Abstract

An advanced transmit remote opto-antenna unit is proposed that accomplishes impedance matching between a photodetector and a low-profile antenna in a specified frequency bandwidth, without requiring an area-consuming matching network. This results in a highly compact design, which also avoids the losses and spurious radiation by such an electrically large matching circuit. Instead, the photodetector is almost directly connected to the antenna, which is designed as a conjugate load, such that the extracted and radiated power are optimized. The required input impedance for the antenna is obtained by adopting a half-mode air-filled substrate-integrated-waveguide topology, which also exhibits excellent radiation efficiency. The proposed unit omits electrical amplifiers and is, therefore, completely driven by the signal supplied by an optical fiber when deployed in an analog optical link, except for an externally supplied photodetector bias voltage. Such a highly cost-effective, power-efficient and reliable unit is an important step in making innovative wireless communication systems, which deploy extremely dense attocells of 15 cm × 15 cm, technically and economically feasible. As a validation, a prototype, operating in the Unlicensed National Information Infrastructure radio bands (5.15 GHz–5.85 GHz), is constructed and its radiation properties are characterized in free-space conditions. After normalizing with respect to the optical source’s slope efficiency, a maximum boresight gain of 12.0 dBi and a −3 dB gain bandwidth of 1020 MHz (18.6 %) are observed.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Arm-edge conditions in plasmonic folded dipole nanoantennas

Hideo Iizuka, Nader Engheta, Hisayoshi Fujikawa, and Kazuo Sato
Opt. Express 19(13) 12325-12335 (2011)

Modeling of enhanced field confinement and scattering by optical wire antennas

Andrea Locatelli, Costantino De Angelis, Daniele Modotto, Stefano Boscolo, Francesco Sacchetto, Michele Midrio, Antonio-D. Capobianco, Filippo M. Pigozzo, and Carlo G. Someda
Opt. Express 17(19) 16792-16800 (2009)

Silicon photonics-wireless interface ICs for micro-/millimeter-wave fiber-wireless networks

Minsu Ko, Myung-Jae Lee, Holger Rücker, and Woo-Young Choi
Opt. Express 21(19) 22962-22973 (2013)

References

  • View by:
  • |
  • |
  • |

  1. C. Lim, A. Nirmalathas, M. Bakaul, P. Gamage, K. L. Lee, Y. Yang, D. Novak, and R. Waterhouse, “Fiber-wireless networks and subsystem technologies,” J. Light. Technol. 28, 390–405 (2010).
    [Crossref]
  2. D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-over-fiber technologies for emerging wireless systems,” IEEE J. Quantum Electron. 52, 1–11 (2016).
    [Crossref]
  3. G. Torfs, H. Li, S. Agneessens, J. Bauwelinck, L. Breyne, O. Caytan, W. Joseph, S. Lemey, H. Rogier, A. Thielens, D. Vande Ginste, J. Van Kerrebrouck, G. Vermeeren, X. Yin, and P. Demeester, “ATTO: Wireless networking at fiber speed,” J. Light. Technol. 36, 1468–1477 (2018).
    [Crossref]
  4. B. Lannoo, A. Dixit, D. Colle, J. Bauwelinck, B. Dhoedt, B. Jooris, I. Moerman, M. Pickavet, H. Rogier, P. Simoens, G. Torfs, D. Vande Ginste, and P. Demeester, “Radio-over-fibre for ultra-small 5G cells,” in 2015 17th International Conference on Transparent Optical Networks (ICTON), (IEEE, 2015), pp. 1–4.
  5. Federal Communications Commission, “Revision of Part 15 of the Commission’s Rules to Permit Unlicensed National Information Infrastructure (U-NII) Devices in the 5 GHz Band, ET Docket No. 13–49,” released February 20, 2013.
  6. D. Wake, N. G. Walker, and I. C. Smith, “Zero-bias edge-coupled InGaAs photodiodes in millimetre-wave radio-fibre systems,” Electron. Lett. 29, 1879–1881 (1993).
    [Crossref]
  7. N. Chen, H. Tsai, F. Kuo, and J. Shi, “High-speed w-band integrated photonic transmitter for radio-over-fiber applications,” IEEE Trans. Microw. Theory Tech. 59, 978–986 (2011).
    [Crossref]
  8. K. Takahata, Y. Muramoto, S. Fukushima, T. Furuta, and H. Ito, “Monolithically integrated millimeter-wave photonic emitter for 60-GHz fiber-radio applications,” in International Topical Meeting on Microwave Photonics MWP 2000 (Cat. No.00EX430), (IEEE, 2000), pp. 229–232.
    [Crossref]
  9. K. Li, X. Xie, Q. Li, Y. Shen, M. E. Woodsen, Z. Yang, A. Beling, and J. C. Campbell, “High-power photodiode integrated with coplanar patch antenna for 60-GHz applications,” IEEE Photonics Technol. Lett. 27, 650–653 (2015).
    [Crossref]
  10. N. Shimizu and T. Nagatsuma, “Photodiode-integrated microstrip antenna array for subterahertz radiation,” IEEE Photonics Technol. Lett. 18, 743–745 (2006).
    [Crossref]
  11. A. Hirata, H. Ishii, and T. Nagatsuma, “Design and characterization of a 120-GHz millimeter-wave antenna for integrated photonic transmitters,” IEEE Trans. Microw. Theory Tech. 49, 2157–2162 (2001).
    [Crossref]
  12. A. Stohr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. Seeds, A. G. Steffan, A. Umbach, and M. Weiss, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microw. Theory Tech. 58, 3071–3082 (2010).
    [Crossref]
  13. S. Shi, J. Bai, R. Nelson, C. Schuetz, P. Yao, G. J. Schneider, Y. Zhang, and D. W. Prather, “Ultrawideband optically fed tightly coupled phased array,” J. Light. Technol. 33, 4781–4790 (2015).
    [Crossref]
  14. M. R. Konkol, D. D. Ross, S. Shi, C. E. Harrity, A. A. Wright, C. A. Schuetz, and D. W. Prather, “Photonic tightly coupled array,” IEEE Trans. Microw. Theory Tech. 66, 2570–2578 (2018).
    [Crossref]
  15. M. R. Konkol, D. D. Ross, S. Shi, C. E. Harrity, A. A. Wright, C. A. Schuetz, and D. W. Prather, “High-power photodiode-integrated-connected array antenna,” J. Light. Technol. 35, 2010–2016 (2017).
    [Crossref]
  16. D. D. Ross, M. R. Konkol, S. Shi, C. E. Harrity, A. A. Wright, C. A. Schuetz, and D. W. Prather, “Low-profile high-power optically addressed phased array antenna,” J. Light. Technol. 35, 3894–3900 (2017).
    [Crossref]
  17. C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54, 906–920 (2006).
    [Crossref]
  18. H. Bode, Network Analysis and Feedback Amplifier Design (Van Nostrand, 1945).
  19. R. Fano, “Theoretical limitations on the broadband matching of arbitrary impedances,” J. Frankl. Inst. 249, 57 – 83 (1950).
    [Crossref]
  20. O. Caytan, L. Bogaert, H. Li, J. Van Kerrebrouck, S. Lemey, G. Torfs, J. Bauwelinck, P. Demeester, S. Agneessens, D. Vande Ginste, and H. Rogier, “Passive opto-antenna as downlink remote antenna unit for radio frequency over fiber,” J. Light. Technol. 36, 4445–4459 (2018).
    [Crossref]
  21. A. Belenguer, H. Esteban, and V. E. Boria, “Novel empty substrate integrated waveguide for high-performance microwave integrated circuits,” IEEE Trans. Microw. Theory Tech. 62, 832–839 (2014).
    [Crossref]
  22. Q. Van den Brande, S. Lemey, J. Vanfleteren, and H. Rogier, “Highly-efficient impulse-radio ultra-wideband cavity-backed slot antenna in stacked air-filled substrate-integrated-waveguide technology,” IEEE Trans. Antennas Propag. 66, 2199–2209 (2018).
    [Crossref]
  23. J. V. Morro, A. Rodríguez, A. Belenguer, H. Esteban, and V. Boria, “Multilevel transition in empty substrate integrated waveguide,” Electron. Lett. 52, 1543–1544 (2016).
    [Crossref]
  24. M. E. Godinez, C. S. McDermitt, A. S. Hastings, M. G. Parent, and F. Bucholtz, “RF characterization of zero-biased photodiodes,” J. Light. Technol. 26, 3829–3834 (2008).
    [Crossref]
  25. D. Wake, A. Nkansah, N. J. Gomes, C. Lethien, C. Sion, and J. P. Vilcot, “Optically powered remote units for radio-over-fiber systems,” J. Light. Technol. 26, 2484–2491 (2008).
    [Crossref]
  26. L. Breyne, G. Torfs, X. Yin, P. Demeester, and J. Bauwelinck, “Comparison between analog radio-over-fiber and sigma delta modulated radio-over-fiber,” IEEE Photonics Technol. Lett. 29, 1808–1811 (2017).
    [Crossref]
  27. C. L. Goldsmith and B. Kanack, “Broadband microwave matching of high speed photodiodes,” in 1993 IEEE MTT-S International Microwave Symposium Digest, (IEEE, 1993), pp. 233–236 vol.1.
    [Crossref]
  28. D. Pozar, Microwave Engineering (Wiley, 2004).
  29. G. Matthaei, L. Young, and E. Jones, Microwave filters, impedance-matching networks, and coupling structures (McGraw-Hill, 1964).
  30. R. Levy, “Explicit formulas for chebyshev impedance-matching networks, filters and interstages,” Proc. Inst. Electr. Eng. 111, 1099–1106 (1964).
    [Crossref]
  31. C. Jin, R. Li, A. Alphones, and X. Bao, “Quarter-mode substrate integrated waveguide and its application to antennas design,” IEEE Trans. Antennas Propag. 61, 2921–2928 (2013).
    [Crossref]
  32. T. Deckmyn, S. Agneessens, A. C. F. Reniers, A. B. Smolders, M. Cauwe, D. Vande Ginste, and H. Rogier, “A novel 60 GHz wideband coupled half-mode/quarter-mode substrate integrated waveguide antenna,” IEEE Trans. Antennas Propag. 65, 6915–6926 (2017).
    [Crossref]
  33. G. A. E. Vandenbosch and A. R. Van de Capelle, “Study of the capacitively fed microstrip antenna element,” IEEE Trans. Antennas Propag. 42, 1648–1652 (1994).
    [Crossref]
  34. H. F. Pues and A. R. Van de Capelle, “An impedance-matching technique for increasing the bandwidth of microstrip antennas,” IEEE Trans. Antennas Propag. 37, 1345–1354 (1989).
    [Crossref]
  35. C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54, 906–920 (2006).
    [Crossref]
  36. U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microw. Theory Tech. 44, 1716–1724 (1996).
    [Crossref]
  37. W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Light. Technol. 9, 1124–1131 (1991).
    [Crossref]
  38. M. Y. Frankel, P. J. Matthews, and R. D. Esman, “Fiber-optic true time steering of an ultrawide-band receive array,” IEEE Trans. Microw. Theory Tech. 45, 1522–1526 (1997).
    [Crossref]
  39. B. Vidal, T. Mengual, C. Ibanez-Lopez, and J. Marti, “Optical beamforming network based on fiber-optical delay lines and spatial light modulators for large antenna arrays,” IEEE Photonics Technol. Lett. 18, 2590–2592 (2006).
    [Crossref]
  40. B. Jung, J. Shin, and B. Kim, “Optical true time-delay for two-dimensional x-band phased array antennas,” IEEE Photonics Technol. Lett. 19, 877–879 (2007).
    [Crossref]
  41. K. Zhang, Y. Yuan, D. Zhang, X. Ding, B. Ratni, S. N. Burokur, M. Lu, K. Tang, and Q. Wu, “Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region,” Opt. Express 26, 1351–1360 (2018).
    [Crossref] [PubMed]
  42. Y. Yuan, K. Zhang, X. Ding, B. Ratni, S. N. Burokur, and Q. Wu, “Complementary transmissive ultra-thin meta-deflectors for broadband polarization-independent refractions in the microwave region,” Photonics Res. 7, 80–88 (2019).
    [Crossref]

2019 (1)

Y. Yuan, K. Zhang, X. Ding, B. Ratni, S. N. Burokur, and Q. Wu, “Complementary transmissive ultra-thin meta-deflectors for broadband polarization-independent refractions in the microwave region,” Photonics Res. 7, 80–88 (2019).
[Crossref]

2018 (5)

K. Zhang, Y. Yuan, D. Zhang, X. Ding, B. Ratni, S. N. Burokur, M. Lu, K. Tang, and Q. Wu, “Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region,” Opt. Express 26, 1351–1360 (2018).
[Crossref] [PubMed]

O. Caytan, L. Bogaert, H. Li, J. Van Kerrebrouck, S. Lemey, G. Torfs, J. Bauwelinck, P. Demeester, S. Agneessens, D. Vande Ginste, and H. Rogier, “Passive opto-antenna as downlink remote antenna unit for radio frequency over fiber,” J. Light. Technol. 36, 4445–4459 (2018).
[Crossref]

G. Torfs, H. Li, S. Agneessens, J. Bauwelinck, L. Breyne, O. Caytan, W. Joseph, S. Lemey, H. Rogier, A. Thielens, D. Vande Ginste, J. Van Kerrebrouck, G. Vermeeren, X. Yin, and P. Demeester, “ATTO: Wireless networking at fiber speed,” J. Light. Technol. 36, 1468–1477 (2018).
[Crossref]

M. R. Konkol, D. D. Ross, S. Shi, C. E. Harrity, A. A. Wright, C. A. Schuetz, and D. W. Prather, “Photonic tightly coupled array,” IEEE Trans. Microw. Theory Tech. 66, 2570–2578 (2018).
[Crossref]

Q. Van den Brande, S. Lemey, J. Vanfleteren, and H. Rogier, “Highly-efficient impulse-radio ultra-wideband cavity-backed slot antenna in stacked air-filled substrate-integrated-waveguide technology,” IEEE Trans. Antennas Propag. 66, 2199–2209 (2018).
[Crossref]

2017 (4)

M. R. Konkol, D. D. Ross, S. Shi, C. E. Harrity, A. A. Wright, C. A. Schuetz, and D. W. Prather, “High-power photodiode-integrated-connected array antenna,” J. Light. Technol. 35, 2010–2016 (2017).
[Crossref]

D. D. Ross, M. R. Konkol, S. Shi, C. E. Harrity, A. A. Wright, C. A. Schuetz, and D. W. Prather, “Low-profile high-power optically addressed phased array antenna,” J. Light. Technol. 35, 3894–3900 (2017).
[Crossref]

L. Breyne, G. Torfs, X. Yin, P. Demeester, and J. Bauwelinck, “Comparison between analog radio-over-fiber and sigma delta modulated radio-over-fiber,” IEEE Photonics Technol. Lett. 29, 1808–1811 (2017).
[Crossref]

T. Deckmyn, S. Agneessens, A. C. F. Reniers, A. B. Smolders, M. Cauwe, D. Vande Ginste, and H. Rogier, “A novel 60 GHz wideband coupled half-mode/quarter-mode substrate integrated waveguide antenna,” IEEE Trans. Antennas Propag. 65, 6915–6926 (2017).
[Crossref]

2016 (2)

J. V. Morro, A. Rodríguez, A. Belenguer, H. Esteban, and V. Boria, “Multilevel transition in empty substrate integrated waveguide,” Electron. Lett. 52, 1543–1544 (2016).
[Crossref]

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-over-fiber technologies for emerging wireless systems,” IEEE J. Quantum Electron. 52, 1–11 (2016).
[Crossref]

2015 (2)

K. Li, X. Xie, Q. Li, Y. Shen, M. E. Woodsen, Z. Yang, A. Beling, and J. C. Campbell, “High-power photodiode integrated with coplanar patch antenna for 60-GHz applications,” IEEE Photonics Technol. Lett. 27, 650–653 (2015).
[Crossref]

S. Shi, J. Bai, R. Nelson, C. Schuetz, P. Yao, G. J. Schneider, Y. Zhang, and D. W. Prather, “Ultrawideband optically fed tightly coupled phased array,” J. Light. Technol. 33, 4781–4790 (2015).
[Crossref]

2014 (1)

A. Belenguer, H. Esteban, and V. E. Boria, “Novel empty substrate integrated waveguide for high-performance microwave integrated circuits,” IEEE Trans. Microw. Theory Tech. 62, 832–839 (2014).
[Crossref]

2013 (1)

C. Jin, R. Li, A. Alphones, and X. Bao, “Quarter-mode substrate integrated waveguide and its application to antennas design,” IEEE Trans. Antennas Propag. 61, 2921–2928 (2013).
[Crossref]

2011 (1)

N. Chen, H. Tsai, F. Kuo, and J. Shi, “High-speed w-band integrated photonic transmitter for radio-over-fiber applications,” IEEE Trans. Microw. Theory Tech. 59, 978–986 (2011).
[Crossref]

2010 (2)

A. Stohr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. Seeds, A. G. Steffan, A. Umbach, and M. Weiss, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microw. Theory Tech. 58, 3071–3082 (2010).
[Crossref]

C. Lim, A. Nirmalathas, M. Bakaul, P. Gamage, K. L. Lee, Y. Yang, D. Novak, and R. Waterhouse, “Fiber-wireless networks and subsystem technologies,” J. Light. Technol. 28, 390–405 (2010).
[Crossref]

2008 (2)

M. E. Godinez, C. S. McDermitt, A. S. Hastings, M. G. Parent, and F. Bucholtz, “RF characterization of zero-biased photodiodes,” J. Light. Technol. 26, 3829–3834 (2008).
[Crossref]

D. Wake, A. Nkansah, N. J. Gomes, C. Lethien, C. Sion, and J. P. Vilcot, “Optically powered remote units for radio-over-fiber systems,” J. Light. Technol. 26, 2484–2491 (2008).
[Crossref]

2007 (1)

B. Jung, J. Shin, and B. Kim, “Optical true time-delay for two-dimensional x-band phased array antennas,” IEEE Photonics Technol. Lett. 19, 877–879 (2007).
[Crossref]

2006 (4)

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54, 906–920 (2006).
[Crossref]

B. Vidal, T. Mengual, C. Ibanez-Lopez, and J. Marti, “Optical beamforming network based on fiber-optical delay lines and spatial light modulators for large antenna arrays,” IEEE Photonics Technol. Lett. 18, 2590–2592 (2006).
[Crossref]

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54, 906–920 (2006).
[Crossref]

N. Shimizu and T. Nagatsuma, “Photodiode-integrated microstrip antenna array for subterahertz radiation,” IEEE Photonics Technol. Lett. 18, 743–745 (2006).
[Crossref]

2001 (1)

A. Hirata, H. Ishii, and T. Nagatsuma, “Design and characterization of a 120-GHz millimeter-wave antenna for integrated photonic transmitters,” IEEE Trans. Microw. Theory Tech. 49, 2157–2162 (2001).
[Crossref]

1997 (1)

M. Y. Frankel, P. J. Matthews, and R. D. Esman, “Fiber-optic true time steering of an ultrawide-band receive array,” IEEE Trans. Microw. Theory Tech. 45, 1522–1526 (1997).
[Crossref]

1996 (1)

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microw. Theory Tech. 44, 1716–1724 (1996).
[Crossref]

1994 (1)

G. A. E. Vandenbosch and A. R. Van de Capelle, “Study of the capacitively fed microstrip antenna element,” IEEE Trans. Antennas Propag. 42, 1648–1652 (1994).
[Crossref]

1993 (1)

D. Wake, N. G. Walker, and I. C. Smith, “Zero-bias edge-coupled InGaAs photodiodes in millimetre-wave radio-fibre systems,” Electron. Lett. 29, 1879–1881 (1993).
[Crossref]

1991 (1)

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Light. Technol. 9, 1124–1131 (1991).
[Crossref]

1989 (1)

H. F. Pues and A. R. Van de Capelle, “An impedance-matching technique for increasing the bandwidth of microstrip antennas,” IEEE Trans. Antennas Propag. 37, 1345–1354 (1989).
[Crossref]

1964 (1)

R. Levy, “Explicit formulas for chebyshev impedance-matching networks, filters and interstages,” Proc. Inst. Electr. Eng. 111, 1099–1106 (1964).
[Crossref]

1950 (1)

R. Fano, “Theoretical limitations on the broadband matching of arbitrary impedances,” J. Frankl. Inst. 249, 57 – 83 (1950).
[Crossref]

Ackerman, E. I.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54, 906–920 (2006).
[Crossref]

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54, 906–920 (2006).
[Crossref]

Agneessens, S.

O. Caytan, L. Bogaert, H. Li, J. Van Kerrebrouck, S. Lemey, G. Torfs, J. Bauwelinck, P. Demeester, S. Agneessens, D. Vande Ginste, and H. Rogier, “Passive opto-antenna as downlink remote antenna unit for radio frequency over fiber,” J. Light. Technol. 36, 4445–4459 (2018).
[Crossref]

G. Torfs, H. Li, S. Agneessens, J. Bauwelinck, L. Breyne, O. Caytan, W. Joseph, S. Lemey, H. Rogier, A. Thielens, D. Vande Ginste, J. Van Kerrebrouck, G. Vermeeren, X. Yin, and P. Demeester, “ATTO: Wireless networking at fiber speed,” J. Light. Technol. 36, 1468–1477 (2018).
[Crossref]

T. Deckmyn, S. Agneessens, A. C. F. Reniers, A. B. Smolders, M. Cauwe, D. Vande Ginste, and H. Rogier, “A novel 60 GHz wideband coupled half-mode/quarter-mode substrate integrated waveguide antenna,” IEEE Trans. Antennas Propag. 65, 6915–6926 (2017).
[Crossref]

Alphones, A.

C. Jin, R. Li, A. Alphones, and X. Bao, “Quarter-mode substrate integrated waveguide and its application to antennas design,” IEEE Trans. Antennas Propag. 61, 2921–2928 (2013).
[Crossref]

Babiel, S.

A. Stohr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. Seeds, A. G. Steffan, A. Umbach, and M. Weiss, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microw. Theory Tech. 58, 3071–3082 (2010).
[Crossref]

Bai, J.

S. Shi, J. Bai, R. Nelson, C. Schuetz, P. Yao, G. J. Schneider, Y. Zhang, and D. W. Prather, “Ultrawideband optically fed tightly coupled phased array,” J. Light. Technol. 33, 4781–4790 (2015).
[Crossref]

Bakaul, M.

C. Lim, A. Nirmalathas, M. Bakaul, P. Gamage, K. L. Lee, Y. Yang, D. Novak, and R. Waterhouse, “Fiber-wireless networks and subsystem technologies,” J. Light. Technol. 28, 390–405 (2010).
[Crossref]

Bao, X.

C. Jin, R. Li, A. Alphones, and X. Bao, “Quarter-mode substrate integrated waveguide and its application to antennas design,” IEEE Trans. Antennas Propag. 61, 2921–2928 (2013).
[Crossref]

Bauwelinck, J.

G. Torfs, H. Li, S. Agneessens, J. Bauwelinck, L. Breyne, O. Caytan, W. Joseph, S. Lemey, H. Rogier, A. Thielens, D. Vande Ginste, J. Van Kerrebrouck, G. Vermeeren, X. Yin, and P. Demeester, “ATTO: Wireless networking at fiber speed,” J. Light. Technol. 36, 1468–1477 (2018).
[Crossref]

O. Caytan, L. Bogaert, H. Li, J. Van Kerrebrouck, S. Lemey, G. Torfs, J. Bauwelinck, P. Demeester, S. Agneessens, D. Vande Ginste, and H. Rogier, “Passive opto-antenna as downlink remote antenna unit for radio frequency over fiber,” J. Light. Technol. 36, 4445–4459 (2018).
[Crossref]

L. Breyne, G. Torfs, X. Yin, P. Demeester, and J. Bauwelinck, “Comparison between analog radio-over-fiber and sigma delta modulated radio-over-fiber,” IEEE Photonics Technol. Lett. 29, 1808–1811 (2017).
[Crossref]

B. Lannoo, A. Dixit, D. Colle, J. Bauwelinck, B. Dhoedt, B. Jooris, I. Moerman, M. Pickavet, H. Rogier, P. Simoens, G. Torfs, D. Vande Ginste, and P. Demeester, “Radio-over-fibre for ultra-small 5G cells,” in 2015 17th International Conference on Transparent Optical Networks (ICTON), (IEEE, 2015), pp. 1–4.

Belenguer, A.

J. V. Morro, A. Rodríguez, A. Belenguer, H. Esteban, and V. Boria, “Multilevel transition in empty substrate integrated waveguide,” Electron. Lett. 52, 1543–1544 (2016).
[Crossref]

A. Belenguer, H. Esteban, and V. E. Boria, “Novel empty substrate integrated waveguide for high-performance microwave integrated circuits,” IEEE Trans. Microw. Theory Tech. 62, 832–839 (2014).
[Crossref]

Beling, A.

K. Li, X. Xie, Q. Li, Y. Shen, M. E. Woodsen, Z. Yang, A. Beling, and J. C. Campbell, “High-power photodiode integrated with coplanar patch antenna for 60-GHz applications,” IEEE Photonics Technol. Lett. 27, 650–653 (2015).
[Crossref]

Bernstein, N.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Light. Technol. 9, 1124–1131 (1991).
[Crossref]

Betts, G. E.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54, 906–920 (2006).
[Crossref]

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54, 906–920 (2006).
[Crossref]

Bode, H.

H. Bode, Network Analysis and Feedback Amplifier Design (Van Nostrand, 1945).

Bogaert, L.

O. Caytan, L. Bogaert, H. Li, J. Van Kerrebrouck, S. Lemey, G. Torfs, J. Bauwelinck, P. Demeester, S. Agneessens, D. Vande Ginste, and H. Rogier, “Passive opto-antenna as downlink remote antenna unit for radio frequency over fiber,” J. Light. Technol. 36, 4445–4459 (2018).
[Crossref]

Boria, V.

J. V. Morro, A. Rodríguez, A. Belenguer, H. Esteban, and V. Boria, “Multilevel transition in empty substrate integrated waveguide,” Electron. Lett. 52, 1543–1544 (2016).
[Crossref]

Boria, V. E.

A. Belenguer, H. Esteban, and V. E. Boria, “Novel empty substrate integrated waveguide for high-performance microwave integrated circuits,” IEEE Trans. Microw. Theory Tech. 62, 832–839 (2014).
[Crossref]

Breyne, L.

G. Torfs, H. Li, S. Agneessens, J. Bauwelinck, L. Breyne, O. Caytan, W. Joseph, S. Lemey, H. Rogier, A. Thielens, D. Vande Ginste, J. Van Kerrebrouck, G. Vermeeren, X. Yin, and P. Demeester, “ATTO: Wireless networking at fiber speed,” J. Light. Technol. 36, 1468–1477 (2018).
[Crossref]

L. Breyne, G. Torfs, X. Yin, P. Demeester, and J. Bauwelinck, “Comparison between analog radio-over-fiber and sigma delta modulated radio-over-fiber,” IEEE Photonics Technol. Lett. 29, 1808–1811 (2017).
[Crossref]

Bucholtz, F.

M. E. Godinez, C. S. McDermitt, A. S. Hastings, M. G. Parent, and F. Bucholtz, “RF characterization of zero-biased photodiodes,” J. Light. Technol. 26, 3829–3834 (2008).
[Crossref]

Burokur, S. N.

Y. Yuan, K. Zhang, X. Ding, B. Ratni, S. N. Burokur, and Q. Wu, “Complementary transmissive ultra-thin meta-deflectors for broadband polarization-independent refractions in the microwave region,” Photonics Res. 7, 80–88 (2019).
[Crossref]

K. Zhang, Y. Yuan, D. Zhang, X. Ding, B. Ratni, S. N. Burokur, M. Lu, K. Tang, and Q. Wu, “Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region,” Opt. Express 26, 1351–1360 (2018).
[Crossref] [PubMed]

Campbell, J. C.

K. Li, X. Xie, Q. Li, Y. Shen, M. E. Woodsen, Z. Yang, A. Beling, and J. C. Campbell, “High-power photodiode integrated with coplanar patch antenna for 60-GHz applications,” IEEE Photonics Technol. Lett. 27, 650–653 (2015).
[Crossref]

Cannard, P. J.

A. Stohr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. Seeds, A. G. Steffan, A. Umbach, and M. Weiss, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microw. Theory Tech. 58, 3071–3082 (2010).
[Crossref]

Cauwe, M.

T. Deckmyn, S. Agneessens, A. C. F. Reniers, A. B. Smolders, M. Cauwe, D. Vande Ginste, and H. Rogier, “A novel 60 GHz wideband coupled half-mode/quarter-mode substrate integrated waveguide antenna,” IEEE Trans. Antennas Propag. 65, 6915–6926 (2017).
[Crossref]

Caytan, O.

G. Torfs, H. Li, S. Agneessens, J. Bauwelinck, L. Breyne, O. Caytan, W. Joseph, S. Lemey, H. Rogier, A. Thielens, D. Vande Ginste, J. Van Kerrebrouck, G. Vermeeren, X. Yin, and P. Demeester, “ATTO: Wireless networking at fiber speed,” J. Light. Technol. 36, 1468–1477 (2018).
[Crossref]

O. Caytan, L. Bogaert, H. Li, J. Van Kerrebrouck, S. Lemey, G. Torfs, J. Bauwelinck, P. Demeester, S. Agneessens, D. Vande Ginste, and H. Rogier, “Passive opto-antenna as downlink remote antenna unit for radio frequency over fiber,” J. Light. Technol. 36, 4445–4459 (2018).
[Crossref]

Charbonnier, B.

A. Stohr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. Seeds, A. G. Steffan, A. Umbach, and M. Weiss, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microw. Theory Tech. 58, 3071–3082 (2010).
[Crossref]

Chen, N.

N. Chen, H. Tsai, F. Kuo, and J. Shi, “High-speed w-band integrated photonic transmitter for radio-over-fiber applications,” IEEE Trans. Microw. Theory Tech. 59, 978–986 (2011).
[Crossref]

Clark, T. R.

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-over-fiber technologies for emerging wireless systems,” IEEE J. Quantum Electron. 52, 1–11 (2016).
[Crossref]

Colle, D.

B. Lannoo, A. Dixit, D. Colle, J. Bauwelinck, B. Dhoedt, B. Jooris, I. Moerman, M. Pickavet, H. Rogier, P. Simoens, G. Torfs, D. Vande Ginste, and P. Demeester, “Radio-over-fibre for ultra-small 5G cells,” in 2015 17th International Conference on Transparent Optical Networks (ICTON), (IEEE, 2015), pp. 1–4.

Cox, C. H.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54, 906–920 (2006).
[Crossref]

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54, 906–920 (2006).
[Crossref]

Deckmyn, T.

T. Deckmyn, S. Agneessens, A. C. F. Reniers, A. B. Smolders, M. Cauwe, D. Vande Ginste, and H. Rogier, “A novel 60 GHz wideband coupled half-mode/quarter-mode substrate integrated waveguide antenna,” IEEE Trans. Antennas Propag. 65, 6915–6926 (2017).
[Crossref]

Demeester, P.

O. Caytan, L. Bogaert, H. Li, J. Van Kerrebrouck, S. Lemey, G. Torfs, J. Bauwelinck, P. Demeester, S. Agneessens, D. Vande Ginste, and H. Rogier, “Passive opto-antenna as downlink remote antenna unit for radio frequency over fiber,” J. Light. Technol. 36, 4445–4459 (2018).
[Crossref]

G. Torfs, H. Li, S. Agneessens, J. Bauwelinck, L. Breyne, O. Caytan, W. Joseph, S. Lemey, H. Rogier, A. Thielens, D. Vande Ginste, J. Van Kerrebrouck, G. Vermeeren, X. Yin, and P. Demeester, “ATTO: Wireless networking at fiber speed,” J. Light. Technol. 36, 1468–1477 (2018).
[Crossref]

L. Breyne, G. Torfs, X. Yin, P. Demeester, and J. Bauwelinck, “Comparison between analog radio-over-fiber and sigma delta modulated radio-over-fiber,” IEEE Photonics Technol. Lett. 29, 1808–1811 (2017).
[Crossref]

B. Lannoo, A. Dixit, D. Colle, J. Bauwelinck, B. Dhoedt, B. Jooris, I. Moerman, M. Pickavet, H. Rogier, P. Simoens, G. Torfs, D. Vande Ginste, and P. Demeester, “Radio-over-fibre for ultra-small 5G cells,” in 2015 17th International Conference on Transparent Optical Networks (ICTON), (IEEE, 2015), pp. 1–4.

Dennis, M. L.

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-over-fiber technologies for emerging wireless systems,” IEEE J. Quantum Electron. 52, 1–11 (2016).
[Crossref]

Dhoedt, B.

B. Lannoo, A. Dixit, D. Colle, J. Bauwelinck, B. Dhoedt, B. Jooris, I. Moerman, M. Pickavet, H. Rogier, P. Simoens, G. Torfs, D. Vande Ginste, and P. Demeester, “Radio-over-fibre for ultra-small 5G cells,” in 2015 17th International Conference on Transparent Optical Networks (ICTON), (IEEE, 2015), pp. 1–4.

Ding, X.

Y. Yuan, K. Zhang, X. Ding, B. Ratni, S. N. Burokur, and Q. Wu, “Complementary transmissive ultra-thin meta-deflectors for broadband polarization-independent refractions in the microwave region,” Photonics Res. 7, 80–88 (2019).
[Crossref]

K. Zhang, Y. Yuan, D. Zhang, X. Ding, B. Ratni, S. N. Burokur, M. Lu, K. Tang, and Q. Wu, “Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region,” Opt. Express 26, 1351–1360 (2018).
[Crossref] [PubMed]

Dixit, A.

B. Lannoo, A. Dixit, D. Colle, J. Bauwelinck, B. Dhoedt, B. Jooris, I. Moerman, M. Pickavet, H. Rogier, P. Simoens, G. Torfs, D. Vande Ginste, and P. Demeester, “Radio-over-fibre for ultra-small 5G cells,” in 2015 17th International Conference on Transparent Optical Networks (ICTON), (IEEE, 2015), pp. 1–4.

Esman, R. D.

M. Y. Frankel, P. J. Matthews, and R. D. Esman, “Fiber-optic true time steering of an ultrawide-band receive array,” IEEE Trans. Microw. Theory Tech. 45, 1522–1526 (1997).
[Crossref]

Esteban, H.

J. V. Morro, A. Rodríguez, A. Belenguer, H. Esteban, and V. Boria, “Multilevel transition in empty substrate integrated waveguide,” Electron. Lett. 52, 1543–1544 (2016).
[Crossref]

A. Belenguer, H. Esteban, and V. E. Boria, “Novel empty substrate integrated waveguide for high-performance microwave integrated circuits,” IEEE Trans. Microw. Theory Tech. 62, 832–839 (2014).
[Crossref]

Fano, R.

R. Fano, “Theoretical limitations on the broadband matching of arbitrary impedances,” J. Frankl. Inst. 249, 57 – 83 (1950).
[Crossref]

Fedderwitz, S.

A. Stohr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. Seeds, A. G. Steffan, A. Umbach, and M. Weiss, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microw. Theory Tech. 58, 3071–3082 (2010).
[Crossref]

Frankel, M. Y.

M. Y. Frankel, P. J. Matthews, and R. D. Esman, “Fiber-optic true time steering of an ultrawide-band receive array,” IEEE Trans. Microw. Theory Tech. 45, 1522–1526 (1997).
[Crossref]

Fukushima, S.

K. Takahata, Y. Muramoto, S. Fukushima, T. Furuta, and H. Ito, “Monolithically integrated millimeter-wave photonic emitter for 60-GHz fiber-radio applications,” in International Topical Meeting on Microwave Photonics MWP 2000 (Cat. No.00EX430), (IEEE, 2000), pp. 229–232.
[Crossref]

Furuta, T.

K. Takahata, Y. Muramoto, S. Fukushima, T. Furuta, and H. Ito, “Monolithically integrated millimeter-wave photonic emitter for 60-GHz fiber-radio applications,” in International Topical Meeting on Microwave Photonics MWP 2000 (Cat. No.00EX430), (IEEE, 2000), pp. 229–232.
[Crossref]

Gamage, P.

C. Lim, A. Nirmalathas, M. Bakaul, P. Gamage, K. L. Lee, Y. Yang, D. Novak, and R. Waterhouse, “Fiber-wireless networks and subsystem technologies,” J. Light. Technol. 28, 390–405 (2010).
[Crossref]

Gamage, P. A.

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-over-fiber technologies for emerging wireless systems,” IEEE J. Quantum Electron. 52, 1–11 (2016).
[Crossref]

Gliese, U.

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microw. Theory Tech. 44, 1716–1724 (1996).
[Crossref]

Godinez, M. E.

M. E. Godinez, C. S. McDermitt, A. S. Hastings, M. G. Parent, and F. Bucholtz, “RF characterization of zero-biased photodiodes,” J. Light. Technol. 26, 3829–3834 (2008).
[Crossref]

Goldsmith, C. L.

C. L. Goldsmith and B. Kanack, “Broadband microwave matching of high speed photodiodes,” in 1993 IEEE MTT-S International Microwave Symposium Digest, (IEEE, 1993), pp. 233–236 vol.1.
[Crossref]

Gomes, N. J.

D. Wake, A. Nkansah, N. J. Gomes, C. Lethien, C. Sion, and J. P. Vilcot, “Optically powered remote units for radio-over-fiber systems,” J. Light. Technol. 26, 2484–2491 (2008).
[Crossref]

Harrity, C. E.

M. R. Konkol, D. D. Ross, S. Shi, C. E. Harrity, A. A. Wright, C. A. Schuetz, and D. W. Prather, “Photonic tightly coupled array,” IEEE Trans. Microw. Theory Tech. 66, 2570–2578 (2018).
[Crossref]

M. R. Konkol, D. D. Ross, S. Shi, C. E. Harrity, A. A. Wright, C. A. Schuetz, and D. W. Prather, “High-power photodiode-integrated-connected array antenna,” J. Light. Technol. 35, 2010–2016 (2017).
[Crossref]

D. D. Ross, M. R. Konkol, S. Shi, C. E. Harrity, A. A. Wright, C. A. Schuetz, and D. W. Prather, “Low-profile high-power optically addressed phased array antenna,” J. Light. Technol. 35, 3894–3900 (2017).
[Crossref]

Hastings, A. S.

M. E. Godinez, C. S. McDermitt, A. S. Hastings, M. G. Parent, and F. Bucholtz, “RF characterization of zero-biased photodiodes,” J. Light. Technol. 26, 3829–3834 (2008).
[Crossref]

Hirata, A.

A. Hirata, H. Ishii, and T. Nagatsuma, “Design and characterization of a 120-GHz millimeter-wave antenna for integrated photonic transmitters,” IEEE Trans. Microw. Theory Tech. 49, 2157–2162 (2001).
[Crossref]

Ibanez-Lopez, C.

B. Vidal, T. Mengual, C. Ibanez-Lopez, and J. Marti, “Optical beamforming network based on fiber-optical delay lines and spatial light modulators for large antenna arrays,” IEEE Photonics Technol. Lett. 18, 2590–2592 (2006).
[Crossref]

Ishii, H.

A. Hirata, H. Ishii, and T. Nagatsuma, “Design and characterization of a 120-GHz millimeter-wave antenna for integrated photonic transmitters,” IEEE Trans. Microw. Theory Tech. 49, 2157–2162 (2001).
[Crossref]

Ito, H.

K. Takahata, Y. Muramoto, S. Fukushima, T. Furuta, and H. Ito, “Monolithically integrated millimeter-wave photonic emitter for 60-GHz fiber-radio applications,” in International Topical Meeting on Microwave Photonics MWP 2000 (Cat. No.00EX430), (IEEE, 2000), pp. 229–232.
[Crossref]

Jin, C.

C. Jin, R. Li, A. Alphones, and X. Bao, “Quarter-mode substrate integrated waveguide and its application to antennas design,” IEEE Trans. Antennas Propag. 61, 2921–2928 (2013).
[Crossref]

Jones, E.

G. Matthaei, L. Young, and E. Jones, Microwave filters, impedance-matching networks, and coupling structures (McGraw-Hill, 1964).

Jooris, B.

B. Lannoo, A. Dixit, D. Colle, J. Bauwelinck, B. Dhoedt, B. Jooris, I. Moerman, M. Pickavet, H. Rogier, P. Simoens, G. Torfs, D. Vande Ginste, and P. Demeester, “Radio-over-fibre for ultra-small 5G cells,” in 2015 17th International Conference on Transparent Optical Networks (ICTON), (IEEE, 2015), pp. 1–4.

Joseph, W.

G. Torfs, H. Li, S. Agneessens, J. Bauwelinck, L. Breyne, O. Caytan, W. Joseph, S. Lemey, H. Rogier, A. Thielens, D. Vande Ginste, J. Van Kerrebrouck, G. Vermeeren, X. Yin, and P. Demeester, “ATTO: Wireless networking at fiber speed,” J. Light. Technol. 36, 1468–1477 (2018).
[Crossref]

Jung, B.

B. Jung, J. Shin, and B. Kim, “Optical true time-delay for two-dimensional x-band phased array antennas,” IEEE Photonics Technol. Lett. 19, 877–879 (2007).
[Crossref]

Kanack, B.

C. L. Goldsmith and B. Kanack, “Broadband microwave matching of high speed photodiodes,” in 1993 IEEE MTT-S International Microwave Symposium Digest, (IEEE, 1993), pp. 233–236 vol.1.
[Crossref]

Kim, B.

B. Jung, J. Shin, and B. Kim, “Optical true time-delay for two-dimensional x-band phased array antennas,” IEEE Photonics Technol. Lett. 19, 877–879 (2007).
[Crossref]

Konkol, M. R.

M. R. Konkol, D. D. Ross, S. Shi, C. E. Harrity, A. A. Wright, C. A. Schuetz, and D. W. Prather, “Photonic tightly coupled array,” IEEE Trans. Microw. Theory Tech. 66, 2570–2578 (2018).
[Crossref]

M. R. Konkol, D. D. Ross, S. Shi, C. E. Harrity, A. A. Wright, C. A. Schuetz, and D. W. Prather, “High-power photodiode-integrated-connected array antenna,” J. Light. Technol. 35, 2010–2016 (2017).
[Crossref]

D. D. Ross, M. R. Konkol, S. Shi, C. E. Harrity, A. A. Wright, C. A. Schuetz, and D. W. Prather, “Low-profile high-power optically addressed phased array antenna,” J. Light. Technol. 35, 3894–3900 (2017).
[Crossref]

Kuo, F.

N. Chen, H. Tsai, F. Kuo, and J. Shi, “High-speed w-band integrated photonic transmitter for radio-over-fiber applications,” IEEE Trans. Microw. Theory Tech. 59, 978–986 (2011).
[Crossref]

Lannoo, B.

B. Lannoo, A. Dixit, D. Colle, J. Bauwelinck, B. Dhoedt, B. Jooris, I. Moerman, M. Pickavet, H. Rogier, P. Simoens, G. Torfs, D. Vande Ginste, and P. Demeester, “Radio-over-fibre for ultra-small 5G cells,” in 2015 17th International Conference on Transparent Optical Networks (ICTON), (IEEE, 2015), pp. 1–4.

Lee, J. J.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Light. Technol. 9, 1124–1131 (1991).
[Crossref]

Lee, K. L.

C. Lim, A. Nirmalathas, M. Bakaul, P. Gamage, K. L. Lee, Y. Yang, D. Novak, and R. Waterhouse, “Fiber-wireless networks and subsystem technologies,” J. Light. Technol. 28, 390–405 (2010).
[Crossref]

Lemey, S.

G. Torfs, H. Li, S. Agneessens, J. Bauwelinck, L. Breyne, O. Caytan, W. Joseph, S. Lemey, H. Rogier, A. Thielens, D. Vande Ginste, J. Van Kerrebrouck, G. Vermeeren, X. Yin, and P. Demeester, “ATTO: Wireless networking at fiber speed,” J. Light. Technol. 36, 1468–1477 (2018).
[Crossref]

O. Caytan, L. Bogaert, H. Li, J. Van Kerrebrouck, S. Lemey, G. Torfs, J. Bauwelinck, P. Demeester, S. Agneessens, D. Vande Ginste, and H. Rogier, “Passive opto-antenna as downlink remote antenna unit for radio frequency over fiber,” J. Light. Technol. 36, 4445–4459 (2018).
[Crossref]

Q. Van den Brande, S. Lemey, J. Vanfleteren, and H. Rogier, “Highly-efficient impulse-radio ultra-wideband cavity-backed slot antenna in stacked air-filled substrate-integrated-waveguide technology,” IEEE Trans. Antennas Propag. 66, 2199–2209 (2018).
[Crossref]

Lethien, C.

D. Wake, A. Nkansah, N. J. Gomes, C. Lethien, C. Sion, and J. P. Vilcot, “Optically powered remote units for radio-over-fiber systems,” J. Light. Technol. 26, 2484–2491 (2008).
[Crossref]

Levy, R.

R. Levy, “Explicit formulas for chebyshev impedance-matching networks, filters and interstages,” Proc. Inst. Electr. Eng. 111, 1099–1106 (1964).
[Crossref]

Li, H.

O. Caytan, L. Bogaert, H. Li, J. Van Kerrebrouck, S. Lemey, G. Torfs, J. Bauwelinck, P. Demeester, S. Agneessens, D. Vande Ginste, and H. Rogier, “Passive opto-antenna as downlink remote antenna unit for radio frequency over fiber,” J. Light. Technol. 36, 4445–4459 (2018).
[Crossref]

G. Torfs, H. Li, S. Agneessens, J. Bauwelinck, L. Breyne, O. Caytan, W. Joseph, S. Lemey, H. Rogier, A. Thielens, D. Vande Ginste, J. Van Kerrebrouck, G. Vermeeren, X. Yin, and P. Demeester, “ATTO: Wireless networking at fiber speed,” J. Light. Technol. 36, 1468–1477 (2018).
[Crossref]

Li, K.

K. Li, X. Xie, Q. Li, Y. Shen, M. E. Woodsen, Z. Yang, A. Beling, and J. C. Campbell, “High-power photodiode integrated with coplanar patch antenna for 60-GHz applications,” IEEE Photonics Technol. Lett. 27, 650–653 (2015).
[Crossref]

Li, Q.

K. Li, X. Xie, Q. Li, Y. Shen, M. E. Woodsen, Z. Yang, A. Beling, and J. C. Campbell, “High-power photodiode integrated with coplanar patch antenna for 60-GHz applications,” IEEE Photonics Technol. Lett. 27, 650–653 (2015).
[Crossref]

Li, R.

C. Jin, R. Li, A. Alphones, and X. Bao, “Quarter-mode substrate integrated waveguide and its application to antennas design,” IEEE Trans. Antennas Propag. 61, 2921–2928 (2013).
[Crossref]

Lim, C.

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-over-fiber technologies for emerging wireless systems,” IEEE J. Quantum Electron. 52, 1–11 (2016).
[Crossref]

C. Lim, A. Nirmalathas, M. Bakaul, P. Gamage, K. L. Lee, Y. Yang, D. Novak, and R. Waterhouse, “Fiber-wireless networks and subsystem technologies,” J. Light. Technol. 28, 390–405 (2010).
[Crossref]

Lu, M.

K. Zhang, Y. Yuan, D. Zhang, X. Ding, B. Ratni, S. N. Burokur, M. Lu, K. Tang, and Q. Wu, “Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region,” Opt. Express 26, 1351–1360 (2018).
[Crossref] [PubMed]

Marti, J.

B. Vidal, T. Mengual, C. Ibanez-Lopez, and J. Marti, “Optical beamforming network based on fiber-optical delay lines and spatial light modulators for large antenna arrays,” IEEE Photonics Technol. Lett. 18, 2590–2592 (2006).
[Crossref]

Matthaei, G.

G. Matthaei, L. Young, and E. Jones, Microwave filters, impedance-matching networks, and coupling structures (McGraw-Hill, 1964).

Matthews, P. J.

M. Y. Frankel, P. J. Matthews, and R. D. Esman, “Fiber-optic true time steering of an ultrawide-band receive array,” IEEE Trans. Microw. Theory Tech. 45, 1522–1526 (1997).
[Crossref]

McDermitt, C. S.

M. E. Godinez, C. S. McDermitt, A. S. Hastings, M. G. Parent, and F. Bucholtz, “RF characterization of zero-biased photodiodes,” J. Light. Technol. 26, 3829–3834 (2008).
[Crossref]

Mengual, T.

B. Vidal, T. Mengual, C. Ibanez-Lopez, and J. Marti, “Optical beamforming network based on fiber-optical delay lines and spatial light modulators for large antenna arrays,” IEEE Photonics Technol. Lett. 18, 2590–2592 (2006).
[Crossref]

Moerman, I.

B. Lannoo, A. Dixit, D. Colle, J. Bauwelinck, B. Dhoedt, B. Jooris, I. Moerman, M. Pickavet, H. Rogier, P. Simoens, G. Torfs, D. Vande Ginste, and P. Demeester, “Radio-over-fibre for ultra-small 5G cells,” in 2015 17th International Conference on Transparent Optical Networks (ICTON), (IEEE, 2015), pp. 1–4.

Moodie, D.

A. Stohr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. Seeds, A. G. Steffan, A. Umbach, and M. Weiss, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microw. Theory Tech. 58, 3071–3082 (2010).
[Crossref]

Morro, J. V.

J. V. Morro, A. Rodríguez, A. Belenguer, H. Esteban, and V. Boria, “Multilevel transition in empty substrate integrated waveguide,” Electron. Lett. 52, 1543–1544 (2016).
[Crossref]

Muramoto, Y.

K. Takahata, Y. Muramoto, S. Fukushima, T. Furuta, and H. Ito, “Monolithically integrated millimeter-wave photonic emitter for 60-GHz fiber-radio applications,” in International Topical Meeting on Microwave Photonics MWP 2000 (Cat. No.00EX430), (IEEE, 2000), pp. 229–232.
[Crossref]

Nagatsuma, T.

N. Shimizu and T. Nagatsuma, “Photodiode-integrated microstrip antenna array for subterahertz radiation,” IEEE Photonics Technol. Lett. 18, 743–745 (2006).
[Crossref]

A. Hirata, H. Ishii, and T. Nagatsuma, “Design and characterization of a 120-GHz millimeter-wave antenna for integrated photonic transmitters,” IEEE Trans. Microw. Theory Tech. 49, 2157–2162 (2001).
[Crossref]

Nanzer, J. A.

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-over-fiber technologies for emerging wireless systems,” IEEE J. Quantum Electron. 52, 1–11 (2016).
[Crossref]

Nelson, R.

S. Shi, J. Bai, R. Nelson, C. Schuetz, P. Yao, G. J. Schneider, Y. Zhang, and D. W. Prather, “Ultrawideband optically fed tightly coupled phased array,” J. Light. Technol. 33, 4781–4790 (2015).
[Crossref]

Newberg, I. L.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Light. Technol. 9, 1124–1131 (1991).
[Crossref]

Ng, W.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Light. Technol. 9, 1124–1131 (1991).
[Crossref]

Nielsen, T. N.

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microw. Theory Tech. 44, 1716–1724 (1996).
[Crossref]

Nirmalathas, A.

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-over-fiber technologies for emerging wireless systems,” IEEE J. Quantum Electron. 52, 1–11 (2016).
[Crossref]

C. Lim, A. Nirmalathas, M. Bakaul, P. Gamage, K. L. Lee, Y. Yang, D. Novak, and R. Waterhouse, “Fiber-wireless networks and subsystem technologies,” J. Light. Technol. 28, 390–405 (2010).
[Crossref]

Nkansah, A.

D. Wake, A. Nkansah, N. J. Gomes, C. Lethien, C. Sion, and J. P. Vilcot, “Optically powered remote units for radio-over-fiber systems,” J. Light. Technol. 26, 2484–2491 (2008).
[Crossref]

Norskov, S.

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microw. Theory Tech. 44, 1716–1724 (1996).
[Crossref]

Novak, D.

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-over-fiber technologies for emerging wireless systems,” IEEE J. Quantum Electron. 52, 1–11 (2016).
[Crossref]

C. Lim, A. Nirmalathas, M. Bakaul, P. Gamage, K. L. Lee, Y. Yang, D. Novak, and R. Waterhouse, “Fiber-wireless networks and subsystem technologies,” J. Light. Technol. 28, 390–405 (2010).
[Crossref]

Parent, M. G.

M. E. Godinez, C. S. McDermitt, A. S. Hastings, M. G. Parent, and F. Bucholtz, “RF characterization of zero-biased photodiodes,” J. Light. Technol. 26, 3829–3834 (2008).
[Crossref]

Pavlovic, L.

A. Stohr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. Seeds, A. G. Steffan, A. Umbach, and M. Weiss, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microw. Theory Tech. 58, 3071–3082 (2010).
[Crossref]

Pickavet, M.

B. Lannoo, A. Dixit, D. Colle, J. Bauwelinck, B. Dhoedt, B. Jooris, I. Moerman, M. Pickavet, H. Rogier, P. Simoens, G. Torfs, D. Vande Ginste, and P. Demeester, “Radio-over-fibre for ultra-small 5G cells,” in 2015 17th International Conference on Transparent Optical Networks (ICTON), (IEEE, 2015), pp. 1–4.

Ponnampalam, L.

A. Stohr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. Seeds, A. G. Steffan, A. Umbach, and M. Weiss, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microw. Theory Tech. 58, 3071–3082 (2010).
[Crossref]

Pozar, D.

D. Pozar, Microwave Engineering (Wiley, 2004).

Prather, D. W.

M. R. Konkol, D. D. Ross, S. Shi, C. E. Harrity, A. A. Wright, C. A. Schuetz, and D. W. Prather, “Photonic tightly coupled array,” IEEE Trans. Microw. Theory Tech. 66, 2570–2578 (2018).
[Crossref]

M. R. Konkol, D. D. Ross, S. Shi, C. E. Harrity, A. A. Wright, C. A. Schuetz, and D. W. Prather, “High-power photodiode-integrated-connected array antenna,” J. Light. Technol. 35, 2010–2016 (2017).
[Crossref]

D. D. Ross, M. R. Konkol, S. Shi, C. E. Harrity, A. A. Wright, C. A. Schuetz, and D. W. Prather, “Low-profile high-power optically addressed phased array antenna,” J. Light. Technol. 35, 3894–3900 (2017).
[Crossref]

S. Shi, J. Bai, R. Nelson, C. Schuetz, P. Yao, G. J. Schneider, Y. Zhang, and D. W. Prather, “Ultrawideband optically fed tightly coupled phased array,” J. Light. Technol. 33, 4781–4790 (2015).
[Crossref]

Prince, J. L.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54, 906–920 (2006).
[Crossref]

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54, 906–920 (2006).
[Crossref]

Pues, H. F.

H. F. Pues and A. R. Van de Capelle, “An impedance-matching technique for increasing the bandwidth of microstrip antennas,” IEEE Trans. Antennas Propag. 37, 1345–1354 (1989).
[Crossref]

Ratni, B.

Y. Yuan, K. Zhang, X. Ding, B. Ratni, S. N. Burokur, and Q. Wu, “Complementary transmissive ultra-thin meta-deflectors for broadband polarization-independent refractions in the microwave region,” Photonics Res. 7, 80–88 (2019).
[Crossref]

K. Zhang, Y. Yuan, D. Zhang, X. Ding, B. Ratni, S. N. Burokur, M. Lu, K. Tang, and Q. Wu, “Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region,” Opt. Express 26, 1351–1360 (2018).
[Crossref] [PubMed]

Renaud, C. C.

A. Stohr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. Seeds, A. G. Steffan, A. Umbach, and M. Weiss, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microw. Theory Tech. 58, 3071–3082 (2010).
[Crossref]

Reniers, A. C. F.

T. Deckmyn, S. Agneessens, A. C. F. Reniers, A. B. Smolders, M. Cauwe, D. Vande Ginste, and H. Rogier, “A novel 60 GHz wideband coupled half-mode/quarter-mode substrate integrated waveguide antenna,” IEEE Trans. Antennas Propag. 65, 6915–6926 (2017).
[Crossref]

Rodríguez, A.

J. V. Morro, A. Rodríguez, A. Belenguer, H. Esteban, and V. Boria, “Multilevel transition in empty substrate integrated waveguide,” Electron. Lett. 52, 1543–1544 (2016).
[Crossref]

Rogers, D.

A. Stohr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. Seeds, A. G. Steffan, A. Umbach, and M. Weiss, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microw. Theory Tech. 58, 3071–3082 (2010).
[Crossref]

Rogier, H.

O. Caytan, L. Bogaert, H. Li, J. Van Kerrebrouck, S. Lemey, G. Torfs, J. Bauwelinck, P. Demeester, S. Agneessens, D. Vande Ginste, and H. Rogier, “Passive opto-antenna as downlink remote antenna unit for radio frequency over fiber,” J. Light. Technol. 36, 4445–4459 (2018).
[Crossref]

Q. Van den Brande, S. Lemey, J. Vanfleteren, and H. Rogier, “Highly-efficient impulse-radio ultra-wideband cavity-backed slot antenna in stacked air-filled substrate-integrated-waveguide technology,” IEEE Trans. Antennas Propag. 66, 2199–2209 (2018).
[Crossref]

G. Torfs, H. Li, S. Agneessens, J. Bauwelinck, L. Breyne, O. Caytan, W. Joseph, S. Lemey, H. Rogier, A. Thielens, D. Vande Ginste, J. Van Kerrebrouck, G. Vermeeren, X. Yin, and P. Demeester, “ATTO: Wireless networking at fiber speed,” J. Light. Technol. 36, 1468–1477 (2018).
[Crossref]

T. Deckmyn, S. Agneessens, A. C. F. Reniers, A. B. Smolders, M. Cauwe, D. Vande Ginste, and H. Rogier, “A novel 60 GHz wideband coupled half-mode/quarter-mode substrate integrated waveguide antenna,” IEEE Trans. Antennas Propag. 65, 6915–6926 (2017).
[Crossref]

B. Lannoo, A. Dixit, D. Colle, J. Bauwelinck, B. Dhoedt, B. Jooris, I. Moerman, M. Pickavet, H. Rogier, P. Simoens, G. Torfs, D. Vande Ginste, and P. Demeester, “Radio-over-fibre for ultra-small 5G cells,” in 2015 17th International Conference on Transparent Optical Networks (ICTON), (IEEE, 2015), pp. 1–4.

Ross, D. D.

M. R. Konkol, D. D. Ross, S. Shi, C. E. Harrity, A. A. Wright, C. A. Schuetz, and D. W. Prather, “Photonic tightly coupled array,” IEEE Trans. Microw. Theory Tech. 66, 2570–2578 (2018).
[Crossref]

D. D. Ross, M. R. Konkol, S. Shi, C. E. Harrity, A. A. Wright, C. A. Schuetz, and D. W. Prather, “Low-profile high-power optically addressed phased array antenna,” J. Light. Technol. 35, 3894–3900 (2017).
[Crossref]

M. R. Konkol, D. D. Ross, S. Shi, C. E. Harrity, A. A. Wright, C. A. Schuetz, and D. W. Prather, “High-power photodiode-integrated-connected array antenna,” J. Light. Technol. 35, 2010–2016 (2017).
[Crossref]

Rymanov, V.

A. Stohr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. Seeds, A. G. Steffan, A. Umbach, and M. Weiss, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microw. Theory Tech. 58, 3071–3082 (2010).
[Crossref]

Schneider, G. J.

S. Shi, J. Bai, R. Nelson, C. Schuetz, P. Yao, G. J. Schneider, Y. Zhang, and D. W. Prather, “Ultrawideband optically fed tightly coupled phased array,” J. Light. Technol. 33, 4781–4790 (2015).
[Crossref]

Schuetz, C.

S. Shi, J. Bai, R. Nelson, C. Schuetz, P. Yao, G. J. Schneider, Y. Zhang, and D. W. Prather, “Ultrawideband optically fed tightly coupled phased array,” J. Light. Technol. 33, 4781–4790 (2015).
[Crossref]

Schuetz, C. A.

M. R. Konkol, D. D. Ross, S. Shi, C. E. Harrity, A. A. Wright, C. A. Schuetz, and D. W. Prather, “Photonic tightly coupled array,” IEEE Trans. Microw. Theory Tech. 66, 2570–2578 (2018).
[Crossref]

M. R. Konkol, D. D. Ross, S. Shi, C. E. Harrity, A. A. Wright, C. A. Schuetz, and D. W. Prather, “High-power photodiode-integrated-connected array antenna,” J. Light. Technol. 35, 2010–2016 (2017).
[Crossref]

D. D. Ross, M. R. Konkol, S. Shi, C. E. Harrity, A. A. Wright, C. A. Schuetz, and D. W. Prather, “Low-profile high-power optically addressed phased array antenna,” J. Light. Technol. 35, 3894–3900 (2017).
[Crossref]

Seeds, A.

A. Stohr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. Seeds, A. G. Steffan, A. Umbach, and M. Weiss, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microw. Theory Tech. 58, 3071–3082 (2010).
[Crossref]

Shen, Y.

K. Li, X. Xie, Q. Li, Y. Shen, M. E. Woodsen, Z. Yang, A. Beling, and J. C. Campbell, “High-power photodiode integrated with coplanar patch antenna for 60-GHz applications,” IEEE Photonics Technol. Lett. 27, 650–653 (2015).
[Crossref]

Shi, J.

N. Chen, H. Tsai, F. Kuo, and J. Shi, “High-speed w-band integrated photonic transmitter for radio-over-fiber applications,” IEEE Trans. Microw. Theory Tech. 59, 978–986 (2011).
[Crossref]

Shi, S.

M. R. Konkol, D. D. Ross, S. Shi, C. E. Harrity, A. A. Wright, C. A. Schuetz, and D. W. Prather, “Photonic tightly coupled array,” IEEE Trans. Microw. Theory Tech. 66, 2570–2578 (2018).
[Crossref]

M. R. Konkol, D. D. Ross, S. Shi, C. E. Harrity, A. A. Wright, C. A. Schuetz, and D. W. Prather, “High-power photodiode-integrated-connected array antenna,” J. Light. Technol. 35, 2010–2016 (2017).
[Crossref]

D. D. Ross, M. R. Konkol, S. Shi, C. E. Harrity, A. A. Wright, C. A. Schuetz, and D. W. Prather, “Low-profile high-power optically addressed phased array antenna,” J. Light. Technol. 35, 3894–3900 (2017).
[Crossref]

S. Shi, J. Bai, R. Nelson, C. Schuetz, P. Yao, G. J. Schneider, Y. Zhang, and D. W. Prather, “Ultrawideband optically fed tightly coupled phased array,” J. Light. Technol. 33, 4781–4790 (2015).
[Crossref]

Shimizu, N.

N. Shimizu and T. Nagatsuma, “Photodiode-integrated microstrip antenna array for subterahertz radiation,” IEEE Photonics Technol. Lett. 18, 743–745 (2006).
[Crossref]

Shin, J.

B. Jung, J. Shin, and B. Kim, “Optical true time-delay for two-dimensional x-band phased array antennas,” IEEE Photonics Technol. Lett. 19, 877–879 (2007).
[Crossref]

Simoens, P.

B. Lannoo, A. Dixit, D. Colle, J. Bauwelinck, B. Dhoedt, B. Jooris, I. Moerman, M. Pickavet, H. Rogier, P. Simoens, G. Torfs, D. Vande Ginste, and P. Demeester, “Radio-over-fibre for ultra-small 5G cells,” in 2015 17th International Conference on Transparent Optical Networks (ICTON), (IEEE, 2015), pp. 1–4.

Sion, C.

D. Wake, A. Nkansah, N. J. Gomes, C. Lethien, C. Sion, and J. P. Vilcot, “Optically powered remote units for radio-over-fiber systems,” J. Light. Technol. 26, 2484–2491 (2008).
[Crossref]

Smith, I. C.

D. Wake, N. G. Walker, and I. C. Smith, “Zero-bias edge-coupled InGaAs photodiodes in millimetre-wave radio-fibre systems,” Electron. Lett. 29, 1879–1881 (1993).
[Crossref]

Smolders, A. B.

T. Deckmyn, S. Agneessens, A. C. F. Reniers, A. B. Smolders, M. Cauwe, D. Vande Ginste, and H. Rogier, “A novel 60 GHz wideband coupled half-mode/quarter-mode substrate integrated waveguide antenna,” IEEE Trans. Antennas Propag. 65, 6915–6926 (2017).
[Crossref]

Steffan, A. G.

A. Stohr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. Seeds, A. G. Steffan, A. Umbach, and M. Weiss, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microw. Theory Tech. 58, 3071–3082 (2010).
[Crossref]

Stohr, A.

A. Stohr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. Seeds, A. G. Steffan, A. Umbach, and M. Weiss, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microw. Theory Tech. 58, 3071–3082 (2010).
[Crossref]

Takahata, K.

K. Takahata, Y. Muramoto, S. Fukushima, T. Furuta, and H. Ito, “Monolithically integrated millimeter-wave photonic emitter for 60-GHz fiber-radio applications,” in International Topical Meeting on Microwave Photonics MWP 2000 (Cat. No.00EX430), (IEEE, 2000), pp. 229–232.
[Crossref]

Tang, K.

K. Zhang, Y. Yuan, D. Zhang, X. Ding, B. Ratni, S. N. Burokur, M. Lu, K. Tang, and Q. Wu, “Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region,” Opt. Express 26, 1351–1360 (2018).
[Crossref] [PubMed]

Tangonan, G. L.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Light. Technol. 9, 1124–1131 (1991).
[Crossref]

Thielens, A.

G. Torfs, H. Li, S. Agneessens, J. Bauwelinck, L. Breyne, O. Caytan, W. Joseph, S. Lemey, H. Rogier, A. Thielens, D. Vande Ginste, J. Van Kerrebrouck, G. Vermeeren, X. Yin, and P. Demeester, “ATTO: Wireless networking at fiber speed,” J. Light. Technol. 36, 1468–1477 (2018).
[Crossref]

Torfs, G.

G. Torfs, H. Li, S. Agneessens, J. Bauwelinck, L. Breyne, O. Caytan, W. Joseph, S. Lemey, H. Rogier, A. Thielens, D. Vande Ginste, J. Van Kerrebrouck, G. Vermeeren, X. Yin, and P. Demeester, “ATTO: Wireless networking at fiber speed,” J. Light. Technol. 36, 1468–1477 (2018).
[Crossref]

O. Caytan, L. Bogaert, H. Li, J. Van Kerrebrouck, S. Lemey, G. Torfs, J. Bauwelinck, P. Demeester, S. Agneessens, D. Vande Ginste, and H. Rogier, “Passive opto-antenna as downlink remote antenna unit for radio frequency over fiber,” J. Light. Technol. 36, 4445–4459 (2018).
[Crossref]

L. Breyne, G. Torfs, X. Yin, P. Demeester, and J. Bauwelinck, “Comparison between analog radio-over-fiber and sigma delta modulated radio-over-fiber,” IEEE Photonics Technol. Lett. 29, 1808–1811 (2017).
[Crossref]

B. Lannoo, A. Dixit, D. Colle, J. Bauwelinck, B. Dhoedt, B. Jooris, I. Moerman, M. Pickavet, H. Rogier, P. Simoens, G. Torfs, D. Vande Ginste, and P. Demeester, “Radio-over-fibre for ultra-small 5G cells,” in 2015 17th International Conference on Transparent Optical Networks (ICTON), (IEEE, 2015), pp. 1–4.

Tsai, H.

N. Chen, H. Tsai, F. Kuo, and J. Shi, “High-speed w-band integrated photonic transmitter for radio-over-fiber applications,” IEEE Trans. Microw. Theory Tech. 59, 978–986 (2011).
[Crossref]

Umbach, A.

A. Stohr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. Seeds, A. G. Steffan, A. Umbach, and M. Weiss, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microw. Theory Tech. 58, 3071–3082 (2010).
[Crossref]

Van de Capelle, A. R.

G. A. E. Vandenbosch and A. R. Van de Capelle, “Study of the capacitively fed microstrip antenna element,” IEEE Trans. Antennas Propag. 42, 1648–1652 (1994).
[Crossref]

H. F. Pues and A. R. Van de Capelle, “An impedance-matching technique for increasing the bandwidth of microstrip antennas,” IEEE Trans. Antennas Propag. 37, 1345–1354 (1989).
[Crossref]

Van den Brande, Q.

Q. Van den Brande, S. Lemey, J. Vanfleteren, and H. Rogier, “Highly-efficient impulse-radio ultra-wideband cavity-backed slot antenna in stacked air-filled substrate-integrated-waveguide technology,” IEEE Trans. Antennas Propag. 66, 2199–2209 (2018).
[Crossref]

van Dijk, F.

A. Stohr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. Seeds, A. G. Steffan, A. Umbach, and M. Weiss, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microw. Theory Tech. 58, 3071–3082 (2010).
[Crossref]

Van Kerrebrouck, J.

G. Torfs, H. Li, S. Agneessens, J. Bauwelinck, L. Breyne, O. Caytan, W. Joseph, S. Lemey, H. Rogier, A. Thielens, D. Vande Ginste, J. Van Kerrebrouck, G. Vermeeren, X. Yin, and P. Demeester, “ATTO: Wireless networking at fiber speed,” J. Light. Technol. 36, 1468–1477 (2018).
[Crossref]

O. Caytan, L. Bogaert, H. Li, J. Van Kerrebrouck, S. Lemey, G. Torfs, J. Bauwelinck, P. Demeester, S. Agneessens, D. Vande Ginste, and H. Rogier, “Passive opto-antenna as downlink remote antenna unit for radio frequency over fiber,” J. Light. Technol. 36, 4445–4459 (2018).
[Crossref]

Vande Ginste, D.

O. Caytan, L. Bogaert, H. Li, J. Van Kerrebrouck, S. Lemey, G. Torfs, J. Bauwelinck, P. Demeester, S. Agneessens, D. Vande Ginste, and H. Rogier, “Passive opto-antenna as downlink remote antenna unit for radio frequency over fiber,” J. Light. Technol. 36, 4445–4459 (2018).
[Crossref]

G. Torfs, H. Li, S. Agneessens, J. Bauwelinck, L. Breyne, O. Caytan, W. Joseph, S. Lemey, H. Rogier, A. Thielens, D. Vande Ginste, J. Van Kerrebrouck, G. Vermeeren, X. Yin, and P. Demeester, “ATTO: Wireless networking at fiber speed,” J. Light. Technol. 36, 1468–1477 (2018).
[Crossref]

T. Deckmyn, S. Agneessens, A. C. F. Reniers, A. B. Smolders, M. Cauwe, D. Vande Ginste, and H. Rogier, “A novel 60 GHz wideband coupled half-mode/quarter-mode substrate integrated waveguide antenna,” IEEE Trans. Antennas Propag. 65, 6915–6926 (2017).
[Crossref]

B. Lannoo, A. Dixit, D. Colle, J. Bauwelinck, B. Dhoedt, B. Jooris, I. Moerman, M. Pickavet, H. Rogier, P. Simoens, G. Torfs, D. Vande Ginste, and P. Demeester, “Radio-over-fibre for ultra-small 5G cells,” in 2015 17th International Conference on Transparent Optical Networks (ICTON), (IEEE, 2015), pp. 1–4.

Vandenbosch, G. A. E.

G. A. E. Vandenbosch and A. R. Van de Capelle, “Study of the capacitively fed microstrip antenna element,” IEEE Trans. Antennas Propag. 42, 1648–1652 (1994).
[Crossref]

Vanfleteren, J.

Q. Van den Brande, S. Lemey, J. Vanfleteren, and H. Rogier, “Highly-efficient impulse-radio ultra-wideband cavity-backed slot antenna in stacked air-filled substrate-integrated-waveguide technology,” IEEE Trans. Antennas Propag. 66, 2199–2209 (2018).
[Crossref]

Vermeeren, G.

G. Torfs, H. Li, S. Agneessens, J. Bauwelinck, L. Breyne, O. Caytan, W. Joseph, S. Lemey, H. Rogier, A. Thielens, D. Vande Ginste, J. Van Kerrebrouck, G. Vermeeren, X. Yin, and P. Demeester, “ATTO: Wireless networking at fiber speed,” J. Light. Technol. 36, 1468–1477 (2018).
[Crossref]

Vidal, B.

B. Vidal, T. Mengual, C. Ibanez-Lopez, and J. Marti, “Optical beamforming network based on fiber-optical delay lines and spatial light modulators for large antenna arrays,” IEEE Photonics Technol. Lett. 18, 2590–2592 (2006).
[Crossref]

Vilcot, J. P.

D. Wake, A. Nkansah, N. J. Gomes, C. Lethien, C. Sion, and J. P. Vilcot, “Optically powered remote units for radio-over-fiber systems,” J. Light. Technol. 26, 2484–2491 (2008).
[Crossref]

Wake, D.

D. Wake, A. Nkansah, N. J. Gomes, C. Lethien, C. Sion, and J. P. Vilcot, “Optically powered remote units for radio-over-fiber systems,” J. Light. Technol. 26, 2484–2491 (2008).
[Crossref]

D. Wake, N. G. Walker, and I. C. Smith, “Zero-bias edge-coupled InGaAs photodiodes in millimetre-wave radio-fibre systems,” Electron. Lett. 29, 1879–1881 (1993).
[Crossref]

Walker, N. G.

D. Wake, N. G. Walker, and I. C. Smith, “Zero-bias edge-coupled InGaAs photodiodes in millimetre-wave radio-fibre systems,” Electron. Lett. 29, 1879–1881 (1993).
[Crossref]

Walston, A. A.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Light. Technol. 9, 1124–1131 (1991).
[Crossref]

Waterhouse, R.

C. Lim, A. Nirmalathas, M. Bakaul, P. Gamage, K. L. Lee, Y. Yang, D. Novak, and R. Waterhouse, “Fiber-wireless networks and subsystem technologies,” J. Light. Technol. 28, 390–405 (2010).
[Crossref]

Waterhouse, R. B.

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-over-fiber technologies for emerging wireless systems,” IEEE J. Quantum Electron. 52, 1–11 (2016).
[Crossref]

Weiss, M.

A. Stohr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. Seeds, A. G. Steffan, A. Umbach, and M. Weiss, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microw. Theory Tech. 58, 3071–3082 (2010).
[Crossref]

Woodsen, M. E.

K. Li, X. Xie, Q. Li, Y. Shen, M. E. Woodsen, Z. Yang, A. Beling, and J. C. Campbell, “High-power photodiode integrated with coplanar patch antenna for 60-GHz applications,” IEEE Photonics Technol. Lett. 27, 650–653 (2015).
[Crossref]

Wright, A. A.

M. R. Konkol, D. D. Ross, S. Shi, C. E. Harrity, A. A. Wright, C. A. Schuetz, and D. W. Prather, “Photonic tightly coupled array,” IEEE Trans. Microw. Theory Tech. 66, 2570–2578 (2018).
[Crossref]

M. R. Konkol, D. D. Ross, S. Shi, C. E. Harrity, A. A. Wright, C. A. Schuetz, and D. W. Prather, “High-power photodiode-integrated-connected array antenna,” J. Light. Technol. 35, 2010–2016 (2017).
[Crossref]

D. D. Ross, M. R. Konkol, S. Shi, C. E. Harrity, A. A. Wright, C. A. Schuetz, and D. W. Prather, “Low-profile high-power optically addressed phased array antenna,” J. Light. Technol. 35, 3894–3900 (2017).
[Crossref]

Wu, Q.

Y. Yuan, K. Zhang, X. Ding, B. Ratni, S. N. Burokur, and Q. Wu, “Complementary transmissive ultra-thin meta-deflectors for broadband polarization-independent refractions in the microwave region,” Photonics Res. 7, 80–88 (2019).
[Crossref]

K. Zhang, Y. Yuan, D. Zhang, X. Ding, B. Ratni, S. N. Burokur, M. Lu, K. Tang, and Q. Wu, “Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region,” Opt. Express 26, 1351–1360 (2018).
[Crossref] [PubMed]

Xie, X.

K. Li, X. Xie, Q. Li, Y. Shen, M. E. Woodsen, Z. Yang, A. Beling, and J. C. Campbell, “High-power photodiode integrated with coplanar patch antenna for 60-GHz applications,” IEEE Photonics Technol. Lett. 27, 650–653 (2015).
[Crossref]

Yang, Y.

C. Lim, A. Nirmalathas, M. Bakaul, P. Gamage, K. L. Lee, Y. Yang, D. Novak, and R. Waterhouse, “Fiber-wireless networks and subsystem technologies,” J. Light. Technol. 28, 390–405 (2010).
[Crossref]

Yang, Z.

K. Li, X. Xie, Q. Li, Y. Shen, M. E. Woodsen, Z. Yang, A. Beling, and J. C. Campbell, “High-power photodiode integrated with coplanar patch antenna for 60-GHz applications,” IEEE Photonics Technol. Lett. 27, 650–653 (2015).
[Crossref]

Yao, P.

S. Shi, J. Bai, R. Nelson, C. Schuetz, P. Yao, G. J. Schneider, Y. Zhang, and D. W. Prather, “Ultrawideband optically fed tightly coupled phased array,” J. Light. Technol. 33, 4781–4790 (2015).
[Crossref]

Yin, X.

G. Torfs, H. Li, S. Agneessens, J. Bauwelinck, L. Breyne, O. Caytan, W. Joseph, S. Lemey, H. Rogier, A. Thielens, D. Vande Ginste, J. Van Kerrebrouck, G. Vermeeren, X. Yin, and P. Demeester, “ATTO: Wireless networking at fiber speed,” J. Light. Technol. 36, 1468–1477 (2018).
[Crossref]

L. Breyne, G. Torfs, X. Yin, P. Demeester, and J. Bauwelinck, “Comparison between analog radio-over-fiber and sigma delta modulated radio-over-fiber,” IEEE Photonics Technol. Lett. 29, 1808–1811 (2017).
[Crossref]

Young, L.

G. Matthaei, L. Young, and E. Jones, Microwave filters, impedance-matching networks, and coupling structures (McGraw-Hill, 1964).

Yuan, Y.

Y. Yuan, K. Zhang, X. Ding, B. Ratni, S. N. Burokur, and Q. Wu, “Complementary transmissive ultra-thin meta-deflectors for broadband polarization-independent refractions in the microwave region,” Photonics Res. 7, 80–88 (2019).
[Crossref]

K. Zhang, Y. Yuan, D. Zhang, X. Ding, B. Ratni, S. N. Burokur, M. Lu, K. Tang, and Q. Wu, “Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region,” Opt. Express 26, 1351–1360 (2018).
[Crossref] [PubMed]

Zhang, D.

K. Zhang, Y. Yuan, D. Zhang, X. Ding, B. Ratni, S. N. Burokur, M. Lu, K. Tang, and Q. Wu, “Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region,” Opt. Express 26, 1351–1360 (2018).
[Crossref] [PubMed]

Zhang, K.

Y. Yuan, K. Zhang, X. Ding, B. Ratni, S. N. Burokur, and Q. Wu, “Complementary transmissive ultra-thin meta-deflectors for broadband polarization-independent refractions in the microwave region,” Photonics Res. 7, 80–88 (2019).
[Crossref]

K. Zhang, Y. Yuan, D. Zhang, X. Ding, B. Ratni, S. N. Burokur, M. Lu, K. Tang, and Q. Wu, “Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region,” Opt. Express 26, 1351–1360 (2018).
[Crossref] [PubMed]

Zhang, Y.

S. Shi, J. Bai, R. Nelson, C. Schuetz, P. Yao, G. J. Schneider, Y. Zhang, and D. W. Prather, “Ultrawideband optically fed tightly coupled phased array,” J. Light. Technol. 33, 4781–4790 (2015).
[Crossref]

Electron. Lett. (2)

D. Wake, N. G. Walker, and I. C. Smith, “Zero-bias edge-coupled InGaAs photodiodes in millimetre-wave radio-fibre systems,” Electron. Lett. 29, 1879–1881 (1993).
[Crossref]

J. V. Morro, A. Rodríguez, A. Belenguer, H. Esteban, and V. Boria, “Multilevel transition in empty substrate integrated waveguide,” Electron. Lett. 52, 1543–1544 (2016).
[Crossref]

IEEE J. Quantum Electron. (1)

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-over-fiber technologies for emerging wireless systems,” IEEE J. Quantum Electron. 52, 1–11 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (5)

K. Li, X. Xie, Q. Li, Y. Shen, M. E. Woodsen, Z. Yang, A. Beling, and J. C. Campbell, “High-power photodiode integrated with coplanar patch antenna for 60-GHz applications,” IEEE Photonics Technol. Lett. 27, 650–653 (2015).
[Crossref]

N. Shimizu and T. Nagatsuma, “Photodiode-integrated microstrip antenna array for subterahertz radiation,” IEEE Photonics Technol. Lett. 18, 743–745 (2006).
[Crossref]

L. Breyne, G. Torfs, X. Yin, P. Demeester, and J. Bauwelinck, “Comparison between analog radio-over-fiber and sigma delta modulated radio-over-fiber,” IEEE Photonics Technol. Lett. 29, 1808–1811 (2017).
[Crossref]

B. Vidal, T. Mengual, C. Ibanez-Lopez, and J. Marti, “Optical beamforming network based on fiber-optical delay lines and spatial light modulators for large antenna arrays,” IEEE Photonics Technol. Lett. 18, 2590–2592 (2006).
[Crossref]

B. Jung, J. Shin, and B. Kim, “Optical true time-delay for two-dimensional x-band phased array antennas,” IEEE Photonics Technol. Lett. 19, 877–879 (2007).
[Crossref]

IEEE Trans. Antennas Propag. (5)

C. Jin, R. Li, A. Alphones, and X. Bao, “Quarter-mode substrate integrated waveguide and its application to antennas design,” IEEE Trans. Antennas Propag. 61, 2921–2928 (2013).
[Crossref]

T. Deckmyn, S. Agneessens, A. C. F. Reniers, A. B. Smolders, M. Cauwe, D. Vande Ginste, and H. Rogier, “A novel 60 GHz wideband coupled half-mode/quarter-mode substrate integrated waveguide antenna,” IEEE Trans. Antennas Propag. 65, 6915–6926 (2017).
[Crossref]

G. A. E. Vandenbosch and A. R. Van de Capelle, “Study of the capacitively fed microstrip antenna element,” IEEE Trans. Antennas Propag. 42, 1648–1652 (1994).
[Crossref]

H. F. Pues and A. R. Van de Capelle, “An impedance-matching technique for increasing the bandwidth of microstrip antennas,” IEEE Trans. Antennas Propag. 37, 1345–1354 (1989).
[Crossref]

Q. Van den Brande, S. Lemey, J. Vanfleteren, and H. Rogier, “Highly-efficient impulse-radio ultra-wideband cavity-backed slot antenna in stacked air-filled substrate-integrated-waveguide technology,” IEEE Trans. Antennas Propag. 66, 2199–2209 (2018).
[Crossref]

IEEE Trans. Microw. Theory Tech. (9)

M. Y. Frankel, P. J. Matthews, and R. D. Esman, “Fiber-optic true time steering of an ultrawide-band receive array,” IEEE Trans. Microw. Theory Tech. 45, 1522–1526 (1997).
[Crossref]

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54, 906–920 (2006).
[Crossref]

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microw. Theory Tech. 44, 1716–1724 (1996).
[Crossref]

A. Belenguer, H. Esteban, and V. E. Boria, “Novel empty substrate integrated waveguide for high-performance microwave integrated circuits,” IEEE Trans. Microw. Theory Tech. 62, 832–839 (2014).
[Crossref]

A. Hirata, H. Ishii, and T. Nagatsuma, “Design and characterization of a 120-GHz millimeter-wave antenna for integrated photonic transmitters,” IEEE Trans. Microw. Theory Tech. 49, 2157–2162 (2001).
[Crossref]

A. Stohr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. Seeds, A. G. Steffan, A. Umbach, and M. Weiss, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microw. Theory Tech. 58, 3071–3082 (2010).
[Crossref]

N. Chen, H. Tsai, F. Kuo, and J. Shi, “High-speed w-band integrated photonic transmitter for radio-over-fiber applications,” IEEE Trans. Microw. Theory Tech. 59, 978–986 (2011).
[Crossref]

M. R. Konkol, D. D. Ross, S. Shi, C. E. Harrity, A. A. Wright, C. A. Schuetz, and D. W. Prather, “Photonic tightly coupled array,” IEEE Trans. Microw. Theory Tech. 66, 2570–2578 (2018).
[Crossref]

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54, 906–920 (2006).
[Crossref]

J. Frankl. Inst. (1)

R. Fano, “Theoretical limitations on the broadband matching of arbitrary impedances,” J. Frankl. Inst. 249, 57 – 83 (1950).
[Crossref]

J. Light. Technol. (9)

O. Caytan, L. Bogaert, H. Li, J. Van Kerrebrouck, S. Lemey, G. Torfs, J. Bauwelinck, P. Demeester, S. Agneessens, D. Vande Ginste, and H. Rogier, “Passive opto-antenna as downlink remote antenna unit for radio frequency over fiber,” J. Light. Technol. 36, 4445–4459 (2018).
[Crossref]

M. R. Konkol, D. D. Ross, S. Shi, C. E. Harrity, A. A. Wright, C. A. Schuetz, and D. W. Prather, “High-power photodiode-integrated-connected array antenna,” J. Light. Technol. 35, 2010–2016 (2017).
[Crossref]

D. D. Ross, M. R. Konkol, S. Shi, C. E. Harrity, A. A. Wright, C. A. Schuetz, and D. W. Prather, “Low-profile high-power optically addressed phased array antenna,” J. Light. Technol. 35, 3894–3900 (2017).
[Crossref]

S. Shi, J. Bai, R. Nelson, C. Schuetz, P. Yao, G. J. Schneider, Y. Zhang, and D. W. Prather, “Ultrawideband optically fed tightly coupled phased array,” J. Light. Technol. 33, 4781–4790 (2015).
[Crossref]

G. Torfs, H. Li, S. Agneessens, J. Bauwelinck, L. Breyne, O. Caytan, W. Joseph, S. Lemey, H. Rogier, A. Thielens, D. Vande Ginste, J. Van Kerrebrouck, G. Vermeeren, X. Yin, and P. Demeester, “ATTO: Wireless networking at fiber speed,” J. Light. Technol. 36, 1468–1477 (2018).
[Crossref]

C. Lim, A. Nirmalathas, M. Bakaul, P. Gamage, K. L. Lee, Y. Yang, D. Novak, and R. Waterhouse, “Fiber-wireless networks and subsystem technologies,” J. Light. Technol. 28, 390–405 (2010).
[Crossref]

M. E. Godinez, C. S. McDermitt, A. S. Hastings, M. G. Parent, and F. Bucholtz, “RF characterization of zero-biased photodiodes,” J. Light. Technol. 26, 3829–3834 (2008).
[Crossref]

D. Wake, A. Nkansah, N. J. Gomes, C. Lethien, C. Sion, and J. P. Vilcot, “Optically powered remote units for radio-over-fiber systems,” J. Light. Technol. 26, 2484–2491 (2008).
[Crossref]

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Light. Technol. 9, 1124–1131 (1991).
[Crossref]

Opt. Express (1)

K. Zhang, Y. Yuan, D. Zhang, X. Ding, B. Ratni, S. N. Burokur, M. Lu, K. Tang, and Q. Wu, “Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region,” Opt. Express 26, 1351–1360 (2018).
[Crossref] [PubMed]

Photonics Res. (1)

Y. Yuan, K. Zhang, X. Ding, B. Ratni, S. N. Burokur, and Q. Wu, “Complementary transmissive ultra-thin meta-deflectors for broadband polarization-independent refractions in the microwave region,” Photonics Res. 7, 80–88 (2019).
[Crossref]

Proc. Inst. Electr. Eng. (1)

R. Levy, “Explicit formulas for chebyshev impedance-matching networks, filters and interstages,” Proc. Inst. Electr. Eng. 111, 1099–1106 (1964).
[Crossref]

Other (7)

C. L. Goldsmith and B. Kanack, “Broadband microwave matching of high speed photodiodes,” in 1993 IEEE MTT-S International Microwave Symposium Digest, (IEEE, 1993), pp. 233–236 vol.1.
[Crossref]

D. Pozar, Microwave Engineering (Wiley, 2004).

G. Matthaei, L. Young, and E. Jones, Microwave filters, impedance-matching networks, and coupling structures (McGraw-Hill, 1964).

B. Lannoo, A. Dixit, D. Colle, J. Bauwelinck, B. Dhoedt, B. Jooris, I. Moerman, M. Pickavet, H. Rogier, P. Simoens, G. Torfs, D. Vande Ginste, and P. Demeester, “Radio-over-fibre for ultra-small 5G cells,” in 2015 17th International Conference on Transparent Optical Networks (ICTON), (IEEE, 2015), pp. 1–4.

Federal Communications Commission, “Revision of Part 15 of the Commission’s Rules to Permit Unlicensed National Information Infrastructure (U-NII) Devices in the 5 GHz Band, ET Docket No. 13–49,” released February 20, 2013.

K. Takahata, Y. Muramoto, S. Fukushima, T. Furuta, and H. Ito, “Monolithically integrated millimeter-wave photonic emitter for 60-GHz fiber-radio applications,” in International Topical Meeting on Microwave Photonics MWP 2000 (Cat. No.00EX430), (IEEE, 2000), pp. 229–232.
[Crossref]

H. Bode, Network Analysis and Feedback Amplifier Design (Van Nostrand, 1945).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 High-level functional overview of the proposed transmit remote antenna unit.
Fig. 2
Fig. 2 Exploded view of the proposed transmit remote antenna unit. Initial and optimized values of the design parameters are provided in Table 1. Detail A focuses on the feed PCB which contains the photodetector resonant circuit and the bias tee, while detail B focuses on the antenna’s capacitive feeding mechanism.
Fig. 3
Fig. 3 (a) Measurement of the photodiode’s small-signal impedance at a reverse bias voltage of 1 V in dark conditions. (b) Photodetector small-signal equivalent circuit model for a bias voltage of 1 V.
Fig. 4
Fig. 4 (a) Synthesis of a second-order Chebyshev matching network to determine the required antenna input impedance. (b) Lumped circuit model for the output impedance ZOUT () of the photodetector resonant circuit. (c) Comparison of the output impedance of the photodetector resonant circuit obtained with the full-wave simulation and the lumped circuit model.
Fig. 5
Fig. 5 Design curves for tuning the quality factor Q of the proposed air-filled half-mode substrate-integrated-waveguide antenna, while preserving a resonance frequency of 5.49 GHz and a resonance resistance of 61.1 Ω.
Fig. 6
Fig. 6 (a) Equivalent circuit model for the input impedance of the half-mode air-filled substrate-integrated-waveguide (AFSIW) antenna. (b) Comparison of the input impedance of the half-mode AFSIW antenna obtained with the full-wave simulation and with the equivalent circuit model.
Fig. 7
Fig. 7 Normalized free-space far-field gain patterns [dB] of the half-mode air-filled substrate-integrated-waveguide antenna (simulated —) and the transmit remote antenna unit (simulated oe----i001 and measured oe----i002) at the lower frequency 5.15 GHz (top row), center frequency 5.50 GHz (middle row), and at the upper frequency 5.85 GHz (bottom row), both in the E-plane (left column), and the H-plane (right column).
Fig. 8
Fig. 8 Full-wave simulation model for the far-field boresight gain of the full transmit remote antenna unit.
Fig. 9
Fig. 9 Normalized far-field boresight gain [dBi] of the transmit remote antenna unit (simulation, excluding and including fiber-pigtail coupling efficiency, and measurement), as a function of frequency.
Fig. 10
Fig. 10 Simulated transducer gain [%] (defined as the fraction of the maximum power available from the photodetector that is actually delivered to the antenna) as a function of frequency in case the photodetector is directly interconnected to a 50 Ω antenna (solid line), and in case of the proposed conjugate-matched design (dashed line).
Fig. 11
Fig. 11 Prototype of the proposed transmit remote opto-antenna unit deployed in the anechoic chamber.
Fig. 12
Fig. 12 Measurement setup for the far-field radiation pattern of the transmit remote antenna unit prototype.
Fig. 13
Fig. 13 Normalized far-field boresight gain [dBi] of the transmit remote antenna unit as a function of frequency, measured for several fiber lengths.

Tables (2)

Tables Icon

Table 1 Transmit remote antenna unit dimensions, before and after optimization.

Tables Icon

Table 2 Measured (simulated) far-field radiation properties and equivalent isotropic radiated power (EIRP) of the transmit remote antenna unit at several frequencies.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Z PD ( s ) = R S + 1 s C P ,
P AV = 1 8 | i p | 2 ω 2 C P 2 R S .
f r = 1 2 π LC ,
Q = R C L ,

Metrics