, and N. V. Vitanov, “High-Fidelity Adiabatic Passage by Composite Sequences of Chirped Pulses,” Phys. Rev. Lett. 106, 233001 (2011).
[Crossref] [PubMed]

Guéry-Odelin, D.

X. Chen, A. Ruschhaupt, S. Schmidt, A. del Campo, D. Guéry-Odelin, and J. G. Muga, “Fast Optimal Frictionless Atom Cooling in Harmonic Traps: Shortcut to Adiabaticity,” Phys. Rev. Lett. 104, 063002 (2010).
[Crossref] [PubMed]

X. Chen, I. Lizuain, A. Ruschhaupt, D. Guéry-Odelin, and J. G. Muga, “Shortcut to adiabatic passage in two and three level atoms,” Phys. Rev. Lett. 105, 123003 (2010).
[Crossref]

Güngördü, U.

U. Güngördü, Y. Wan, M. A. Fashihi, and M. Nakahara, “Dynamical invariants for quantum control of four-level systems,” Phys. Rev. A 86, 062312 (2012).
[Crossref]

Halfmann, T.

L. Van-Damme, D. Schraft, Genko T. Genov, D. Sugny, T. Halfmann, and S. Guérin, “Robust NOT gate by single-shot-shaped pulses: Demonstration of the efficiency of the pulses in rephasing atomic coherences,” Phys. Rev. A 96, 022309 (2017).
[Crossref]

N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-induced population transfer by adiabatic passage techniques,” Rnnu. Rev. Phus. Chem. 52, 763 (2001).
[Crossref]

Hedges, M. P.

M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Witting, J. J. Longdell, and M. J. Sellars, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature 517, 177–180 (2015).
[Crossref] [PubMed]

Heremans, F. J.

B. B. Zhou, A. Baksic, Hugo Ribeiro, C. G. Yale, F. J. Heremans, Paul C. Jerger, A. Auer, G. Burkard, A. A. Clerk, and D. Awschalom, “Accelerated quantum controal sign superadiabatic dynamics in a solid-state lambda system,” Nature Phys. 13, 330 (2017).
[Crossref]

Huang, W.

Y. Du, Z. Liang, Y. Chao, X. Yue, Q. Lv, W. Huang, X. Chen, H. Yan, and S. Zhu, “Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms,” Nat. Commun. 7, 12479 (2016).
[Crossref] [PubMed]

Jakob, J.

H. L. Mortensen, J. Jakob, W. H. Sørensen, K. Mølmer, and J. F. Sherson, “Fast state transfer in a Λ-system: a shortcut-to-adiabaticity approach to robust and resource optimized control,” New J. Phys. 20, 025009 (2018).
[Crossref]

Jerger, Paul C.

B. B. Zhou, A. Baksic, Hugo Ribeiro, C. G. Yale, F. J. Heremans, Paul C. Jerger, A. Auer, G. Burkard, A. A. Clerk, and D. Awschalom, “Accelerated quantum controal sign superadiabatic dynamics in a solid-state lambda system,” Nature Phys. 13, 330 (2017).
[Crossref]

Jiang, L.

Y. Ban, L. Jiang, Y. Li, L. Wang, and X. Chen, “Fast creation and transfer of coherence in triple quantum dots by using shortcuts to adiabaticity,” Opt. Express 26(24), 31137 (2018).
[Crossref]

Julsgaard, B.

A. Walther, B. Julsgaard, L. Rippe, Y. Ying, S. Kröll, R. Fisher, and S. Glaser, “Extracting high fidelity quantum computer hardware from random systems,” Phys. Scr. T137, 014009 (2009).
[Crossref]

L. Rippe, B. Julsgaard, A. Walther, Y. Ying, and S. Kröll, “Experimental quantum-state tomography of a solid-state qubit,” Phys. Rev. A 77, 022307 (2008).
[Crossref]

Karlsson, J.

A. Walther, L. Rippe, Y. Yan, J. Karlsson, D. Serrano, A. N. Nilsson, S. Bengtsson, and S. Kröll, “High-fidelity readout scheme for rare-earth solid-state quantum computing,” Phys. Rev. A. 92, 022319 (2015).
[Crossref]

Kobzar, K.

K. Kobzar, S. Ehni, T. E. Skinner, S. J. Glaser, and B. Luy, “Exploring the limits of broadband 90° and 180° universal rotation pulses,” J. Magn. Reson. 225, 142–160 (2012).
[Crossref] [PubMed]

Král, P.

P. Král, I. Thanopulos, and M. Shapiro, “Colloquium: Coherently controlled adiabatic passage,” Rev. Mod. Phys. 79(1), 53 (2007).
[Crossref]

Kröll, S.

A. Walther, L. Rippe, Y. Yan, J. Karlsson, D. Serrano, A. N. Nilsson, S. Bengtsson, and S. Kröll, “High-fidelity readout scheme for rare-earth solid-state quantum computing,” Phys. Rev. A. 92, 022319 (2015).
[Crossref]

A. Walther, B. Julsgaard, L. Rippe, Y. Ying, S. Kröll, R. Fisher, and S. Glaser, “Extracting high fidelity quantum computer hardware from random systems,” Phys. Scr. T137, 014009 (2009).
[Crossref]

L. Rippe, B. Julsgaard, A. Walther, Y. Ying, and S. Kröll, “Experimental quantum-state tomography of a solid-state qubit,” Phys. Rev. A 77, 022307 (2008).
[Crossref]

N. Ohlsson, R. K. Mohan, and S. Kröll, “Quantum computer hardware based on rare-earth-ion-doped inorganic crystals,” Opt. Commun. 201(1–3), 71–77 (2002).
[Crossref]

Kuhn, A.

G. S. Vasilev, A. Kuhn, and N. V. Vitanov, “Optimum pulse shapes for stimulated Raman adiabatic passage,” Phys. Rev. A 80, 013417 (2009).
[Crossref]

Lai, Y. Z.

Y. Z. Lai, J. Q. Liang, H. J. W. Müller-Kirsten, and J. G. Zhou, “Time-dependent quantum systems and the invariant Hermitian operator,” Phys. Rev. A 53, 3691 (1996).
[Crossref] [PubMed]

Levitt, M. H.

M. H. Levitt, “Composite pulses,” Progress in NMR Spectroscopy 18, 61–122 (1986).
[Crossref]

Lewis, H. R.

H. R. Lewis and W. B. Riesenfeld, “An exact quantum theory of the time dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field,” J. Math. Phys. 10, 1458 (1969).
[Crossref]

Li, Y.

Y. Ban, L. Jiang, Y. Li, L. Wang, and X. Chen, “Fast creation and transfer of coherence in triple quantum dots by using shortcuts to adiabaticity,” Opt. Express 26(24), 31137 (2018).
[Crossref]

Li, Y. C.

Y. C. Li, X. Chen, J G Muga, and E Ya Sherman, “ubit gates with simultaneous transport in double quantum dots,” New J. Phys. 20, 113029 (2018).
[Crossref]

Y. C. Li and X. Chen, “Shortcut to adiabatic population transfer in quantum three-level systems: effective two-level problems and feasible counter-diabatic driving,” Phys. Rev A 94, 063411 (2016).
[Crossref]

Liang, J. Q.

Y. Z. Lai, J. Q. Liang, H. J. W. Müller-Kirsten, and J. G. Zhou, “Time-dependent quantum systems and the invariant Hermitian operator,” Phys. Rev. A 53, 3691 (1996).
[Crossref] [PubMed]

Liang, Z.

Y. Du, Z. Liang, Y. Chao, X. Yue, Q. Lv, W. Huang, X. Chen, H. Yan, and S. Zhu, “Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms,” Nat. Commun. 7, 12479 (2016).
[Crossref] [PubMed]

Lizuain, I.

X. Chen, I. Lizuain, A. Ruschhaupt, D. Guéry-Odelin, and J. G. Muga, “Shortcut to adiabatic passage in two and three level atoms,” Phys. Rev. Lett. 105, 123003 (2010).
[Crossref]

Longdell, J. J.

M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Witting, J. J. Longdell, and M. J. Sellars, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature 517, 177–180 (2015).
[Crossref] [PubMed]

Luy, B.

K. Kobzar, S. Ehni, T. E. Skinner, S. J. Glaser, and B. Luy, “Exploring the limits of broadband 90° and 180° universal rotation pulses,” J. Magn. Reson. 225, 142–160 (2012).
[Crossref] [PubMed]

Lv, Q.

Y. Du, Z. Liang, Y. Chao, X. Yue, Q. Lv, W. Huang, X. Chen, H. Yan, and S. Zhu, “Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms,” Nat. Commun. 7, 12479 (2016).
[Crossref] [PubMed]

Macfarlane, R. M.

R. W. Equall, R. L. Cone, and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B 52, 3963 (1995).
[Crossref]

R. W. Equall, Y. Sun, R. L. Cone, and R. M. Macfarlane, “Ultraslow optical dephasing in Eu3+:Y2SiO5,” Phys. Rev. Lett. 72, 2179 (1994).
[Crossref] [PubMed]

Majer, J.

T. Nöbauer, A. Angerer, B. Bartels, M. Trupke, S. Rotter, J. Schmiedmayer, Florian Mintert, and J. Majer, “Smooth optimal quantum control for robust solid-state spin magnetometry,” Phys. Rev. Lett. 115, 190801 (2015).
[Crossref] [PubMed]

Mallinovsky, V. S.

V. S. Mallinovsky and D. J. Tannor, “Simple and robust extension of the stimulated Raman adiabatic passage technique to N-level systems,” Phys. Rev. A 56, 4929 (1997).
[Crossref]

Mariantoni, M.

A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, “Surface codes: Towards practical large-scale quantum computation,” Phys. Rev. A 86, 032324 (2012).
[Crossref]

Martinis, J. M.

A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, “Surface codes: Towards practical large-scale quantum computation,” Phys. Rev. A 86, 032324 (2012).
[Crossref]

Masuda, S.

S. Masuda and K. Nakamura, “Fast-forward of adiabatic dynamics in quantum mechanics,” Proc. R. Soc. A 466(2116), 1135–1154 (2010).
[Crossref]

Mintert, Florian

T. Nöbauer, A. Angerer, B. Bartels, M. Trupke, S. Rotter, J. Schmiedmayer, Florian Mintert, and J. Majer, “Smooth optimal quantum control for robust solid-state spin magnetometry,” Phys. Rev. Lett. 115, 190801 (2015).
[Crossref] [PubMed]

Mohan, R. K.

N. Ohlsson, R. K. Mohan, and S. Kröll, “Quantum computer hardware based on rare-earth-ion-doped inorganic crystals,” Opt. Commun. 201(1–3), 71–77 (2002).
[Crossref]

Mølmer, K.

H. L. Mortensen, J. Jakob, W. H. Sørensen, K. Mølmer, and J. F. Sherson, “Fast state transfer in a Λ-system: a shortcut-to-adiabaticity approach to robust and resource optimized control,” New J. Phys. 20, 025009 (2018).
[Crossref]

I. Roos and K. Mølmer, “Quantum computing with an inhomogeneously broadened ensemble of ions: Suppression of errors from detuning variations by specially adapted pulses and coherent population trapping,” Phys. Rev. A 69, 022321 (2004).
[Crossref]

Mortensen, H. L.

H. L. Mortensen, J. Jakob, W. H. Sørensen, K. Mølmer, and J. F. Sherson, “Fast state transfer in a Λ-system: a shortcut-to-adiabaticity approach to robust and resource optimized control,” New J. Phys. 20, 025009 (2018).
[Crossref]

Muga, J G

Y. C. Li, X. Chen, J G Muga, and E Ya Sherman, “ubit gates with simultaneous transport in double quantum dots,” New J. Phys. 20, 113029 (2018).
[Crossref]

Muga, J. G.

A. Ruschhaupt, X. Chen, D. Alonso, and J. G. Muga, “Optimally robust shortcuts to population inversion in two-level quantum systems,” New J. Phys. 14, 093040 (2012).
[Crossref]

X. Chen and J. G. Muga, “Engineering of fast population transfer in three-level systems,”, Phys. Rev. A 86, 033405 (2012).
[Crossref]

X. Chen, E. Torrontegui, and J. G. Muga, “Lewis-Riescenfeld invariants and transitionless quantum driving,” Phys. Rev. A 83, 062116 (2011).
[Crossref]

X. Chen, I. Lizuain, A. Ruschhaupt, D. Guéry-Odelin, and J. G. Muga, “Shortcut to adiabatic passage in two and three level atoms,” Phys. Rev. Lett. 105, 123003 (2010).
[Crossref]

X. Chen, A. Ruschhaupt, S. Schmidt, A. del Campo, D. Guéry-Odelin, and J. G. Muga, “Fast Optimal Frictionless Atom Cooling in Harmonic Traps: Shortcut to Adiabaticity,” Phys. Rev. Lett. 104, 063002 (2010).
[Crossref] [PubMed]

Müller-Kirsten, H. J. W.

Y. Z. Lai, J. Q. Liang, H. J. W. Müller-Kirsten, and J. G. Zhou, “Time-dependent quantum systems and the invariant Hermitian operator,” Phys. Rev. A 53, 3691 (1996).
[Crossref] [PubMed]

Nakahara, M.

U. Güngördü, Y. Wan, M. A. Fashihi, and M. Nakahara, “Dynamical invariants for quantum control of four-level systems,” Phys. Rev. A 86, 062312 (2012).
[Crossref]

Nakamura, K.

S. Masuda and K. Nakamura, “Fast-forward of adiabatic dynamics in quantum mechanics,” Proc. R. Soc. A 466(2116), 1135–1154 (2010).
[Crossref]

Nilsson, A. N.

A. Walther, L. Rippe, Y. Yan, J. Karlsson, D. Serrano, A. N. Nilsson, S. Bengtsson, and S. Kröll, “High-fidelity readout scheme for rare-earth solid-state quantum computing,” Phys. Rev. A. 92, 022319 (2015).
[Crossref]

Nöbauer, T.

T. Nöbauer, A. Angerer, B. Bartels, M. Trupke, S. Rotter, J. Schmiedmayer, Florian Mintert, and J. Majer, “Smooth optimal quantum control for robust solid-state spin magnetometry,” Phys. Rev. Lett. 115, 190801 (2015).
[Crossref] [PubMed]

Ohlsson, N.

N. Ohlsson, R. K. Mohan, and S. Kröll, “Quantum computer hardware based on rare-earth-ion-doped inorganic crystals,” Opt. Commun. 201(1–3), 71–77 (2002).
[Crossref]

Paul, K.

K. Paul and A. K. Sarma, “Shortcut to adiabatic passage in a waveguide coupler with a complex-hyperbolic-secant scheme,” Phys. Rev. A 91, 053406 (2015).
[Crossref]

Ribeiro, Hugo

B. B. Zhou, A. Baksic, Hugo Ribeiro, C. G. Yale, F. J. Heremans, Paul C. Jerger, A. Auer, G. Burkard, A. A. Clerk, and D. Awschalom, “Accelerated quantum controal sign superadiabatic dynamics in a solid-state lambda system,” Nature Phys. 13, 330 (2017).
[Crossref]

A. Baksic, Hugo Ribeiro, and A. A. Clerk, “Speeding up adiabatic quantum state transfer by using dressed states,” Phys. Rev. Lett. 116, 230503 (2016).
[Crossref] [PubMed]

Riesenfeld, W. B.

H. R. Lewis and W. B. Riesenfeld, “An exact quantum theory of the time dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field,” J. Math. Phys. 10, 1458 (1969).
[Crossref]

Rigetti, C.

N. Didier, E. A. Sete, M. P. da Silva, and C. Rigetti, “Analytical modeling of parametrically modulated transmon qubits,” Phys. Rev. A 97, 022330 (2018).
[Crossref]

Rippe, L.

A. Walther, L. Rippe, Y. Yan, J. Karlsson, D. Serrano, A. N. Nilsson, S. Bengtsson, and S. Kröll, “High-fidelity readout scheme for rare-earth solid-state quantum computing,” Phys. Rev. A. 92, 022319 (2015).
[Crossref]

A. Walther, B. Julsgaard, L. Rippe, Y. Ying, S. Kröll, R. Fisher, and S. Glaser, “Extracting high fidelity quantum computer hardware from random systems,” Phys. Scr. T137, 014009 (2009).
[Crossref]

L. Rippe, B. Julsgaard, A. Walther, Y. Ying, and S. Kröll, “Experimental quantum-state tomography of a solid-state qubit,” Phys. Rev. A 77, 022307 (2008).
[Crossref]

Roos, I.

I. Roos and K. Mølmer, “Quantum computing with an inhomogeneously broadened ensemble of ions: Suppression of errors from detuning variations by specially adapted pulses and coherent population trapping,” Phys. Rev. A 69, 022321 (2004).
[Crossref]

Rotter, S.

T. Nöbauer, A. Angerer, B. Bartels, M. Trupke, S. Rotter, J. Schmiedmayer, Florian Mintert, and J. Majer, “Smooth optimal quantum control for robust solid-state spin magnetometry,” Phys. Rev. Lett. 115, 190801 (2015).
[Crossref] [PubMed]

Ruschhaupt, A.

D. Daems, A. Ruschhaupt, D. Sugny, and S. Guerin, “Robust quantum control by a single-shot shaped pulse,” Phys. Rev. Lett. 111, 050404 (2013).
[Crossref] [PubMed]

A. Ruschhaupt, X. Chen, D. Alonso, and J. G. Muga, “Optimally robust shortcuts to population inversion in two-level quantum systems,” New J. Phys. 14, 093040 (2012).
[Crossref]

X. Chen, A. Ruschhaupt, S. Schmidt, A. del Campo, D. Guéry-Odelin, and J. G. Muga, “Fast Optimal Frictionless Atom Cooling in Harmonic Traps: Shortcut to Adiabaticity,” Phys. Rev. Lett. 104, 063002 (2010).
[Crossref] [PubMed]

X. Chen, I. Lizuain, A. Ruschhaupt, D. Guéry-Odelin, and J. G. Muga, “Shortcut to adiabatic passage in two and three level atoms,” Phys. Rev. Lett. 105, 123003 (2010).
[Crossref]

Sarma, A. K.

K. Paul and A. K. Sarma, “Shortcut to adiabatic passage in a waveguide coupler with a complex-hyperbolic-secant scheme,” Phys. Rev. A 91, 053406 (2015).
[Crossref]

Schmidt, S.

X. Chen, A. Ruschhaupt, S. Schmidt, A. del Campo, D. Guéry-Odelin, and J. G. Muga, “Fast Optimal Frictionless Atom Cooling in Harmonic Traps: Shortcut to Adiabaticity,” Phys. Rev. Lett. 104, 063002 (2010).
[Crossref] [PubMed]

Schmiedmayer, J.

T. Nöbauer, A. Angerer, B. Bartels, M. Trupke, S. Rotter, J. Schmiedmayer, Florian Mintert, and J. Majer, “Smooth optimal quantum control for robust solid-state spin magnetometry,” Phys. Rev. Lett. 115, 190801 (2015).
[Crossref] [PubMed]

Schraft, D.

L. Van-Damme, D. Schraft, Genko T. Genov, D. Sugny, T. Halfmann, and S. Guérin, “Robust NOT gate by single-shot-shaped pulses: Demonstration of the efficiency of the pulses in rephasing atomic coherences,” Phys. Rev. A 96, 022309 (2017).
[Crossref]

Sellars, M. J.

M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Witting, J. J. Longdell, and M. J. Sellars, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature 517, 177–180 (2015).
[Crossref] [PubMed]

Serrano, D.

A. Walther, L. Rippe, Y. Yan, J. Karlsson, D. Serrano, A. N. Nilsson, S. Bengtsson, and S. Kröll, “High-fidelity readout scheme for rare-earth solid-state quantum computing,” Phys. Rev. A. 92, 022319 (2015).
[Crossref]

Sete, E. A.

N. Didier, E. A. Sete, M. P. da Silva, and C. Rigetti, “Analytical modeling of parametrically modulated transmon qubits,” Phys. Rev. A 97, 022330 (2018).
[Crossref]

Shapiro, M.

P. Král, I. Thanopulos, and M. Shapiro, “Colloquium: Coherently controlled adiabatic passage,” Rev. Mod. Phys. 79(1), 53 (2007).
[Crossref]

Sherson, J. F.

H. L. Mortensen, J. Jakob, W. H. Sørensen, K. Mølmer, and J. F. Sherson, “Fast state transfer in a Λ-system: a shortcut-to-adiabaticity approach to robust and resource optimized control,” New J. Phys. 20, 025009 (2018).
[Crossref]

Shore, B. W.

N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-induced population transfer by adiabatic passage techniques,” Rnnu. Rev. Phus. Chem. 52, 763 (2001).
[Crossref]

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003 (1998).
[Crossref]

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003 (1998).
[Crossref]

Shore, B.W.

N. V. Vitanov, K.-A. Suominen, and B.W. Shore, “Hamiltonian design to prepare arbitrary states of four-level systems,” Phys. Rev. A 97, 013830 (2018).
[Crossref]

N. V. Vitanov, K.-A. Suominen, and B.W. Shore, “Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage,” J. Phys. B 32, 4535–4546 (1999).
[Crossref]

Skinner, T. E.

K. Kobzar, S. Ehni, T. E. Skinner, S. J. Glaser, and B. Luy, “Exploring the limits of broadband 90° and 180° universal rotation pulses,” J. Magn. Reson. 225, 142–160 (2012).
[Crossref] [PubMed]

Sørensen, W. H.

H. L. Mortensen, J. Jakob, W. H. Sørensen, K. Mølmer, and J. F. Sherson, “Fast state transfer in a Λ-system: a shortcut-to-adiabaticity approach to robust and resource optimized control,” New J. Phys. 20, 025009 (2018).
[Crossref]

Sugny, D.

L. Van-Damme, D. Schraft, Genko T. Genov, D. Sugny, T. Halfmann, and S. Guérin, “Robust NOT gate by single-shot-shaped pulses: Demonstration of the efficiency of the pulses in rephasing atomic coherences,” Phys. Rev. A 96, 022309 (2017).
[Crossref]

D. Daems, A. Ruschhaupt, D. Sugny, and S. Guerin, “Robust quantum control by a single-shot shaped pulse,” Phys. Rev. Lett. 111, 050404 (2013).
[Crossref] [PubMed]

Sun, Y.

R. W. Equall, Y. Sun, R. L. Cone, and R. M. Macfarlane, “Ultraslow optical dephasing in Eu3+:Y2SiO5,” Phys. Rev. Lett. 72, 2179 (1994).
[Crossref] [PubMed]

Suominen, K.-A.

N. V. Vitanov, K.-A. Suominen, and B.W. Shore, “Hamiltonian design to prepare arbitrary states of four-level systems,” Phys. Rev. A 97, 013830 (2018).
[Crossref]

N. V. Vitanov, K.-A. Suominen, and B.W. Shore, “Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage,” J. Phys. B 32, 4535–4546 (1999).
[Crossref]

Tannor, D. J.

V. S. Mallinovsky and D. J. Tannor, “Simple and robust extension of the stimulated Raman adiabatic passage technique to N-level systems,” Phys. Rev. A 56, 4929 (1997).
[Crossref]

Thanopulos, I.

P. Král, I. Thanopulos, and M. Shapiro, “Colloquium: Coherently controlled adiabatic passage,” Rev. Mod. Phys. 79(1), 53 (2007).
[Crossref]

Theuer, H.

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003 (1998).
[Crossref]

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003 (1998).
[Crossref]

Torosov, B. T.

B. T. Torosov, S. Guérin, and N. V. Vitanov, “High-Fidelity Adiabatic Passage by Composite Sequences of Chirped Pulses,” Phys. Rev. Lett. 106, 233001 (2011).
[Crossref] [PubMed]

Torrontegui, E.

X. Chen, E. Torrontegui, and J. G. Muga, “Lewis-Riescenfeld invariants and transitionless quantum driving,” Phys. Rev. A 83, 062116 (2011).
[Crossref]

Trupke, M.

T. Nöbauer, A. Angerer, B. Bartels, M. Trupke, S. Rotter, J. Schmiedmayer, Florian Mintert, and J. Majer, “Smooth optimal quantum control for robust solid-state spin magnetometry,” Phys. Rev. Lett. 115, 190801 (2015).
[Crossref] [PubMed]

Tseng, S.

S. Tseng and X. Chen, “Engineering of fast mode conversion in multimode waveguides,” Opt. Lett. 37(24), 5118–5120 (2012).
[Crossref] [PubMed]

Van-Damme, L.

L. Van-Damme, D. Schraft, Genko T. Genov, D. Sugny, T. Halfmann, and S. Guérin, “Robust NOT gate by single-shot-shaped pulses: Demonstration of the efficiency of the pulses in rephasing atomic coherences,” Phys. Rev. A 96, 022309 (2017).
[Crossref]

Vasilev, G. S.

G. S. Vasilev, A. Kuhn, and N. V. Vitanov, “Optimum pulse shapes for stimulated Raman adiabatic passage,” Phys. Rev. A 80, 013417 (2009).
[Crossref]

Vitanov, N. V.

N. V. Vitanov, K.-A. Suominen, and B.W. Shore, “Hamiltonian design to prepare arbitrary states of four-level systems,” Phys. Rev. A 97, 013830 (2018).
[Crossref]

B. T. Torosov, S. Guérin, and N. V. Vitanov, “High-Fidelity Adiabatic Passage by Composite Sequences of Chirped Pulses,” Phys. Rev. Lett. 106, 233001 (2011).
[Crossref] [PubMed]

G. S. Vasilev, A. Kuhn, and N. V. Vitanov, “Optimum pulse shapes for stimulated Raman adiabatic passage,” Phys. Rev. A 80, 013417 (2009).
[Crossref]

N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-induced population transfer by adiabatic passage techniques,” Rnnu. Rev. Phus. Chem. 52, 763 (2001).
[Crossref]

N. V. Vitanov, K.-A. Suominen, and B.W. Shore, “Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage,” J. Phys. B 32, 4535–4546 (1999).
[Crossref]

Walther, A.

A. Walther, L. Rippe, Y. Yan, J. Karlsson, D. Serrano, A. N. Nilsson, S. Bengtsson, and S. Kröll, “High-fidelity readout scheme for rare-earth solid-state quantum computing,” Phys. Rev. A. 92, 022319 (2015).
[Crossref]

A. Walther, B. Julsgaard, L. Rippe, Y. Ying, S. Kröll, R. Fisher, and S. Glaser, “Extracting high fidelity quantum computer hardware from random systems,” Phys. Scr. T137, 014009 (2009).
[Crossref]

L. Rippe, B. Julsgaard, A. Walther, Y. Ying, and S. Kröll, “Experimental quantum-state tomography of a solid-state qubit,” Phys. Rev. A 77, 022307 (2008).
[Crossref]

Wan, Y.

U. Güngördü, Y. Wan, M. A. Fashihi, and M. Nakahara, “Dynamical invariants for quantum control of four-level systems,” Phys. Rev. A 86, 062312 (2012).
[Crossref]

Wang, L.

Y. Ban, L. Jiang, Y. Li, L. Wang, and X. Chen, “Fast creation and transfer of coherence in triple quantum dots by using shortcuts to adiabaticity,” Opt. Express 26(24), 31137 (2018).
[Crossref]

Witting, S. M.

M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Witting, J. J. Longdell, and M. J. Sellars, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature 517, 177–180 (2015).
[Crossref] [PubMed]

Ya Sherman, E

Y. C. Li, X. Chen, J G Muga, and E Ya Sherman, “ubit gates with simultaneous transport in double quantum dots,” New J. Phys. 20, 113029 (2018).
[Crossref]

Yale, C. G.

B. B. Zhou, A. Baksic, Hugo Ribeiro, C. G. Yale, F. J. Heremans, Paul C. Jerger, A. Auer, G. Burkard, A. A. Clerk, and D. Awschalom, “Accelerated quantum controal sign superadiabatic dynamics in a solid-state lambda system,” Nature Phys. 13, 330 (2017).
[Crossref]

Yan, H.

Y. Du, Z. Liang, Y. Chao, X. Yue, Q. Lv, W. Huang, X. Chen, H. Yan, and S. Zhu, “Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms,” Nat. Commun. 7, 12479 (2016).
[Crossref] [PubMed]

Yan, Y.

A. Walther, L. Rippe, Y. Yan, J. Karlsson, D. Serrano, A. N. Nilsson, S. Bengtsson, and S. Kröll, “High-fidelity readout scheme for rare-earth solid-state quantum computing,” Phys. Rev. A. 92, 022319 (2015).
[Crossref]

Ying, Y.

A. Walther, B. Julsgaard, L. Rippe, Y. Ying, S. Kröll, R. Fisher, and S. Glaser, “Extracting high fidelity quantum computer hardware from random systems,” Phys. Scr. T137, 014009 (2009).
[Crossref]

L. Rippe, B. Julsgaard, A. Walther, Y. Ying, and S. Kröll, “Experimental quantum-state tomography of a solid-state qubit,” Phys. Rev. A 77, 022307 (2008).
[Crossref]

Yue, X.

Y. Du, Z. Liang, Y. Chao, X. Yue, Q. Lv, W. Huang, X. Chen, H. Yan, and S. Zhu, “Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms,” Nat. Commun. 7, 12479 (2016).
[Crossref] [PubMed]

Zhong, M.

M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Witting, J. J. Longdell, and M. J. Sellars, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature 517, 177–180 (2015).
[Crossref] [PubMed]

Zhou, B. B.

B. B. Zhou, A. Baksic, Hugo Ribeiro, C. G. Yale, F. J. Heremans, Paul C. Jerger, A. Auer, G. Burkard, A. A. Clerk, and D. Awschalom, “Accelerated quantum controal sign superadiabatic dynamics in a solid-state lambda system,” Nature Phys. 13, 330 (2017).
[Crossref]

Zhou, J. G.

Y. Z. Lai, J. Q. Liang, H. J. W. Müller-Kirsten, and J. G. Zhou, “Time-dependent quantum systems and the invariant Hermitian operator,” Phys. Rev. A 53, 3691 (1996).
[Crossref] [PubMed]

Zhu, S.

Y. Du, Z. Liang, Y. Chao, X. Yue, Q. Lv, W. Huang, X. Chen, H. Yan, and S. Zhu, “Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms,” Nat. Commun. 7, 12479 (2016).
[Crossref] [PubMed]

J. Magn. Reson. (1)

K. Kobzar, S. Ehni, T. E. Skinner, S. J. Glaser, and B. Luy, “Exploring the limits of broadband 90° and 180° universal rotation pulses,” J. Magn. Reson. 225, 142–160 (2012).
[Crossref] [PubMed]

J. Math. Phys. (1)

H. R. Lewis and W. B. Riesenfeld, “An exact quantum theory of the time dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field,” J. Math. Phys. 10, 1458 (1969).
[Crossref]

J. Phys. A: Math. Theor. (1)

M V Berry, “Transitionless quantum driving,” J. Phys. A: Math. Theor. 42(36), 365303 (2009).
[Crossref]

J. Phys. B (1)

N. V. Vitanov, K.-A. Suominen, and B.W. Shore, “Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage,” J. Phys. B 32, 4535–4546 (1999).
[Crossref]

Nat. Commun. (1)

Y. Du, Z. Liang, Y. Chao, X. Yue, Q. Lv, W. Huang, X. Chen, H. Yan, and S. Zhu, “Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms,” Nat. Commun. 7, 12479 (2016).
[Crossref] [PubMed]

Nature (1)

M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Witting, J. J. Longdell, and M. J. Sellars, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature 517, 177–180 (2015).
[Crossref] [PubMed]

Nature Phys. (1)

B. B. Zhou, A. Baksic, Hugo Ribeiro, C. G. Yale, F. J. Heremans, Paul C. Jerger, A. Auer, G. Burkard, A. A. Clerk, and D. Awschalom, “Accelerated quantum controal sign superadiabatic dynamics in a solid-state lambda system,” Nature Phys. 13, 330 (2017).
[Crossref]

New J. Phys. (3)

H. L. Mortensen, J. Jakob, W. H. Sørensen, K. Mølmer, and J. F. Sherson, “Fast state transfer in a Λ-system: a shortcut-to-adiabaticity approach to robust and resource optimized control,” New J. Phys. 20, 025009 (2018).
[Crossref]

A. Ruschhaupt, X. Chen, D. Alonso, and J. G. Muga, “Optimally robust shortcuts to population inversion in two-level quantum systems,” New J. Phys. 14, 093040 (2012).
[Crossref]

Y. C. Li, X. Chen, J G Muga, and E Ya Sherman, “ubit gates with simultaneous transport in double quantum dots,” New J. Phys. 20, 113029 (2018).
[Crossref]

Opt. Commun. (1)

N. Ohlsson, R. K. Mohan, and S. Kröll, “Quantum computer hardware based on rare-earth-ion-doped inorganic crystals,” Opt. Commun. 201(1–3), 71–77 (2002).
[Crossref]

Opt. Express (1)

Y. Ban, L. Jiang, Y. Li, L. Wang, and X. Chen, “Fast creation and transfer of coherence in triple quantum dots by using shortcuts to adiabaticity,” Opt. Express 26(24), 31137 (2018).
[Crossref]

Opt. Lett. (1)

S. Tseng and X. Chen, “Engineering of fast mode conversion in multimode waveguides,” Opt. Lett. 37(24), 5118–5120 (2012).
[Crossref] [PubMed]

Phys. Rev A (1)

Y. C. Li and X. Chen, “Shortcut to adiabatic population transfer in quantum three-level systems: effective two-level problems and feasible counter-diabatic driving,” Phys. Rev A 94, 063411 (2016).
[Crossref]

Phys. Rev. A (13)

X. Chen and J. G. Muga, “Engineering of fast population transfer in three-level systems,”, Phys. Rev. A 86, 033405 (2012).
[Crossref]

X. Chen, E. Torrontegui, and J. G. Muga, “Lewis-Riescenfeld invariants and transitionless quantum driving,” Phys. Rev. A 83, 062116 (2011).
[Crossref]

I. Roos and K. Mølmer, “Quantum computing with an inhomogeneously broadened ensemble of ions: Suppression of errors from detuning variations by specially adapted pulses and coherent population trapping,” Phys. Rev. A 69, 022321 (2004).
[Crossref]

K. Paul and A. K. Sarma, “Shortcut to adiabatic passage in a waveguide coupler with a complex-hyperbolic-secant scheme,” Phys. Rev. A 91, 053406 (2015).
[Crossref]

L. Rippe, B. Julsgaard, A. Walther, Y. Ying, and S. Kröll, “Experimental quantum-state tomography of a solid-state qubit,” Phys. Rev. A 77, 022307 (2008).
[Crossref]

A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, “Surface codes: Towards practical large-scale quantum computation,” Phys. Rev. A 86, 032324 (2012).
[Crossref]

N. Didier, E. A. Sete, M. P. da Silva, and C. Rigetti, “Analytical modeling of parametrically modulated transmon qubits,” Phys. Rev. A 97, 022330 (2018).
[Crossref]

L. Van-Damme, D. Schraft, Genko T. Genov, D. Sugny, T. Halfmann, and S. Guérin, “Robust NOT gate by single-shot-shaped pulses: Demonstration of the efficiency of the pulses in rephasing atomic coherences,” Phys. Rev. A 96, 022309 (2017).
[Crossref]

V. S. Mallinovsky and D. J. Tannor, “Simple and robust extension of the stimulated Raman adiabatic passage technique to N-level systems,” Phys. Rev. A 56, 4929 (1997).
[Crossref]

G. S. Vasilev, A. Kuhn, and N. V. Vitanov, “Optimum pulse shapes for stimulated Raman adiabatic passage,” Phys. Rev. A 80, 013417 (2009).
[Crossref]

Y. Z. Lai, J. Q. Liang, H. J. W. Müller-Kirsten, and J. G. Zhou, “Time-dependent quantum systems and the invariant Hermitian operator,” Phys. Rev. A 53, 3691 (1996).
[Crossref] [PubMed]

U. Güngördü, Y. Wan, M. A. Fashihi, and M. Nakahara, “Dynamical invariants for quantum control of four-level systems,” Phys. Rev. A 86, 062312 (2012).
[Crossref]

N. V. Vitanov, K.-A. Suominen, and B.W. Shore, “Hamiltonian design to prepare arbitrary states of four-level systems,” Phys. Rev. A 97, 013830 (2018).
[Crossref]

Phys. Rev. A. (1)

A. Walther, L. Rippe, Y. Yan, J. Karlsson, D. Serrano, A. N. Nilsson, S. Bengtsson, and S. Kröll, “High-fidelity readout scheme for rare-earth solid-state quantum computing,” Phys. Rev. A. 92, 022319 (2015).
[Crossref]

Phys. Rev. B (1)

R. W. Equall, R. L. Cone, and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B 52, 3963 (1995).
[Crossref]

Phys. Rev. Lett. (7)

B. T. Torosov, S. Guérin, and N. V. Vitanov, “High-Fidelity Adiabatic Passage by Composite Sequences of Chirped Pulses,” Phys. Rev. Lett. 106, 233001 (2011).
[Crossref] [PubMed]

X. Chen, A. Ruschhaupt, S. Schmidt, A. del Campo, D. Guéry-Odelin, and J. G. Muga, “Fast Optimal Frictionless Atom Cooling in Harmonic Traps: Shortcut to Adiabaticity,” Phys. Rev. Lett. 104, 063002 (2010).
[Crossref] [PubMed]

T. Nöbauer, A. Angerer, B. Bartels, M. Trupke, S. Rotter, J. Schmiedmayer, Florian Mintert, and J. Majer, “Smooth optimal quantum control for robust solid-state spin magnetometry,” Phys. Rev. Lett. 115, 190801 (2015).
[Crossref] [PubMed]

R. W. Equall, Y. Sun, R. L. Cone, and R. M. Macfarlane, “Ultraslow optical dephasing in Eu3+:Y2SiO5,” Phys. Rev. Lett. 72, 2179 (1994).
[Crossref] [PubMed]

X. Chen, I. Lizuain, A. Ruschhaupt, D. Guéry-Odelin, and J. G. Muga, “Shortcut to adiabatic passage in two and three level atoms,” Phys. Rev. Lett. 105, 123003 (2010).
[Crossref]

A. Baksic, Hugo Ribeiro, and A. A. Clerk, “Speeding up adiabatic quantum state transfer by using dressed states,” Phys. Rev. Lett. 116, 230503 (2016).
[Crossref] [PubMed]

D. Daems, A. Ruschhaupt, D. Sugny, and S. Guerin, “Robust quantum control by a single-shot shaped pulse,” Phys. Rev. Lett. 111, 050404 (2013).
[Crossref] [PubMed]

Phys. Scr. (1)

A. Walther, B. Julsgaard, L. Rippe, Y. Ying, S. Kröll, R. Fisher, and S. Glaser, “Extracting high fidelity quantum computer hardware from random systems,” Phys. Scr. T137, 014009 (2009).
[Crossref]

Proc. R. Soc. A (1)

S. Masuda and K. Nakamura, “Fast-forward of adiabatic dynamics in quantum mechanics,” Proc. R. Soc. A 466(2116), 1135–1154 (2010).
[Crossref]

Progress in NMR Spectroscopy (1)

M. H. Levitt, “Composite pulses,” Progress in NMR Spectroscopy 18, 61–122 (1986).
[Crossref]

Rev. Mod. Phys. (3)

P. Král, I. Thanopulos, and M. Shapiro, “Colloquium: Coherently controlled adiabatic passage,” Rev. Mod. Phys. 79(1), 53 (2007).
[Crossref]

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003 (1998).
[Crossref]

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003 (1998).
[Crossref]

Rnnu. Rev. Phus. Chem. (1)

N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-induced population transfer by adiabatic passage techniques,” Rnnu. Rev. Phus. Chem. 52, 763 (2001).
[Crossref]

Other (2)

J. Bylander, Microtechnology and Nanoscience, Chalmers University of Technology, Kemivägen 9, Gothenburg, Sweden, SE-41296 (personal communication, 2018).

“Quantum Technologies foster a new initiative in Europe,” (2018). https://qt.eu/news/quantum-technologies-launch-press-release/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic energy levels of a three-level lambda system. The qubit is represented by two long-lived ground state levels |0〉 and |1〉, where |1〉 is initially populated. Qubit levels are coupled through optical transitions |0〉 − |e〉 and |1〉 − |e〉, which possibly exhibits an inhomogeneous broadening. Ωp and Ωs denote the respective Rabi frequencies. φ is a time-independent phase factor of Ωs.
Fig. 2
Fig. 2 (a) The relevant energy levels of Pr ions in an Y2SiO5 crystal. The qubit is represented by two ground state levels |0〉 and |1〉, where |1〉 is initially populated. Qubit levels are coupled through optical transitions |0〉 − |e〉 and |1〉 − |e〉, both of which have an inhomogeneous FWHM linewidth of 170 kHz. (b) A schematic diagram of the absorption spectrum of a qubit in a zero absorption spectral window. Peak 1–3 represent absorption from |0〉 to each level of the excited states, and peak 4–5 from |1〉 to the two lower levels in excited state, respectively. The distance from peak 2 or peak 5 to the edges of the pit is 3.9 MHz.
Fig. 3
Fig. 3 (a) Time dependence of Rabi frequencies, where the solid-red (dashed-blue) line denotes Ωps). (b) Time evolution of the population on level |1〉 (Solid-red line), |0〉 (dashed-green line) and |e〉 (dash-dotted-blue line). a2 = −1.10, a6 = 0.06 and a8 = 0.02, which are optimized to achieve high robustness against frequency detuning and minimize the off-resonant excitations. | ψ tg = 1 2 ( | 1 + i | 0 ).
Fig. 4
Fig. 4 Dependence of fidelity of achieving | ψ tg = 1 2 ( | 1 + i | 0 ) on frequency detuning. solid-red line: fidelity achieved with the shortcut pulses developed in this work with optimized parameters (a2 = −1.10, a6 = 0.06 and a8 = 0.02). Solid-blue line: the fidelity achieved by the complex hyperbolic secant pulses used previously. The insert is a magnification of the center frequency range.
Fig. 5
Fig. 5 Dependence of fidelity of achieving | ψ tg = 1 2 ( | 1 + i | 0 ) on the fluctuations in Rabi frequencies for shortcut pulses (a) and complex hyperbolic secant pulses (b), where η describes the relative change in Ωp,s. Blue-dashed and green-dashed curves show the dependences under conditions of no detuning, and solid-red and solid-purple for the cases where detuning is 170 kHz.
Fig. 6
Fig. 6 Population of final state |ψ(tf)〉 in level |1〉 (solid-red), |e〉 (dash-dotted-blue) and |0〉 (dashed-green), and as a function of detuning frequencies with optimized an values. The off-resonant excitation at 3.5 MHz is less than 2.0%, which can be further reduced by sacrificing the width of the robust region in the center.
Fig. 7
Fig. 7 (a) Dependence of the fidelity (F) for achieving the target state i |e〉 on frequency detuning Δ. (b) State evolutions (solid-red line) on a Bloch sphere where Δ = 170 kHz. The dashed lines are the three perpendicular great circles in u–v, u–w and v–w plane.
Fig. 8
Fig. 8 Optimization of an values. Fidelity (a–c) and off-resonant excitations in |0〉 state (d–f) as function of frequency detuning while scanning pulse parameters. (a) and (d) scan a2, a6 = a8 = 0; (b) and (e) Scan a6, a2 = −1.10, and a8 = 0; (c) and (f) Scan a8, a2 = −1.10, a6 = 0.06.
Fig. 9
Fig. 9 Fidelity (a) and off-resonant excitations (b) on |0〉 state as a function of frequency detuning in the three scanning steps. Dash-dotted-blue lines: a2 = −1.1, a6 = a8 = 0. Dashed-green lines: a2 = −1.1, a6 = 0.06, and a8 = 0. Solid-red lines: a2 = −1.1, a6 = 0.06, and a8 = 0.02.

Tables (1)

Tables Icon

Table 1 The pulses and optimized an for various operation tasks, where |ψin〉 (|ψtg〉) denotes the initial (target) state. |ψ′tg〉 = cos θa |1〉 + sin θaea |0〉, |ψ′in〉 = cos θb |1〉 + sin θbeb |0〉, and a1,3,5,7, = 0 in all cases.

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

H ( t ) = 2 [ 0 Ω p ( t ) 0 Ω p ( t ) 0 Ω s ( t ) e i φ 0 Ω s ( t ) e i φ 0 ] .
i t | ψ ( t ) = H ( t ) | ψ ( t ) .
I ( t ) = Ω 0 2 [ 0 cos γ sin β i sin γ e i φ cos γ sin β 0 cos γ cos β e i φ i sin γ e i φ cos γ cos β e i φ 0 ] ,
Ω p ( t ) = 2 [ β ˙ cot γ ( t ) sin β ( t ) + γ ˙ cos β ( t ) ] ,
Ω s ( t ) = 2 [ β ˙ cot γ ( t ) cos β ( t ) γ ˙ sin β ( t ) ] .
| ϕ 0 ( t ) = [ cos γ ( t ) cos β ( t ) i sin γ ( t ) cos γ ( t ) sin β ( t ) e i φ ]
| ϕ ± ( t ) = 1 2 [ sin γ ( t ) cos β ( t ) ± i sin β ( t ) i cos γ ( t ) [ sin γ ( t ) sin β ( t ) ± i cos β ( t ) ] e i φ ] ,
| ψ ( t ) = n = 0 , ± C n e i α n | ϕ n ( t ) ,
α n ( t ) = 1 0 t ϕ n ( t ) | i t H ( t ) | ϕ n ( t ) d t ,
{ γ ( 0 ) = 0 , γ ( t f ) = π β ( 0 ) = 0 , β ( t f ) = π θ a ,
γ ( t ) = π t f t + n = 1 n = a n sin ( n π t f t ) ,
β ( t ) = π θ a 2 [ 1 cos γ ( t ) ] .
Ω p = γ ˙ ( t ) [ ( π θ a ) cos γ ( t ) sin β ( t ) + 2 cos β ( t ) ] ,
Ω s = γ ˙ ( t ) [ ( π θ a ) cos γ ( t ) cos β ( t ) 2 sin β ( t ) ] .
Ω p , s ( 0 ) = Ω p , s ( t f ) = 0 ,
γ ˙ ( 0 ) = γ ˙ ( t f ) = 0 ,
a 1 + 3 a 3 + 5 a 5 + 7 a 7 + 9 a 9 + + ( 2 k 1 ) a 2 k 1 = 0
a 2 + 2 a 4 + 3 a 6 + 4 a 8 + + k a 2 k = 0.5 ,
F = | ψ tg | ψ ( t f ) | 2 ,
[ C ˙ 1 C ˙ e C ˙ 0 ] = i 2 [ 0 Ω p 0 Ω p 2 Δ Ω s e i φ a 0 Ω s e i φ a 0 ] [ C 1 C e C 0 ]
Ω p = 2 γ ˙ ( t ) , Ω s = 0 .
γ ( 0 ) = 0 , γ ( t f ) = π / 2 .
γ ( t ) = π 2 t f t + n = 1 n = 2 k a n sin ( n π t f t ) ,
a 2 + 2 a 4 + 3 a 6 + 4 a 8 + + k a 2 k = 0.25 .
{ γ ( 0 ) = π , γ ( t f ) = 0 , β ( 0 ) = π θ b , β ( t f ) = 0 ,
γ ( t ) = π t f t + π + n = 1 n = 2 k a n sin ( n π t f t ) ,
{ a 1 + 3 a 3 + 5 a 5 + 7 a 7 + + ( 2 k 1 ) a 2 k 1 = 0 a 2 + 2 a 4 + 3 a 6 + 4 a 8 + + k a 2 k = 0.5 .
Ω p , s new = Ω p , s ( t f t )

Metrics