Abstract

Metamaterial absorbers, consisting of assembling arrays of optical resonators with subwavelength dimensions and spacing, allow efficiently absorption electromagnetic radiation by leveraging the strong electrical and magnetic resonances. Beyond the enhanced absorption, there is a growing interest to realize multi-functional absorbers, for example, absorbers with extended bandwidth, strong polarization extinction ratio, to name a few. Traditionally, designing multi-functional absorbers require complex brute-force optimizations with sizable parameter space, which turn out to be rather inefficient. Here, using the particle swarm optimization algorithm, we design and experimentally demonstrate broadband and highly polarization selective mid-IR metal-insulator-metal absorbers, covering the technologically important 3–5 μm atmospheric transparency band. With spectrally averaged absorption exceeding 70%, a high polarization extinction ratio of 40.6 is concurrently achieved by the algorithm. We also investigate the incident angle dependence of the spectral absorption and clarify the origin of optical losses. By integrating with the growing range of mid-IR detectors and imagers, our devices can enable new applications such as mid-IR full Stokes imaging polarimetry for remote sensing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tailoring optical responses of infrared plasmonic metamaterial absorbers by optical phonons

Junyu Li, Rulei Gan, Qiushi Guo, Huan Liu, Jianfeng Xu, and Fei Yi
Opt. Express 26(13) 16769-16781 (2018)

Broadband plasmonic metamaterial absorber with fish-scale structure at visible frequencies

Xu Zhang, Yuancheng Fan, Limei Qi, and Hongqiang Li
Opt. Mater. Express 6(7) 2448-2457 (2016)

CMOS compatible metamaterial absorbers for hyperspectral medium wave infrared imaging and sensing applications

James Grant, Mitchell Kenney, Yash D. Shah, Ivonne Escorcia-Carranza, and David R. S. Cumming
Opt. Express 26(8) 10408-10420 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120,OP181 (2012).
    [PubMed]
  2. L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
    [Crossref]
  3. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(12), 7950 (2003).
    [Crossref]
  4. Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
    [Crossref]
  5. F. Yi, H. Zhu, J. C. Reed, and E. Cubukcu, “Plasmonically enhanced thermomechanical detection of infrared radiation,” Nano Lett. 13(4), 1638–1643 (2013).
    [Crossref] [PubMed]
  6. F. Yi, H. Zhu, J. C. Reed, A. Y. Zhu, and E. Cubukcu, “Thermoplasmonic Membrane-Based Infrared Detector,” IEEE Photonics Technol. Lett. 26(2), 202–205 (2014).
    [Crossref]
  7. J. Y. Suen, K. Fan, J. Montoya, C. Bingham, V. Stenger, S. Sriram, and W. J. Padilla, “Multifunctional metamaterial pyroelectric infrared detectors,” Optica 4(2), 276–279 (2017).
    [Crossref]
  8. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  9. A. Y. Zhu, F. Yi, J. C. Reed, H. Zhu, and E. Cubukcu, “Optoelectromechanical multimodal biosensor with graphene active region,” Nano Lett. 14(10), 5641–5649 (2014).
    [Crossref] [PubMed]
  10. C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
    [Crossref]
  11. E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17(17), 15145–15159 (2009).
    [Crossref] [PubMed]
  12. D. N. Woolf, E. A. Kadlec, D. Bethke, A. D. Grine, J. J. Nogan, J. G. Cederberg, D. Bruce Burckel, T. S. Luk, E. A. Shaner, and J. M. Hensley, “High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter,” Optica 5(2), 213–218 (2018).
    [Crossref]
  13. A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
    [Crossref] [PubMed]
  14. P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(19Suppl 3), A314–A334 (2010).
    [Crossref] [PubMed]
  15. Z.-H. Wang, Y.-S. Hu, X. Xiong, R.-W. Peng, and M. Wang, “Encoding and display with stereo split-ring resonator arrays,” Opt. Lett. 42(6), 1153–1156 (2017).
    [Crossref] [PubMed]
  16. A. Chanana, A. Paulsen, S. Guruswamy, and A. Nahata, “Hiding multi-level multi-color images in terahertz metasurfaces,” Optica 3(12), 1466–1470 (2016).
    [Crossref]
  17. P. Fortina, L. J. Kricka, D. J. Graves, J. Park, T. Hyslop, F. Tam, N. Halas, S. Surrey, and S. A. Waldman, “Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer,” Trends Biotechnol. 25(4), 145–152 (2007).
    [Crossref] [PubMed]
  18. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
    [Crossref] [PubMed]
  19. H. Kim, S. Beack, S. Han, M. Shin, T. Lee, Y. Park, K. S. Kim, A. K. Yetisen, S. H. Yun, W. Kwon, and S. K. Hahn, “Multifunctional Photonic Nanomaterials for Diagnostic, Therapeutic, and Theranostic Applications,” Adv. Mater. 30(10), 1701460 (2018).
    [Crossref] [PubMed]
  20. P. Singh, S. Pandit, V. R. S. S. Mokkapati, A. Garg, V. Ravikumar, and I. Mijakovic, “Gold Nanoparticles in Diagnostics and Therapeutics for Human Cancer,” Int. J. Mol. Sci. 19(7), 1979 (2018).
    [Crossref] [PubMed]
  21. F. SM, and H. Banu, “Gold Nanoparticles in Cancer Diagnosis and Treatment: A Review,” Austin Journal of Biotechnology & Bioengineering 1 (2015).
  22. M. Khorasaninejad and F. Capasso, “Metalenses: Versatile multifunctional photonic components,” Science 358(6367), eaam8100 (2017).
    [Crossref] [PubMed]
  23. X. Luo, “Subwavelength Optical Engineering with Metasurface Waves,” Adv. Opt. Mater. 6(7), 1701201 (2018).
    [Crossref]
  24. M. L. Tseng, H.-H. Hsiao, C. H. Chu, M. K. Chen, G. Sun, A.-Q. Liu, and D. P. Tsai, “Metalenses: Advances and Applications,” Adv. Opt. Mater. 6(18), 1800554 (2018).
    [Crossref]
  25. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
    [Crossref] [PubMed]
  26. Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
    [Crossref]
  27. S. Kang, Z. Qian, V. Rajaram, A. Alu, and M. Rinaldi, “Ultra narrowband infrared absorbers for omni-directional and polarization insensitive multi-spectral sensing microsystems,” in 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)(2017), pp. 886–889.
    [Crossref]
  28. B. M. Adomanis, C. M. Watts, M. Koirala, X. Liu, T. Tyler, K. G. West, T. Starr, J. N. Bringuier, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107(2), 021107 (2015).
    [Crossref]
  29. F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, “Voltage tuning of plasmonic absorbers by indium tin oxide,” Appl. Phys. Lett. 102(22), 221102 (2013).
    [Crossref]
  30. J. Goh, I. Fushman, D. Englund, and J. Vucković, “Genetic optimization of photonic bandgap structures,” Opt. Express 15(13), 8218–8230 (2007).
    [Crossref] [PubMed]
  31. S. Preble, M. Lipson, and H. Lipson, “Two-dimensional photonic crystals designed by evolutionary algorithms,” Appl. Phys. Lett. 86(6), 061111 (2005).
    [Crossref]
  32. J. Lu and J. Vučković, “Nanophotonic computational design,” Opt. Express 21(11), 13351–13367 (2013).
    [Crossref] [PubMed]
  33. A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
    [Crossref]
  34. L. Su, R. Trivedi, N. V. Sapra, A. Y. Piggott, D. Vercruysse, and J. Vučković, “Fully-automated optimization of grating couplers,” Opt. Express 26(4), 4023–4034 (2018).
    [Crossref] [PubMed]
  35. Z. Lin, X. Liang, M. Lončar, S. G. Johnson, and A. W. Rodriguez, “Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization,” Optica 3(3), 233–238 (2016).
    [Crossref]
  36. Z. Lin, M. Lončar, and A. W. Rodriguez, “Topology optimization of multi-track ring resonators and 2D microcavities for nonlinear frequency conversion,” Opt. Lett. 42(14), 2818–2821 (2017).
    [Crossref] [PubMed]
  37. D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-Angle, Multifunctional Metagratings Based on Freeform Multimode Geometries,” Nano Lett. 17(6), 3752–3757 (2017).
    [Crossref] [PubMed]
  38. B. Shen, P. Wang, R. Polson, and R. Menon, “Ultra-high-efficiency metamaterial polarizer,” Optica 1(5), 356–360 (2014).
    [Crossref]
  39. J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Neural Networks, 1995. Proceedings., IEEE International Conference on(1995), pp. 1942–1948 vol.1944.
    [Crossref]
  40. J. Robinson and Y. Rahmat-Samii, “Particle Swarm Optimization in Electromagnetics,” IEEE Trans. Antenn. Propag. 52(2), 397–407 (2004).
    [Crossref]
  41. V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18(18), 19087–19094 (2010).
    [Crossref] [PubMed]
  42. M. Kulkarni and V. Gruev, “Integrated spectral-polarization imaging sensor with aluminum nanowire polarization filters,” Opt. Express 20(21), 22997–23012 (2012).
    [Crossref] [PubMed]
  43. Y. Zhao, C. Yi, S. G. Kong, Q. Pan, and Y. Cheng, “Multi-band polarization imaging and applications,” J. Sens. 2016, 1 (2016).
    [Crossref]
  44. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
    [Crossref] [PubMed]
  45. S. A. Kemme, A. A. Cruz-Cabrera, R. R. Boye, T. Carter, S. Samora, C. Alford, J. R. Wendt, G. A. Vawter, and J. L. Smith, “Micropolarizing device for long wavelength infrared polarization imaging,” presented at the Sandia Report SAND2006–6889, Sandia National Lab. Albuquerque, NM2006.
  46. G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16(5), 1168–1174 (1999).
    [Crossref]
  47. E. Arbabi, S. M. Kamali, A. Arbabi, and A. Faraon, “Full-Stokes Imaging Polarimetry Using Dielectric Metasurfaces,” ACS Photonics 5(8), 3132–3140 (2018).
    [Crossref]
  48. G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16(5), 1168–1174 (1999).
    [Crossref]
  49. A. G. Andreou and Z. K. Kalayjian, “Polarization imaging: principles and integrated polarimeters,” IEEE Sens. J. 2(6), 566–576 (2002).
    [Crossref]
  50. T. York and V. Gruev, “Optical characterization of a polarization imager,” in International Symposium on Circuits and Systems(2011), pp. 1576–1579.
  51. B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
    [Crossref] [PubMed]
  52. C. Wu, I. Burton Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B Condens. Matter Mater. Phys. 84(7), 075102 (2011).
    [Crossref]
  53. G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett. 104(13), 136805 (2010).
    [Crossref] [PubMed]
  54. G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
    [Crossref]
  55. Y. K. Zhong, S. M. Fu, W. Huang, D. Rung, J. Y.-W. Huang, P. Parashar, and A. Lin, “Polarization-selective ultra-broadband super absorber,” Opt. Express 25(4), A124–A133 (2017).
    [Crossref] [PubMed]
  56. C. Wu and G. Shvets, “Design of metamaterial surfaces with broadband absorbance,” Opt. Lett. 37(3), 308–310 (2012).
    [Crossref] [PubMed]
  57. S. Wang, Y. Wang, S. Zhang, and W. Zheng, “Mid-infrared broadband absorber of full semiconductor epi-layers,” Phys. Lett. A 381(16), 1439–1444 (2017).
    [Crossref]
  58. N. Jin and Y. Rahmat-Samii, “Particle Swarm Optimization for Antenna Designs in Engineering Electromagnetics,” J. Artif. Evol. Appl. 2008, 1 (2008).
    [Crossref]
  59. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  60. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]

2018 (7)

D. N. Woolf, E. A. Kadlec, D. Bethke, A. D. Grine, J. J. Nogan, J. G. Cederberg, D. Bruce Burckel, T. S. Luk, E. A. Shaner, and J. M. Hensley, “High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter,” Optica 5(2), 213–218 (2018).
[Crossref]

H. Kim, S. Beack, S. Han, M. Shin, T. Lee, Y. Park, K. S. Kim, A. K. Yetisen, S. H. Yun, W. Kwon, and S. K. Hahn, “Multifunctional Photonic Nanomaterials for Diagnostic, Therapeutic, and Theranostic Applications,” Adv. Mater. 30(10), 1701460 (2018).
[Crossref] [PubMed]

P. Singh, S. Pandit, V. R. S. S. Mokkapati, A. Garg, V. Ravikumar, and I. Mijakovic, “Gold Nanoparticles in Diagnostics and Therapeutics for Human Cancer,” Int. J. Mol. Sci. 19(7), 1979 (2018).
[Crossref] [PubMed]

X. Luo, “Subwavelength Optical Engineering with Metasurface Waves,” Adv. Opt. Mater. 6(7), 1701201 (2018).
[Crossref]

M. L. Tseng, H.-H. Hsiao, C. H. Chu, M. K. Chen, G. Sun, A.-Q. Liu, and D. P. Tsai, “Metalenses: Advances and Applications,” Adv. Opt. Mater. 6(18), 1800554 (2018).
[Crossref]

L. Su, R. Trivedi, N. V. Sapra, A. Y. Piggott, D. Vercruysse, and J. Vučković, “Fully-automated optimization of grating couplers,” Opt. Express 26(4), 4023–4034 (2018).
[Crossref] [PubMed]

E. Arbabi, S. M. Kamali, A. Arbabi, and A. Faraon, “Full-Stokes Imaging Polarimetry Using Dielectric Metasurfaces,” ACS Photonics 5(8), 3132–3140 (2018).
[Crossref]

2017 (7)

Y. K. Zhong, S. M. Fu, W. Huang, D. Rung, J. Y.-W. Huang, P. Parashar, and A. Lin, “Polarization-selective ultra-broadband super absorber,” Opt. Express 25(4), A124–A133 (2017).
[Crossref] [PubMed]

S. Wang, Y. Wang, S. Zhang, and W. Zheng, “Mid-infrared broadband absorber of full semiconductor epi-layers,” Phys. Lett. A 381(16), 1439–1444 (2017).
[Crossref]

Z. Lin, M. Lončar, and A. W. Rodriguez, “Topology optimization of multi-track ring resonators and 2D microcavities for nonlinear frequency conversion,” Opt. Lett. 42(14), 2818–2821 (2017).
[Crossref] [PubMed]

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-Angle, Multifunctional Metagratings Based on Freeform Multimode Geometries,” Nano Lett. 17(6), 3752–3757 (2017).
[Crossref] [PubMed]

M. Khorasaninejad and F. Capasso, “Metalenses: Versatile multifunctional photonic components,” Science 358(6367), eaam8100 (2017).
[Crossref] [PubMed]

Z.-H. Wang, Y.-S. Hu, X. Xiong, R.-W. Peng, and M. Wang, “Encoding and display with stereo split-ring resonator arrays,” Opt. Lett. 42(6), 1153–1156 (2017).
[Crossref] [PubMed]

J. Y. Suen, K. Fan, J. Montoya, C. Bingham, V. Stenger, S. Sriram, and W. J. Padilla, “Multifunctional metamaterial pyroelectric infrared detectors,” Optica 4(2), 276–279 (2017).
[Crossref]

2016 (3)

A. Chanana, A. Paulsen, S. Guruswamy, and A. Nahata, “Hiding multi-level multi-color images in terahertz metasurfaces,” Optica 3(12), 1466–1470 (2016).
[Crossref]

Z. Lin, X. Liang, M. Lončar, S. G. Johnson, and A. W. Rodriguez, “Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization,” Optica 3(3), 233–238 (2016).
[Crossref]

Y. Zhao, C. Yi, S. G. Kong, Q. Pan, and Y. Cheng, “Multi-band polarization imaging and applications,” J. Sens. 2016, 1 (2016).
[Crossref]

2015 (2)

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

B. M. Adomanis, C. M. Watts, M. Koirala, X. Liu, T. Tyler, K. G. West, T. Starr, J. N. Bringuier, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107(2), 021107 (2015).
[Crossref]

2014 (5)

F. Yi, H. Zhu, J. C. Reed, A. Y. Zhu, and E. Cubukcu, “Thermoplasmonic Membrane-Based Infrared Detector,” IEEE Photonics Technol. Lett. 26(2), 202–205 (2014).
[Crossref]

B. Shen, P. Wang, R. Polson, and R. Menon, “Ultra-high-efficiency metamaterial polarizer,” Optica 1(5), 356–360 (2014).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

A. Y. Zhu, F. Yi, J. C. Reed, H. Zhu, and E. Cubukcu, “Optoelectromechanical multimodal biosensor with graphene active region,” Nano Lett. 14(10), 5641–5649 (2014).
[Crossref] [PubMed]

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

2013 (4)

F. Yi, H. Zhu, J. C. Reed, and E. Cubukcu, “Plasmonically enhanced thermomechanical detection of infrared radiation,” Nano Lett. 13(4), 1638–1643 (2013).
[Crossref] [PubMed]

J. Lu and J. Vučković, “Nanophotonic computational design,” Opt. Express 21(11), 13351–13367 (2013).
[Crossref] [PubMed]

F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, “Voltage tuning of plasmonic absorbers by indium tin oxide,” Appl. Phys. Lett. 102(22), 221102 (2013).
[Crossref]

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
[Crossref]

2012 (4)

C. Wu and G. Shvets, “Design of metamaterial surfaces with broadband absorbance,” Opt. Lett. 37(3), 308–310 (2012).
[Crossref] [PubMed]

M. Kulkarni and V. Gruev, “Integrated spectral-polarization imaging sensor with aluminum nanowire polarization filters,” Opt. Express 20(21), 22997–23012 (2012).
[Crossref] [PubMed]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120,OP181 (2012).
[PubMed]

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

2011 (4)

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

C. Wu, I. Burton Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B Condens. Matter Mater. Phys. 84(7), 075102 (2011).
[Crossref]

2010 (5)

G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett. 104(13), 136805 (2010).
[Crossref] [PubMed]

V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18(18), 19087–19094 (2010).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(19Suppl 3), A314–A334 (2010).
[Crossref] [PubMed]

2009 (1)

E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17(17), 15145–15159 (2009).
[Crossref] [PubMed]

2008 (2)

B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
[Crossref] [PubMed]

N. Jin and Y. Rahmat-Samii, “Particle Swarm Optimization for Antenna Designs in Engineering Electromagnetics,” J. Artif. Evol. Appl. 2008, 1 (2008).
[Crossref]

2007 (3)

P. Fortina, L. J. Kricka, D. J. Graves, J. Park, T. Hyslop, F. Tam, N. Halas, S. Surrey, and S. A. Waldman, “Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer,” Trends Biotechnol. 25(4), 145–152 (2007).
[Crossref] [PubMed]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

J. Goh, I. Fushman, D. Englund, and J. Vucković, “Genetic optimization of photonic bandgap structures,” Opt. Express 15(13), 8218–8230 (2007).
[Crossref] [PubMed]

2006 (1)

J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
[Crossref] [PubMed]

2005 (1)

S. Preble, M. Lipson, and H. Lipson, “Two-dimensional photonic crystals designed by evolutionary algorithms,” Appl. Phys. Lett. 86(6), 061111 (2005).
[Crossref]

2004 (1)

J. Robinson and Y. Rahmat-Samii, “Particle Swarm Optimization in Electromagnetics,” IEEE Trans. Antenn. Propag. 52(2), 397–407 (2004).
[Crossref]

2003 (1)

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(12), 7950 (2003).
[Crossref]

2002 (1)

A. G. Andreou and Z. K. Kalayjian, “Polarization imaging: principles and integrated polarimeters,” IEEE Sens. J. 2(6), 566–576 (2002).
[Crossref]

1999 (2)

G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16(5), 1168–1174 (1999).
[Crossref]

G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16(5), 1168–1174 (1999).
[Crossref]

Adomanis, B. M.

B. M. Adomanis, C. M. Watts, M. Koirala, X. Liu, T. Tyler, K. G. West, T. Starr, J. N. Bringuier, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107(2), 021107 (2015).
[Crossref]

Andreou, A. G.

A. G. Andreou and Z. K. Kalayjian, “Polarization imaging: principles and integrated polarimeters,” IEEE Sens. J. 2(6), 566–576 (2002).
[Crossref]

Araghchini, M.

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(19Suppl 3), A314–A334 (2010).
[Crossref] [PubMed]

Arbabi, A.

E. Arbabi, S. M. Kamali, A. Arbabi, and A. Faraon, “Full-Stokes Imaging Polarimetry Using Dielectric Metasurfaces,” ACS Photonics 5(8), 3132–3140 (2018).
[Crossref]

Arbabi, E.

E. Arbabi, S. M. Kamali, A. Arbabi, and A. Faraon, “Full-Stokes Imaging Polarimetry Using Dielectric Metasurfaces,” ACS Photonics 5(8), 3132–3140 (2018).
[Crossref]

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Babinec, T. M.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Baffou, G.

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
[Crossref]

G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett. 104(13), 136805 (2010).
[Crossref] [PubMed]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Beack, S.

H. Kim, S. Beack, S. Han, M. Shin, T. Lee, Y. Park, K. S. Kim, A. K. Yetisen, S. H. Yun, W. Kwon, and S. K. Hahn, “Multifunctional Photonic Nanomaterials for Diagnostic, Therapeutic, and Theranostic Applications,” Adv. Mater. 30(10), 1701460 (2018).
[Crossref] [PubMed]

Bermel, P.

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(19Suppl 3), A314–A334 (2010).
[Crossref] [PubMed]

Bethke, D.

D. N. Woolf, E. A. Kadlec, D. Bethke, A. D. Grine, J. J. Nogan, J. G. Cederberg, D. Bruce Burckel, T. S. Luk, E. A. Shaner, and J. M. Hensley, “High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter,” Optica 5(2), 213–218 (2018).
[Crossref]

Bierman, D. M.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Bingham, C.

J. Y. Suen, K. Fan, J. Montoya, C. Bingham, V. Stenger, S. Sriram, and W. J. Padilla, “Multifunctional metamaterial pyroelectric infrared detectors,” Optica 4(2), 276–279 (2017).
[Crossref]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Bringuier, J. N.

B. M. Adomanis, C. M. Watts, M. Koirala, X. Liu, T. Tyler, K. G. West, T. Starr, J. N. Bringuier, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107(2), 021107 (2015).
[Crossref]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Bruce Burckel, D.

D. N. Woolf, E. A. Kadlec, D. Bethke, A. D. Grine, J. J. Nogan, J. G. Cederberg, D. Bruce Burckel, T. S. Luk, E. A. Shaner, and J. M. Hensley, “High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter,” Optica 5(2), 213–218 (2018).
[Crossref]

Burton Neuner, I.

C. Wu, I. Burton Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B Condens. Matter Mater. Phys. 84(7), 075102 (2011).
[Crossref]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Capasso, F.

M. Khorasaninejad and F. Capasso, “Metalenses: Versatile multifunctional photonic components,” Science 358(6367), eaam8100 (2017).
[Crossref] [PubMed]

Cederberg, J. G.

D. N. Woolf, E. A. Kadlec, D. Bethke, A. D. Grine, J. J. Nogan, J. G. Cederberg, D. Bruce Burckel, T. S. Luk, E. A. Shaner, and J. M. Hensley, “High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter,” Optica 5(2), 213–218 (2018).
[Crossref]

Celanovic, I.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(19Suppl 3), A314–A334 (2010).
[Crossref] [PubMed]

Chan, W.

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(19Suppl 3), A314–A334 (2010).
[Crossref] [PubMed]

Chan, W. R.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Chanana, A.

A. Chanana, A. Paulsen, S. Guruswamy, and A. Nahata, “Hiding multi-level multi-color images in terahertz metasurfaces,” Optica 3(12), 1466–1470 (2016).
[Crossref]

Chen, M. K.

M. L. Tseng, H.-H. Hsiao, C. H. Chu, M. K. Chen, G. Sun, A.-Q. Liu, and D. P. Tsai, “Metalenses: Advances and Applications,” Adv. Opt. Mater. 6(18), 1800554 (2018).
[Crossref]

Chenault, D. B.

J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
[Crossref] [PubMed]

Cheng, Y.

Y. Zhao, C. Yi, S. G. Kong, Q. Pan, and Y. Cheng, “Multi-band polarization imaging and applications,” J. Sens. 2016, 1 (2016).
[Crossref]

Chu, C. H.

M. L. Tseng, H.-H. Hsiao, C. H. Chu, M. K. Chen, G. Sun, A.-Q. Liu, and D. P. Tsai, “Metalenses: Advances and Applications,” Adv. Opt. Mater. 6(18), 1800554 (2018).
[Crossref]

Crozier, K. B.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(12), 7950 (2003).
[Crossref]

Cubukcu, E.

F. Yi, H. Zhu, J. C. Reed, A. Y. Zhu, and E. Cubukcu, “Thermoplasmonic Membrane-Based Infrared Detector,” IEEE Photonics Technol. Lett. 26(2), 202–205 (2014).
[Crossref]

A. Y. Zhu, F. Yi, J. C. Reed, H. Zhu, and E. Cubukcu, “Optoelectromechanical multimodal biosensor with graphene active region,” Nano Lett. 14(10), 5641–5649 (2014).
[Crossref] [PubMed]

F. Yi, H. Zhu, J. C. Reed, and E. Cubukcu, “Plasmonically enhanced thermomechanical detection of infrared radiation,” Nano Lett. 13(4), 1638–1643 (2013).
[Crossref] [PubMed]

F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, “Voltage tuning of plasmonic absorbers by indium tin oxide,” Appl. Phys. Lett. 102(22), 221102 (2013).
[Crossref]

Cui, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Cui, Y. X.

Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Deguzman, P. C.

G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16(5), 1168–1174 (1999).
[Crossref]

G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16(5), 1168–1174 (1999).
[Crossref]

Ding, F.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Doshay, S.

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-Angle, Multifunctional Metagratings Based on Freeform Multimode Geometries,” Nano Lett. 17(6), 3752–3757 (2017).
[Crossref] [PubMed]

Drezek, R. A.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

Englund, D.

J. Goh, I. Fushman, D. Englund, and J. Vucković, “Genetic optimization of photonic bandgap structures,” Opt. Express 15(13), 8218–8230 (2007).
[Crossref] [PubMed]

Fan, J. A.

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-Angle, Multifunctional Metagratings Based on Freeform Multimode Geometries,” Nano Lett. 17(6), 3752–3757 (2017).
[Crossref] [PubMed]

Fan, K.

J. Y. Suen, K. Fan, J. Montoya, C. Bingham, V. Stenger, S. Sriram, and W. J. Padilla, “Multifunctional metamaterial pyroelectric infrared detectors,” Optica 4(2), 276–279 (2017).
[Crossref]

Fan, S.

E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17(17), 15145–15159 (2009).
[Crossref] [PubMed]

Fang, N. X.

Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Faraon, A.

E. Arbabi, S. M. Kamali, A. Arbabi, and A. Faraon, “Full-Stokes Imaging Polarimetry Using Dielectric Metasurfaces,” ACS Photonics 5(8), 3132–3140 (2018).
[Crossref]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Fortina, P.

P. Fortina, L. J. Kricka, D. J. Graves, J. Park, T. Hyslop, F. Tam, N. Halas, S. Surrey, and S. A. Waldman, “Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer,” Trends Biotechnol. 25(4), 145–152 (2007).
[Crossref] [PubMed]

Fu, S. M.

Y. K. Zhong, S. M. Fu, W. Huang, D. Rung, J. Y.-W. Huang, P. Parashar, and A. Lin, “Polarization-selective ultra-broadband super absorber,” Opt. Express 25(4), A124–A133 (2017).
[Crossref] [PubMed]

Fung, K. H.

Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Fushman, I.

J. Goh, I. Fushman, D. Englund, and J. Vucković, “Genetic optimization of photonic bandgap structures,” Opt. Express 15(13), 8218–8230 (2007).
[Crossref] [PubMed]

Garg, A.

P. Singh, S. Pandit, V. R. S. S. Mokkapati, A. Garg, V. Ravikumar, and I. Mijakovic, “Gold Nanoparticles in Diagnostics and Therapeutics for Human Cancer,” Int. J. Mol. Sci. 19(7), 1979 (2018).
[Crossref] [PubMed]

Ghebrebrhan, M.

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(19Suppl 3), A314–A334 (2010).
[Crossref] [PubMed]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Girard, C.

G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett. 104(13), 136805 (2010).
[Crossref] [PubMed]

Gobin, A. M.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

Goh, J.

J. Goh, I. Fushman, D. Englund, and J. Vucković, “Genetic optimization of photonic bandgap structures,” Opt. Express 15(13), 8218–8230 (2007).
[Crossref] [PubMed]

Goldstein, D. L.

J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
[Crossref] [PubMed]

Graves, D. J.

P. Fortina, L. J. Kricka, D. J. Graves, J. Park, T. Hyslop, F. Tam, N. Halas, S. Surrey, and S. A. Waldman, “Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer,” Trends Biotechnol. 25(4), 145–152 (2007).
[Crossref] [PubMed]

Grine, A. D.

D. N. Woolf, E. A. Kadlec, D. Bethke, A. D. Grine, J. J. Nogan, J. G. Cederberg, D. Bruce Burckel, T. S. Luk, E. A. Shaner, and J. M. Hensley, “High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter,” Optica 5(2), 213–218 (2018).
[Crossref]

Gruev, V.

M. Kulkarni and V. Gruev, “Integrated spectral-polarization imaging sensor with aluminum nanowire polarization filters,” Opt. Express 20(21), 22997–23012 (2012).
[Crossref] [PubMed]

V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18(18), 19087–19094 (2010).
[Crossref] [PubMed]

T. York and V. Gruev, “Optical characterization of a polarization imager,” in International Symposium on Circuits and Systems(2011), pp. 1576–1579.

Guruswamy, S.

A. Chanana, A. Paulsen, S. Guruswamy, and A. Nahata, “Hiding multi-level multi-color images in terahertz metasurfaces,” Optica 3(12), 1466–1470 (2016).
[Crossref]

Hahn, S. K.

H. Kim, S. Beack, S. Han, M. Shin, T. Lee, Y. Park, K. S. Kim, A. K. Yetisen, S. H. Yun, W. Kwon, and S. K. Hahn, “Multifunctional Photonic Nanomaterials for Diagnostic, Therapeutic, and Theranostic Applications,” Adv. Mater. 30(10), 1701460 (2018).
[Crossref] [PubMed]

Halas, N.

P. Fortina, L. J. Kricka, D. J. Graves, J. Park, T. Hyslop, F. Tam, N. Halas, S. Surrey, and S. A. Waldman, “Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer,” Trends Biotechnol. 25(4), 145–152 (2007).
[Crossref] [PubMed]

Halas, N. J.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

Hamam, R.

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(19Suppl 3), A314–A334 (2010).
[Crossref] [PubMed]

Han, S.

H. Kim, S. Beack, S. Han, M. Shin, T. Lee, Y. Park, K. S. Kim, A. K. Yetisen, S. H. Yun, W. Kwon, and S. K. Hahn, “Multifunctional Photonic Nanomaterials for Diagnostic, Therapeutic, and Theranostic Applications,” Adv. Mater. 30(10), 1701460 (2018).
[Crossref] [PubMed]

He, S.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

He, S. L.

Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

He, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Hensley, J. M.

D. N. Woolf, E. A. Kadlec, D. Bethke, A. D. Grine, J. J. Nogan, J. G. Cederberg, D. Bruce Burckel, T. S. Luk, E. A. Shaner, and J. M. Hensley, “High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter,” Optica 5(2), 213–218 (2018).
[Crossref]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Hsiao, H.-H.

M. L. Tseng, H.-H. Hsiao, C. H. Chu, M. K. Chen, G. Sun, A.-Q. Liu, and D. P. Tsai, “Metalenses: Advances and Applications,” Adv. Opt. Mater. 6(18), 1800554 (2018).
[Crossref]

Hu, Y.-S.

Z.-H. Wang, Y.-S. Hu, X. Xiong, R.-W. Peng, and M. Wang, “Encoding and display with stereo split-ring resonator arrays,” Opt. Lett. 42(6), 1153–1156 (2017).
[Crossref] [PubMed]

Huang, J. Y.-W.

Y. K. Zhong, S. M. Fu, W. Huang, D. Rung, J. Y.-W. Huang, P. Parashar, and A. Lin, “Polarization-selective ultra-broadband super absorber,” Opt. Express 25(4), A124–A133 (2017).
[Crossref] [PubMed]

Huang, W.

Y. K. Zhong, S. M. Fu, W. Huang, D. Rung, J. Y.-W. Huang, P. Parashar, and A. Lin, “Polarization-selective ultra-broadband super absorber,” Opt. Express 25(4), A124–A133 (2017).
[Crossref] [PubMed]

Hyslop, T.

P. Fortina, L. J. Kricka, D. J. Graves, J. Park, T. Hyslop, F. Tam, N. Halas, S. Surrey, and S. A. Waldman, “Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer,” Trends Biotechnol. 25(4), 145–152 (2007).
[Crossref] [PubMed]

James, W. D.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

Jensen, K. F.

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(19Suppl 3), A314–A334 (2010).
[Crossref] [PubMed]

Jin, N.

N. Jin and Y. Rahmat-Samii, “Particle Swarm Optimization for Antenna Designs in Engineering Electromagnetics,” J. Artif. Evol. Appl. 2008, 1 (2008).
[Crossref]

Jin, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Joannopoulos, J. D.

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(19Suppl 3), A314–A334 (2010).
[Crossref] [PubMed]

John, J.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

C. Wu, I. Burton Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B Condens. Matter Mater. Phys. 84(7), 075102 (2011).
[Crossref]

Johnson, S. G.

Z. Lin, X. Liang, M. Lončar, S. G. Johnson, and A. W. Rodriguez, “Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization,” Optica 3(3), 233–238 (2016).
[Crossref]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(19Suppl 3), A314–A334 (2010).
[Crossref] [PubMed]

Jokerst, N. M.

B. M. Adomanis, C. M. Watts, M. Koirala, X. Liu, T. Tyler, K. G. West, T. Starr, J. N. Bringuier, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107(2), 021107 (2015).
[Crossref]

Jones, M. W.

G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16(5), 1168–1174 (1999).
[Crossref]

G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16(5), 1168–1174 (1999).
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Kadlec, E. A.

D. N. Woolf, E. A. Kadlec, D. Bethke, A. D. Grine, J. J. Nogan, J. G. Cederberg, D. Bruce Burckel, T. S. Luk, E. A. Shaner, and J. M. Hensley, “High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter,” Optica 5(2), 213–218 (2018).
[Crossref]

Kalayjian, Z. K.

A. G. Andreou and Z. K. Kalayjian, “Polarization imaging: principles and integrated polarimeters,” IEEE Sens. J. 2(6), 566–576 (2002).
[Crossref]

Kamali, S. M.

E. Arbabi, S. M. Kamali, A. Arbabi, and A. Faraon, “Full-Stokes Imaging Polarimetry Using Dielectric Metasurfaces,” ACS Photonics 5(8), 3132–3140 (2018).
[Crossref]

Khorasaninejad, M.

M. Khorasaninejad and F. Capasso, “Metalenses: Versatile multifunctional photonic components,” Science 358(6367), eaam8100 (2017).
[Crossref] [PubMed]

Kim, H.

H. Kim, S. Beack, S. Han, M. Shin, T. Lee, Y. Park, K. S. Kim, A. K. Yetisen, S. H. Yun, W. Kwon, and S. K. Hahn, “Multifunctional Photonic Nanomaterials for Diagnostic, Therapeutic, and Theranostic Applications,” Adv. Mater. 30(10), 1701460 (2018).
[Crossref] [PubMed]

Kim, K. S.

H. Kim, S. Beack, S. Han, M. Shin, T. Lee, Y. Park, K. S. Kim, A. K. Yetisen, S. H. Yun, W. Kwon, and S. K. Hahn, “Multifunctional Photonic Nanomaterials for Diagnostic, Therapeutic, and Theranostic Applications,” Adv. Mater. 30(10), 1701460 (2018).
[Crossref] [PubMed]

Kino, G. S.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(12), 7950 (2003).
[Crossref]

Koirala, M.

B. M. Adomanis, C. M. Watts, M. Koirala, X. Liu, T. Tyler, K. G. West, T. Starr, J. N. Bringuier, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107(2), 021107 (2015).
[Crossref]

Kong, S. G.

Y. Zhao, C. Yi, S. G. Kong, Q. Pan, and Y. Cheng, “Multi-band polarization imaging and applications,” J. Sens. 2016, 1 (2016).
[Crossref]

Kricka, L. J.

P. Fortina, L. J. Kricka, D. J. Graves, J. Park, T. Hyslop, F. Tam, N. Halas, S. Surrey, and S. A. Waldman, “Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer,” Trends Biotechnol. 25(4), 145–152 (2007).
[Crossref] [PubMed]

Kulkarni, M.

M. Kulkarni and V. Gruev, “Integrated spectral-polarization imaging sensor with aluminum nanowire polarization filters,” Opt. Express 20(21), 22997–23012 (2012).
[Crossref] [PubMed]

Kumar, A.

Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Kwon, W.

H. Kim, S. Beack, S. Han, M. Shin, T. Lee, Y. Park, K. S. Kim, A. K. Yetisen, S. H. Yun, W. Kwon, and S. K. Hahn, “Multifunctional Photonic Nanomaterials for Diagnostic, Therapeutic, and Theranostic Applications,” Adv. Mater. 30(10), 1701460 (2018).
[Crossref] [PubMed]

Lagoudakis, K. G.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Lee, B. J.

B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
[Crossref] [PubMed]

Lee, M. H.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

Lee, T.

H. Kim, S. Beack, S. Han, M. Shin, T. Lee, Y. Park, K. S. Kim, A. K. Yetisen, S. H. Yun, W. Kwon, and S. K. Hahn, “Multifunctional Photonic Nanomaterials for Diagnostic, Therapeutic, and Theranostic Applications,” Adv. Mater. 30(10), 1701460 (2018).
[Crossref] [PubMed]

Lenert, A.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Liang, X.

Z. Lin, X. Liang, M. Lončar, S. G. Johnson, and A. W. Rodriguez, “Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization,” Optica 3(3), 233–238 (2016).
[Crossref]

Lin, A.

Y. K. Zhong, S. M. Fu, W. Huang, D. Rung, J. Y.-W. Huang, P. Parashar, and A. Lin, “Polarization-selective ultra-broadband super absorber,” Opt. Express 25(4), A124–A133 (2017).
[Crossref] [PubMed]

Lin, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Lin, Z.

Z. Lin, M. Lončar, and A. W. Rodriguez, “Topology optimization of multi-track ring resonators and 2D microcavities for nonlinear frequency conversion,” Opt. Lett. 42(14), 2818–2821 (2017).
[Crossref] [PubMed]

Z. Lin, X. Liang, M. Lončar, S. G. Johnson, and A. W. Rodriguez, “Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization,” Optica 3(3), 233–238 (2016).
[Crossref]

Lipson, H.

S. Preble, M. Lipson, and H. Lipson, “Two-dimensional photonic crystals designed by evolutionary algorithms,” Appl. Phys. Lett. 86(6), 061111 (2005).
[Crossref]

Lipson, M.

S. Preble, M. Lipson, and H. Lipson, “Two-dimensional photonic crystals designed by evolutionary algorithms,” Appl. Phys. Lett. 86(6), 061111 (2005).
[Crossref]

Liu, A.-Q.

M. L. Tseng, H.-H. Hsiao, C. H. Chu, M. K. Chen, G. Sun, A.-Q. Liu, and D. P. Tsai, “Metalenses: Advances and Applications,” Adv. Opt. Mater. 6(18), 1800554 (2018).
[Crossref]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Liu, X.

B. M. Adomanis, C. M. Watts, M. Koirala, X. Liu, T. Tyler, K. G. West, T. Starr, J. N. Bringuier, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107(2), 021107 (2015).
[Crossref]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120,OP181 (2012).
[PubMed]

Loncar, M.

Z. Lin, M. Lončar, and A. W. Rodriguez, “Topology optimization of multi-track ring resonators and 2D microcavities for nonlinear frequency conversion,” Opt. Lett. 42(14), 2818–2821 (2017).
[Crossref] [PubMed]

Z. Lin, X. Liang, M. Lončar, S. G. Johnson, and A. W. Rodriguez, “Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization,” Optica 3(3), 233–238 (2016).
[Crossref]

Lu, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

J. Lu and J. Vučković, “Nanophotonic computational design,” Opt. Express 21(11), 13351–13367 (2013).
[Crossref] [PubMed]

Luk, T. S.

D. N. Woolf, E. A. Kadlec, D. Bethke, A. D. Grine, J. J. Nogan, J. G. Cederberg, D. Bruce Burckel, T. S. Luk, E. A. Shaner, and J. M. Hensley, “High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter,” Optica 5(2), 213–218 (2018).
[Crossref]

Luo, X.

X. Luo, “Subwavelength Optical Engineering with Metasurface Waves,” Adv. Opt. Mater. 6(7), 1701201 (2018).
[Crossref]

Marton, C. H.

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(19Suppl 3), A314–A334 (2010).
[Crossref] [PubMed]

Meier, J. T.

G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16(5), 1168–1174 (1999).
[Crossref]

G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16(5), 1168–1174 (1999).
[Crossref]

Menon, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “Ultra-high-efficiency metamaterial polarizer,” Optica 1(5), 356–360 (2014).
[Crossref]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Mijakovic, I.

P. Singh, S. Pandit, V. R. S. S. Mokkapati, A. Garg, V. Ravikumar, and I. Mijakovic, “Gold Nanoparticles in Diagnostics and Therapeutics for Human Cancer,” Int. J. Mol. Sci. 19(7), 1979 (2018).
[Crossref] [PubMed]

Milder, A.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

C. Wu, I. Burton Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B Condens. Matter Mater. Phys. 84(7), 075102 (2011).
[Crossref]

Mokkapati, V. R. S. S.

P. Singh, S. Pandit, V. R. S. S. Mokkapati, A. Garg, V. Ravikumar, and I. Mijakovic, “Gold Nanoparticles in Diagnostics and Therapeutics for Human Cancer,” Int. J. Mol. Sci. 19(7), 1979 (2018).
[Crossref] [PubMed]

Montoya, J.

J. Y. Suen, K. Fan, J. Montoya, C. Bingham, V. Stenger, S. Sriram, and W. J. Padilla, “Multifunctional metamaterial pyroelectric infrared detectors,” Optica 4(2), 276–279 (2017).
[Crossref]

Nahata, A.

A. Chanana, A. Paulsen, S. Guruswamy, and A. Nahata, “Hiding multi-level multi-color images in terahertz metasurfaces,” Optica 3(12), 1466–1470 (2016).
[Crossref]

Nam, Y.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Neuner, B.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

Nogan, J. J.

D. N. Woolf, E. A. Kadlec, D. Bethke, A. D. Grine, J. J. Nogan, J. G. Cederberg, D. Bruce Burckel, T. S. Luk, E. A. Shaner, and J. M. Hensley, “High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter,” Optica 5(2), 213–218 (2018).
[Crossref]

Nordin, G. P.

G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16(5), 1168–1174 (1999).
[Crossref]

G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16(5), 1168–1174 (1999).
[Crossref]

Novotny, L.

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Padilla, W. J.

J. Y. Suen, K. Fan, J. Montoya, C. Bingham, V. Stenger, S. Sriram, and W. J. Padilla, “Multifunctional metamaterial pyroelectric infrared detectors,” Optica 4(2), 276–279 (2017).
[Crossref]

B. M. Adomanis, C. M. Watts, M. Koirala, X. Liu, T. Tyler, K. G. West, T. Starr, J. N. Bringuier, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107(2), 021107 (2015).
[Crossref]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120,OP181 (2012).
[PubMed]

Pan, Q.

Y. Zhao, C. Yi, S. G. Kong, Q. Pan, and Y. Cheng, “Multi-band polarization imaging and applications,” J. Sens. 2016, 1 (2016).
[Crossref]

Pandit, S.

P. Singh, S. Pandit, V. R. S. S. Mokkapati, A. Garg, V. Ravikumar, and I. Mijakovic, “Gold Nanoparticles in Diagnostics and Therapeutics for Human Cancer,” Int. J. Mol. Sci. 19(7), 1979 (2018).
[Crossref] [PubMed]

Parashar, P.

Y. K. Zhong, S. M. Fu, W. Huang, D. Rung, J. Y.-W. Huang, P. Parashar, and A. Lin, “Polarization-selective ultra-broadband super absorber,” Opt. Express 25(4), A124–A133 (2017).
[Crossref] [PubMed]

Park, J.

P. Fortina, L. J. Kricka, D. J. Graves, J. Park, T. Hyslop, F. Tam, N. Halas, S. Surrey, and S. A. Waldman, “Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer,” Trends Biotechnol. 25(4), 145–152 (2007).
[Crossref] [PubMed]

Park, Y.

H. Kim, S. Beack, S. Han, M. Shin, T. Lee, Y. Park, K. S. Kim, A. K. Yetisen, S. H. Yun, W. Kwon, and S. K. Hahn, “Multifunctional Photonic Nanomaterials for Diagnostic, Therapeutic, and Theranostic Applications,” Adv. Mater. 30(10), 1701460 (2018).
[Crossref] [PubMed]

Paulsen, A.

A. Chanana, A. Paulsen, S. Guruswamy, and A. Nahata, “Hiding multi-level multi-color images in terahertz metasurfaces,” Optica 3(12), 1466–1470 (2016).
[Crossref]

Peng, R.-W.

Z.-H. Wang, Y.-S. Hu, X. Xiong, R.-W. Peng, and M. Wang, “Encoding and display with stereo split-ring resonator arrays,” Opt. Lett. 42(6), 1153–1156 (2017).
[Crossref] [PubMed]

Perkins, R.

V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18(18), 19087–19094 (2010).
[Crossref] [PubMed]

Petykiewicz, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Piggott, A. Y.

L. Su, R. Trivedi, N. V. Sapra, A. Y. Piggott, D. Vercruysse, and J. Vučković, “Fully-automated optimization of grating couplers,” Opt. Express 26(4), 4023–4034 (2018).
[Crossref] [PubMed]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Polson, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “Ultra-high-efficiency metamaterial polarizer,” Optica 1(5), 356–360 (2014).
[Crossref]

Preble, S.

S. Preble, M. Lipson, and H. Lipson, “Two-dimensional photonic crystals designed by evolutionary algorithms,” Appl. Phys. Lett. 86(6), 061111 (2005).
[Crossref]

Quate, C. F.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(12), 7950 (2003).
[Crossref]

Quidant, R.

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
[Crossref]

G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett. 104(13), 136805 (2010).
[Crossref] [PubMed]

Rahmat-Samii, Y.

N. Jin and Y. Rahmat-Samii, “Particle Swarm Optimization for Antenna Designs in Engineering Electromagnetics,” J. Artif. Evol. Appl. 2008, 1 (2008).
[Crossref]

J. Robinson and Y. Rahmat-Samii, “Particle Swarm Optimization in Electromagnetics,” IEEE Trans. Antenn. Propag. 52(2), 397–407 (2004).
[Crossref]

Ravikumar, V.

P. Singh, S. Pandit, V. R. S. S. Mokkapati, A. Garg, V. Ravikumar, and I. Mijakovic, “Gold Nanoparticles in Diagnostics and Therapeutics for Human Cancer,” Int. J. Mol. Sci. 19(7), 1979 (2018).
[Crossref] [PubMed]

Reed, J. C.

F. Yi, H. Zhu, J. C. Reed, A. Y. Zhu, and E. Cubukcu, “Thermoplasmonic Membrane-Based Infrared Detector,” IEEE Photonics Technol. Lett. 26(2), 202–205 (2014).
[Crossref]

A. Y. Zhu, F. Yi, J. C. Reed, H. Zhu, and E. Cubukcu, “Optoelectromechanical multimodal biosensor with graphene active region,” Nano Lett. 14(10), 5641–5649 (2014).
[Crossref] [PubMed]

F. Yi, H. Zhu, J. C. Reed, and E. Cubukcu, “Plasmonically enhanced thermomechanical detection of infrared radiation,” Nano Lett. 13(4), 1638–1643 (2013).
[Crossref] [PubMed]

F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, “Voltage tuning of plasmonic absorbers by indium tin oxide,” Appl. Phys. Lett. 102(22), 221102 (2013).
[Crossref]

Rephaeli, E.

E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17(17), 15145–15159 (2009).
[Crossref] [PubMed]

Robinson, J.

J. Robinson and Y. Rahmat-Samii, “Particle Swarm Optimization in Electromagnetics,” IEEE Trans. Antenn. Propag. 52(2), 397–407 (2004).
[Crossref]

Rodriguez, A. W.

Z. Lin, M. Lončar, and A. W. Rodriguez, “Topology optimization of multi-track ring resonators and 2D microcavities for nonlinear frequency conversion,” Opt. Lett. 42(14), 2818–2821 (2017).
[Crossref] [PubMed]

Z. Lin, X. Liang, M. Lončar, S. G. Johnson, and A. W. Rodriguez, “Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization,” Optica 3(3), 233–238 (2016).
[Crossref]

Rung, D.

Y. K. Zhong, S. M. Fu, W. Huang, D. Rung, J. Y.-W. Huang, P. Parashar, and A. Lin, “Polarization-selective ultra-broadband super absorber,” Opt. Express 25(4), A124–A133 (2017).
[Crossref] [PubMed]

Sapra, N. V.

L. Su, R. Trivedi, N. V. Sapra, A. Y. Piggott, D. Vercruysse, and J. Vučković, “Fully-automated optimization of grating couplers,” Opt. Express 26(4), 4023–4034 (2018).
[Crossref] [PubMed]

Savoy, S.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

C. Wu, I. Burton Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B Condens. Matter Mater. Phys. 84(7), 075102 (2011).
[Crossref]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Sell, D.

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-Angle, Multifunctional Metagratings Based on Freeform Multimode Geometries,” Nano Lett. 17(6), 3752–3757 (2017).
[Crossref] [PubMed]

Shaner, E. A.

D. N. Woolf, E. A. Kadlec, D. Bethke, A. D. Grine, J. J. Nogan, J. G. Cederberg, D. Bruce Burckel, T. S. Luk, E. A. Shaner, and J. M. Hensley, “High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter,” Optica 5(2), 213–218 (2018).
[Crossref]

Shaw, J. A.

J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
[Crossref] [PubMed]

Shen, B.

B. Shen, P. Wang, R. Polson, and R. Menon, “Ultra-high-efficiency metamaterial polarizer,” Optica 1(5), 356–360 (2014).
[Crossref]

Shim, E.

F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, “Voltage tuning of plasmonic absorbers by indium tin oxide,” Appl. Phys. Lett. 102(22), 221102 (2013).
[Crossref]

Shin, M.

H. Kim, S. Beack, S. Han, M. Shin, T. Lee, Y. Park, K. S. Kim, A. K. Yetisen, S. H. Yun, W. Kwon, and S. K. Hahn, “Multifunctional Photonic Nanomaterials for Diagnostic, Therapeutic, and Theranostic Applications,” Adv. Mater. 30(10), 1701460 (2018).
[Crossref] [PubMed]

Shvets, G.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

C. Wu and G. Shvets, “Design of metamaterial surfaces with broadband absorbance,” Opt. Lett. 37(3), 308–310 (2012).
[Crossref] [PubMed]

C. Wu, I. Burton Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B Condens. Matter Mater. Phys. 84(7), 075102 (2011).
[Crossref]

Singh, P.

P. Singh, S. Pandit, V. R. S. S. Mokkapati, A. Garg, V. Ravikumar, and I. Mijakovic, “Gold Nanoparticles in Diagnostics and Therapeutics for Human Cancer,” Int. J. Mol. Sci. 19(7), 1979 (2018).
[Crossref] [PubMed]

Soljacic, M.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(19Suppl 3), A314–A334 (2010).
[Crossref] [PubMed]

Sriram, S.

J. Y. Suen, K. Fan, J. Montoya, C. Bingham, V. Stenger, S. Sriram, and W. J. Padilla, “Multifunctional metamaterial pyroelectric infrared detectors,” Optica 4(2), 276–279 (2017).
[Crossref]

Starr, A. F.

B. M. Adomanis, C. M. Watts, M. Koirala, X. Liu, T. Tyler, K. G. West, T. Starr, J. N. Bringuier, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107(2), 021107 (2015).
[Crossref]

Starr, T.

B. M. Adomanis, C. M. Watts, M. Koirala, X. Liu, T. Tyler, K. G. West, T. Starr, J. N. Bringuier, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107(2), 021107 (2015).
[Crossref]

Stenger, V.

J. Y. Suen, K. Fan, J. Montoya, C. Bingham, V. Stenger, S. Sriram, and W. J. Padilla, “Multifunctional metamaterial pyroelectric infrared detectors,” Optica 4(2), 276–279 (2017).
[Crossref]

Su, L.

L. Su, R. Trivedi, N. V. Sapra, A. Y. Piggott, D. Vercruysse, and J. Vučković, “Fully-automated optimization of grating couplers,” Opt. Express 26(4), 4023–4034 (2018).
[Crossref] [PubMed]

Suen, J. Y.

J. Y. Suen, K. Fan, J. Montoya, C. Bingham, V. Stenger, S. Sriram, and W. J. Padilla, “Multifunctional metamaterial pyroelectric infrared detectors,” Optica 4(2), 276–279 (2017).
[Crossref]

Sun, G.

M. L. Tseng, H.-H. Hsiao, C. H. Chu, M. K. Chen, G. Sun, A.-Q. Liu, and D. P. Tsai, “Metalenses: Advances and Applications,” Adv. Opt. Mater. 6(18), 1800554 (2018).
[Crossref]

Sundaramurthy, A.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(12), 7950 (2003).
[Crossref]

Surrey, S.

P. Fortina, L. J. Kricka, D. J. Graves, J. Park, T. Hyslop, F. Tam, N. Halas, S. Surrey, and S. A. Waldman, “Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer,” Trends Biotechnol. 25(4), 145–152 (2007).
[Crossref] [PubMed]

Tam, F.

P. Fortina, L. J. Kricka, D. J. Graves, J. Park, T. Hyslop, F. Tam, N. Halas, S. Surrey, and S. A. Waldman, “Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer,” Trends Biotechnol. 25(4), 145–152 (2007).
[Crossref] [PubMed]

Trivedi, R.

L. Su, R. Trivedi, N. V. Sapra, A. Y. Piggott, D. Vercruysse, and J. Vučković, “Fully-automated optimization of grating couplers,” Opt. Express 26(4), 4023–4034 (2018).
[Crossref] [PubMed]

Tsai, D. P.

M. L. Tseng, H.-H. Hsiao, C. H. Chu, M. K. Chen, G. Sun, A.-Q. Liu, and D. P. Tsai, “Metalenses: Advances and Applications,” Adv. Opt. Mater. 6(18), 1800554 (2018).
[Crossref]

Tseng, M. L.

M. L. Tseng, H.-H. Hsiao, C. H. Chu, M. K. Chen, G. Sun, A.-Q. Liu, and D. P. Tsai, “Metalenses: Advances and Applications,” Adv. Opt. Mater. 6(18), 1800554 (2018).
[Crossref]

Tyler, T.

B. M. Adomanis, C. M. Watts, M. Koirala, X. Liu, T. Tyler, K. G. West, T. Starr, J. N. Bringuier, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107(2), 021107 (2015).
[Crossref]

Tyo, J. S.

J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
[Crossref] [PubMed]

Van Hulst, N.

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Vercruysse, D.

L. Su, R. Trivedi, N. V. Sapra, A. Y. Piggott, D. Vercruysse, and J. Vučković, “Fully-automated optimization of grating couplers,” Opt. Express 26(4), 4023–4034 (2018).
[Crossref] [PubMed]

Vuckovic, J.

L. Su, R. Trivedi, N. V. Sapra, A. Y. Piggott, D. Vercruysse, and J. Vučković, “Fully-automated optimization of grating couplers,” Opt. Express 26(4), 4023–4034 (2018).
[Crossref] [PubMed]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

J. Lu and J. Vučković, “Nanophotonic computational design,” Opt. Express 21(11), 13351–13367 (2013).
[Crossref] [PubMed]

J. Goh, I. Fushman, D. Englund, and J. Vucković, “Genetic optimization of photonic bandgap structures,” Opt. Express 15(13), 8218–8230 (2007).
[Crossref] [PubMed]

Waldman, S. A.

P. Fortina, L. J. Kricka, D. J. Graves, J. Park, T. Hyslop, F. Tam, N. Halas, S. Surrey, and S. A. Waldman, “Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer,” Trends Biotechnol. 25(4), 145–152 (2007).
[Crossref] [PubMed]

Wang, E. N.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Wang, L. P.

B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
[Crossref] [PubMed]

Wang, M.

Z.-H. Wang, Y.-S. Hu, X. Xiong, R.-W. Peng, and M. Wang, “Encoding and display with stereo split-ring resonator arrays,” Opt. Lett. 42(6), 1153–1156 (2017).
[Crossref] [PubMed]

Wang, P.

B. Shen, P. Wang, R. Polson, and R. Menon, “Ultra-high-efficiency metamaterial polarizer,” Optica 1(5), 356–360 (2014).
[Crossref]

Wang, S.

S. Wang, Y. Wang, S. Zhang, and W. Zheng, “Mid-infrared broadband absorber of full semiconductor epi-layers,” Phys. Lett. A 381(16), 1439–1444 (2017).
[Crossref]

Wang, Y.

S. Wang, Y. Wang, S. Zhang, and W. Zheng, “Mid-infrared broadband absorber of full semiconductor epi-layers,” Phys. Lett. A 381(16), 1439–1444 (2017).
[Crossref]

Wang, Z.-H.

Z.-H. Wang, Y.-S. Hu, X. Xiong, R.-W. Peng, and M. Wang, “Encoding and display with stereo split-ring resonator arrays,” Opt. Lett. 42(6), 1153–1156 (2017).
[Crossref] [PubMed]

Watts, C. M.

B. M. Adomanis, C. M. Watts, M. Koirala, X. Liu, T. Tyler, K. G. West, T. Starr, J. N. Bringuier, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107(2), 021107 (2015).
[Crossref]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120,OP181 (2012).
[PubMed]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

West, J. L.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

West, K. G.

B. M. Adomanis, C. M. Watts, M. Koirala, X. Liu, T. Tyler, K. G. West, T. Starr, J. N. Bringuier, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107(2), 021107 (2015).
[Crossref]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Woolf, D. N.

D. N. Woolf, E. A. Kadlec, D. Bethke, A. D. Grine, J. J. Nogan, J. G. Cederberg, D. Bruce Burckel, T. S. Luk, E. A. Shaner, and J. M. Hensley, “High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter,” Optica 5(2), 213–218 (2018).
[Crossref]

Wu, C.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

C. Wu and G. Shvets, “Design of metamaterial surfaces with broadband absorbance,” Opt. Lett. 37(3), 308–310 (2012).
[Crossref] [PubMed]

C. Wu, I. Burton Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B Condens. Matter Mater. Phys. 84(7), 075102 (2011).
[Crossref]

Xiong, X.

Z.-H. Wang, Y.-S. Hu, X. Xiong, R.-W. Peng, and M. Wang, “Encoding and display with stereo split-ring resonator arrays,” Opt. Lett. 42(6), 1153–1156 (2017).
[Crossref] [PubMed]

Xu, J.

Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Yang, J.

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-Angle, Multifunctional Metagratings Based on Freeform Multimode Geometries,” Nano Lett. 17(6), 3752–3757 (2017).
[Crossref] [PubMed]

Yang, L.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Yang, R.

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-Angle, Multifunctional Metagratings Based on Freeform Multimode Geometries,” Nano Lett. 17(6), 3752–3757 (2017).
[Crossref] [PubMed]

Ye, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Yeng, Y. X.

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(19Suppl 3), A314–A334 (2010).
[Crossref] [PubMed]

Yetisen, A. K.

H. Kim, S. Beack, S. Han, M. Shin, T. Lee, Y. Park, K. S. Kim, A. K. Yetisen, S. H. Yun, W. Kwon, and S. K. Hahn, “Multifunctional Photonic Nanomaterials for Diagnostic, Therapeutic, and Theranostic Applications,” Adv. Mater. 30(10), 1701460 (2018).
[Crossref] [PubMed]

Yi, C.

Y. Zhao, C. Yi, S. G. Kong, Q. Pan, and Y. Cheng, “Multi-band polarization imaging and applications,” J. Sens. 2016, 1 (2016).
[Crossref]

Yi, F.

F. Yi, H. Zhu, J. C. Reed, A. Y. Zhu, and E. Cubukcu, “Thermoplasmonic Membrane-Based Infrared Detector,” IEEE Photonics Technol. Lett. 26(2), 202–205 (2014).
[Crossref]

A. Y. Zhu, F. Yi, J. C. Reed, H. Zhu, and E. Cubukcu, “Optoelectromechanical multimodal biosensor with graphene active region,” Nano Lett. 14(10), 5641–5649 (2014).
[Crossref] [PubMed]

F. Yi, H. Zhu, J. C. Reed, and E. Cubukcu, “Plasmonically enhanced thermomechanical detection of infrared radiation,” Nano Lett. 13(4), 1638–1643 (2013).
[Crossref] [PubMed]

F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, “Voltage tuning of plasmonic absorbers by indium tin oxide,” Appl. Phys. Lett. 102(22), 221102 (2013).
[Crossref]

York, T.

V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18(18), 19087–19094 (2010).
[Crossref] [PubMed]

T. York and V. Gruev, “Optical characterization of a polarization imager,” in International Symposium on Circuits and Systems(2011), pp. 1576–1579.

Yun, S. H.

H. Kim, S. Beack, S. Han, M. Shin, T. Lee, Y. Park, K. S. Kim, A. K. Yetisen, S. H. Yun, W. Kwon, and S. K. Hahn, “Multifunctional Photonic Nanomaterials for Diagnostic, Therapeutic, and Theranostic Applications,” Adv. Mater. 30(10), 1701460 (2018).
[Crossref] [PubMed]

Zhang, S.

S. Wang, Y. Wang, S. Zhang, and W. Zheng, “Mid-infrared broadband absorber of full semiconductor epi-layers,” Phys. Lett. A 381(16), 1439–1444 (2017).
[Crossref]

Zhang, Z. M.

B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
[Crossref] [PubMed]

Zhao, Y.

Y. Zhao, C. Yi, S. G. Kong, Q. Pan, and Y. Cheng, “Multi-band polarization imaging and applications,” J. Sens. 2016, 1 (2016).
[Crossref]

Zheng, W.

S. Wang, Y. Wang, S. Zhang, and W. Zheng, “Mid-infrared broadband absorber of full semiconductor epi-layers,” Phys. Lett. A 381(16), 1439–1444 (2017).
[Crossref]

Zhong, S.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Zhong, Y. K.

Y. K. Zhong, S. M. Fu, W. Huang, D. Rung, J. Y.-W. Huang, P. Parashar, and A. Lin, “Polarization-selective ultra-broadband super absorber,” Opt. Express 25(4), A124–A133 (2017).
[Crossref] [PubMed]

Zhu, A. Y.

F. Yi, H. Zhu, J. C. Reed, A. Y. Zhu, and E. Cubukcu, “Thermoplasmonic Membrane-Based Infrared Detector,” IEEE Photonics Technol. Lett. 26(2), 202–205 (2014).
[Crossref]

A. Y. Zhu, F. Yi, J. C. Reed, H. Zhu, and E. Cubukcu, “Optoelectromechanical multimodal biosensor with graphene active region,” Nano Lett. 14(10), 5641–5649 (2014).
[Crossref] [PubMed]

F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, “Voltage tuning of plasmonic absorbers by indium tin oxide,” Appl. Phys. Lett. 102(22), 221102 (2013).
[Crossref]

Zhu, H.

A. Y. Zhu, F. Yi, J. C. Reed, H. Zhu, and E. Cubukcu, “Optoelectromechanical multimodal biosensor with graphene active region,” Nano Lett. 14(10), 5641–5649 (2014).
[Crossref] [PubMed]

F. Yi, H. Zhu, J. C. Reed, A. Y. Zhu, and E. Cubukcu, “Thermoplasmonic Membrane-Based Infrared Detector,” IEEE Photonics Technol. Lett. 26(2), 202–205 (2014).
[Crossref]

F. Yi, H. Zhu, J. C. Reed, and E. Cubukcu, “Plasmonically enhanced thermomechanical detection of infrared radiation,” Nano Lett. 13(4), 1638–1643 (2013).
[Crossref] [PubMed]

F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, “Voltage tuning of plasmonic absorbers by indium tin oxide,” Appl. Phys. Lett. 102(22), 221102 (2013).
[Crossref]

Zollars, B.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

C. Wu, I. Burton Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B Condens. Matter Mater. Phys. 84(7), 075102 (2011).
[Crossref]

ACS Photonics (1)

E. Arbabi, S. M. Kamali, A. Arbabi, and A. Faraon, “Full-Stokes Imaging Polarimetry Using Dielectric Metasurfaces,” ACS Photonics 5(8), 3132–3140 (2018).
[Crossref]

Adv. Mater. (2)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120,OP181 (2012).
[PubMed]

H. Kim, S. Beack, S. Han, M. Shin, T. Lee, Y. Park, K. S. Kim, A. K. Yetisen, S. H. Yun, W. Kwon, and S. K. Hahn, “Multifunctional Photonic Nanomaterials for Diagnostic, Therapeutic, and Theranostic Applications,” Adv. Mater. 30(10), 1701460 (2018).
[Crossref] [PubMed]

Adv. Opt. Mater. (2)

X. Luo, “Subwavelength Optical Engineering with Metasurface Waves,” Adv. Opt. Mater. 6(7), 1701201 (2018).
[Crossref]

M. L. Tseng, H.-H. Hsiao, C. H. Chu, M. K. Chen, G. Sun, A.-Q. Liu, and D. P. Tsai, “Metalenses: Advances and Applications,” Adv. Opt. Mater. 6(18), 1800554 (2018).
[Crossref]

Appl. Opt. (1)

J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

B. M. Adomanis, C. M. Watts, M. Koirala, X. Liu, T. Tyler, K. G. West, T. Starr, J. N. Bringuier, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107(2), 021107 (2015).
[Crossref]

F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, “Voltage tuning of plasmonic absorbers by indium tin oxide,” Appl. Phys. Lett. 102(22), 221102 (2013).
[Crossref]

S. Preble, M. Lipson, and H. Lipson, “Two-dimensional photonic crystals designed by evolutionary algorithms,” Appl. Phys. Lett. 86(6), 061111 (2005).
[Crossref]

IEEE Photonics Technol. Lett. (1)

F. Yi, H. Zhu, J. C. Reed, A. Y. Zhu, and E. Cubukcu, “Thermoplasmonic Membrane-Based Infrared Detector,” IEEE Photonics Technol. Lett. 26(2), 202–205 (2014).
[Crossref]

IEEE Sens. J. (1)

A. G. Andreou and Z. K. Kalayjian, “Polarization imaging: principles and integrated polarimeters,” IEEE Sens. J. 2(6), 566–576 (2002).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

J. Robinson and Y. Rahmat-Samii, “Particle Swarm Optimization in Electromagnetics,” IEEE Trans. Antenn. Propag. 52(2), 397–407 (2004).
[Crossref]

Int. J. Mol. Sci. (1)

P. Singh, S. Pandit, V. R. S. S. Mokkapati, A. Garg, V. Ravikumar, and I. Mijakovic, “Gold Nanoparticles in Diagnostics and Therapeutics for Human Cancer,” Int. J. Mol. Sci. 19(7), 1979 (2018).
[Crossref] [PubMed]

J. Appl. Phys. (1)

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(12), 7950 (2003).
[Crossref]

J. Artif. Evol. Appl. (1)

N. Jin and Y. Rahmat-Samii, “Particle Swarm Optimization for Antenna Designs in Engineering Electromagnetics,” J. Artif. Evol. Appl. 2008, 1 (2008).
[Crossref]

J. Opt. (1)

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

J. Opt. Soc. Am. A (2)

G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16(5), 1168–1174 (1999).
[Crossref]

G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16(5), 1168–1174 (1999).
[Crossref]

J. Sens. (1)

Y. Zhao, C. Yi, S. G. Kong, Q. Pan, and Y. Cheng, “Multi-band polarization imaging and applications,” J. Sens. 2016, 1 (2016).
[Crossref]

Laser Photonics Rev. (2)

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
[Crossref]

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Nano Lett. (5)

F. Yi, H. Zhu, J. C. Reed, and E. Cubukcu, “Plasmonically enhanced thermomechanical detection of infrared radiation,” Nano Lett. 13(4), 1638–1643 (2013).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

A. Y. Zhu, F. Yi, J. C. Reed, H. Zhu, and E. Cubukcu, “Optoelectromechanical multimodal biosensor with graphene active region,” Nano Lett. 14(10), 5641–5649 (2014).
[Crossref] [PubMed]

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-Angle, Multifunctional Metagratings Based on Freeform Multimode Geometries,” Nano Lett. 17(6), 3752–3757 (2017).
[Crossref] [PubMed]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

Nat. Commun. (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Opt. Express (9)

L. Su, R. Trivedi, N. V. Sapra, A. Y. Piggott, D. Vercruysse, and J. Vučković, “Fully-automated optimization of grating couplers,” Opt. Express 26(4), 4023–4034 (2018).
[Crossref] [PubMed]

J. Lu and J. Vučković, “Nanophotonic computational design,” Opt. Express 21(11), 13351–13367 (2013).
[Crossref] [PubMed]

V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18(18), 19087–19094 (2010).
[Crossref] [PubMed]

M. Kulkarni and V. Gruev, “Integrated spectral-polarization imaging sensor with aluminum nanowire polarization filters,” Opt. Express 20(21), 22997–23012 (2012).
[Crossref] [PubMed]

J. Goh, I. Fushman, D. Englund, and J. Vucković, “Genetic optimization of photonic bandgap structures,” Opt. Express 15(13), 8218–8230 (2007).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(19Suppl 3), A314–A334 (2010).
[Crossref] [PubMed]

E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17(17), 15145–15159 (2009).
[Crossref] [PubMed]

Y. K. Zhong, S. M. Fu, W. Huang, D. Rung, J. Y.-W. Huang, P. Parashar, and A. Lin, “Polarization-selective ultra-broadband super absorber,” Opt. Express 25(4), A124–A133 (2017).
[Crossref] [PubMed]

B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
[Crossref] [PubMed]

Opt. Lett. (3)

C. Wu and G. Shvets, “Design of metamaterial surfaces with broadband absorbance,” Opt. Lett. 37(3), 308–310 (2012).
[Crossref] [PubMed]

Z. Lin, M. Lončar, and A. W. Rodriguez, “Topology optimization of multi-track ring resonators and 2D microcavities for nonlinear frequency conversion,” Opt. Lett. 42(14), 2818–2821 (2017).
[Crossref] [PubMed]

Z.-H. Wang, Y.-S. Hu, X. Xiong, R.-W. Peng, and M. Wang, “Encoding and display with stereo split-ring resonator arrays,” Opt. Lett. 42(6), 1153–1156 (2017).
[Crossref] [PubMed]

Optica (5)

A. Chanana, A. Paulsen, S. Guruswamy, and A. Nahata, “Hiding multi-level multi-color images in terahertz metasurfaces,” Optica 3(12), 1466–1470 (2016).
[Crossref]

D. N. Woolf, E. A. Kadlec, D. Bethke, A. D. Grine, J. J. Nogan, J. G. Cederberg, D. Bruce Burckel, T. S. Luk, E. A. Shaner, and J. M. Hensley, “High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter,” Optica 5(2), 213–218 (2018).
[Crossref]

J. Y. Suen, K. Fan, J. Montoya, C. Bingham, V. Stenger, S. Sriram, and W. J. Padilla, “Multifunctional metamaterial pyroelectric infrared detectors,” Optica 4(2), 276–279 (2017).
[Crossref]

B. Shen, P. Wang, R. Polson, and R. Menon, “Ultra-high-efficiency metamaterial polarizer,” Optica 1(5), 356–360 (2014).
[Crossref]

Z. Lin, X. Liang, M. Lončar, S. G. Johnson, and A. W. Rodriguez, “Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization,” Optica 3(3), 233–238 (2016).
[Crossref]

Phys. Lett. A (1)

S. Wang, Y. Wang, S. Zhang, and W. Zheng, “Mid-infrared broadband absorber of full semiconductor epi-layers,” Phys. Lett. A 381(16), 1439–1444 (2017).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

C. Wu, I. Burton Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B Condens. Matter Mater. Phys. 84(7), 075102 (2011).
[Crossref]

Phys. Rev. Lett. (1)

G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett. 104(13), 136805 (2010).
[Crossref] [PubMed]

Science (1)

M. Khorasaninejad and F. Capasso, “Metalenses: Versatile multifunctional photonic components,” Science 358(6367), eaam8100 (2017).
[Crossref] [PubMed]

Trends Biotechnol. (1)

P. Fortina, L. J. Kricka, D. J. Graves, J. Park, T. Hyslop, F. Tam, N. Halas, S. Surrey, and S. A. Waldman, “Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer,” Trends Biotechnol. 25(4), 145–152 (2007).
[Crossref] [PubMed]

Other (6)

F. SM, and H. Banu, “Gold Nanoparticles in Cancer Diagnosis and Treatment: A Review,” Austin Journal of Biotechnology & Bioengineering 1 (2015).

S. Kang, Z. Qian, V. Rajaram, A. Alu, and M. Rinaldi, “Ultra narrowband infrared absorbers for omni-directional and polarization insensitive multi-spectral sensing microsystems,” in 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)(2017), pp. 886–889.
[Crossref]

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Neural Networks, 1995. Proceedings., IEEE International Conference on(1995), pp. 1942–1948 vol.1944.
[Crossref]

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

S. A. Kemme, A. A. Cruz-Cabrera, R. R. Boye, T. Carter, S. Samora, C. Alford, J. R. Wendt, G. A. Vawter, and J. L. Smith, “Micropolarizing device for long wavelength infrared polarization imaging,” presented at the Sandia Report SAND2006–6889, Sandia National Lab. Albuquerque, NM2006.

T. York and V. Gruev, “Optical characterization of a polarization imager,” in International Symposium on Circuits and Systems(2011), pp. 1576–1579.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Micro-polarizer based polarization imaging architecture. (b) PMAs based polarization imaging architecture (c) and (d) Schematic diagram of the proposed three-layered optimized absorber. The inset of (c) shows the SEM image of the fabricated sample with P = 2.672 μm, t1 = 50 nm, t2 = 100 nm, and H = 67.5 nm. Strip widths (from W1 to W6) form an arithmetic sequence, with average width W = 386.7 nm, the difference = 54.3 nm, and the spaces S = 58.7 nm.
Fig. 2
Fig. 2 (a) Evolution of the fitness values as a function of the number of iterations during the PSO optimization by using 20 particles for 50 iterations. Blue star markers represent the fitness values of the 20 particles in each iteration. The “average fitness” represents the averaged fitness value of the 20 particles in each iteration and the “global best” records the largest value of the “current best” since the first iteration. (b) Comparison of the absorption spectra between the absorber with multi-sized nanostrips and the single-sized nanostrip absorber. Mark I to VI stand for six absorption peaks of the absorber with multi-sized nanostrips, respectively. (c) Comparison between (i) the PMA based architecture and (ii) the micro-polarizer based architecture and regarding the optical crosstalk. For the PMA based architecture, the metamaterial absorber converts the incident electromagnetic waves into heat directly to the corresponding pixels, and there is no significant optical crosstalk between adjacent pixels under oblique incidence. For the micro-polarizer based architecture, due to the air gap between the micropolarizer and the pixel, the obliquely incident wave could penetrate the micropolarizer above a pixel (Pixel 1) and hit its neighboring pixel (Pixel 2), thus leading to crosstalk [47,50].
Fig. 3
Fig. 3 The distribution of the normalized magnetic field magnitude |H| in the optimized structure under TM polarization at (a) peak II (c) peak IV and (e) peak VI of the spectral absorption shown in Fig. 2(b). Fig. (b), (d) and (f) show the corresponding normalized absorption intensity distribution. (g) The distribution of |H| under TE polarization at λ = 4μm and (h) the corresponding distribution of absorption intensity.
Fig. 4
Fig. 4 The spectral absorption of the TE polarization (yellow line) and TM polarization (purple line) and the corresponding FF (green line) as a function of the number of nanostrips per period assuming (a) silicon dioxide (c) silicon nitride and (e) amorphous silicon (α-Si) as the spacing material. The optimal number of nanostrips per period and the corresponding maximal FFs are also labeled in the plots. (b), (d) and (f) show the absorption spectra of TE polarization and TM polarization corresponding to (a), (c) and (e), assuming the number of nanostrips per period is 3, 4 and 6, respectively. The black arrows point out the influence of the excited SPP. The black dash lines show the averaged absorption of the TM polarization in the 3 μm–5 μm range. (g) and (h) SEM images of the optimized absorbers with silicon nitride and amorphous silicon as the spacing materials.
Fig. 5
Fig. 5 (a) The spectral absorption of the optimized absorber as a function of the incident angle. The white dash line stands for the resonant wavelength of the surface plasmon polariton excited in the structure as a function of the incident angle. (b) The red solid line stands for the FF as a function of incident angle of the impingent light as compared to the blue solid line showing the incident angle dependence of the normalized polarization extinction ratio of the micro-polarizer [41].
Fig. 6
Fig. 6 The refractive index of silicon dioxide is from reference [59], while the refractive index of silicon nitride and α-Si are obtained by ellipsometry measurement (IR-VASE II from J.A.Woollam).

Tables (1)

Tables Icon

Table 1 Relevant parameters of the optimized absorbers with three spacing materials

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

S 0 = I 0 + I 45 + I 90 + I 135 2 ,
S 1 = I 0 I 90 ,
S 2 = I 45 I 135 ,
D o L P = S 1 2 + S 2 2 S 0 ,
A o P = 1 2 tan 1 S 2 S 1 ,
FF = λ = 3 μ m λ = 5 μ m A T M ( λ ) d λ λ = 3 μ m λ = 5 μ m A T E ( λ ) d λ .
v i D k + 1 = w v i D k + c 1 ξ ( p i D k x i D k ) + c 2 η ( p g D k x i D k ) ,
x i D k + 1 = x i D k + v i D k + 1 Δ t .

Metrics