Abstract

Two-dimensional chirped-pitch crossed surface relief gratings (CP-CSRGs) were fabricated on azobenzene-functionalized thin films using a simple two-step procedure. The resulting gratings had a constant pitch in one direction and a varying (chirped) pitch in the orthogonal direction. They were coated with silver and tested for their ability to change the polarization of surface plasmon resonance (SPR) signals, when placed between crossed polarizers. It was observed that several different bandwidths of SPR wavelengths are excitable using a single device, making CP-CSRGs suitable as next generation SPR-based sensors. The SPR wavelengths shifted as much as 10.5 nm/mm along the chirped grating, and a maximum sensitivity of 778.6 nm/RIU was obtained when detecting the refractive index change of various concentrations of aqueous sucrose solutions.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Surface plasmon bandwidth increase using chirped-pitch linear diffraction gratings

Erin Bailey and Ribal Georges Sabat
Opt. Express 25(6) 6904-6913 (2017)

Laser-induced controllable chirped-pitch circular surface-relief diffraction gratings on AZO glass

James Leibold and Ribal Georges Sabat
Photon. Res. 3(4) 158-163 (2015)

Highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance sensor with a silver nano-continuous grating

Shengxi Jiao, Sanfeng Gu, Hanrui Yang, Hairui Fang, and Shibo Xu
Appl. Opt. 57(28) 8350-8358 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. G. Gordon and S. Ernst, “Surface plasmons as a probe of the electrochemical interface,” Surf. Sci. 101(1–3), 499–506 (1980).
    [Crossref]
  2. A. K. Sharma, R. Jha, and B. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
    [Crossref]
  3. W. B. Lin, N. Jaffrezic-Renault, A. Gagnaire, and H. Gagnaire, “The effects of polarization of the incident light-modeling and analysis of a SPR multimode optical fiber sensor,” Sens. Actuator A-Phys. 84(3), 198–204 (2000).
    [Crossref]
  4. Q. Wang and W.-M. Zhao, “Optical Methods of Antibiotic Residues Detections: A Comprehensive Review,” Sens. Actuator B-Chem. 269(15), 238–256 (2018).
    [Crossref]
  5. M. Soler, P. Mesa-Antunez, M.-C. Estevez, A. J. Ruiz-Sanchez, M. A. Otte, B. Sepulveda, D. Collado, C. Mayorga, M. J. Torres, E. Perez-Inestrosa, and L. M. Lechuga, “Highly sensitive dendrimer-based nanoplasmonic biosensor for drug allergy diagnosis,” Biosens. Bioelectron. 66(15), 115–123 (2015).
    [Crossref] [PubMed]
  6. Q. Wang and W.-M. Zhao, “A comprehensive review of lossy mode resonance-based fiber optic sensors,” Opt. Lasers Eng. 100, 47–60 (2018).
    [Crossref]
  7. S. D. Mazumdar, M. Hartmann, P. Kämpfer, and M. Keusgen, “Rapid method for detection of Salmonella in milk by surface plasmon resonance (SPR),” Biosens. Bioelectron. 22(9-10), 2040–2046 (2007).
    [Crossref] [PubMed]
  8. F.-C. Chien, J.-S. Liu, H.-J. Su, L.-A. Kao, C.-F. Chiou, W.-Y. Chen, and S.-J. Chen, “An investigation into the influence of secondary structures on DNA hybridization using surface plasmon resonance biosensing,” Chem. Phys. Lett. 397(4–6), 429–434 (2004).
    [Crossref]
  9. S. A. Maier, “Excitation of surface plasmon polaritons at planar interfaces,” in Plasmonics: fundamentals and applications, S. A. Maier, (Springer, 2007), pp. 39–52.
  10. J. Homola and M. Piliarik, “Surface plasmon resonance (SPR) sensors,” in Surface plasmon resonance based sensors, J. Homola, (Springer, 2006), pp. 45–67.
  11. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. A Hadrons and Nuclei 216(4), 398–410 (1968).
    [Crossref]
  12. E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A 23(12), 2135–2136 (1968).
    [Crossref]
  13. L. Lévesque and P. Rochon, “Surface plasmon photonic bandgap in azopolymer gratings sputtered with gold,” J. Opt. Soc. Am. A 22(11), 2564–2568 (2005).
    [Crossref] [PubMed]
  14. R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21(22), 1530–1533 (1968).
    [Crossref]
  15. J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prims couplers: sensitivity comparison,” Sens. Actuator B-Chem. 54(1–2), 16–24 (1999).
    [Crossref]
  16. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuator B-Chem. 54(1–2), 3–15 (1999).
    [Crossref]
  17. E. M. Munoz, S. Lorenzo-Abalde, A. González-Fernández, O. Quintela, M. Lopez-Rivadulla, and R. Riguera, “Direct surface plasmon resonance immunosensor for in situ detection of benzoylecgonine, the major cocaine metabolite,” Biosens. Bioelectron. 26(11), 4423–4428 (2011).
    [Crossref] [PubMed]
  18. P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
    [Crossref]
  19. J. Leibold, P. Snell, O. Lebel, and R. G. Sabat, “Design and fabrication of constant-pitch circular surface-relief diffraction gratings on disperse red 1 glass,” Opt. Lett. 39(12), 3445–3448 (2014).
    [Crossref] [PubMed]
  20. N. Swanson and R. G. Sabat, “Inscription and analysis of non-uniform diffraction gratings in azobenzene molecular glass thin films,” Opt. Express 26(7), 7876–7887 (2018).
    [Crossref] [PubMed]
  21. S. Nair, C. Escobedo, and R. G. Sabat, “Crossed surface relief gratings as nanoplasmonic biosensors,” ACS Sens. 2(3), 379–385 (2017).
    [Crossref] [PubMed]
  22. R. G. Sabat, N. Rochon, and P. Rochon, “Dependence of surface plasmon polarization conversion on the grating pitch,” J. Opt. Soc. Am. A 27(3), 518–522 (2010).
    [Crossref] [PubMed]
  23. S. Nair, J. Gomez-Cruz, Á. Manjarrez-Hernandez, G. Ascanio, R. G. Sabat, and C. Escobedo, “Selective uropathogenic E. Coli detection using crossed surface-relief gratings,” Sensors (Basel) 18(11), 3634–3646 (2018).
    [Crossref] [PubMed]
  24. E. Bailey and R. G. Sabat, “Surface plasmon bandwidth increase using chirped-pitch linear diffraction gratings,” Opt. Express 25(6), 6904–6913 (2017).
    [Crossref] [PubMed]
  25. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  26. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
    [Crossref] [PubMed]

2018 (4)

Q. Wang and W.-M. Zhao, “Optical Methods of Antibiotic Residues Detections: A Comprehensive Review,” Sens. Actuator B-Chem. 269(15), 238–256 (2018).
[Crossref]

Q. Wang and W.-M. Zhao, “A comprehensive review of lossy mode resonance-based fiber optic sensors,” Opt. Lasers Eng. 100, 47–60 (2018).
[Crossref]

N. Swanson and R. G. Sabat, “Inscription and analysis of non-uniform diffraction gratings in azobenzene molecular glass thin films,” Opt. Express 26(7), 7876–7887 (2018).
[Crossref] [PubMed]

S. Nair, J. Gomez-Cruz, Á. Manjarrez-Hernandez, G. Ascanio, R. G. Sabat, and C. Escobedo, “Selective uropathogenic E. Coli detection using crossed surface-relief gratings,” Sensors (Basel) 18(11), 3634–3646 (2018).
[Crossref] [PubMed]

2017 (2)

E. Bailey and R. G. Sabat, “Surface plasmon bandwidth increase using chirped-pitch linear diffraction gratings,” Opt. Express 25(6), 6904–6913 (2017).
[Crossref] [PubMed]

S. Nair, C. Escobedo, and R. G. Sabat, “Crossed surface relief gratings as nanoplasmonic biosensors,” ACS Sens. 2(3), 379–385 (2017).
[Crossref] [PubMed]

2015 (1)

M. Soler, P. Mesa-Antunez, M.-C. Estevez, A. J. Ruiz-Sanchez, M. A. Otte, B. Sepulveda, D. Collado, C. Mayorga, M. J. Torres, E. Perez-Inestrosa, and L. M. Lechuga, “Highly sensitive dendrimer-based nanoplasmonic biosensor for drug allergy diagnosis,” Biosens. Bioelectron. 66(15), 115–123 (2015).
[Crossref] [PubMed]

2014 (1)

J. Leibold, P. Snell, O. Lebel, and R. G. Sabat, “Design and fabrication of constant-pitch circular surface-relief diffraction gratings on disperse red 1 glass,” Opt. Lett. 39(12), 3445–3448 (2014).
[Crossref] [PubMed]

2011 (1)

E. M. Munoz, S. Lorenzo-Abalde, A. González-Fernández, O. Quintela, M. Lopez-Rivadulla, and R. Riguera, “Direct surface plasmon resonance immunosensor for in situ detection of benzoylecgonine, the major cocaine metabolite,” Biosens. Bioelectron. 26(11), 4423–4428 (2011).
[Crossref] [PubMed]

2010 (1)

R. G. Sabat, N. Rochon, and P. Rochon, “Dependence of surface plasmon polarization conversion on the grating pitch,” J. Opt. Soc. Am. A 27(3), 518–522 (2010).
[Crossref] [PubMed]

2007 (2)

A. K. Sharma, R. Jha, and B. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[Crossref]

S. D. Mazumdar, M. Hartmann, P. Kämpfer, and M. Keusgen, “Rapid method for detection of Salmonella in milk by surface plasmon resonance (SPR),” Biosens. Bioelectron. 22(9-10), 2040–2046 (2007).
[Crossref] [PubMed]

2005 (1)

L. Lévesque and P. Rochon, “Surface plasmon photonic bandgap in azopolymer gratings sputtered with gold,” J. Opt. Soc. Am. A 22(11), 2564–2568 (2005).
[Crossref] [PubMed]

2004 (1)

F.-C. Chien, J.-S. Liu, H.-J. Su, L.-A. Kao, C.-F. Chiou, W.-Y. Chen, and S.-J. Chen, “An investigation into the influence of secondary structures on DNA hybridization using surface plasmon resonance biosensing,” Chem. Phys. Lett. 397(4–6), 429–434 (2004).
[Crossref]

2000 (1)

W. B. Lin, N. Jaffrezic-Renault, A. Gagnaire, and H. Gagnaire, “The effects of polarization of the incident light-modeling and analysis of a SPR multimode optical fiber sensor,” Sens. Actuator A-Phys. 84(3), 198–204 (2000).
[Crossref]

1999 (2)

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prims couplers: sensitivity comparison,” Sens. Actuator B-Chem. 54(1–2), 16–24 (1999).
[Crossref]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuator B-Chem. 54(1–2), 3–15 (1999).
[Crossref]

1996 (1)

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[Crossref] [PubMed]

1995 (1)

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
[Crossref]

1980 (1)

J. G. Gordon and S. Ernst, “Surface plasmons as a probe of the electrochemical interface,” Surf. Sci. 101(1–3), 499–506 (1980).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1968 (3)

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21(22), 1530–1533 (1968).
[Crossref]

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. A Hadrons and Nuclei 216(4), 398–410 (1968).
[Crossref]

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A 23(12), 2135–2136 (1968).
[Crossref]

Arakawa, E. T.

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21(22), 1530–1533 (1968).
[Crossref]

Ascanio, G.

S. Nair, J. Gomez-Cruz, Á. Manjarrez-Hernandez, G. Ascanio, R. G. Sabat, and C. Escobedo, “Selective uropathogenic E. Coli detection using crossed surface-relief gratings,” Sensors (Basel) 18(11), 3634–3646 (2018).
[Crossref] [PubMed]

Bailey, E.

E. Bailey and R. G. Sabat, “Surface plasmon bandwidth increase using chirped-pitch linear diffraction gratings,” Opt. Express 25(6), 6904–6913 (2017).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[Crossref] [PubMed]

Batalla, E.

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
[Crossref]

Chen, S.-J.

F.-C. Chien, J.-S. Liu, H.-J. Su, L.-A. Kao, C.-F. Chiou, W.-Y. Chen, and S.-J. Chen, “An investigation into the influence of secondary structures on DNA hybridization using surface plasmon resonance biosensing,” Chem. Phys. Lett. 397(4–6), 429–434 (2004).
[Crossref]

Chen, W.-Y.

F.-C. Chien, J.-S. Liu, H.-J. Su, L.-A. Kao, C.-F. Chiou, W.-Y. Chen, and S.-J. Chen, “An investigation into the influence of secondary structures on DNA hybridization using surface plasmon resonance biosensing,” Chem. Phys. Lett. 397(4–6), 429–434 (2004).
[Crossref]

Chien, F.-C.

F.-C. Chien, J.-S. Liu, H.-J. Su, L.-A. Kao, C.-F. Chiou, W.-Y. Chen, and S.-J. Chen, “An investigation into the influence of secondary structures on DNA hybridization using surface plasmon resonance biosensing,” Chem. Phys. Lett. 397(4–6), 429–434 (2004).
[Crossref]

Chiou, C.-F.

F.-C. Chien, J.-S. Liu, H.-J. Su, L.-A. Kao, C.-F. Chiou, W.-Y. Chen, and S.-J. Chen, “An investigation into the influence of secondary structures on DNA hybridization using surface plasmon resonance biosensing,” Chem. Phys. Lett. 397(4–6), 429–434 (2004).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Collado, D.

M. Soler, P. Mesa-Antunez, M.-C. Estevez, A. J. Ruiz-Sanchez, M. A. Otte, B. Sepulveda, D. Collado, C. Mayorga, M. J. Torres, E. Perez-Inestrosa, and L. M. Lechuga, “Highly sensitive dendrimer-based nanoplasmonic biosensor for drug allergy diagnosis,” Biosens. Bioelectron. 66(15), 115–123 (2015).
[Crossref] [PubMed]

Cowan, J. J.

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21(22), 1530–1533 (1968).
[Crossref]

Ernst, S.

J. G. Gordon and S. Ernst, “Surface plasmons as a probe of the electrochemical interface,” Surf. Sci. 101(1–3), 499–506 (1980).
[Crossref]

Escobedo, C.

S. Nair, J. Gomez-Cruz, Á. Manjarrez-Hernandez, G. Ascanio, R. G. Sabat, and C. Escobedo, “Selective uropathogenic E. Coli detection using crossed surface-relief gratings,” Sensors (Basel) 18(11), 3634–3646 (2018).
[Crossref] [PubMed]

S. Nair, C. Escobedo, and R. G. Sabat, “Crossed surface relief gratings as nanoplasmonic biosensors,” ACS Sens. 2(3), 379–385 (2017).
[Crossref] [PubMed]

Estevez, M.-C.

M. Soler, P. Mesa-Antunez, M.-C. Estevez, A. J. Ruiz-Sanchez, M. A. Otte, B. Sepulveda, D. Collado, C. Mayorga, M. J. Torres, E. Perez-Inestrosa, and L. M. Lechuga, “Highly sensitive dendrimer-based nanoplasmonic biosensor for drug allergy diagnosis,” Biosens. Bioelectron. 66(15), 115–123 (2015).
[Crossref] [PubMed]

Gagnaire, A.

W. B. Lin, N. Jaffrezic-Renault, A. Gagnaire, and H. Gagnaire, “The effects of polarization of the incident light-modeling and analysis of a SPR multimode optical fiber sensor,” Sens. Actuator A-Phys. 84(3), 198–204 (2000).
[Crossref]

Gagnaire, H.

W. B. Lin, N. Jaffrezic-Renault, A. Gagnaire, and H. Gagnaire, “The effects of polarization of the incident light-modeling and analysis of a SPR multimode optical fiber sensor,” Sens. Actuator A-Phys. 84(3), 198–204 (2000).
[Crossref]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuator B-Chem. 54(1–2), 3–15 (1999).
[Crossref]

Gomez-Cruz, J.

S. Nair, J. Gomez-Cruz, Á. Manjarrez-Hernandez, G. Ascanio, R. G. Sabat, and C. Escobedo, “Selective uropathogenic E. Coli detection using crossed surface-relief gratings,” Sensors (Basel) 18(11), 3634–3646 (2018).
[Crossref] [PubMed]

González-Fernández, A.

E. M. Munoz, S. Lorenzo-Abalde, A. González-Fernández, O. Quintela, M. Lopez-Rivadulla, and R. Riguera, “Direct surface plasmon resonance immunosensor for in situ detection of benzoylecgonine, the major cocaine metabolite,” Biosens. Bioelectron. 26(11), 4423–4428 (2011).
[Crossref] [PubMed]

Gordon, J. G.

J. G. Gordon and S. Ernst, “Surface plasmons as a probe of the electrochemical interface,” Surf. Sci. 101(1–3), 499–506 (1980).
[Crossref]

Gupta, B.

A. K. Sharma, R. Jha, and B. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[Crossref]

Hamm, R. N.

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21(22), 1530–1533 (1968).
[Crossref]

Hartmann, M.

S. D. Mazumdar, M. Hartmann, P. Kämpfer, and M. Keusgen, “Rapid method for detection of Salmonella in milk by surface plasmon resonance (SPR),” Biosens. Bioelectron. 22(9-10), 2040–2046 (2007).
[Crossref] [PubMed]

Homola, J.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prims couplers: sensitivity comparison,” Sens. Actuator B-Chem. 54(1–2), 16–24 (1999).
[Crossref]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuator B-Chem. 54(1–2), 3–15 (1999).
[Crossref]

Jaffrezic-Renault, N.

W. B. Lin, N. Jaffrezic-Renault, A. Gagnaire, and H. Gagnaire, “The effects of polarization of the incident light-modeling and analysis of a SPR multimode optical fiber sensor,” Sens. Actuator A-Phys. 84(3), 198–204 (2000).
[Crossref]

Jha, R.

A. K. Sharma, R. Jha, and B. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kämpfer, P.

S. D. Mazumdar, M. Hartmann, P. Kämpfer, and M. Keusgen, “Rapid method for detection of Salmonella in milk by surface plasmon resonance (SPR),” Biosens. Bioelectron. 22(9-10), 2040–2046 (2007).
[Crossref] [PubMed]

Kao, L.-A.

F.-C. Chien, J.-S. Liu, H.-J. Su, L.-A. Kao, C.-F. Chiou, W.-Y. Chen, and S.-J. Chen, “An investigation into the influence of secondary structures on DNA hybridization using surface plasmon resonance biosensing,” Chem. Phys. Lett. 397(4–6), 429–434 (2004).
[Crossref]

Keusgen, M.

S. D. Mazumdar, M. Hartmann, P. Kämpfer, and M. Keusgen, “Rapid method for detection of Salmonella in milk by surface plasmon resonance (SPR),” Biosens. Bioelectron. 22(9-10), 2040–2046 (2007).
[Crossref] [PubMed]

Kitson, S. C.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[Crossref] [PubMed]

Koudela, I.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prims couplers: sensitivity comparison,” Sens. Actuator B-Chem. 54(1–2), 16–24 (1999).
[Crossref]

Kretschmann, E.

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A 23(12), 2135–2136 (1968).
[Crossref]

Lebel, O.

J. Leibold, P. Snell, O. Lebel, and R. G. Sabat, “Design and fabrication of constant-pitch circular surface-relief diffraction gratings on disperse red 1 glass,” Opt. Lett. 39(12), 3445–3448 (2014).
[Crossref] [PubMed]

Lechuga, L. M.

M. Soler, P. Mesa-Antunez, M.-C. Estevez, A. J. Ruiz-Sanchez, M. A. Otte, B. Sepulveda, D. Collado, C. Mayorga, M. J. Torres, E. Perez-Inestrosa, and L. M. Lechuga, “Highly sensitive dendrimer-based nanoplasmonic biosensor for drug allergy diagnosis,” Biosens. Bioelectron. 66(15), 115–123 (2015).
[Crossref] [PubMed]

Leibold, J.

J. Leibold, P. Snell, O. Lebel, and R. G. Sabat, “Design and fabrication of constant-pitch circular surface-relief diffraction gratings on disperse red 1 glass,” Opt. Lett. 39(12), 3445–3448 (2014).
[Crossref] [PubMed]

Lévesque, L.

L. Lévesque and P. Rochon, “Surface plasmon photonic bandgap in azopolymer gratings sputtered with gold,” J. Opt. Soc. Am. A 22(11), 2564–2568 (2005).
[Crossref] [PubMed]

Lin, W. B.

W. B. Lin, N. Jaffrezic-Renault, A. Gagnaire, and H. Gagnaire, “The effects of polarization of the incident light-modeling and analysis of a SPR multimode optical fiber sensor,” Sens. Actuator A-Phys. 84(3), 198–204 (2000).
[Crossref]

Liu, J.-S.

F.-C. Chien, J.-S. Liu, H.-J. Su, L.-A. Kao, C.-F. Chiou, W.-Y. Chen, and S.-J. Chen, “An investigation into the influence of secondary structures on DNA hybridization using surface plasmon resonance biosensing,” Chem. Phys. Lett. 397(4–6), 429–434 (2004).
[Crossref]

Lopez-Rivadulla, M.

E. M. Munoz, S. Lorenzo-Abalde, A. González-Fernández, O. Quintela, M. Lopez-Rivadulla, and R. Riguera, “Direct surface plasmon resonance immunosensor for in situ detection of benzoylecgonine, the major cocaine metabolite,” Biosens. Bioelectron. 26(11), 4423–4428 (2011).
[Crossref] [PubMed]

Lorenzo-Abalde, S.

E. M. Munoz, S. Lorenzo-Abalde, A. González-Fernández, O. Quintela, M. Lopez-Rivadulla, and R. Riguera, “Direct surface plasmon resonance immunosensor for in situ detection of benzoylecgonine, the major cocaine metabolite,” Biosens. Bioelectron. 26(11), 4423–4428 (2011).
[Crossref] [PubMed]

Manjarrez-Hernandez, Á.

S. Nair, J. Gomez-Cruz, Á. Manjarrez-Hernandez, G. Ascanio, R. G. Sabat, and C. Escobedo, “Selective uropathogenic E. Coli detection using crossed surface-relief gratings,” Sensors (Basel) 18(11), 3634–3646 (2018).
[Crossref] [PubMed]

Mayorga, C.

M. Soler, P. Mesa-Antunez, M.-C. Estevez, A. J. Ruiz-Sanchez, M. A. Otte, B. Sepulveda, D. Collado, C. Mayorga, M. J. Torres, E. Perez-Inestrosa, and L. M. Lechuga, “Highly sensitive dendrimer-based nanoplasmonic biosensor for drug allergy diagnosis,” Biosens. Bioelectron. 66(15), 115–123 (2015).
[Crossref] [PubMed]

Mazumdar, S. D.

S. D. Mazumdar, M. Hartmann, P. Kämpfer, and M. Keusgen, “Rapid method for detection of Salmonella in milk by surface plasmon resonance (SPR),” Biosens. Bioelectron. 22(9-10), 2040–2046 (2007).
[Crossref] [PubMed]

Mesa-Antunez, P.

M. Soler, P. Mesa-Antunez, M.-C. Estevez, A. J. Ruiz-Sanchez, M. A. Otte, B. Sepulveda, D. Collado, C. Mayorga, M. J. Torres, E. Perez-Inestrosa, and L. M. Lechuga, “Highly sensitive dendrimer-based nanoplasmonic biosensor for drug allergy diagnosis,” Biosens. Bioelectron. 66(15), 115–123 (2015).
[Crossref] [PubMed]

Munoz, E. M.

E. M. Munoz, S. Lorenzo-Abalde, A. González-Fernández, O. Quintela, M. Lopez-Rivadulla, and R. Riguera, “Direct surface plasmon resonance immunosensor for in situ detection of benzoylecgonine, the major cocaine metabolite,” Biosens. Bioelectron. 26(11), 4423–4428 (2011).
[Crossref] [PubMed]

Nair, S.

S. Nair, J. Gomez-Cruz, Á. Manjarrez-Hernandez, G. Ascanio, R. G. Sabat, and C. Escobedo, “Selective uropathogenic E. Coli detection using crossed surface-relief gratings,” Sensors (Basel) 18(11), 3634–3646 (2018).
[Crossref] [PubMed]

S. Nair, C. Escobedo, and R. G. Sabat, “Crossed surface relief gratings as nanoplasmonic biosensors,” ACS Sens. 2(3), 379–385 (2017).
[Crossref] [PubMed]

Natansohn, A.

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
[Crossref]

Otte, M. A.

M. Soler, P. Mesa-Antunez, M.-C. Estevez, A. J. Ruiz-Sanchez, M. A. Otte, B. Sepulveda, D. Collado, C. Mayorga, M. J. Torres, E. Perez-Inestrosa, and L. M. Lechuga, “Highly sensitive dendrimer-based nanoplasmonic biosensor for drug allergy diagnosis,” Biosens. Bioelectron. 66(15), 115–123 (2015).
[Crossref] [PubMed]

Otto, A.

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. A Hadrons and Nuclei 216(4), 398–410 (1968).
[Crossref]

Perez-Inestrosa, E.

M. Soler, P. Mesa-Antunez, M.-C. Estevez, A. J. Ruiz-Sanchez, M. A. Otte, B. Sepulveda, D. Collado, C. Mayorga, M. J. Torres, E. Perez-Inestrosa, and L. M. Lechuga, “Highly sensitive dendrimer-based nanoplasmonic biosensor for drug allergy diagnosis,” Biosens. Bioelectron. 66(15), 115–123 (2015).
[Crossref] [PubMed]

Preist, T. W.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[Crossref] [PubMed]

Quintela, O.

E. M. Munoz, S. Lorenzo-Abalde, A. González-Fernández, O. Quintela, M. Lopez-Rivadulla, and R. Riguera, “Direct surface plasmon resonance immunosensor for in situ detection of benzoylecgonine, the major cocaine metabolite,” Biosens. Bioelectron. 26(11), 4423–4428 (2011).
[Crossref] [PubMed]

Raether, H.

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A 23(12), 2135–2136 (1968).
[Crossref]

Riguera, R.

E. M. Munoz, S. Lorenzo-Abalde, A. González-Fernández, O. Quintela, M. Lopez-Rivadulla, and R. Riguera, “Direct surface plasmon resonance immunosensor for in situ detection of benzoylecgonine, the major cocaine metabolite,” Biosens. Bioelectron. 26(11), 4423–4428 (2011).
[Crossref] [PubMed]

Ritchie, R. H.

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21(22), 1530–1533 (1968).
[Crossref]

Rochon, N.

R. G. Sabat, N. Rochon, and P. Rochon, “Dependence of surface plasmon polarization conversion on the grating pitch,” J. Opt. Soc. Am. A 27(3), 518–522 (2010).
[Crossref] [PubMed]

Rochon, P.

R. G. Sabat, N. Rochon, and P. Rochon, “Dependence of surface plasmon polarization conversion on the grating pitch,” J. Opt. Soc. Am. A 27(3), 518–522 (2010).
[Crossref] [PubMed]

L. Lévesque and P. Rochon, “Surface plasmon photonic bandgap in azopolymer gratings sputtered with gold,” J. Opt. Soc. Am. A 22(11), 2564–2568 (2005).
[Crossref] [PubMed]

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
[Crossref]

Ruiz-Sanchez, A. J.

M. Soler, P. Mesa-Antunez, M.-C. Estevez, A. J. Ruiz-Sanchez, M. A. Otte, B. Sepulveda, D. Collado, C. Mayorga, M. J. Torres, E. Perez-Inestrosa, and L. M. Lechuga, “Highly sensitive dendrimer-based nanoplasmonic biosensor for drug allergy diagnosis,” Biosens. Bioelectron. 66(15), 115–123 (2015).
[Crossref] [PubMed]

Sabat, R. G.

N. Swanson and R. G. Sabat, “Inscription and analysis of non-uniform diffraction gratings in azobenzene molecular glass thin films,” Opt. Express 26(7), 7876–7887 (2018).
[Crossref] [PubMed]

S. Nair, J. Gomez-Cruz, Á. Manjarrez-Hernandez, G. Ascanio, R. G. Sabat, and C. Escobedo, “Selective uropathogenic E. Coli detection using crossed surface-relief gratings,” Sensors (Basel) 18(11), 3634–3646 (2018).
[Crossref] [PubMed]

E. Bailey and R. G. Sabat, “Surface plasmon bandwidth increase using chirped-pitch linear diffraction gratings,” Opt. Express 25(6), 6904–6913 (2017).
[Crossref] [PubMed]

S. Nair, C. Escobedo, and R. G. Sabat, “Crossed surface relief gratings as nanoplasmonic biosensors,” ACS Sens. 2(3), 379–385 (2017).
[Crossref] [PubMed]

J. Leibold, P. Snell, O. Lebel, and R. G. Sabat, “Design and fabrication of constant-pitch circular surface-relief diffraction gratings on disperse red 1 glass,” Opt. Lett. 39(12), 3445–3448 (2014).
[Crossref] [PubMed]

R. G. Sabat, N. Rochon, and P. Rochon, “Dependence of surface plasmon polarization conversion on the grating pitch,” J. Opt. Soc. Am. A 27(3), 518–522 (2010).
[Crossref] [PubMed]

Sambles, J. R.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[Crossref] [PubMed]

Sepulveda, B.

M. Soler, P. Mesa-Antunez, M.-C. Estevez, A. J. Ruiz-Sanchez, M. A. Otte, B. Sepulveda, D. Collado, C. Mayorga, M. J. Torres, E. Perez-Inestrosa, and L. M. Lechuga, “Highly sensitive dendrimer-based nanoplasmonic biosensor for drug allergy diagnosis,” Biosens. Bioelectron. 66(15), 115–123 (2015).
[Crossref] [PubMed]

Sharma, A. K.

A. K. Sharma, R. Jha, and B. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[Crossref]

Snell, P.

J. Leibold, P. Snell, O. Lebel, and R. G. Sabat, “Design and fabrication of constant-pitch circular surface-relief diffraction gratings on disperse red 1 glass,” Opt. Lett. 39(12), 3445–3448 (2014).
[Crossref] [PubMed]

Soler, M.

M. Soler, P. Mesa-Antunez, M.-C. Estevez, A. J. Ruiz-Sanchez, M. A. Otte, B. Sepulveda, D. Collado, C. Mayorga, M. J. Torres, E. Perez-Inestrosa, and L. M. Lechuga, “Highly sensitive dendrimer-based nanoplasmonic biosensor for drug allergy diagnosis,” Biosens. Bioelectron. 66(15), 115–123 (2015).
[Crossref] [PubMed]

Su, H.-J.

F.-C. Chien, J.-S. Liu, H.-J. Su, L.-A. Kao, C.-F. Chiou, W.-Y. Chen, and S.-J. Chen, “An investigation into the influence of secondary structures on DNA hybridization using surface plasmon resonance biosensing,” Chem. Phys. Lett. 397(4–6), 429–434 (2004).
[Crossref]

Swanson, N.

N. Swanson and R. G. Sabat, “Inscription and analysis of non-uniform diffraction gratings in azobenzene molecular glass thin films,” Opt. Express 26(7), 7876–7887 (2018).
[Crossref] [PubMed]

Torres, M. J.

M. Soler, P. Mesa-Antunez, M.-C. Estevez, A. J. Ruiz-Sanchez, M. A. Otte, B. Sepulveda, D. Collado, C. Mayorga, M. J. Torres, E. Perez-Inestrosa, and L. M. Lechuga, “Highly sensitive dendrimer-based nanoplasmonic biosensor for drug allergy diagnosis,” Biosens. Bioelectron. 66(15), 115–123 (2015).
[Crossref] [PubMed]

Wang, Q.

Q. Wang and W.-M. Zhao, “A comprehensive review of lossy mode resonance-based fiber optic sensors,” Opt. Lasers Eng. 100, 47–60 (2018).
[Crossref]

Q. Wang and W.-M. Zhao, “Optical Methods of Antibiotic Residues Detections: A Comprehensive Review,” Sens. Actuator B-Chem. 269(15), 238–256 (2018).
[Crossref]

Yee, S. S.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prims couplers: sensitivity comparison,” Sens. Actuator B-Chem. 54(1–2), 16–24 (1999).
[Crossref]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuator B-Chem. 54(1–2), 3–15 (1999).
[Crossref]

Zhao, W.-M.

Q. Wang and W.-M. Zhao, “Optical Methods of Antibiotic Residues Detections: A Comprehensive Review,” Sens. Actuator B-Chem. 269(15), 238–256 (2018).
[Crossref]

Q. Wang and W.-M. Zhao, “A comprehensive review of lossy mode resonance-based fiber optic sensors,” Opt. Lasers Eng. 100, 47–60 (2018).
[Crossref]

ACS Sens. (1)

S. Nair, C. Escobedo, and R. G. Sabat, “Crossed surface relief gratings as nanoplasmonic biosensors,” ACS Sens. 2(3), 379–385 (2017).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
[Crossref]

Biosens. Bioelectron. (3)

M. Soler, P. Mesa-Antunez, M.-C. Estevez, A. J. Ruiz-Sanchez, M. A. Otte, B. Sepulveda, D. Collado, C. Mayorga, M. J. Torres, E. Perez-Inestrosa, and L. M. Lechuga, “Highly sensitive dendrimer-based nanoplasmonic biosensor for drug allergy diagnosis,” Biosens. Bioelectron. 66(15), 115–123 (2015).
[Crossref] [PubMed]

S. D. Mazumdar, M. Hartmann, P. Kämpfer, and M. Keusgen, “Rapid method for detection of Salmonella in milk by surface plasmon resonance (SPR),” Biosens. Bioelectron. 22(9-10), 2040–2046 (2007).
[Crossref] [PubMed]

E. M. Munoz, S. Lorenzo-Abalde, A. González-Fernández, O. Quintela, M. Lopez-Rivadulla, and R. Riguera, “Direct surface plasmon resonance immunosensor for in situ detection of benzoylecgonine, the major cocaine metabolite,” Biosens. Bioelectron. 26(11), 4423–4428 (2011).
[Crossref] [PubMed]

Chem. Phys. Lett. (1)

F.-C. Chien, J.-S. Liu, H.-J. Su, L.-A. Kao, C.-F. Chiou, W.-Y. Chen, and S.-J. Chen, “An investigation into the influence of secondary structures on DNA hybridization using surface plasmon resonance biosensing,” Chem. Phys. Lett. 397(4–6), 429–434 (2004).
[Crossref]

IEEE Sens. J. (1)

A. K. Sharma, R. Jha, and B. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[Crossref]

J. Opt. Soc. Am. A (2)

L. Lévesque and P. Rochon, “Surface plasmon photonic bandgap in azopolymer gratings sputtered with gold,” J. Opt. Soc. Am. A 22(11), 2564–2568 (2005).
[Crossref] [PubMed]

R. G. Sabat, N. Rochon, and P. Rochon, “Dependence of surface plasmon polarization conversion on the grating pitch,” J. Opt. Soc. Am. A 27(3), 518–522 (2010).
[Crossref] [PubMed]

Opt. Express (2)

E. Bailey and R. G. Sabat, “Surface plasmon bandwidth increase using chirped-pitch linear diffraction gratings,” Opt. Express 25(6), 6904–6913 (2017).
[Crossref] [PubMed]

N. Swanson and R. G. Sabat, “Inscription and analysis of non-uniform diffraction gratings in azobenzene molecular glass thin films,” Opt. Express 26(7), 7876–7887 (2018).
[Crossref] [PubMed]

Opt. Lasers Eng. (1)

Q. Wang and W.-M. Zhao, “A comprehensive review of lossy mode resonance-based fiber optic sensors,” Opt. Lasers Eng. 100, 47–60 (2018).
[Crossref]

Opt. Lett. (1)

J. Leibold, P. Snell, O. Lebel, and R. G. Sabat, “Design and fabrication of constant-pitch circular surface-relief diffraction gratings on disperse red 1 glass,” Opt. Lett. 39(12), 3445–3448 (2014).
[Crossref] [PubMed]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. B Condens. Matter (1)

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21(22), 1530–1533 (1968).
[Crossref]

Sens. Actuator A-Phys. (1)

W. B. Lin, N. Jaffrezic-Renault, A. Gagnaire, and H. Gagnaire, “The effects of polarization of the incident light-modeling and analysis of a SPR multimode optical fiber sensor,” Sens. Actuator A-Phys. 84(3), 198–204 (2000).
[Crossref]

Sens. Actuator B-Chem. (3)

Q. Wang and W.-M. Zhao, “Optical Methods of Antibiotic Residues Detections: A Comprehensive Review,” Sens. Actuator B-Chem. 269(15), 238–256 (2018).
[Crossref]

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prims couplers: sensitivity comparison,” Sens. Actuator B-Chem. 54(1–2), 16–24 (1999).
[Crossref]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuator B-Chem. 54(1–2), 3–15 (1999).
[Crossref]

Sensors (Basel) (1)

S. Nair, J. Gomez-Cruz, Á. Manjarrez-Hernandez, G. Ascanio, R. G. Sabat, and C. Escobedo, “Selective uropathogenic E. Coli detection using crossed surface-relief gratings,” Sensors (Basel) 18(11), 3634–3646 (2018).
[Crossref] [PubMed]

Surf. Sci. (1)

J. G. Gordon and S. Ernst, “Surface plasmons as a probe of the electrochemical interface,” Surf. Sci. 101(1–3), 499–506 (1980).
[Crossref]

Z. Naturforsch. A (1)

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A 23(12), 2135–2136 (1968).
[Crossref]

Z. Phys. A Hadrons and Nuclei (1)

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. A Hadrons and Nuclei 216(4), 398–410 (1968).
[Crossref]

Other (2)

S. A. Maier, “Excitation of surface plasmon polaritons at planar interfaces,” in Plasmonics: fundamentals and applications, S. A. Maier, (Springer, 2007), pp. 39–52.

J. Homola and M. Piliarik, “Surface plasmon resonance (SPR) sensors,” in Surface plasmon resonance based sensors, J. Homola, (Springer, 2006), pp. 45–67.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Illustration of DLIP inscription of CP-CSRGs onto an azobenzene film. a) The step-by-step process of the device fabrication starting with the spin coating of the azobenzene glass, then the imprinting of the gratings, and finally the coating of the grating with a silver layer, b) the optical setup used to inscribe the gratings onto the azobenzene film and c) an AFM image of the CP-CSRG.
Fig. 2
Fig. 2 Illustration of the SPR wavelength measurement setup.
Fig. 3
Fig. 3 AFM analysis of the CP-CSRG at varying points along the chirped grating vector, a) depicts the change in the gratings’ pitch and b) depicts the change in the gratings’ modulation depth.
Fig. 4
Fig. 4 SPR signal and sensing performance of a CP-CSRG. a) The SPR wavelength shift across the chirped grating with an average of 10 nm/mm at increasing sucrose concentration solutions and b) the SPR wavelength shift per refractive index unit increase along the chirped grating.
Fig. 5
Fig. 5 Normalized SPR signal strength as a function of wavelength and location on the CP-CSRG for a) 532-nm green laser and b) 632-nm red laser.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ sp =nΛ( ε m n 2 + ε m ),

Metrics