Abstract

When a femtosecond laser pulse propagates through water clouds, optical breakdown can occur once the laser intensity exceeds a certain threshold. This photoionization process, along with the resultant laser-induced plasma, can strongly influence laser communications and laser-induced precipitation. However, the calculation model for the initial evolution of the laser field and its self-generated plasma remain insufficient. Here, we provide a theoretical transient coupling model to investigate the evolution of the laser-induced plasma in the water-cloud droplets, along with the nonlinear absorption occurring during optical breakdown. Agreement is achieved between the experimentally determined breakdown threshold and our calculated prediction. The calculation results indicate that the optical breakdown occurring in a water cloud has a considerable influence on the laser field. It is recommended that the laser intensity does not exceed the breakdown threshold for laser communications. We expect that our findings will also be helpful for weather control.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Standoff monitoring of aqueous aerosols using nanosecond laser-induced breakdown spectroscopy: droplet size and matrix effects

Luis Alonso Álvarez-Trujillo, Violeta Lazic, Javier Moros, and J. Javier Laserna
Appl. Opt. 56(13) 3773-3782 (2017)

Femtosecond laser pulse-induced breakdown of a single water microdroplet

E. S. Efimenko, Yu. A. Malkov, A. A. Murzanev, and A. N. Stepanov
J. Opt. Soc. Am. B 31(3) 534-541 (2014)

Physics and applications of atmospheric nonlinear optics and filamentation

Jérôme Kasparian and Jean-Pierre Wolf
Opt. Express 16(1) 466-493 (2008)

References

  • View by:
  • |
  • |
  • |

  1. R. K. Chang, J. H. Eickmans, W.-F. Hsieh, C. F. Wood, J.-Z. Zhang, and J.-b. Zheng, “Laser-induced breakdown in large transparent water droplets,” Appl. Opt. 27, 2377–2385 (1988).
    [Crossref] [PubMed]
  2. A. A. Lushnikov and A. E. Negin, “Aerosols in strong laser beams,” J. Aerosol Sci. 24, 707–735 (1993).
    [Crossref]
  3. Y. Hu, Z. Liu, D. Winker, M. Vaughan, V. Noel, L. Bissonnette, G. Roy, and M. McGill, “Simple relation between lidar multiple scattering and depolarization for water clouds,” Opt. Lett. 31, 1809–1811 (2006).
    [Crossref] [PubMed]
  4. W. Song, J. Lai, Z. Ghassemlooy, S. Li, P. Zhang, W. Yan, C. Wang, and Z. Li, “Influence of fog on the signal to interference plus noise ratio of the imaging laser radar using a 16-element apd array,” Opt. Express 26, 22030–22045 (2018).
    [Crossref] [PubMed]
  5. J.-b. Zheng, W.-F. Hsieh, S.-c. Chen, and R. K. Chang, “Temporally and spatially resolved spectroscopy of laser-induced plasma from a droplet,” Opt. Lett. 13, 559–561 (1988).
    [Crossref] [PubMed]
  6. Y. E. Geints, A. A. Zemlyanov, A. M. Kabanov, E. E. Bykova, D. V. Apeksimov, O. A. Bukin, E. B. Sokolova, S. S. Golik, and A. A. Ilyin, “Angular diagram of broadband emission of millimeter-sized water droplets exposed to gigawatt femtosecond laser pulses,” Appl. Opt. 50, 5291–5298 (2011).
    [Crossref] [PubMed]
  7. Y. E. Geints, A. M. Kabanov, G. G. Matvienko, V. K. Oshlakov, A. A. Zemlyanov, S. S. Golik, and O. A. Bukin, “Broadband emission spectrum dynamics of large water droplets exposed to intense ultrashort laser radiation,” Opt. Lett. 35, 2717–2719 (2010).
    [Crossref] [PubMed]
  8. P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queißer, R. Salamé, E. Salmon, L. Wöste, and J.-P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4, 451–456 (2010).
    [Crossref]
  9. S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Hao, W. Nakaema, A. Vogel, T. Pohl, F. Schneider, J. Kasparian, K. Weber, L. Wöste, and J.-P. Wolf, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun. 2, 456 (2011).
    [Crossref] [PubMed]
  10. J. Ju, J. Liu, C. Wang, H. Sun, W. Wang, X. Ge, C. Li, S. L. Chin, R. Li, and Z. Xu, “Laser-filamentation-induced condensation and snow formation in a cloud chamber,” Opt. Lett. 37, 1214–1216 (2012).
    [Crossref] [PubMed]
  11. G. Schimmel, T. Produit, D. Mongin, J. Kasparian, and J.-P. Wolf, “Free space laser telecommunication through fog,” Optica 5, 1338–1341 (2018).
    [Crossref]
  12. S. Twomey, H. Jacobowitz, and H. B. Howell, “Light scattering by cloud layers,” J. Atmos. Sci. 24, 70–79 (1967).
    [Crossref]
  13. M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package opac,” Bull. Am. Meteorol. Soc. 79, 831–844 (1998).
    [Crossref]
  14. P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, and C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
    [Crossref]
  15. M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbery, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
    [Crossref]
  16. G. Méchain, G. Méjean, R. Ackermann, P. Rohwetter, Y.-B. André, J. Kasparian, B. Prade, K. Stelmaszczyk, J. Yu, E. Salmon, W. Winn, L. A. Schlie, A. Mysyrowicz, R. Sauerbery, L. Wöste, and J.-P. Wolf, “Propagation of fs tw laser filaments in adverse atmospheric conditions,” Appl. Phys. B 80, 785–789 (2005).
    [Crossref]
  17. J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbery, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
    [Crossref] [PubMed]
  18. M. Kolesik and J. V. Moloney, “Self-healing femtosecond light filaments,” Opt. Lett. 29, 590–592 (2004).
    [Crossref] [PubMed]
  19. S. Skupin, L. Bergé, U. Peschel, and F. Lederer, “Interaction of femtosecond light filaments with obscurants in aerosols,” Phys. Rev. Lett. 93, 023901 (2004).
    [Crossref] [PubMed]
  20. F. Courvoisier, V. Boutou, J. Kasparian, E. Salmon, G. Méjean, J. Yu, and J.-P. Wolf, “Ultraintense light filaments transmitted through clouds,” Appl. Phys. Lett. 83, 213–215 (2003).
    [Crossref]
  21. J. Kasparian, R. Sauerbrey, and S. Chin, “The critical laser intensity of self-guided light filaments in air,” Appl. Phys. B 71, 877–879 (2000).
    [Crossref]
  22. C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J.-P. Wolf, “White-light nanosource with directional emission,” Phys. Rev. Lett. 89, 035002 (2002).
    [Crossref] [PubMed]
  23. R. G. Pinnick, A. Biswas, R. L. Armstrong, S. G. Jennings, J. D. Pendleton, and G. Fernández, “Micron-sized droplets irradiated with a pulsed co2 laser: measurement of explosion and breakdown thresholds,” Appl. Opt. 29, 918–925 (1990).
    [Crossref] [PubMed]
  24. Y. E. Geints, A. A. Zemlyanov, and R. L. Armstrong, “Explosive boiling of water droplets irradiated with intense co2-laser radiation: numerical experiments,” Appl. Opt. 33, 5805–5810 (1994).
    [Crossref] [PubMed]
  25. J. C. Carls and J. R. Brock, “Explosive vaporization of single droplets by lasers: comparison of models with experiments,” Opt. Lett. 13, 919–921 (1988).
    [Crossref] [PubMed]
  26. J. D. Pendleton, “Water droplets irradiated by a pulsed co2 laser: comparison of computed temperature contours with explosive vaporization patterns,” Appl. Opt. 24, 1631–1637 (1985).
    [Crossref] [PubMed]
  27. A. Zardecki and J. D. Pendleton, “Hydrodynamics of water droplets irradiated by a pulsed co2 laser,” Appl. Opt. 28, 638–640 (1989).
    [Crossref] [PubMed]
  28. J.-Z. Zhang, J. K. Lam, C. F. Wood, B.-T. Chu, and R. K. Chang, “Explosive vaporization of a large transparent droplet irradiated by a high intensity laser,” Appl. Opt. 26, 4731–4737 (1987).
    [Crossref] [PubMed]
  29. F. Courvoisier, V. Boutou, C. Favre, S. C. Hill, and J.-P. Wolf, “Plasma formation dynamics within a water microdroplet on femtosecond time scales,” Opt. Lett. 28, 206–208 (2003).
    [Crossref] [PubMed]
  30. A. Lindinger, J. Hagen, L. D. Socaciu, T. M. Bernhardt, L. Wöste, D. Duft, and T. Leisner, “Time-resolved explosion dynamics of h2o droplets induced by femtosecond laser pulses,” Appl. Opt. 43, 5263–5269 (2004).
    [Crossref] [PubMed]
  31. E. S. Efimenko, Y. A. Malkov, A. A. Murzanev, and A. N. Stepanov, “Femtosecond laser pulse-induced breakdown of a single water microdroplet,” J. Opt. Soc. Am. B 31, 534–541 (2014).
    [Crossref]
  32. T. V. Liseykina and D. Bauer, “Plasma-formation dynamics in intense laser-droplet interaction,” Phys. Rev. Lett. 110, 145003 (2013).
    [Crossref] [PubMed]
  33. M. Mlejnek, E. M. Wright, and J. V. Moloney, “Dynamic spatial replenishment of femtosecond pulses propagating in air,” Opt. Lett. 23, 382–384 (1998).
    [Crossref]
  34. A. Dubietis, E. Gaižauskas, G. Tamošauskas, and P. Di Trapani, “Light filaments without self-channeling,” Phys. Rev. Lett. 92, 253903 (2004).
    [Crossref] [PubMed]
  35. T.-T. Xi, X. Lu, and J. Zhang, “Interaction of light filaments generated by femtosecond laser pulses in air,” Phys. Rev. Lett. 96, 025003 (2006).
    [Crossref] [PubMed]
  36. S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phys. Rev. Lett. 86, 5470 (2001).
    [Crossref] [PubMed]
  37. P. K. Kennedy, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. i. theory,” IEEE J. Quantum Electron. 31, 2241–2249 (1995).
    [Crossref]
  38. J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35, 1156–1167 (1999).
    [Crossref]
  39. A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond nd: Yag laser pulses. i. optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron. 2, 847–860 (1996).
    [Crossref]
  40. N. Linz, S. Freidank, X. X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B 91, 134114 (2015).
    [Crossref]
  41. C. H. Fan, J. Sun, and J. P. Longtin, “Breakdown threshold and localized electron density in water induced by ultrashort laser pulses,” J. Appl. Phys. 53, 2530–2536 (1999).
  42. Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. Hammer, B. Rockwell, and C. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 127–137 (1997).
    [Crossref]
  43. I. Saxena, K. Ehmann, and J. Cao, “Laser-induced plasma in aqueous media: numerical simulation and experimental validation of spatial and temporal profiles,” Appl. Opt. 53, 8283–8294 (2014).
    [Crossref]
  44. D. Deirmendjian, “Electromagnetic scattering on spherical polydispersions,” (RAND Corporation, 1969).
  45. Z. W. Wilkes, S. Varma, Y.-H. Chen, H. M. Milchberg, T. G. Jones, and A. Ting, “Direct measurements of the nonlinear index of refraction of water at 815 and 407 nm using single-shot supercontinuum spectral interferometry,” Appl. Phys. Lett. 94, 211102 (2009).
    [Crossref]
  46. T. G. de Souza, E. C. Barbano, S. C. Zilio, and L. Misoguti, “Measurement of nonlinear refractive indices of air, oxygen, and nitrogen in capillary by changing the temporal width of short laser pulses,” J. Opt. Soc. Am. B 34, 2233–2237 (2017).
    [Crossref]
  47. Z. Hong, Q. Zhang, S. A. Rezvani, P. Lan, and P. Lu, “Extending plasma channel of filamentation with a multi-focal-length beam,” Opt. Express 24, 4029–4041 (2016).
    [Crossref] [PubMed]
  48. A. Jarnac, G. Tamosauskas, D. Majus, A. Houard, A. Mysyrowicz, A. Couairon, and A. Dubietis, “Whole life cycle of femtosecond ultraviolet filaments in water,” Phys. Rev. A 89, 033809 (2014).
    [Crossref]
  49. N Linz, “Controlled nonlinear energy deposition in transparent dielectrics by femtosecond and nanosecond optical breakdown,” Ph.D. thesis, der Technisch-Naturwissenschaftlichen Fakultät, Universität zu Lübeck, Lübeck, German (2010).
  50. A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008).
    [Crossref] [PubMed]
  51. J. Noack and A. Vogel, “Single-shot spatially resolved characterization of laser-induced shock waves in water,” Appl. Opt. 37, 4092–4099 (1998).
    [Crossref]
  52. G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a gaussian beam, using a bromwich formulation,” J. Opt. Soc. Am. B 5, 1427–1443 (1988).
    [Crossref]
  53. A. Deepak and O. H. Vaughan, “Extinction-sedimentation inversion technique for measuring size distribution of artificial fogs,” Appl. Opt. 17, 374–378 (1978).
    [Crossref] [PubMed]

2018 (2)

W. Song, J. Lai, Z. Ghassemlooy, S. Li, P. Zhang, W. Yan, C. Wang, and Z. Li, “Influence of fog on the signal to interference plus noise ratio of the imaging laser radar using a 16-element apd array,” Opt. Express 26, 22030–22045 (2018).
[Crossref] [PubMed]

G. Schimmel, T. Produit, D. Mongin, J. Kasparian, and J.-P. Wolf, “Free space laser telecommunication through fog,” Optica 5, 1338–1341 (2018).
[Crossref]

2017 (1)

T. G. de Souza, E. C. Barbano, S. C. Zilio, and L. Misoguti, “Measurement of nonlinear refractive indices of air, oxygen, and nitrogen in capillary by changing the temporal width of short laser pulses,” J. Opt. Soc. Am. B 34, 2233–2237 (2017).
[Crossref]

2016 (1)

Z. Hong, Q. Zhang, S. A. Rezvani, P. Lan, and P. Lu, “Extending plasma channel of filamentation with a multi-focal-length beam,” Opt. Express 24, 4029–4041 (2016).
[Crossref] [PubMed]

2015 (1)

N. Linz, S. Freidank, X. X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B 91, 134114 (2015).
[Crossref]

2014 (3)

A. Jarnac, G. Tamosauskas, D. Majus, A. Houard, A. Mysyrowicz, A. Couairon, and A. Dubietis, “Whole life cycle of femtosecond ultraviolet filaments in water,” Phys. Rev. A 89, 033809 (2014).
[Crossref]

I. Saxena, K. Ehmann, and J. Cao, “Laser-induced plasma in aqueous media: numerical simulation and experimental validation of spatial and temporal profiles,” Appl. Opt. 53, 8283–8294 (2014).
[Crossref]

E. S. Efimenko, Y. A. Malkov, A. A. Murzanev, and A. N. Stepanov, “Femtosecond laser pulse-induced breakdown of a single water microdroplet,” J. Opt. Soc. Am. B 31, 534–541 (2014).
[Crossref]

2013 (1)

T. V. Liseykina and D. Bauer, “Plasma-formation dynamics in intense laser-droplet interaction,” Phys. Rev. Lett. 110, 145003 (2013).
[Crossref] [PubMed]

2012 (1)

J. Ju, J. Liu, C. Wang, H. Sun, W. Wang, X. Ge, C. Li, S. L. Chin, R. Li, and Z. Xu, “Laser-filamentation-induced condensation and snow formation in a cloud chamber,” Opt. Lett. 37, 1214–1216 (2012).
[Crossref] [PubMed]

2011 (2)

Y. E. Geints, A. A. Zemlyanov, A. M. Kabanov, E. E. Bykova, D. V. Apeksimov, O. A. Bukin, E. B. Sokolova, S. S. Golik, and A. A. Ilyin, “Angular diagram of broadband emission of millimeter-sized water droplets exposed to gigawatt femtosecond laser pulses,” Appl. Opt. 50, 5291–5298 (2011).
[Crossref] [PubMed]

S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Hao, W. Nakaema, A. Vogel, T. Pohl, F. Schneider, J. Kasparian, K. Weber, L. Wöste, and J.-P. Wolf, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun. 2, 456 (2011).
[Crossref] [PubMed]

2010 (2)

Y. E. Geints, A. M. Kabanov, G. G. Matvienko, V. K. Oshlakov, A. A. Zemlyanov, S. S. Golik, and O. A. Bukin, “Broadband emission spectrum dynamics of large water droplets exposed to intense ultrashort laser radiation,” Opt. Lett. 35, 2717–2719 (2010).
[Crossref] [PubMed]

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queißer, R. Salamé, E. Salmon, L. Wöste, and J.-P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4, 451–456 (2010).
[Crossref]

2009 (1)

Z. W. Wilkes, S. Varma, Y.-H. Chen, H. M. Milchberg, T. G. Jones, and A. Ting, “Direct measurements of the nonlinear index of refraction of water at 815 and 407 nm using single-shot supercontinuum spectral interferometry,” Appl. Phys. Lett. 94, 211102 (2009).
[Crossref]

2008 (1)

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008).
[Crossref] [PubMed]

2006 (2)

Y. Hu, Z. Liu, D. Winker, M. Vaughan, V. Noel, L. Bissonnette, G. Roy, and M. McGill, “Simple relation between lidar multiple scattering and depolarization for water clouds,” Opt. Lett. 31, 1809–1811 (2006).
[Crossref] [PubMed]

T.-T. Xi, X. Lu, and J. Zhang, “Interaction of light filaments generated by femtosecond laser pulses in air,” Phys. Rev. Lett. 96, 025003 (2006).
[Crossref] [PubMed]

2005 (1)

G. Méchain, G. Méjean, R. Ackermann, P. Rohwetter, Y.-B. André, J. Kasparian, B. Prade, K. Stelmaszczyk, J. Yu, E. Salmon, W. Winn, L. A. Schlie, A. Mysyrowicz, R. Sauerbery, L. Wöste, and J.-P. Wolf, “Propagation of fs tw laser filaments in adverse atmospheric conditions,” Appl. Phys. B 80, 785–789 (2005).
[Crossref]

2004 (5)

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbery, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

A. Lindinger, J. Hagen, L. D. Socaciu, T. M. Bernhardt, L. Wöste, D. Duft, and T. Leisner, “Time-resolved explosion dynamics of h2o droplets induced by femtosecond laser pulses,” Appl. Opt. 43, 5263–5269 (2004).
[Crossref] [PubMed]

M. Kolesik and J. V. Moloney, “Self-healing femtosecond light filaments,” Opt. Lett. 29, 590–592 (2004).
[Crossref] [PubMed]

S. Skupin, L. Bergé, U. Peschel, and F. Lederer, “Interaction of femtosecond light filaments with obscurants in aerosols,” Phys. Rev. Lett. 93, 023901 (2004).
[Crossref] [PubMed]

A. Dubietis, E. Gaižauskas, G. Tamošauskas, and P. Di Trapani, “Light filaments without self-channeling,” Phys. Rev. Lett. 92, 253903 (2004).
[Crossref] [PubMed]

2003 (3)

F. Courvoisier, V. Boutou, J. Kasparian, E. Salmon, G. Méjean, J. Yu, and J.-P. Wolf, “Ultraintense light filaments transmitted through clouds,” Appl. Phys. Lett. 83, 213–215 (2003).
[Crossref]

F. Courvoisier, V. Boutou, C. Favre, S. C. Hill, and J.-P. Wolf, “Plasma formation dynamics within a water microdroplet on femtosecond time scales,” Opt. Lett. 28, 206–208 (2003).
[Crossref] [PubMed]

J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbery, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

2002 (1)

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J.-P. Wolf, “White-light nanosource with directional emission,” Phys. Rev. Lett. 89, 035002 (2002).
[Crossref] [PubMed]

2001 (1)

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phys. Rev. Lett. 86, 5470 (2001).
[Crossref] [PubMed]

2000 (2)

J. Kasparian, R. Sauerbrey, and S. Chin, “The critical laser intensity of self-guided light filaments in air,” Appl. Phys. B 71, 877–879 (2000).
[Crossref]

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, and C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[Crossref]

1999 (2)

C. H. Fan, J. Sun, and J. P. Longtin, “Breakdown threshold and localized electron density in water induced by ultrashort laser pulses,” J. Appl. Phys. 53, 2530–2536 (1999).

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35, 1156–1167 (1999).
[Crossref]

1998 (3)

J. Noack and A. Vogel, “Single-shot spatially resolved characterization of laser-induced shock waves in water,” Appl. Opt. 37, 4092–4099 (1998).
[Crossref]

M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package opac,” Bull. Am. Meteorol. Soc. 79, 831–844 (1998).
[Crossref]

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Dynamic spatial replenishment of femtosecond pulses propagating in air,” Opt. Lett. 23, 382–384 (1998).
[Crossref]

1997 (1)

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. Hammer, B. Rockwell, and C. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 127–137 (1997).
[Crossref]

1996 (1)

A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond nd: Yag laser pulses. i. optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron. 2, 847–860 (1996).
[Crossref]

1995 (1)

P. K. Kennedy, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. i. theory,” IEEE J. Quantum Electron. 31, 2241–2249 (1995).
[Crossref]

1994 (1)

Y. E. Geints, A. A. Zemlyanov, and R. L. Armstrong, “Explosive boiling of water droplets irradiated with intense co2-laser radiation: numerical experiments,” Appl. Opt. 33, 5805–5810 (1994).
[Crossref] [PubMed]

1993 (1)

A. A. Lushnikov and A. E. Negin, “Aerosols in strong laser beams,” J. Aerosol Sci. 24, 707–735 (1993).
[Crossref]

1990 (1)

R. G. Pinnick, A. Biswas, R. L. Armstrong, S. G. Jennings, J. D. Pendleton, and G. Fernández, “Micron-sized droplets irradiated with a pulsed co2 laser: measurement of explosion and breakdown thresholds,” Appl. Opt. 29, 918–925 (1990).
[Crossref] [PubMed]

1989 (1)

A. Zardecki and J. D. Pendleton, “Hydrodynamics of water droplets irradiated by a pulsed co2 laser,” Appl. Opt. 28, 638–640 (1989).
[Crossref] [PubMed]

1988 (4)

J. C. Carls and J. R. Brock, “Explosive vaporization of single droplets by lasers: comparison of models with experiments,” Opt. Lett. 13, 919–921 (1988).
[Crossref] [PubMed]

R. K. Chang, J. H. Eickmans, W.-F. Hsieh, C. F. Wood, J.-Z. Zhang, and J.-b. Zheng, “Laser-induced breakdown in large transparent water droplets,” Appl. Opt. 27, 2377–2385 (1988).
[Crossref] [PubMed]

J.-b. Zheng, W.-F. Hsieh, S.-c. Chen, and R. K. Chang, “Temporally and spatially resolved spectroscopy of laser-induced plasma from a droplet,” Opt. Lett. 13, 559–561 (1988).
[Crossref] [PubMed]

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a gaussian beam, using a bromwich formulation,” J. Opt. Soc. Am. B 5, 1427–1443 (1988).
[Crossref]

1987 (1)

J.-Z. Zhang, J. K. Lam, C. F. Wood, B.-T. Chu, and R. K. Chang, “Explosive vaporization of a large transparent droplet irradiated by a high intensity laser,” Appl. Opt. 26, 4731–4737 (1987).
[Crossref] [PubMed]

1985 (1)

J. D. Pendleton, “Water droplets irradiated by a pulsed co2 laser: comparison of computed temperature contours with explosive vaporization patterns,” Appl. Opt. 24, 1631–1637 (1985).
[Crossref] [PubMed]

1978 (1)

A. Deepak and O. H. Vaughan, “Extinction-sedimentation inversion technique for measuring size distribution of artificial fogs,” Appl. Opt. 17, 374–378 (1978).
[Crossref] [PubMed]

1967 (1)

S. Twomey, H. Jacobowitz, and H. B. Howell, “Light scattering by cloud layers,” J. Atmos. Sci. 24, 70–79 (1967).
[Crossref]

Ackermann, R.

G. Méchain, G. Méjean, R. Ackermann, P. Rohwetter, Y.-B. André, J. Kasparian, B. Prade, K. Stelmaszczyk, J. Yu, E. Salmon, W. Winn, L. A. Schlie, A. Mysyrowicz, R. Sauerbery, L. Wöste, and J.-P. Wolf, “Propagation of fs tw laser filaments in adverse atmospheric conditions,” Appl. Phys. B 80, 785–789 (2005).
[Crossref]

André, Y.-B.

G. Méchain, G. Méjean, R. Ackermann, P. Rohwetter, Y.-B. André, J. Kasparian, B. Prade, K. Stelmaszczyk, J. Yu, E. Salmon, W. Winn, L. A. Schlie, A. Mysyrowicz, R. Sauerbery, L. Wöste, and J.-P. Wolf, “Propagation of fs tw laser filaments in adverse atmospheric conditions,” Appl. Phys. B 80, 785–789 (2005).
[Crossref]

J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbery, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

Apeksimov, D. V.

Y. E. Geints, A. A. Zemlyanov, A. M. Kabanov, E. E. Bykova, D. V. Apeksimov, O. A. Bukin, E. B. Sokolova, S. S. Golik, and A. A. Ilyin, “Angular diagram of broadband emission of millimeter-sized water droplets exposed to gigawatt femtosecond laser pulses,” Appl. Opt. 50, 5291–5298 (2011).
[Crossref] [PubMed]

Armstrong, R. L.

Y. E. Geints, A. A. Zemlyanov, and R. L. Armstrong, “Explosive boiling of water droplets irradiated with intense co2-laser radiation: numerical experiments,” Appl. Opt. 33, 5805–5810 (1994).
[Crossref] [PubMed]

R. G. Pinnick, A. Biswas, R. L. Armstrong, S. G. Jennings, J. D. Pendleton, and G. Fernández, “Micron-sized droplets irradiated with a pulsed co2 laser: measurement of explosion and breakdown thresholds,” Appl. Opt. 29, 918–925 (1990).
[Crossref] [PubMed]

Barbano, E. C.

T. G. de Souza, E. C. Barbano, S. C. Zilio, and L. Misoguti, “Measurement of nonlinear refractive indices of air, oxygen, and nitrogen in capillary by changing the temporal width of short laser pulses,” J. Opt. Soc. Am. B 34, 2233–2237 (2017).
[Crossref]

Bauer, D.

T. V. Liseykina and D. Bauer, “Plasma-formation dynamics in intense laser-droplet interaction,” Phys. Rev. Lett. 110, 145003 (2013).
[Crossref] [PubMed]

Bergé, L.

S. Skupin, L. Bergé, U. Peschel, and F. Lederer, “Interaction of femtosecond light filaments with obscurants in aerosols,” Phys. Rev. Lett. 93, 023901 (2004).
[Crossref] [PubMed]

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phys. Rev. Lett. 86, 5470 (2001).
[Crossref] [PubMed]

Bernhardt, T. M.

A. Lindinger, J. Hagen, L. D. Socaciu, T. M. Bernhardt, L. Wöste, D. Duft, and T. Leisner, “Time-resolved explosion dynamics of h2o droplets induced by femtosecond laser pulses,” Appl. Opt. 43, 5263–5269 (2004).
[Crossref] [PubMed]

Bissonnette, L.

Y. Hu, Z. Liu, D. Winker, M. Vaughan, V. Noel, L. Bissonnette, G. Roy, and M. McGill, “Simple relation between lidar multiple scattering and depolarization for water clouds,” Opt. Lett. 31, 1809–1811 (2006).
[Crossref] [PubMed]

Biswas, A.

R. G. Pinnick, A. Biswas, R. L. Armstrong, S. G. Jennings, J. D. Pendleton, and G. Fernández, “Micron-sized droplets irradiated with a pulsed co2 laser: measurement of explosion and breakdown thresholds,” Appl. Opt. 29, 918–925 (1990).
[Crossref] [PubMed]

Bourayou, R.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbery, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbery, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

Boutou, V.

F. Courvoisier, V. Boutou, C. Favre, S. C. Hill, and J.-P. Wolf, “Plasma formation dynamics within a water microdroplet on femtosecond time scales,” Opt. Lett. 28, 206–208 (2003).
[Crossref] [PubMed]

F. Courvoisier, V. Boutou, J. Kasparian, E. Salmon, G. Méjean, J. Yu, and J.-P. Wolf, “Ultraintense light filaments transmitted through clouds,” Appl. Phys. Lett. 83, 213–215 (2003).
[Crossref]

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J.-P. Wolf, “White-light nanosource with directional emission,” Phys. Rev. Lett. 89, 035002 (2002).
[Crossref] [PubMed]

Brock, J. R.

J. C. Carls and J. R. Brock, “Explosive vaporization of single droplets by lasers: comparison of models with experiments,” Opt. Lett. 13, 919–921 (1988).
[Crossref] [PubMed]

Bukin, O. A.

Y. E. Geints, A. A. Zemlyanov, A. M. Kabanov, E. E. Bykova, D. V. Apeksimov, O. A. Bukin, E. B. Sokolova, S. S. Golik, and A. A. Ilyin, “Angular diagram of broadband emission of millimeter-sized water droplets exposed to gigawatt femtosecond laser pulses,” Appl. Opt. 50, 5291–5298 (2011).
[Crossref] [PubMed]

Y. E. Geints, A. M. Kabanov, G. G. Matvienko, V. K. Oshlakov, A. A. Zemlyanov, S. S. Golik, and O. A. Bukin, “Broadband emission spectrum dynamics of large water droplets exposed to intense ultrashort laser radiation,” Opt. Lett. 35, 2717–2719 (2010).
[Crossref] [PubMed]

Bykova, E. E.

Y. E. Geints, A. A. Zemlyanov, A. M. Kabanov, E. E. Bykova, D. V. Apeksimov, O. A. Bukin, E. B. Sokolova, S. S. Golik, and A. A. Ilyin, “Angular diagram of broadband emission of millimeter-sized water droplets exposed to gigawatt femtosecond laser pulses,” Appl. Opt. 50, 5291–5298 (2011).
[Crossref] [PubMed]

Cao, J.

I. Saxena, K. Ehmann, and J. Cao, “Laser-induced plasma in aqueous media: numerical simulation and experimental validation of spatial and temporal profiles,” Appl. Opt. 53, 8283–8294 (2014).
[Crossref]

Carls, J. C.

J. C. Carls and J. R. Brock, “Explosive vaporization of single droplets by lasers: comparison of models with experiments,” Opt. Lett. 13, 919–921 (1988).
[Crossref] [PubMed]

Chang, R. K.

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J.-P. Wolf, “White-light nanosource with directional emission,” Phys. Rev. Lett. 89, 035002 (2002).
[Crossref] [PubMed]

J.-b. Zheng, W.-F. Hsieh, S.-c. Chen, and R. K. Chang, “Temporally and spatially resolved spectroscopy of laser-induced plasma from a droplet,” Opt. Lett. 13, 559–561 (1988).
[Crossref] [PubMed]

R. K. Chang, J. H. Eickmans, W.-F. Hsieh, C. F. Wood, J.-Z. Zhang, and J.-b. Zheng, “Laser-induced breakdown in large transparent water droplets,” Appl. Opt. 27, 2377–2385 (1988).
[Crossref] [PubMed]

J.-Z. Zhang, J. K. Lam, C. F. Wood, B.-T. Chu, and R. K. Chang, “Explosive vaporization of a large transparent droplet irradiated by a high intensity laser,” Appl. Opt. 26, 4731–4737 (1987).
[Crossref] [PubMed]

Chen, S.-c.

J.-b. Zheng, W.-F. Hsieh, S.-c. Chen, and R. K. Chang, “Temporally and spatially resolved spectroscopy of laser-induced plasma from a droplet,” Opt. Lett. 13, 559–561 (1988).
[Crossref] [PubMed]

Chen, Y.-H.

Z. W. Wilkes, S. Varma, Y.-H. Chen, H. M. Milchberg, T. G. Jones, and A. Ting, “Direct measurements of the nonlinear index of refraction of water at 815 and 407 nm using single-shot supercontinuum spectral interferometry,” Appl. Phys. Lett. 94, 211102 (2009).
[Crossref]

Chin, S.

J. Kasparian, R. Sauerbrey, and S. Chin, “The critical laser intensity of self-guided light filaments in air,” Appl. Phys. B 71, 877–879 (2000).
[Crossref]

Chin, S. L.

J. Ju, J. Liu, C. Wang, H. Sun, W. Wang, X. Ge, C. Li, S. L. Chin, R. Li, and Z. Xu, “Laser-filamentation-induced condensation and snow formation in a cloud chamber,” Opt. Lett. 37, 1214–1216 (2012).
[Crossref] [PubMed]

Chu, B.-T.

J.-Z. Zhang, J. K. Lam, C. F. Wood, B.-T. Chu, and R. K. Chang, “Explosive vaporization of a large transparent droplet irradiated by a high intensity laser,” Appl. Opt. 26, 4731–4737 (1987).
[Crossref] [PubMed]

Cook, K.

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. Hammer, B. Rockwell, and C. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 127–137 (1997).
[Crossref]

Couairon, A.

A. Jarnac, G. Tamosauskas, D. Majus, A. Houard, A. Mysyrowicz, A. Couairon, and A. Dubietis, “Whole life cycle of femtosecond ultraviolet filaments in water,” Phys. Rev. A 89, 033809 (2014).
[Crossref]

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phys. Rev. Lett. 86, 5470 (2001).
[Crossref] [PubMed]

Courvoisier, F.

F. Courvoisier, V. Boutou, C. Favre, S. C. Hill, and J.-P. Wolf, “Plasma formation dynamics within a water microdroplet on femtosecond time scales,” Opt. Lett. 28, 206–208 (2003).
[Crossref] [PubMed]

F. Courvoisier, V. Boutou, J. Kasparian, E. Salmon, G. Méjean, J. Yu, and J.-P. Wolf, “Ultraintense light filaments transmitted through clouds,” Appl. Phys. Lett. 83, 213–215 (2003).
[Crossref]

de Souza, T. G.

T. G. de Souza, E. C. Barbano, S. C. Zilio, and L. Misoguti, “Measurement of nonlinear refractive indices of air, oxygen, and nitrogen in capillary by changing the temporal width of short laser pulses,” J. Opt. Soc. Am. B 34, 2233–2237 (2017).
[Crossref]

Deepak, A.

A. Deepak and O. H. Vaughan, “Extinction-sedimentation inversion technique for measuring size distribution of artificial fogs,” Appl. Opt. 17, 374–378 (1978).
[Crossref] [PubMed]

Deirmendjian, D.

D. Deirmendjian, “Electromagnetic scattering on spherical polydispersions,” (RAND Corporation, 1969).

Dubietis, A.

A. Jarnac, G. Tamosauskas, D. Majus, A. Houard, A. Mysyrowicz, A. Couairon, and A. Dubietis, “Whole life cycle of femtosecond ultraviolet filaments in water,” Phys. Rev. A 89, 033809 (2014).
[Crossref]

A. Dubietis, E. Gaižauskas, G. Tamošauskas, and P. Di Trapani, “Light filaments without self-channeling,” Phys. Rev. Lett. 92, 253903 (2004).
[Crossref] [PubMed]

Duft, D.

A. Lindinger, J. Hagen, L. D. Socaciu, T. M. Bernhardt, L. Wöste, D. Duft, and T. Leisner, “Time-resolved explosion dynamics of h2o droplets induced by femtosecond laser pulses,” Appl. Opt. 43, 5263–5269 (2004).
[Crossref] [PubMed]

Efimenko, E. S.

E. S. Efimenko, Y. A. Malkov, A. A. Murzanev, and A. N. Stepanov, “Femtosecond laser pulse-induced breakdown of a single water microdroplet,” J. Opt. Soc. Am. B 31, 534–541 (2014).
[Crossref]

Ehmann, K.

I. Saxena, K. Ehmann, and J. Cao, “Laser-induced plasma in aqueous media: numerical simulation and experimental validation of spatial and temporal profiles,” Appl. Opt. 53, 8283–8294 (2014).
[Crossref]

Eickmans, J. H.

R. K. Chang, J. H. Eickmans, W.-F. Hsieh, C. F. Wood, J.-Z. Zhang, and J.-b. Zheng, “Laser-induced breakdown in large transparent water droplets,” Appl. Opt. 27, 2377–2385 (1988).
[Crossref] [PubMed]

Eislöffel, J.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbery, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

Fan, C. H.

C. H. Fan, J. Sun, and J. P. Longtin, “Breakdown threshold and localized electron density in water induced by ultrashort laser pulses,” J. Appl. Phys. 53, 2530–2536 (1999).

Favre, C.

F. Courvoisier, V. Boutou, C. Favre, S. C. Hill, and J.-P. Wolf, “Plasma formation dynamics within a water microdroplet on femtosecond time scales,” Opt. Lett. 28, 206–208 (2003).
[Crossref] [PubMed]

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J.-P. Wolf, “White-light nanosource with directional emission,” Phys. Rev. Lett. 89, 035002 (2002).
[Crossref] [PubMed]

Feng, Q.

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. Hammer, B. Rockwell, and C. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 127–137 (1997).
[Crossref]

Fernández, G.

R. G. Pinnick, A. Biswas, R. L. Armstrong, S. G. Jennings, J. D. Pendleton, and G. Fernández, “Micron-sized droplets irradiated with a pulsed co2 laser: measurement of explosion and breakdown thresholds,” Appl. Opt. 29, 918–925 (1990).
[Crossref] [PubMed]

Franco, M.

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phys. Rev. Lett. 86, 5470 (2001).
[Crossref] [PubMed]

Freidank, S.

N. Linz, S. Freidank, X. X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B 91, 134114 (2015).
[Crossref]

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008).
[Crossref] [PubMed]

Frey, S.

J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbery, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

Gaižauskas, E.

A. Dubietis, E. Gaižauskas, G. Tamošauskas, and P. Di Trapani, “Light filaments without self-channeling,” Phys. Rev. Lett. 92, 253903 (2004).
[Crossref] [PubMed]

Ge, X.

J. Ju, J. Liu, C. Wang, H. Sun, W. Wang, X. Ge, C. Li, S. L. Chin, R. Li, and Z. Xu, “Laser-filamentation-induced condensation and snow formation in a cloud chamber,” Opt. Lett. 37, 1214–1216 (2012).
[Crossref] [PubMed]

Geints, Y. E.

Y. E. Geints, A. A. Zemlyanov, A. M. Kabanov, E. E. Bykova, D. V. Apeksimov, O. A. Bukin, E. B. Sokolova, S. S. Golik, and A. A. Ilyin, “Angular diagram of broadband emission of millimeter-sized water droplets exposed to gigawatt femtosecond laser pulses,” Appl. Opt. 50, 5291–5298 (2011).
[Crossref] [PubMed]

Y. E. Geints, A. M. Kabanov, G. G. Matvienko, V. K. Oshlakov, A. A. Zemlyanov, S. S. Golik, and O. A. Bukin, “Broadband emission spectrum dynamics of large water droplets exposed to intense ultrashort laser radiation,” Opt. Lett. 35, 2717–2719 (2010).
[Crossref] [PubMed]

Y. E. Geints, A. A. Zemlyanov, and R. L. Armstrong, “Explosive boiling of water droplets irradiated with intense co2-laser radiation: numerical experiments,” Appl. Opt. 33, 5805–5810 (1994).
[Crossref] [PubMed]

Ghassemlooy, Z.

W. Song, J. Lai, Z. Ghassemlooy, S. Li, P. Zhang, W. Yan, C. Wang, and Z. Li, “Influence of fog on the signal to interference plus noise ratio of the imaging laser radar using a 16-element apd array,” Opt. Express 26, 22030–22045 (2018).
[Crossref] [PubMed]

Golik, S. S.

Y. E. Geints, A. A. Zemlyanov, A. M. Kabanov, E. E. Bykova, D. V. Apeksimov, O. A. Bukin, E. B. Sokolova, S. S. Golik, and A. A. Ilyin, “Angular diagram of broadband emission of millimeter-sized water droplets exposed to gigawatt femtosecond laser pulses,” Appl. Opt. 50, 5291–5298 (2011).
[Crossref] [PubMed]

Y. E. Geints, A. M. Kabanov, G. G. Matvienko, V. K. Oshlakov, A. A. Zemlyanov, S. S. Golik, and O. A. Bukin, “Broadband emission spectrum dynamics of large water droplets exposed to intense ultrashort laser radiation,” Opt. Lett. 35, 2717–2719 (2010).
[Crossref] [PubMed]

Gouesbet, G.

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a gaussian beam, using a bromwich formulation,” J. Opt. Soc. Am. B 5, 1427–1443 (1988).
[Crossref]

Gréhan, G.

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a gaussian beam, using a bromwich formulation,” J. Opt. Soc. Am. B 5, 1427–1443 (1988).
[Crossref]

Hagen, J.

A. Lindinger, J. Hagen, L. D. Socaciu, T. M. Bernhardt, L. Wöste, D. Duft, and T. Leisner, “Time-resolved explosion dynamics of h2o droplets induced by femtosecond laser pulses,” Appl. Opt. 43, 5263–5269 (2004).
[Crossref] [PubMed]

Hammer, D.

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. Hammer, B. Rockwell, and C. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 127–137 (1997).
[Crossref]

Hao, Z.

S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Hao, W. Nakaema, A. Vogel, T. Pohl, F. Schneider, J. Kasparian, K. Weber, L. Wöste, and J.-P. Wolf, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun. 2, 456 (2011).
[Crossref] [PubMed]

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queißer, R. Salamé, E. Salmon, L. Wöste, and J.-P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4, 451–456 (2010).
[Crossref]

Hatzes, A. P.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbery, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

Henin, S.

S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Hao, W. Nakaema, A. Vogel, T. Pohl, F. Schneider, J. Kasparian, K. Weber, L. Wöste, and J.-P. Wolf, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun. 2, 456 (2011).
[Crossref] [PubMed]

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queißer, R. Salamé, E. Salmon, L. Wöste, and J.-P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4, 451–456 (2010).
[Crossref]

Hess, M.

M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package opac,” Bull. Am. Meteorol. Soc. 79, 831–844 (1998).
[Crossref]

Hill, S. C.

F. Courvoisier, V. Boutou, C. Favre, S. C. Hill, and J.-P. Wolf, “Plasma formation dynamics within a water microdroplet on femtosecond time scales,” Opt. Lett. 28, 206–208 (2003).
[Crossref] [PubMed]

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J.-P. Wolf, “White-light nanosource with directional emission,” Phys. Rev. Lett. 89, 035002 (2002).
[Crossref] [PubMed]

Hong, Z.

Z. Hong, Q. Zhang, S. A. Rezvani, P. Lan, and P. Lu, “Extending plasma channel of filamentation with a multi-focal-length beam,” Opt. Express 24, 4029–4041 (2016).
[Crossref] [PubMed]

Houard, A.

A. Jarnac, G. Tamosauskas, D. Majus, A. Houard, A. Mysyrowicz, A. Couairon, and A. Dubietis, “Whole life cycle of femtosecond ultraviolet filaments in water,” Phys. Rev. A 89, 033809 (2014).
[Crossref]

Howell, H. B.

S. Twomey, H. Jacobowitz, and H. B. Howell, “Light scattering by cloud layers,” J. Atmos. Sci. 24, 70–79 (1967).
[Crossref]

Hsieh, W.-F.

R. K. Chang, J. H. Eickmans, W.-F. Hsieh, C. F. Wood, J.-Z. Zhang, and J.-b. Zheng, “Laser-induced breakdown in large transparent water droplets,” Appl. Opt. 27, 2377–2385 (1988).
[Crossref] [PubMed]

J.-b. Zheng, W.-F. Hsieh, S.-c. Chen, and R. K. Chang, “Temporally and spatially resolved spectroscopy of laser-induced plasma from a droplet,” Opt. Lett. 13, 559–561 (1988).
[Crossref] [PubMed]

Hu, Y.

Y. Hu, Z. Liu, D. Winker, M. Vaughan, V. Noel, L. Bissonnette, G. Roy, and M. McGill, “Simple relation between lidar multiple scattering and depolarization for water clouds,” Opt. Lett. 31, 1809–1811 (2006).
[Crossref] [PubMed]

Ilyin, A. A.

Y. E. Geints, A. A. Zemlyanov, A. M. Kabanov, E. E. Bykova, D. V. Apeksimov, O. A. Bukin, E. B. Sokolova, S. S. Golik, and A. A. Ilyin, “Angular diagram of broadband emission of millimeter-sized water droplets exposed to gigawatt femtosecond laser pulses,” Appl. Opt. 50, 5291–5298 (2011).
[Crossref] [PubMed]

Jacobowitz, H.

S. Twomey, H. Jacobowitz, and H. B. Howell, “Light scattering by cloud layers,” J. Atmos. Sci. 24, 70–79 (1967).
[Crossref]

Jarnac, A.

A. Jarnac, G. Tamosauskas, D. Majus, A. Houard, A. Mysyrowicz, A. Couairon, and A. Dubietis, “Whole life cycle of femtosecond ultraviolet filaments in water,” Phys. Rev. A 89, 033809 (2014).
[Crossref]

Jennings, S. G.

R. G. Pinnick, A. Biswas, R. L. Armstrong, S. G. Jennings, J. D. Pendleton, and G. Fernández, “Micron-sized droplets irradiated with a pulsed co2 laser: measurement of explosion and breakdown thresholds,” Appl. Opt. 29, 918–925 (1990).
[Crossref] [PubMed]

Jones, T. G.

Z. W. Wilkes, S. Varma, Y.-H. Chen, H. M. Milchberg, T. G. Jones, and A. Ting, “Direct measurements of the nonlinear index of refraction of water at 815 and 407 nm using single-shot supercontinuum spectral interferometry,” Appl. Phys. Lett. 94, 211102 (2009).
[Crossref]

Ju, J.

J. Ju, J. Liu, C. Wang, H. Sun, W. Wang, X. Ge, C. Li, S. L. Chin, R. Li, and Z. Xu, “Laser-filamentation-induced condensation and snow formation in a cloud chamber,” Opt. Lett. 37, 1214–1216 (2012).
[Crossref] [PubMed]

Kabanov, A. M.

Y. E. Geints, A. A. Zemlyanov, A. M. Kabanov, E. E. Bykova, D. V. Apeksimov, O. A. Bukin, E. B. Sokolova, S. S. Golik, and A. A. Ilyin, “Angular diagram of broadband emission of millimeter-sized water droplets exposed to gigawatt femtosecond laser pulses,” Appl. Opt. 50, 5291–5298 (2011).
[Crossref] [PubMed]

Y. E. Geints, A. M. Kabanov, G. G. Matvienko, V. K. Oshlakov, A. A. Zemlyanov, S. S. Golik, and O. A. Bukin, “Broadband emission spectrum dynamics of large water droplets exposed to intense ultrashort laser radiation,” Opt. Lett. 35, 2717–2719 (2010).
[Crossref] [PubMed]

Kasparian, J.

G. Schimmel, T. Produit, D. Mongin, J. Kasparian, and J.-P. Wolf, “Free space laser telecommunication through fog,” Optica 5, 1338–1341 (2018).
[Crossref]

S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Hao, W. Nakaema, A. Vogel, T. Pohl, F. Schneider, J. Kasparian, K. Weber, L. Wöste, and J.-P. Wolf, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun. 2, 456 (2011).
[Crossref] [PubMed]

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queißer, R. Salamé, E. Salmon, L. Wöste, and J.-P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4, 451–456 (2010).
[Crossref]

G. Méchain, G. Méjean, R. Ackermann, P. Rohwetter, Y.-B. André, J. Kasparian, B. Prade, K. Stelmaszczyk, J. Yu, E. Salmon, W. Winn, L. A. Schlie, A. Mysyrowicz, R. Sauerbery, L. Wöste, and J.-P. Wolf, “Propagation of fs tw laser filaments in adverse atmospheric conditions,” Appl. Phys. B 80, 785–789 (2005).
[Crossref]

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbery, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbery, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

F. Courvoisier, V. Boutou, J. Kasparian, E. Salmon, G. Méjean, J. Yu, and J.-P. Wolf, “Ultraintense light filaments transmitted through clouds,” Appl. Phys. Lett. 83, 213–215 (2003).
[Crossref]

J. Kasparian, R. Sauerbrey, and S. Chin, “The critical laser intensity of self-guided light filaments in air,” Appl. Phys. B 71, 877–879 (2000).
[Crossref]

Kennedy, P. K.

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. Hammer, B. Rockwell, and C. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 127–137 (1997).
[Crossref]

P. K. Kennedy, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. i. theory,” IEEE J. Quantum Electron. 31, 2241–2249 (1995).
[Crossref]

Koepke, P.

M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package opac,” Bull. Am. Meteorol. Soc. 79, 831–844 (1998).
[Crossref]

Kolesik, M.

M. Kolesik and J. V. Moloney, “Self-healing femtosecond light filaments,” Opt. Lett. 29, 590–592 (2004).
[Crossref] [PubMed]

Krenz, M.

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J.-P. Wolf, “White-light nanosource with directional emission,” Phys. Rev. Lett. 89, 035002 (2002).
[Crossref] [PubMed]

Lai, J.

W. Song, J. Lai, Z. Ghassemlooy, S. Li, P. Zhang, W. Yan, C. Wang, and Z. Li, “Influence of fog on the signal to interference plus noise ratio of the imaging laser radar using a 16-element apd array,” Opt. Express 26, 22030–22045 (2018).
[Crossref] [PubMed]

Lam, J. K.

J.-Z. Zhang, J. K. Lam, C. F. Wood, B.-T. Chu, and R. K. Chang, “Explosive vaporization of a large transparent droplet irradiated by a high intensity laser,” Appl. Opt. 26, 4731–4737 (1987).
[Crossref] [PubMed]

Lambrecht, H.

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J.-P. Wolf, “White-light nanosource with directional emission,” Phys. Rev. Lett. 89, 035002 (2002).
[Crossref] [PubMed]

Lan, P.

Z. Hong, Q. Zhang, S. A. Rezvani, P. Lan, and P. Lu, “Extending plasma channel of filamentation with a multi-focal-length beam,” Opt. Express 24, 4029–4041 (2016).
[Crossref] [PubMed]

Lascoux, N.

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queißer, R. Salamé, E. Salmon, L. Wöste, and J.-P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4, 451–456 (2010).
[Crossref]

Laux, U.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbery, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

Lederer, F.

S. Skupin, L. Bergé, U. Peschel, and F. Lederer, “Interaction of femtosecond light filaments with obscurants in aerosols,” Phys. Rev. Lett. 93, 023901 (2004).
[Crossref] [PubMed]

Leisner, T.

A. Lindinger, J. Hagen, L. D. Socaciu, T. M. Bernhardt, L. Wöste, D. Duft, and T. Leisner, “Time-resolved explosion dynamics of h2o droplets induced by femtosecond laser pulses,” Appl. Opt. 43, 5263–5269 (2004).
[Crossref] [PubMed]

Li, C.

J. Ju, J. Liu, C. Wang, H. Sun, W. Wang, X. Ge, C. Li, S. L. Chin, R. Li, and Z. Xu, “Laser-filamentation-induced condensation and snow formation in a cloud chamber,” Opt. Lett. 37, 1214–1216 (2012).
[Crossref] [PubMed]

Li, R.

J. Ju, J. Liu, C. Wang, H. Sun, W. Wang, X. Ge, C. Li, S. L. Chin, R. Li, and Z. Xu, “Laser-filamentation-induced condensation and snow formation in a cloud chamber,” Opt. Lett. 37, 1214–1216 (2012).
[Crossref] [PubMed]

Li, S.

W. Song, J. Lai, Z. Ghassemlooy, S. Li, P. Zhang, W. Yan, C. Wang, and Z. Li, “Influence of fog on the signal to interference plus noise ratio of the imaging laser radar using a 16-element apd array,” Opt. Express 26, 22030–22045 (2018).
[Crossref] [PubMed]

Li, Z.

W. Song, J. Lai, Z. Ghassemlooy, S. Li, P. Zhang, W. Yan, C. Wang, and Z. Li, “Influence of fog on the signal to interference plus noise ratio of the imaging laser radar using a 16-element apd array,” Opt. Express 26, 22030–22045 (2018).
[Crossref] [PubMed]

Liang, X. X.

N. Linz, S. Freidank, X. X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B 91, 134114 (2015).
[Crossref]

Lindinger, A.

A. Lindinger, J. Hagen, L. D. Socaciu, T. M. Bernhardt, L. Wöste, D. Duft, and T. Leisner, “Time-resolved explosion dynamics of h2o droplets induced by femtosecond laser pulses,” Appl. Opt. 43, 5263–5269 (2004).
[Crossref] [PubMed]

Linz, N

N Linz, “Controlled nonlinear energy deposition in transparent dielectrics by femtosecond and nanosecond optical breakdown,” Ph.D. thesis, der Technisch-Naturwissenschaftlichen Fakultät, Universität zu Lübeck, Lübeck, German (2010).

Linz, N.

N. Linz, S. Freidank, X. X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B 91, 134114 (2015).
[Crossref]

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008).
[Crossref] [PubMed]

Liseykina, T. V.

T. V. Liseykina and D. Bauer, “Plasma-formation dynamics in intense laser-droplet interaction,” Phys. Rev. Lett. 110, 145003 (2013).
[Crossref] [PubMed]

Liu, J.

J. Ju, J. Liu, C. Wang, H. Sun, W. Wang, X. Ge, C. Li, S. L. Chin, R. Li, and Z. Xu, “Laser-filamentation-induced condensation and snow formation in a cloud chamber,” Opt. Lett. 37, 1214–1216 (2012).
[Crossref] [PubMed]

Liu, Z.

Y. Hu, Z. Liu, D. Winker, M. Vaughan, V. Noel, L. Bissonnette, G. Roy, and M. McGill, “Simple relation between lidar multiple scattering and depolarization for water clouds,” Opt. Lett. 31, 1809–1811 (2006).
[Crossref] [PubMed]

Longtin, J. P.

C. H. Fan, J. Sun, and J. P. Longtin, “Breakdown threshold and localized electron density in water induced by ultrashort laser pulses,” J. Appl. Phys. 53, 2530–2536 (1999).

Lu, P.

Z. Hong, Q. Zhang, S. A. Rezvani, P. Lan, and P. Lu, “Extending plasma channel of filamentation with a multi-focal-length beam,” Opt. Express 24, 4029–4041 (2016).
[Crossref] [PubMed]

Lu, X.

T.-T. Xi, X. Lu, and J. Zhang, “Interaction of light filaments generated by femtosecond laser pulses in air,” Phys. Rev. Lett. 96, 025003 (2006).
[Crossref] [PubMed]

Lushnikov, A. A.

A. A. Lushnikov and A. E. Negin, “Aerosols in strong laser beams,” J. Aerosol Sci. 24, 707–735 (1993).
[Crossref]

Maheu, B.

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a gaussian beam, using a bromwich formulation,” J. Opt. Soc. Am. B 5, 1427–1443 (1988).
[Crossref]

Majus, D.

A. Jarnac, G. Tamosauskas, D. Majus, A. Houard, A. Mysyrowicz, A. Couairon, and A. Dubietis, “Whole life cycle of femtosecond ultraviolet filaments in water,” Phys. Rev. A 89, 033809 (2014).
[Crossref]

Malkov, Y. A.

E. S. Efimenko, Y. A. Malkov, A. A. Murzanev, and A. N. Stepanov, “Femtosecond laser pulse-induced breakdown of a single water microdroplet,” J. Opt. Soc. Am. B 31, 534–541 (2014).
[Crossref]

Matvienko, G. G.

Y. E. Geints, A. M. Kabanov, G. G. Matvienko, V. K. Oshlakov, A. A. Zemlyanov, S. S. Golik, and O. A. Bukin, “Broadband emission spectrum dynamics of large water droplets exposed to intense ultrashort laser radiation,” Opt. Lett. 35, 2717–2719 (2010).
[Crossref] [PubMed]

McGill, M.

Y. Hu, Z. Liu, D. Winker, M. Vaughan, V. Noel, L. Bissonnette, G. Roy, and M. McGill, “Simple relation between lidar multiple scattering and depolarization for water clouds,” Opt. Lett. 31, 1809–1811 (2006).
[Crossref] [PubMed]

Méchain, G.

G. Méchain, G. Méjean, R. Ackermann, P. Rohwetter, Y.-B. André, J. Kasparian, B. Prade, K. Stelmaszczyk, J. Yu, E. Salmon, W. Winn, L. A. Schlie, A. Mysyrowicz, R. Sauerbery, L. Wöste, and J.-P. Wolf, “Propagation of fs tw laser filaments in adverse atmospheric conditions,” Appl. Phys. B 80, 785–789 (2005).
[Crossref]

Méjean, G.

G. Méchain, G. Méjean, R. Ackermann, P. Rohwetter, Y.-B. André, J. Kasparian, B. Prade, K. Stelmaszczyk, J. Yu, E. Salmon, W. Winn, L. A. Schlie, A. Mysyrowicz, R. Sauerbery, L. Wöste, and J.-P. Wolf, “Propagation of fs tw laser filaments in adverse atmospheric conditions,” Appl. Phys. B 80, 785–789 (2005).
[Crossref]

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbery, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbery, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

F. Courvoisier, V. Boutou, J. Kasparian, E. Salmon, G. Méjean, J. Yu, and J.-P. Wolf, “Ultraintense light filaments transmitted through clouds,” Appl. Phys. Lett. 83, 213–215 (2003).
[Crossref]

Milchberg, H. M.

Z. W. Wilkes, S. Varma, Y.-H. Chen, H. M. Milchberg, T. G. Jones, and A. Ting, “Direct measurements of the nonlinear index of refraction of water at 815 and 407 nm using single-shot supercontinuum spectral interferometry,” Appl. Phys. Lett. 94, 211102 (2009).
[Crossref]

Misoguti, L.

T. G. de Souza, E. C. Barbano, S. C. Zilio, and L. Misoguti, “Measurement of nonlinear refractive indices of air, oxygen, and nitrogen in capillary by changing the temporal width of short laser pulses,” J. Opt. Soc. Am. B 34, 2233–2237 (2017).
[Crossref]

Mlejnek, M.

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Dynamic spatial replenishment of femtosecond pulses propagating in air,” Opt. Lett. 23, 382–384 (1998).
[Crossref]

Moloney, J. V.

M. Kolesik and J. V. Moloney, “Self-healing femtosecond light filaments,” Opt. Lett. 29, 590–592 (2004).
[Crossref] [PubMed]

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Dynamic spatial replenishment of femtosecond pulses propagating in air,” Opt. Lett. 23, 382–384 (1998).
[Crossref]

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. Hammer, B. Rockwell, and C. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 127–137 (1997).
[Crossref]

Mongin, D.

G. Schimmel, T. Produit, D. Mongin, J. Kasparian, and J.-P. Wolf, “Free space laser telecommunication through fog,” Optica 5, 1338–1341 (2018).
[Crossref]

Murzanev, A. A.

E. S. Efimenko, Y. A. Malkov, A. A. Murzanev, and A. N. Stepanov, “Femtosecond laser pulse-induced breakdown of a single water microdroplet,” J. Opt. Soc. Am. B 31, 534–541 (2014).
[Crossref]

Mysyrowicz, A.

A. Jarnac, G. Tamosauskas, D. Majus, A. Houard, A. Mysyrowicz, A. Couairon, and A. Dubietis, “Whole life cycle of femtosecond ultraviolet filaments in water,” Phys. Rev. A 89, 033809 (2014).
[Crossref]

G. Méchain, G. Méjean, R. Ackermann, P. Rohwetter, Y.-B. André, J. Kasparian, B. Prade, K. Stelmaszczyk, J. Yu, E. Salmon, W. Winn, L. A. Schlie, A. Mysyrowicz, R. Sauerbery, L. Wöste, and J.-P. Wolf, “Propagation of fs tw laser filaments in adverse atmospheric conditions,” Appl. Phys. B 80, 785–789 (2005).
[Crossref]

J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbery, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phys. Rev. Lett. 86, 5470 (2001).
[Crossref] [PubMed]

Nahen, K.

A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond nd: Yag laser pulses. i. optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron. 2, 847–860 (1996).
[Crossref]

Nakaema, W.

S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Hao, W. Nakaema, A. Vogel, T. Pohl, F. Schneider, J. Kasparian, K. Weber, L. Wöste, and J.-P. Wolf, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun. 2, 456 (2011).
[Crossref] [PubMed]

Nakaema, W. M.

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queißer, R. Salamé, E. Salmon, L. Wöste, and J.-P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4, 451–456 (2010).
[Crossref]

Negin, A. E.

A. A. Lushnikov and A. E. Negin, “Aerosols in strong laser beams,” J. Aerosol Sci. 24, 707–735 (1993).
[Crossref]

Newell, A. C.

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. Hammer, B. Rockwell, and C. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 127–137 (1997).
[Crossref]

Niedermeier, S.

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, and C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[Crossref]

Noack, J.

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35, 1156–1167 (1999).
[Crossref]

J. Noack and A. Vogel, “Single-shot spatially resolved characterization of laser-induced shock waves in water,” Appl. Opt. 37, 4092–4099 (1998).
[Crossref]

A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond nd: Yag laser pulses. i. optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron. 2, 847–860 (1996).
[Crossref]

Noel, V.

Y. Hu, Z. Liu, D. Winker, M. Vaughan, V. Noel, L. Bissonnette, G. Roy, and M. McGill, “Simple relation between lidar multiple scattering and depolarization for water clouds,” Opt. Lett. 31, 1809–1811 (2006).
[Crossref] [PubMed]

Oshlakov, V. K.

Y. E. Geints, A. M. Kabanov, G. G. Matvienko, V. K. Oshlakov, A. A. Zemlyanov, S. S. Golik, and O. A. Bukin, “Broadband emission spectrum dynamics of large water droplets exposed to intense ultrashort laser radiation,” Opt. Lett. 35, 2717–2719 (2010).
[Crossref] [PubMed]

Paltauf, G.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008).
[Crossref] [PubMed]

Pendleton, J. D.

R. G. Pinnick, A. Biswas, R. L. Armstrong, S. G. Jennings, J. D. Pendleton, and G. Fernández, “Micron-sized droplets irradiated with a pulsed co2 laser: measurement of explosion and breakdown thresholds,” Appl. Opt. 29, 918–925 (1990).
[Crossref] [PubMed]

A. Zardecki and J. D. Pendleton, “Hydrodynamics of water droplets irradiated by a pulsed co2 laser,” Appl. Opt. 28, 638–640 (1989).
[Crossref] [PubMed]

J. D. Pendleton, “Water droplets irradiated by a pulsed co2 laser: comparison of computed temperature contours with explosive vaporization patterns,” Appl. Opt. 24, 1631–1637 (1985).
[Crossref] [PubMed]

Peschel, U.

S. Skupin, L. Bergé, U. Peschel, and F. Lederer, “Interaction of femtosecond light filaments with obscurants in aerosols,” Phys. Rev. Lett. 93, 023901 (2004).
[Crossref] [PubMed]

Petit, Y.

S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Hao, W. Nakaema, A. Vogel, T. Pohl, F. Schneider, J. Kasparian, K. Weber, L. Wöste, and J.-P. Wolf, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun. 2, 456 (2011).
[Crossref] [PubMed]

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queißer, R. Salamé, E. Salmon, L. Wöste, and J.-P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4, 451–456 (2010).
[Crossref]

Pinnick, R. G.

R. G. Pinnick, A. Biswas, R. L. Armstrong, S. G. Jennings, J. D. Pendleton, and G. Fernández, “Micron-sized droplets irradiated with a pulsed co2 laser: measurement of explosion and breakdown thresholds,” Appl. Opt. 29, 918–925 (1990).
[Crossref] [PubMed]

Pohl, T.

S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Hao, W. Nakaema, A. Vogel, T. Pohl, F. Schneider, J. Kasparian, K. Weber, L. Wöste, and J.-P. Wolf, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun. 2, 456 (2011).
[Crossref] [PubMed]

Prade, B.

G. Méchain, G. Méjean, R. Ackermann, P. Rohwetter, Y.-B. André, J. Kasparian, B. Prade, K. Stelmaszczyk, J. Yu, E. Salmon, W. Winn, L. A. Schlie, A. Mysyrowicz, R. Sauerbery, L. Wöste, and J.-P. Wolf, “Propagation of fs tw laser filaments in adverse atmospheric conditions,” Appl. Phys. B 80, 785–789 (2005).
[Crossref]

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phys. Rev. Lett. 86, 5470 (2001).
[Crossref] [PubMed]

Produit, T.

G. Schimmel, T. Produit, D. Mongin, J. Kasparian, and J.-P. Wolf, “Free space laser telecommunication through fog,” Optica 5, 1338–1341 (2018).
[Crossref]

Queißer, M.

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queißer, R. Salamé, E. Salmon, L. Wöste, and J.-P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4, 451–456 (2010).
[Crossref]

Rairoux, P.

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, and C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[Crossref]

Rezvani, S. A.

Z. Hong, Q. Zhang, S. A. Rezvani, P. Lan, and P. Lu, “Extending plasma channel of filamentation with a multi-focal-length beam,” Opt. Express 24, 4029–4041 (2016).
[Crossref] [PubMed]

Rockwell, B.

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. Hammer, B. Rockwell, and C. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 127–137 (1997).
[Crossref]

Rodriguez, M.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbery, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, and C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[Crossref]

Rodríguez, M.

J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbery, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

Rohwetter, P.

S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Hao, W. Nakaema, A. Vogel, T. Pohl, F. Schneider, J. Kasparian, K. Weber, L. Wöste, and J.-P. Wolf, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun. 2, 456 (2011).
[Crossref] [PubMed]

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queißer, R. Salamé, E. Salmon, L. Wöste, and J.-P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4, 451–456 (2010).
[Crossref]

G. Méchain, G. Méjean, R. Ackermann, P. Rohwetter, Y.-B. André, J. Kasparian, B. Prade, K. Stelmaszczyk, J. Yu, E. Salmon, W. Winn, L. A. Schlie, A. Mysyrowicz, R. Sauerbery, L. Wöste, and J.-P. Wolf, “Propagation of fs tw laser filaments in adverse atmospheric conditions,” Appl. Phys. B 80, 785–789 (2005).
[Crossref]

Ronneberger, F.

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, and C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[Crossref]

Roy, G.

Y. Hu, Z. Liu, D. Winker, M. Vaughan, V. Noel, L. Bissonnette, G. Roy, and M. McGill, “Simple relation between lidar multiple scattering and depolarization for water clouds,” Opt. Lett. 31, 1809–1811 (2006).
[Crossref] [PubMed]

Salamé, R.

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queißer, R. Salamé, E. Salmon, L. Wöste, and J.-P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4, 451–456 (2010).
[Crossref]

Salmon, E.

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queißer, R. Salamé, E. Salmon, L. Wöste, and J.-P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4, 451–456 (2010).
[Crossref]

G. Méchain, G. Méjean, R. Ackermann, P. Rohwetter, Y.-B. André, J. Kasparian, B. Prade, K. Stelmaszczyk, J. Yu, E. Salmon, W. Winn, L. A. Schlie, A. Mysyrowicz, R. Sauerbery, L. Wöste, and J.-P. Wolf, “Propagation of fs tw laser filaments in adverse atmospheric conditions,” Appl. Phys. B 80, 785–789 (2005).
[Crossref]

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbery, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbery, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

F. Courvoisier, V. Boutou, J. Kasparian, E. Salmon, G. Méjean, J. Yu, and J.-P. Wolf, “Ultraintense light filaments transmitted through clouds,” Appl. Phys. Lett. 83, 213–215 (2003).
[Crossref]

Sauerbery, R.

G. Méchain, G. Méjean, R. Ackermann, P. Rohwetter, Y.-B. André, J. Kasparian, B. Prade, K. Stelmaszczyk, J. Yu, E. Salmon, W. Winn, L. A. Schlie, A. Mysyrowicz, R. Sauerbery, L. Wöste, and J.-P. Wolf, “Propagation of fs tw laser filaments in adverse atmospheric conditions,” Appl. Phys. B 80, 785–789 (2005).
[Crossref]

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbery, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbery, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

Sauerbrey, R.

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, and C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[Crossref]

J. Kasparian, R. Sauerbrey, and S. Chin, “The critical laser intensity of self-guided light filaments in air,” Appl. Phys. B 71, 877–879 (2000).
[Crossref]

Saxena, I.

I. Saxena, K. Ehmann, and J. Cao, “Laser-induced plasma in aqueous media: numerical simulation and experimental validation of spatial and temporal profiles,” Appl. Opt. 53, 8283–8294 (2014).
[Crossref]

Schillinger, H.

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, and C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[Crossref]

Schimmel, G.

G. Schimmel, T. Produit, D. Mongin, J. Kasparian, and J.-P. Wolf, “Free space laser telecommunication through fog,” Optica 5, 1338–1341 (2018).
[Crossref]

Schlie, L. A.

G. Méchain, G. Méjean, R. Ackermann, P. Rohwetter, Y.-B. André, J. Kasparian, B. Prade, K. Stelmaszczyk, J. Yu, E. Salmon, W. Winn, L. A. Schlie, A. Mysyrowicz, R. Sauerbery, L. Wöste, and J.-P. Wolf, “Propagation of fs tw laser filaments in adverse atmospheric conditions,” Appl. Phys. B 80, 785–789 (2005).
[Crossref]

Schneider, F.

S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Hao, W. Nakaema, A. Vogel, T. Pohl, F. Schneider, J. Kasparian, K. Weber, L. Wöste, and J.-P. Wolf, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun. 2, 456 (2011).
[Crossref] [PubMed]

Scholz, A.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbery, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

Schult, I.

M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package opac,” Bull. Am. Meteorol. Soc. 79, 831–844 (1998).
[Crossref]

Skupin, S.

S. Skupin, L. Bergé, U. Peschel, and F. Lederer, “Interaction of femtosecond light filaments with obscurants in aerosols,” Phys. Rev. Lett. 93, 023901 (2004).
[Crossref] [PubMed]

Socaciu, L. D.

A. Lindinger, J. Hagen, L. D. Socaciu, T. M. Bernhardt, L. Wöste, D. Duft, and T. Leisner, “Time-resolved explosion dynamics of h2o droplets induced by femtosecond laser pulses,” Appl. Opt. 43, 5263–5269 (2004).
[Crossref] [PubMed]

Sokolova, E. B.

Y. E. Geints, A. A. Zemlyanov, A. M. Kabanov, E. E. Bykova, D. V. Apeksimov, O. A. Bukin, E. B. Sokolova, S. S. Golik, and A. A. Ilyin, “Angular diagram of broadband emission of millimeter-sized water droplets exposed to gigawatt femtosecond laser pulses,” Appl. Opt. 50, 5291–5298 (2011).
[Crossref] [PubMed]

Song, W.

W. Song, J. Lai, Z. Ghassemlooy, S. Li, P. Zhang, W. Yan, C. Wang, and Z. Li, “Influence of fog on the signal to interference plus noise ratio of the imaging laser radar using a 16-element apd array,” Opt. Express 26, 22030–22045 (2018).
[Crossref] [PubMed]

Stecklum, B.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbery, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

Stein, B.

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, and C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[Crossref]

Stelmaszczyk, K.

S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Hao, W. Nakaema, A. Vogel, T. Pohl, F. Schneider, J. Kasparian, K. Weber, L. Wöste, and J.-P. Wolf, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun. 2, 456 (2011).
[Crossref] [PubMed]

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queißer, R. Salamé, E. Salmon, L. Wöste, and J.-P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4, 451–456 (2010).
[Crossref]

G. Méchain, G. Méjean, R. Ackermann, P. Rohwetter, Y.-B. André, J. Kasparian, B. Prade, K. Stelmaszczyk, J. Yu, E. Salmon, W. Winn, L. A. Schlie, A. Mysyrowicz, R. Sauerbery, L. Wöste, and J.-P. Wolf, “Propagation of fs tw laser filaments in adverse atmospheric conditions,” Appl. Phys. B 80, 785–789 (2005).
[Crossref]

Stepanov, A. N.

E. S. Efimenko, Y. A. Malkov, A. A. Murzanev, and A. N. Stepanov, “Femtosecond laser pulse-induced breakdown of a single water microdroplet,” J. Opt. Soc. Am. B 31, 534–541 (2014).
[Crossref]

Sun, H.

J. Ju, J. Liu, C. Wang, H. Sun, W. Wang, X. Ge, C. Li, S. L. Chin, R. Li, and Z. Xu, “Laser-filamentation-induced condensation and snow formation in a cloud chamber,” Opt. Lett. 37, 1214–1216 (2012).
[Crossref] [PubMed]

Sun, J.

C. H. Fan, J. Sun, and J. P. Longtin, “Breakdown threshold and localized electron density in water induced by ultrashort laser pulses,” J. Appl. Phys. 53, 2530–2536 (1999).

Tamosauskas, G.

A. Jarnac, G. Tamosauskas, D. Majus, A. Houard, A. Mysyrowicz, A. Couairon, and A. Dubietis, “Whole life cycle of femtosecond ultraviolet filaments in water,” Phys. Rev. A 89, 033809 (2014).
[Crossref]

Tamošauskas, G.

A. Dubietis, E. Gaižauskas, G. Tamošauskas, and P. Di Trapani, “Light filaments without self-channeling,” Phys. Rev. Lett. 92, 253903 (2004).
[Crossref] [PubMed]

Theisen, D.

A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond nd: Yag laser pulses. i. optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron. 2, 847–860 (1996).
[Crossref]

Thompson, C.

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. Hammer, B. Rockwell, and C. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 127–137 (1997).
[Crossref]

Ting, A.

Z. W. Wilkes, S. Varma, Y.-H. Chen, H. M. Milchberg, T. G. Jones, and A. Ting, “Direct measurements of the nonlinear index of refraction of water at 815 and 407 nm using single-shot supercontinuum spectral interferometry,” Appl. Phys. Lett. 94, 211102 (2009).
[Crossref]

Trapani, P. Di

A. Dubietis, E. Gaižauskas, G. Tamošauskas, and P. Di Trapani, “Light filaments without self-channeling,” Phys. Rev. Lett. 92, 253903 (2004).
[Crossref] [PubMed]

Trickl, T.

N. Linz, S. Freidank, X. X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B 91, 134114 (2015).
[Crossref]

Twomey, S.

S. Twomey, H. Jacobowitz, and H. B. Howell, “Light scattering by cloud layers,” J. Atmos. Sci. 24, 70–79 (1967).
[Crossref]

Tzortzakis, S.

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phys. Rev. Lett. 86, 5470 (2001).
[Crossref] [PubMed]

Varma, S.

Z. W. Wilkes, S. Varma, Y.-H. Chen, H. M. Milchberg, T. G. Jones, and A. Ting, “Direct measurements of the nonlinear index of refraction of water at 815 and 407 nm using single-shot supercontinuum spectral interferometry,” Appl. Phys. Lett. 94, 211102 (2009).
[Crossref]

Vaughan, M.

Y. Hu, Z. Liu, D. Winker, M. Vaughan, V. Noel, L. Bissonnette, G. Roy, and M. McGill, “Simple relation between lidar multiple scattering and depolarization for water clouds,” Opt. Lett. 31, 1809–1811 (2006).
[Crossref] [PubMed]

Vaughan, O. H.

A. Deepak and O. H. Vaughan, “Extinction-sedimentation inversion technique for measuring size distribution of artificial fogs,” Appl. Opt. 17, 374–378 (1978).
[Crossref] [PubMed]

Vogel, A.

N. Linz, S. Freidank, X. X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B 91, 134114 (2015).
[Crossref]

S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Hao, W. Nakaema, A. Vogel, T. Pohl, F. Schneider, J. Kasparian, K. Weber, L. Wöste, and J.-P. Wolf, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun. 2, 456 (2011).
[Crossref] [PubMed]

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008).
[Crossref] [PubMed]

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35, 1156–1167 (1999).
[Crossref]

J. Noack and A. Vogel, “Single-shot spatially resolved characterization of laser-induced shock waves in water,” Appl. Opt. 37, 4092–4099 (1998).
[Crossref]

A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond nd: Yag laser pulses. i. optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron. 2, 847–860 (1996).
[Crossref]

Vogelmann, H.

N. Linz, S. Freidank, X. X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B 91, 134114 (2015).
[Crossref]

Waite, D.

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, and C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[Crossref]

Wang, C.

W. Song, J. Lai, Z. Ghassemlooy, S. Li, P. Zhang, W. Yan, C. Wang, and Z. Li, “Influence of fog on the signal to interference plus noise ratio of the imaging laser radar using a 16-element apd array,” Opt. Express 26, 22030–22045 (2018).
[Crossref] [PubMed]

J. Ju, J. Liu, C. Wang, H. Sun, W. Wang, X. Ge, C. Li, S. L. Chin, R. Li, and Z. Xu, “Laser-filamentation-induced condensation and snow formation in a cloud chamber,” Opt. Lett. 37, 1214–1216 (2012).
[Crossref] [PubMed]

Wang, W.

J. Ju, J. Liu, C. Wang, H. Sun, W. Wang, X. Ge, C. Li, S. L. Chin, R. Li, and Z. Xu, “Laser-filamentation-induced condensation and snow formation in a cloud chamber,” Opt. Lett. 37, 1214–1216 (2012).
[Crossref] [PubMed]

Weber, K.

S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Hao, W. Nakaema, A. Vogel, T. Pohl, F. Schneider, J. Kasparian, K. Weber, L. Wöste, and J.-P. Wolf, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun. 2, 456 (2011).
[Crossref] [PubMed]

Wedekind, C.

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, and C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[Crossref]

Wilkes, Z. W.

Z. W. Wilkes, S. Varma, Y.-H. Chen, H. M. Milchberg, T. G. Jones, and A. Ting, “Direct measurements of the nonlinear index of refraction of water at 815 and 407 nm using single-shot supercontinuum spectral interferometry,” Appl. Phys. Lett. 94, 211102 (2009).
[Crossref]

Wille, H.

J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbery, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, and C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[Crossref]

Winker, D.

Y. Hu, Z. Liu, D. Winker, M. Vaughan, V. Noel, L. Bissonnette, G. Roy, and M. McGill, “Simple relation between lidar multiple scattering and depolarization for water clouds,” Opt. Lett. 31, 1809–1811 (2006).
[Crossref] [PubMed]

Winn, W.

G. Méchain, G. Méjean, R. Ackermann, P. Rohwetter, Y.-B. André, J. Kasparian, B. Prade, K. Stelmaszczyk, J. Yu, E. Salmon, W. Winn, L. A. Schlie, A. Mysyrowicz, R. Sauerbery, L. Wöste, and J.-P. Wolf, “Propagation of fs tw laser filaments in adverse atmospheric conditions,” Appl. Phys. B 80, 785–789 (2005).
[Crossref]

Woeste, L.

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J.-P. Wolf, “White-light nanosource with directional emission,” Phys. Rev. Lett. 89, 035002 (2002).
[Crossref] [PubMed]

Wolf, J.-P.

G. Schimmel, T. Produit, D. Mongin, J. Kasparian, and J.-P. Wolf, “Free space laser telecommunication through fog,” Optica 5, 1338–1341 (2018).
[Crossref]

S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Hao, W. Nakaema, A. Vogel, T. Pohl, F. Schneider, J. Kasparian, K. Weber, L. Wöste, and J.-P. Wolf, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun. 2, 456 (2011).
[Crossref] [PubMed]

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queißer, R. Salamé, E. Salmon, L. Wöste, and J.-P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4, 451–456 (2010).
[Crossref]

G. Méchain, G. Méjean, R. Ackermann, P. Rohwetter, Y.-B. André, J. Kasparian, B. Prade, K. Stelmaszczyk, J. Yu, E. Salmon, W. Winn, L. A. Schlie, A. Mysyrowicz, R. Sauerbery, L. Wöste, and J.-P. Wolf, “Propagation of fs tw laser filaments in adverse atmospheric conditions,” Appl. Phys. B 80, 785–789 (2005).
[Crossref]

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbery, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbery, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

F. Courvoisier, V. Boutou, J. Kasparian, E. Salmon, G. Méjean, J. Yu, and J.-P. Wolf, “Ultraintense light filaments transmitted through clouds,” Appl. Phys. Lett. 83, 213–215 (2003).
[Crossref]

F. Courvoisier, V. Boutou, C. Favre, S. C. Hill, and J.-P. Wolf, “Plasma formation dynamics within a water microdroplet on femtosecond time scales,” Opt. Lett. 28, 206–208 (2003).
[Crossref] [PubMed]

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J.-P. Wolf, “White-light nanosource with directional emission,” Phys. Rev. Lett. 89, 035002 (2002).
[Crossref] [PubMed]

Wood, C. F.

R. K. Chang, J. H. Eickmans, W.-F. Hsieh, C. F. Wood, J.-Z. Zhang, and J.-b. Zheng, “Laser-induced breakdown in large transparent water droplets,” Appl. Opt. 27, 2377–2385 (1988).
[Crossref] [PubMed]

J.-Z. Zhang, J. K. Lam, C. F. Wood, B.-T. Chu, and R. K. Chang, “Explosive vaporization of a large transparent droplet irradiated by a high intensity laser,” Appl. Opt. 26, 4731–4737 (1987).
[Crossref] [PubMed]

Wöste, L.

S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Hao, W. Nakaema, A. Vogel, T. Pohl, F. Schneider, J. Kasparian, K. Weber, L. Wöste, and J.-P. Wolf, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun. 2, 456 (2011).
[Crossref] [PubMed]

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queißer, R. Salamé, E. Salmon, L. Wöste, and J.-P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4, 451–456 (2010).
[Crossref]

G. Méchain, G. Méjean, R. Ackermann, P. Rohwetter, Y.-B. André, J. Kasparian, B. Prade, K. Stelmaszczyk, J. Yu, E. Salmon, W. Winn, L. A. Schlie, A. Mysyrowicz, R. Sauerbery, L. Wöste, and J.-P. Wolf, “Propagation of fs tw laser filaments in adverse atmospheric conditions,” Appl. Phys. B 80, 785–789 (2005).
[Crossref]

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbery, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

A. Lindinger, J. Hagen, L. D. Socaciu, T. M. Bernhardt, L. Wöste, D. Duft, and T. Leisner, “Time-resolved explosion dynamics of h2o droplets induced by femtosecond laser pulses,” Appl. Opt. 43, 5263–5269 (2004).
[Crossref] [PubMed]

J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbery, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, and C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[Crossref]

Wright, E. M.

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Dynamic spatial replenishment of femtosecond pulses propagating in air,” Opt. Lett. 23, 382–384 (1998).
[Crossref]

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. Hammer, B. Rockwell, and C. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 127–137 (1997).
[Crossref]

Xi, T.-T.

T.-T. Xi, X. Lu, and J. Zhang, “Interaction of light filaments generated by femtosecond laser pulses in air,” Phys. Rev. Lett. 96, 025003 (2006).
[Crossref] [PubMed]

Xu, Z.

J. Ju, J. Liu, C. Wang, H. Sun, W. Wang, X. Ge, C. Li, S. L. Chin, R. Li, and Z. Xu, “Laser-filamentation-induced condensation and snow formation in a cloud chamber,” Opt. Lett. 37, 1214–1216 (2012).
[Crossref] [PubMed]

Yan, W.

W. Song, J. Lai, Z. Ghassemlooy, S. Li, P. Zhang, W. Yan, C. Wang, and Z. Li, “Influence of fog on the signal to interference plus noise ratio of the imaging laser radar using a 16-element apd array,” Opt. Express 26, 22030–22045 (2018).
[Crossref] [PubMed]

Yu, J.

G. Méchain, G. Méjean, R. Ackermann, P. Rohwetter, Y.-B. André, J. Kasparian, B. Prade, K. Stelmaszczyk, J. Yu, E. Salmon, W. Winn, L. A. Schlie, A. Mysyrowicz, R. Sauerbery, L. Wöste, and J.-P. Wolf, “Propagation of fs tw laser filaments in adverse atmospheric conditions,” Appl. Phys. B 80, 785–789 (2005).
[Crossref]

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbery, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbery, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

F. Courvoisier, V. Boutou, J. Kasparian, E. Salmon, G. Méjean, J. Yu, and J.-P. Wolf, “Ultraintense light filaments transmitted through clouds,” Appl. Phys. Lett. 83, 213–215 (2003).
[Crossref]

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J.-P. Wolf, “White-light nanosource with directional emission,” Phys. Rev. Lett. 89, 035002 (2002).
[Crossref] [PubMed]

Zardecki, A.

A. Zardecki and J. D. Pendleton, “Hydrodynamics of water droplets irradiated by a pulsed co2 laser,” Appl. Opt. 28, 638–640 (1989).
[Crossref] [PubMed]

Zemlyanov, A. A.

Y. E. Geints, A. A. Zemlyanov, A. M. Kabanov, E. E. Bykova, D. V. Apeksimov, O. A. Bukin, E. B. Sokolova, S. S. Golik, and A. A. Ilyin, “Angular diagram of broadband emission of millimeter-sized water droplets exposed to gigawatt femtosecond laser pulses,” Appl. Opt. 50, 5291–5298 (2011).
[Crossref] [PubMed]

Y. E. Geints, A. M. Kabanov, G. G. Matvienko, V. K. Oshlakov, A. A. Zemlyanov, S. S. Golik, and O. A. Bukin, “Broadband emission spectrum dynamics of large water droplets exposed to intense ultrashort laser radiation,” Opt. Lett. 35, 2717–2719 (2010).
[Crossref] [PubMed]

Y. E. Geints, A. A. Zemlyanov, and R. L. Armstrong, “Explosive boiling of water droplets irradiated with intense co2-laser radiation: numerical experiments,” Appl. Opt. 33, 5805–5810 (1994).
[Crossref] [PubMed]

Zhang, J.

T.-T. Xi, X. Lu, and J. Zhang, “Interaction of light filaments generated by femtosecond laser pulses in air,” Phys. Rev. Lett. 96, 025003 (2006).
[Crossref] [PubMed]

Zhang, J.-Z.

R. K. Chang, J. H. Eickmans, W.-F. Hsieh, C. F. Wood, J.-Z. Zhang, and J.-b. Zheng, “Laser-induced breakdown in large transparent water droplets,” Appl. Opt. 27, 2377–2385 (1988).
[Crossref] [PubMed]

J.-Z. Zhang, J. K. Lam, C. F. Wood, B.-T. Chu, and R. K. Chang, “Explosive vaporization of a large transparent droplet irradiated by a high intensity laser,” Appl. Opt. 26, 4731–4737 (1987).
[Crossref] [PubMed]

Zhang, P.

W. Song, J. Lai, Z. Ghassemlooy, S. Li, P. Zhang, W. Yan, C. Wang, and Z. Li, “Influence of fog on the signal to interference plus noise ratio of the imaging laser radar using a 16-element apd array,” Opt. Express 26, 22030–22045 (2018).
[Crossref] [PubMed]

Zhang, Q.

Z. Hong, Q. Zhang, S. A. Rezvani, P. Lan, and P. Lu, “Extending plasma channel of filamentation with a multi-focal-length beam,” Opt. Express 24, 4029–4041 (2016).
[Crossref] [PubMed]

Zheng, J.-b.

R. K. Chang, J. H. Eickmans, W.-F. Hsieh, C. F. Wood, J.-Z. Zhang, and J.-b. Zheng, “Laser-induced breakdown in large transparent water droplets,” Appl. Opt. 27, 2377–2385 (1988).
[Crossref] [PubMed]

J.-b. Zheng, W.-F. Hsieh, S.-c. Chen, and R. K. Chang, “Temporally and spatially resolved spectroscopy of laser-induced plasma from a droplet,” Opt. Lett. 13, 559–561 (1988).
[Crossref] [PubMed]

Ziener, C.

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, and C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[Crossref]

Zilio, S. C.

T. G. de Souza, E. C. Barbano, S. C. Zilio, and L. Misoguti, “Measurement of nonlinear refractive indices of air, oxygen, and nitrogen in capillary by changing the temporal width of short laser pulses,” J. Opt. Soc. Am. B 34, 2233–2237 (2017).
[Crossref]

Zimmer, W.

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J.-P. Wolf, “White-light nanosource with directional emission,” Phys. Rev. Lett. 89, 035002 (2002).
[Crossref] [PubMed]

Appl. Opt. (11)

R. K. Chang, J. H. Eickmans, W.-F. Hsieh, C. F. Wood, J.-Z. Zhang, and J.-b. Zheng, “Laser-induced breakdown in large transparent water droplets,” Appl. Opt. 27, 2377–2385 (1988).
[Crossref] [PubMed]

Y. E. Geints, A. A. Zemlyanov, A. M. Kabanov, E. E. Bykova, D. V. Apeksimov, O. A. Bukin, E. B. Sokolova, S. S. Golik, and A. A. Ilyin, “Angular diagram of broadband emission of millimeter-sized water droplets exposed to gigawatt femtosecond laser pulses,” Appl. Opt. 50, 5291–5298 (2011).
[Crossref] [PubMed]

J. D. Pendleton, “Water droplets irradiated by a pulsed co2 laser: comparison of computed temperature contours with explosive vaporization patterns,” Appl. Opt. 24, 1631–1637 (1985).
[Crossref] [PubMed]

A. Zardecki and J. D. Pendleton, “Hydrodynamics of water droplets irradiated by a pulsed co2 laser,” Appl. Opt. 28, 638–640 (1989).
[Crossref] [PubMed]

J.-Z. Zhang, J. K. Lam, C. F. Wood, B.-T. Chu, and R. K. Chang, “Explosive vaporization of a large transparent droplet irradiated by a high intensity laser,” Appl. Opt. 26, 4731–4737 (1987).
[Crossref] [PubMed]

R. G. Pinnick, A. Biswas, R. L. Armstrong, S. G. Jennings, J. D. Pendleton, and G. Fernández, “Micron-sized droplets irradiated with a pulsed co2 laser: measurement of explosion and breakdown thresholds,” Appl. Opt. 29, 918–925 (1990).
[Crossref] [PubMed]

Y. E. Geints, A. A. Zemlyanov, and R. L. Armstrong, “Explosive boiling of water droplets irradiated with intense co2-laser radiation: numerical experiments,” Appl. Opt. 33, 5805–5810 (1994).
[Crossref] [PubMed]

A. Lindinger, J. Hagen, L. D. Socaciu, T. M. Bernhardt, L. Wöste, D. Duft, and T. Leisner, “Time-resolved explosion dynamics of h2o droplets induced by femtosecond laser pulses,” Appl. Opt. 43, 5263–5269 (2004).
[Crossref] [PubMed]

I. Saxena, K. Ehmann, and J. Cao, “Laser-induced plasma in aqueous media: numerical simulation and experimental validation of spatial and temporal profiles,” Appl. Opt. 53, 8283–8294 (2014).
[Crossref]

J. Noack and A. Vogel, “Single-shot spatially resolved characterization of laser-induced shock waves in water,” Appl. Opt. 37, 4092–4099 (1998).
[Crossref]

A. Deepak and O. H. Vaughan, “Extinction-sedimentation inversion technique for measuring size distribution of artificial fogs,” Appl. Opt. 17, 374–378 (1978).
[Crossref] [PubMed]

Appl. Phys. B (3)

J. Kasparian, R. Sauerbrey, and S. Chin, “The critical laser intensity of self-guided light filaments in air,” Appl. Phys. B 71, 877–879 (2000).
[Crossref]

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, and C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[Crossref]

G. Méchain, G. Méjean, R. Ackermann, P. Rohwetter, Y.-B. André, J. Kasparian, B. Prade, K. Stelmaszczyk, J. Yu, E. Salmon, W. Winn, L. A. Schlie, A. Mysyrowicz, R. Sauerbery, L. Wöste, and J.-P. Wolf, “Propagation of fs tw laser filaments in adverse atmospheric conditions,” Appl. Phys. B 80, 785–789 (2005).
[Crossref]

Appl. Phys. Lett. (2)

F. Courvoisier, V. Boutou, J. Kasparian, E. Salmon, G. Méjean, J. Yu, and J.-P. Wolf, “Ultraintense light filaments transmitted through clouds,” Appl. Phys. Lett. 83, 213–215 (2003).
[Crossref]

Z. W. Wilkes, S. Varma, Y.-H. Chen, H. M. Milchberg, T. G. Jones, and A. Ting, “Direct measurements of the nonlinear index of refraction of water at 815 and 407 nm using single-shot supercontinuum spectral interferometry,” Appl. Phys. Lett. 94, 211102 (2009).
[Crossref]

Bull. Am. Meteorol. Soc. (1)

M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package opac,” Bull. Am. Meteorol. Soc. 79, 831–844 (1998).
[Crossref]

IEEE J. Quantum Electron. (3)

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. Hammer, B. Rockwell, and C. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 127–137 (1997).
[Crossref]

P. K. Kennedy, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. i. theory,” IEEE J. Quantum Electron. 31, 2241–2249 (1995).
[Crossref]

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35, 1156–1167 (1999).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond nd: Yag laser pulses. i. optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron. 2, 847–860 (1996).
[Crossref]

J. Aerosol Sci. (1)

A. A. Lushnikov and A. E. Negin, “Aerosols in strong laser beams,” J. Aerosol Sci. 24, 707–735 (1993).
[Crossref]

J. Appl. Phys. (1)

C. H. Fan, J. Sun, and J. P. Longtin, “Breakdown threshold and localized electron density in water induced by ultrashort laser pulses,” J. Appl. Phys. 53, 2530–2536 (1999).

J. Atmos. Sci. (1)

S. Twomey, H. Jacobowitz, and H. B. Howell, “Light scattering by cloud layers,” J. Atmos. Sci. 24, 70–79 (1967).
[Crossref]

J. Opt. Soc. Am. B (3)

E. S. Efimenko, Y. A. Malkov, A. A. Murzanev, and A. N. Stepanov, “Femtosecond laser pulse-induced breakdown of a single water microdroplet,” J. Opt. Soc. Am. B 31, 534–541 (2014).
[Crossref]

T. G. de Souza, E. C. Barbano, S. C. Zilio, and L. Misoguti, “Measurement of nonlinear refractive indices of air, oxygen, and nitrogen in capillary by changing the temporal width of short laser pulses,” J. Opt. Soc. Am. B 34, 2233–2237 (2017).
[Crossref]

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a gaussian beam, using a bromwich formulation,” J. Opt. Soc. Am. B 5, 1427–1443 (1988).
[Crossref]

Nat. Commun. (1)

S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Hao, W. Nakaema, A. Vogel, T. Pohl, F. Schneider, J. Kasparian, K. Weber, L. Wöste, and J.-P. Wolf, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun. 2, 456 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queißer, R. Salamé, E. Salmon, L. Wöste, and J.-P. Wolf, “Laser-induced water condensation in air,” Nat. Photonics 4, 451–456 (2010).
[Crossref]

Opt. Express (2)

W. Song, J. Lai, Z. Ghassemlooy, S. Li, P. Zhang, W. Yan, C. Wang, and Z. Li, “Influence of fog on the signal to interference plus noise ratio of the imaging laser radar using a 16-element apd array,” Opt. Express 26, 22030–22045 (2018).
[Crossref] [PubMed]

Z. Hong, Q. Zhang, S. A. Rezvani, P. Lan, and P. Lu, “Extending plasma channel of filamentation with a multi-focal-length beam,” Opt. Express 24, 4029–4041 (2016).
[Crossref] [PubMed]

Opt. Lett. (8)

J.-b. Zheng, W.-F. Hsieh, S.-c. Chen, and R. K. Chang, “Temporally and spatially resolved spectroscopy of laser-induced plasma from a droplet,” Opt. Lett. 13, 559–561 (1988).
[Crossref] [PubMed]

Y. Hu, Z. Liu, D. Winker, M. Vaughan, V. Noel, L. Bissonnette, G. Roy, and M. McGill, “Simple relation between lidar multiple scattering and depolarization for water clouds,” Opt. Lett. 31, 1809–1811 (2006).
[Crossref] [PubMed]

J. Ju, J. Liu, C. Wang, H. Sun, W. Wang, X. Ge, C. Li, S. L. Chin, R. Li, and Z. Xu, “Laser-filamentation-induced condensation and snow formation in a cloud chamber,” Opt. Lett. 37, 1214–1216 (2012).
[Crossref] [PubMed]

Y. E. Geints, A. M. Kabanov, G. G. Matvienko, V. K. Oshlakov, A. A. Zemlyanov, S. S. Golik, and O. A. Bukin, “Broadband emission spectrum dynamics of large water droplets exposed to intense ultrashort laser radiation,” Opt. Lett. 35, 2717–2719 (2010).
[Crossref] [PubMed]

M. Kolesik and J. V. Moloney, “Self-healing femtosecond light filaments,” Opt. Lett. 29, 590–592 (2004).
[Crossref] [PubMed]

J. C. Carls and J. R. Brock, “Explosive vaporization of single droplets by lasers: comparison of models with experiments,” Opt. Lett. 13, 919–921 (1988).
[Crossref] [PubMed]

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Dynamic spatial replenishment of femtosecond pulses propagating in air,” Opt. Lett. 23, 382–384 (1998).
[Crossref]

F. Courvoisier, V. Boutou, C. Favre, S. C. Hill, and J.-P. Wolf, “Plasma formation dynamics within a water microdroplet on femtosecond time scales,” Opt. Lett. 28, 206–208 (2003).
[Crossref] [PubMed]

Optica (1)

G. Schimmel, T. Produit, D. Mongin, J. Kasparian, and J.-P. Wolf, “Free space laser telecommunication through fog,” Optica 5, 1338–1341 (2018).
[Crossref]

Phys. Rev. A (1)

A. Jarnac, G. Tamosauskas, D. Majus, A. Houard, A. Mysyrowicz, A. Couairon, and A. Dubietis, “Whole life cycle of femtosecond ultraviolet filaments in water,” Phys. Rev. A 89, 033809 (2014).
[Crossref]

Phys. Rev. B (1)

N. Linz, S. Freidank, X. X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B 91, 134114 (2015).
[Crossref]

Phys. Rev. E (1)

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbery, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004).
[Crossref]

Phys. Rev. Lett. (7)

S. Skupin, L. Bergé, U. Peschel, and F. Lederer, “Interaction of femtosecond light filaments with obscurants in aerosols,” Phys. Rev. Lett. 93, 023901 (2004).
[Crossref] [PubMed]

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J.-P. Wolf, “White-light nanosource with directional emission,” Phys. Rev. Lett. 89, 035002 (2002).
[Crossref] [PubMed]

A. Dubietis, E. Gaižauskas, G. Tamošauskas, and P. Di Trapani, “Light filaments without self-channeling,” Phys. Rev. Lett. 92, 253903 (2004).
[Crossref] [PubMed]

T.-T. Xi, X. Lu, and J. Zhang, “Interaction of light filaments generated by femtosecond laser pulses in air,” Phys. Rev. Lett. 96, 025003 (2006).
[Crossref] [PubMed]

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phys. Rev. Lett. 86, 5470 (2001).
[Crossref] [PubMed]

T. V. Liseykina and D. Bauer, “Plasma-formation dynamics in intense laser-droplet interaction,” Phys. Rev. Lett. 110, 145003 (2013).
[Crossref] [PubMed]

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008).
[Crossref] [PubMed]

Science (1)

J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbery, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

Other (2)

N Linz, “Controlled nonlinear energy deposition in transparent dielectrics by femtosecond and nanosecond optical breakdown,” Ph.D. thesis, der Technisch-Naturwissenschaftlichen Fakultät, Universität zu Lübeck, Lübeck, German (2010).

D. Deirmendjian, “Electromagnetic scattering on spherical polydispersions,” (RAND Corporation, 1969).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Sketch of femtosecond laser interaction with water cloud with (a) three-dimensional model, (b) xy plane model, and (c) yz plane model. The water clouds are composed of large amounts of droplets and cloud condensation nuclei (CCN).
Fig. 2
Fig. 2 Variation of droplet optical breakdown threshold with droplet radius r. The thresholds for droplets with r > 0.9 μ m are not shown, as those thresholds tend to have a stable value.
Fig. 3
Fig. 3 Time evolutions of laser-induced plasmas while femtosecond laser pulse passes through droplets. The droplet r values are (a)–(c) 4 and (d)–(f) 0.8 μ m. Note that the color map in each figure is different as the color scale represents the relative FED only; i.e., the ratio between the FED anywhere and the maximum FED of each figure. ρ / ρ max. In all figures, the laser intensity I0 is 5 × 10 12 W / cm 2. The above figures show only parts of the calculation regimes. The concrete moments for each figure are 85, 165, 245, 48, 123, and 187 fs.
Fig. 4
Fig. 4 FED distributions for incident lasers with different laser intensity I0: (a) 5 × 10 12, (b) 1.1 × 10 13, and (c) 2.5 × 10 13 W / cm 2. (d)–(f) Corresponding laser field distributions for each intensity I0. The droplet r is 4 μ m. Note that the color map in each figure is different as the color scale represents the relative FED only. The figures show parts of the calculation regimes only. The concrete moments for the three laser intensities are 165, 181, and 139 fs.
Fig. 5
Fig. 5 (a) Droplet energy losses Q and (b) energy losses proportion Q / Q t variation with laser intensity for different droplet radii.
Fig. 6
Fig. 6 (a) Energy losses of droplet Q and (b) energy loss proportions Q / Q t variation with droplet size for different laser intensities.
Fig. 7
Fig. 7 Distribution of FED for two series-connected droplets. For both droplets, r = 4 μ m, and the distance between the two droplet centers is 13 μ m. The laser field propagates from left to right.
Fig. 8
Fig. 8 Probability for two arbitrary droplets aligned by series connection variation with beam length l for different water clouds. The droplet size r in Eq. (10) is selected by the model radius of each cloud. The inset is the sketch of two series-connected droplets.
Fig. 9
Fig. 9 Size distributions for different water clouds and fog.
Fig. 10
Fig. 10 Proportion of the energy losses variation with laser intensity for different water clouds and fog. The energy losses represent the decrease in laser energy after the laser pulse propagates through a cloud of length 1 m.
Fig. 11
Fig. 11 Propagation length L variation with laser intensity for different water clouds and fog. Note that the propagation length of fog should be multiplied by 5.

Tables (3)

Tables Icon

Table 1 Parameters used in transient coupling model, Eqs. (1), (3), and (4).

Tables Icon

Table 2 Breakdown thresholds for water and droplet under laser pulses with different pulse durations τ, wavelengths λ, and numerical apertures N.A. Here, Iexp and Ical denote the experimental and calculated thresholds for water, respectively; and Idroplet represents the calculated threshold for an additional 4- μ m droplet suspended in the laser field focus area. The last three rows show the calculated threshold for a 4- μ m droplet under the assumption that the laser field corresponds to a plane wave. The thresholds from [49] correspond to a breakdown probability of 1%.

Tables Icon

Table 3 Calculated scattering coefficients σs, corrected scattering coefficients σ s   ' = σ s R c ( θ < 1.5 ), and absorption coefficients σa for different water clouds and fog. Here, σ a 5, σ a 10, and σ a 25 represent the coefficients corresponding to initial laser intensities of I 0 = 5 × 10 12, 1 × 10 13, and 2.5 × 10 13 W / cm 2, respectively. The units for all the above coefficients are km 1.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

ρ t = ( β K K ω I K + σ A I V ρ ) ( 1 ρ ρ n ) + ( D ρ ) g ρ 2 ,
× × E + 1 c 2 2 t 2 ( ε r L E ) + μ 0 ( J t + 2 P NL t 2 ) = 0 ,
ε r = ε r L + 2 n 0 n 2 ε 0 I + i c n 0 σ c ρ ω + i c n 0 β K ω I K 1 .
× × E + 1 c 2 t ( ε r E t ) = 0.
d N d r = N a r α exp  [ α γ ( r r 0 ) γ ] ,
E = E 0 w 0 w ( x ) exp   [ 2 ln   2 ( t τ ) 2 τ 2 c 0 y 2 w 2 ( x ) ] × exp   [ i ( ω t k x k y 2 2 R w ( x ) + Φ ( x ) ) ] e ^ z ,
Q = V d V d t ( J E ) = π d y d x y d t ( J E ) ,
Q t = I ( t ) π r 2 d t = 1 2 ln  2 π 3 2 r 2 τ I 0 ,
P = 1 i = 1 s ( 1 i p ) ,
p = [ r 2 R 2 + 1 R r R 1 π arccos  ( 1 r 2 2 δ 2 ) d δ ] ( r R ) ,
Q = Q ( I 0 , r ) r n ( r ) d r ,
Q ( I 0 , r ) Q ( r ) + Q ( I 0 ) Q ( I 0 i ) R 0 2 r 2 .
P j ( θ ) = 4 π β s λ 2 4 π 2 r 1 r 2 n ( r ) i j ( θ ) d r ,
β s = π r 1 r 2 r 2 Q s n ( r ) d r ,
R c = 1 1 4 π 0 θ P j ( θ ) sin  θ d θ .

Metrics