Abstract

Color moiré occurs owing to the subpixel structure of the display panel in the integral three-dimensional (3D) display method, deteriorating the 3D-image quality. To address this, we propose a method for reducing the color moiré and improving the 3D-image resolution, simultaneously, by combining multiple 3D images. In the prototype system, triple 3D display units with lens arrays closely attached to 8K-resolution display panels are optically combined. By controlling the color moiré of the 3D image generated on each display and shifting and combining the elemental lenses constituting the lens array, sufficient reduction in the color moiré is realized, while suppressing the deterioration of the 3D-image quality, at a distant position from the lens array in the depth direction, along with an approximately two-fold enhancement of the resolution near the lens array.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Color moiré pattern simulation and analysis in three-dimensional integral imaging for finding the moiré-reduced tilted angle of a lens array

Yunhee Kim, Gilbae Park, Jae-Hyun Jung, Joohwan Kim, and Byoungho Lee
Appl. Opt. 48(11) 2178-2187 (2009)

Multi-projection of lenticular displays to construct a 256-view super multi-view display

Yasuhiro Takaki and Nichiyo Nago
Opt. Express 18(9) 8824-8835 (2010)

Subpixel area-based evaluation for crosstalk suppression in quasi-three-dimensional displays

Zhenfeng Zhuang, Phil Surman, Qijia Cheng, Simon Thibault, Yuanjin Zheng, and Xiao Wei Sun
Appl. Opt. 56(19) 5450-5457 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. Lippmann, “Épreuves réversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7, 821–825 (1908).
    [Crossref]
  2. F. Okano, J. Arai, H. Hoshino, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38, 1072–1078 (1999).
    [Crossref]
  3. H. Morishima, H. Nose, N. Taniguchi, K. Inoguchi, and S. Matsumura, “Rear-cross-lenticular 3D display without eyeglasses,” Proc. SPIE 3295, 1–10 (1998).
  4. R. Börner, “Four autostereoscopic monitors on the level of industrial prototypes,” Displays 20, 57–64 (1999).
    [Crossref]
  5. J.-Y. Son, V. Saveljev, S.-H. Shin, Y.-J. Choi, and S.-S. Kim, “Moire pattern reduction in full-parallax autostereoscopic imaging systems using two crossed lenticular plates as a viewing zone forming optics,” in Proceedings of The International Display Workshops, vol. 10 (Institute of Image Information and Television Engineers of Japan and Society of Information Display, 2003), pp. 1401–1404.
  6. Y. Kim, G. Park, S.-W. Cho, J.-H. Jung, B. Lee, Y. Choi, and M.-G. Lee, “Integral imaging with reduced color moire pattern by using a slanted lens array,” Proc. SPIE 6803, 68031L (2008).
    [Crossref]
  7. Y. Kim, G. Park, J.-H. Jung, J. Kim, and B. Lee, “Color moiré pattern simulation and analysis in three-dimensional integral imaging for finding the moiré-reduced tilted angle of a lens array,” Appl. Opt. 48, 2178–2187 (2009).
    [Crossref] [PubMed]
  8. T. Koike, K. Utsugi, and M. Oikawa, “Moiré-reduction methods for integral videography autostereoscopic display with color-filter LCD,” J. Soc. Inf. Disp. 18, 678–685 (2010).
    [Crossref]
  9. M. Okui, M. Kobayashi, J. Arai, and F. Okano, “Moiré fringe reduction by optical filters in integral three-dimensional imaging on a color flat-panel display,” Appl. Opt. 44, 4475–4483 (2005).
    [Crossref] [PubMed]
  10. H. Hoshino, F. Okano, H. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. A 15, 2059–2065 (1998).
    [Crossref]
  11. J. Arai, H. Hoshino, M. Okui, and F. Okano, “Effects of focusing on the resolution characteristics of integral photography,” J. Opt. Soc. Am. A 20, 996–1004 (2003).
    [Crossref]
  12. H. S. El-Ghoroury and Z. Y. Alpaslan, “Quantum photonic imager (QPI): a new display technology and its applications,” in Proceedings of The International Display Workshops, vol. 21 (Institute of Image Information and Television Engineersof Japan and Society of Information Display, 2014), pp. 1292–1295.
  13. B. Lee, S.-W. Min, and B. Javidi, “Theoretical analysis for three-dimensional integral imaging systems with double devices,” Appl. Opt. 41, 4856–4865 (2002).
    [Crossref] [PubMed]
  14. Y. Kim, J.-H. Jung, J.-M. Kang, Y. Kim, B. Lee, and B. Javidi, “Resolution-enhanced three-dimensional integral imaging using double display devices,” in LEOS 2007 - IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings, (IEEE, 2007), pp. 356–357.
  15. S.-W. Min, B. Javidi, and B. Lee, “Enhanced three-dimensional integral imaging system by use of double display devices,” Appl. Opt. 42, 4186–4195 (2003).
    [Crossref] [PubMed]
  16. H. Liao, T. Dohi, and M. Iwahara, “Improved viewing resolution of integral videography by use of rotated prism sheets,” Opt. Express 15, 4814–4822 (2007).
    [Crossref] [PubMed]
  17. X. Zhang, G. Chen, and H. Liao, “High-quality see-through surgical guidance system using enhanced 3-D autostereoscopic augmented reality,” IEEE Trans. Biomed. Eng. 64, 1815–1825 (2017).
    [Crossref]
  18. N. Okaichi, M. Miura, J. Arai, M. Kawakita, and T. Mishina, “Integral 3D display using multiple LCD panels and multi-image combining optical system,” Opt. Express 25, 2805–2817 (2017).
    [Crossref]
  19. N. Okaichi, M. Kawakita, H. Sasaki, H. Watanabe, and T. Mishina, “High-quality direct-view display combining multiple integral 3D images,” J. Soc. Inf. Disp. 27, 41–52 (2019).
    [Crossref]
  20. H. Liao, M. Iwahara, N. Hata, and T. Dohi, “High-quality integral videography using a multiprojector,” Opt. Express 12, 1067–1076 (2004).
    [Crossref]
  21. A. Stern and B. Javidi, “3-D computational synthetic aperture integral imaging (COMPSAII),” Opt. Express 11, 2446–2451 (2003).
    [Crossref] [PubMed]
  22. X. Li, Y. Wang, Q.-H. Wang, Y. Liu, and X. Zhou, “Modified integral imaging reconstruction and encryption using an improved SR reconstruction algorithm,” Opt. Lasers Eng. 112, 162–169 (2019).
    [Crossref]
  23. H. Sasaki, N. Okaichi, H. Watanabe, M. Kano, M. Kawakita, and T. Mishina, “Color moiré reduction and resolution enhancement technique for integral three-dimensional display,” in 2017 3DTV Conference: The True Vision-Capture, Transmissionand Display of 3D Video (3DTV-CON), (IEEE, 2017), pp. 1–4.
  24. H. Sasaki, N. Okaichi, H. Watanabe, M. Kano, M. Miura, M. Kawakita, and T. Mishina, “Color moiré and resolution analysis of multiple integral three-dimensional displays,” in Proceedings of The International Display Workshops, vol. 24 (Institute of Image Information and Television Engineers of Japan and Society of Information Display, 2017), pp. 860–863.
  25. J. Arai, M. Kawakita, T. Yamashita, H. Sasaki, M. Miura, H. Hiura, M. Okui, and F. Okano, “Integral three-dimensional television with video system using pixel-offset method,” Opt. Express 21, 3474–3485 (2013).
    [Crossref]
  26. M. Kanazawa, K. Hamada, I. Kondoh, F. Okano, Y. Haino, and M. Sato, “An ultrahigh-definition display using the pixel-offset method,” J. Soc. Inf. Disp. 12, 93–103 (2004).
    [Crossref]
  27. H. H. Hopkins, “The frequency response of a defocused optical system,” Proc. Royal Soc. Lond. A: Math. Phys. Eng. Sci. 231, 91–103 (1955).
    [Crossref]
  28. T. Smith and J. Guild, “The C.I.E. colorimetric standards and their use,” Transactions Opt. Soc. 33, 73 (1931).
    [Crossref]
  29. Radiocommunication Sector of International Telecommunication Union, “Parameter values for the HDTV standards for production and international programme exchange,” Recomm. ITU-RBT.709 (2015).
  30. Z. Fan, S. Zhang, Y. Weng, G. Chen, and H. Liao, “3D quantitative evaluation system for autostereoscopic display,” J. Disp. Technol. 12, 1185–1196 (2016).
    [Crossref]
  31. Z. Fan, G. Chen, Y. Xia, T. Huang, and H. Liao, “Accurate 3D autostereoscopic display using optimized parameters through quantitative calibration,” J. Opt. Soc. Am. A 34, 804–812 (2017).
    [Crossref]
  32. S. Kawashima, S. Inoue, M. Shiokawa, A. Suzuki, S. Eguchi, Y. Hirakata, J. Koyama, S. Yamazaki, T. Sato, T. Shigenobu, Y. Ohta, S. Mitsui, N. Ueda, and T. Matsuo, “44.1: Distinguished paper: 13.3-in. 8K x 4K 664-ppi OLED display using CAAC-OS FETs,” SID Symp. Dig. Tech. Pap. 45, 627–630 (2014).
    [Crossref]

2019 (2)

N. Okaichi, M. Kawakita, H. Sasaki, H. Watanabe, and T. Mishina, “High-quality direct-view display combining multiple integral 3D images,” J. Soc. Inf. Disp. 27, 41–52 (2019).
[Crossref]

X. Li, Y. Wang, Q.-H. Wang, Y. Liu, and X. Zhou, “Modified integral imaging reconstruction and encryption using an improved SR reconstruction algorithm,” Opt. Lasers Eng. 112, 162–169 (2019).
[Crossref]

2017 (3)

Z. Fan, G. Chen, Y. Xia, T. Huang, and H. Liao, “Accurate 3D autostereoscopic display using optimized parameters through quantitative calibration,” J. Opt. Soc. Am. A 34, 804–812 (2017).
[Crossref]

X. Zhang, G. Chen, and H. Liao, “High-quality see-through surgical guidance system using enhanced 3-D autostereoscopic augmented reality,” IEEE Trans. Biomed. Eng. 64, 1815–1825 (2017).
[Crossref]

N. Okaichi, M. Miura, J. Arai, M. Kawakita, and T. Mishina, “Integral 3D display using multiple LCD panels and multi-image combining optical system,” Opt. Express 25, 2805–2817 (2017).
[Crossref]

2016 (1)

Z. Fan, S. Zhang, Y. Weng, G. Chen, and H. Liao, “3D quantitative evaluation system for autostereoscopic display,” J. Disp. Technol. 12, 1185–1196 (2016).
[Crossref]

2014 (1)

S. Kawashima, S. Inoue, M. Shiokawa, A. Suzuki, S. Eguchi, Y. Hirakata, J. Koyama, S. Yamazaki, T. Sato, T. Shigenobu, Y. Ohta, S. Mitsui, N. Ueda, and T. Matsuo, “44.1: Distinguished paper: 13.3-in. 8K x 4K 664-ppi OLED display using CAAC-OS FETs,” SID Symp. Dig. Tech. Pap. 45, 627–630 (2014).
[Crossref]

2013 (1)

J. Arai, M. Kawakita, T. Yamashita, H. Sasaki, M. Miura, H. Hiura, M. Okui, and F. Okano, “Integral three-dimensional television with video system using pixel-offset method,” Opt. Express 21, 3474–3485 (2013).
[Crossref]

2010 (1)

T. Koike, K. Utsugi, and M. Oikawa, “Moiré-reduction methods for integral videography autostereoscopic display with color-filter LCD,” J. Soc. Inf. Disp. 18, 678–685 (2010).
[Crossref]

2009 (1)

Y. Kim, G. Park, J.-H. Jung, J. Kim, and B. Lee, “Color moiré pattern simulation and analysis in three-dimensional integral imaging for finding the moiré-reduced tilted angle of a lens array,” Appl. Opt. 48, 2178–2187 (2009).
[Crossref] [PubMed]

2008 (1)

Y. Kim, G. Park, S.-W. Cho, J.-H. Jung, B. Lee, Y. Choi, and M.-G. Lee, “Integral imaging with reduced color moire pattern by using a slanted lens array,” Proc. SPIE 6803, 68031L (2008).
[Crossref]

2007 (1)

H. Liao, T. Dohi, and M. Iwahara, “Improved viewing resolution of integral videography by use of rotated prism sheets,” Opt. Express 15, 4814–4822 (2007).
[Crossref] [PubMed]

2005 (1)

M. Okui, M. Kobayashi, J. Arai, and F. Okano, “Moiré fringe reduction by optical filters in integral three-dimensional imaging on a color flat-panel display,” Appl. Opt. 44, 4475–4483 (2005).
[Crossref] [PubMed]

2004 (2)

H. Liao, M. Iwahara, N. Hata, and T. Dohi, “High-quality integral videography using a multiprojector,” Opt. Express 12, 1067–1076 (2004).
[Crossref]

M. Kanazawa, K. Hamada, I. Kondoh, F. Okano, Y. Haino, and M. Sato, “An ultrahigh-definition display using the pixel-offset method,” J. Soc. Inf. Disp. 12, 93–103 (2004).
[Crossref]

2003 (3)

A. Stern and B. Javidi, “3-D computational synthetic aperture integral imaging (COMPSAII),” Opt. Express 11, 2446–2451 (2003).
[Crossref] [PubMed]

S.-W. Min, B. Javidi, and B. Lee, “Enhanced three-dimensional integral imaging system by use of double display devices,” Appl. Opt. 42, 4186–4195 (2003).
[Crossref] [PubMed]

J. Arai, H. Hoshino, M. Okui, and F. Okano, “Effects of focusing on the resolution characteristics of integral photography,” J. Opt. Soc. Am. A 20, 996–1004 (2003).
[Crossref]

2002 (1)

B. Lee, S.-W. Min, and B. Javidi, “Theoretical analysis for three-dimensional integral imaging systems with double devices,” Appl. Opt. 41, 4856–4865 (2002).
[Crossref] [PubMed]

1999 (2)

F. Okano, J. Arai, H. Hoshino, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38, 1072–1078 (1999).
[Crossref]

R. Börner, “Four autostereoscopic monitors on the level of industrial prototypes,” Displays 20, 57–64 (1999).
[Crossref]

1998 (2)

H. Morishima, H. Nose, N. Taniguchi, K. Inoguchi, and S. Matsumura, “Rear-cross-lenticular 3D display without eyeglasses,” Proc. SPIE 3295, 1–10 (1998).

H. Hoshino, F. Okano, H. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. A 15, 2059–2065 (1998).
[Crossref]

1955 (1)

H. H. Hopkins, “The frequency response of a defocused optical system,” Proc. Royal Soc. Lond. A: Math. Phys. Eng. Sci. 231, 91–103 (1955).
[Crossref]

1931 (1)

T. Smith and J. Guild, “The C.I.E. colorimetric standards and their use,” Transactions Opt. Soc. 33, 73 (1931).
[Crossref]

1908 (1)

G. Lippmann, “Épreuves réversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7, 821–825 (1908).
[Crossref]

Alpaslan, Z. Y.

H. S. El-Ghoroury and Z. Y. Alpaslan, “Quantum photonic imager (QPI): a new display technology and its applications,” in Proceedings of The International Display Workshops, vol. 21 (Institute of Image Information and Television Engineersof Japan and Society of Information Display, 2014), pp. 1292–1295.

Arai, J.

N. Okaichi, M. Miura, J. Arai, M. Kawakita, and T. Mishina, “Integral 3D display using multiple LCD panels and multi-image combining optical system,” Opt. Express 25, 2805–2817 (2017).
[Crossref]

J. Arai, M. Kawakita, T. Yamashita, H. Sasaki, M. Miura, H. Hiura, M. Okui, and F. Okano, “Integral three-dimensional television with video system using pixel-offset method,” Opt. Express 21, 3474–3485 (2013).
[Crossref]

M. Okui, M. Kobayashi, J. Arai, and F. Okano, “Moiré fringe reduction by optical filters in integral three-dimensional imaging on a color flat-panel display,” Appl. Opt. 44, 4475–4483 (2005).
[Crossref] [PubMed]

J. Arai, H. Hoshino, M. Okui, and F. Okano, “Effects of focusing on the resolution characteristics of integral photography,” J. Opt. Soc. Am. A 20, 996–1004 (2003).
[Crossref]

F. Okano, J. Arai, H. Hoshino, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38, 1072–1078 (1999).
[Crossref]

Börner, R.

R. Börner, “Four autostereoscopic monitors on the level of industrial prototypes,” Displays 20, 57–64 (1999).
[Crossref]

Chen, G.

X. Zhang, G. Chen, and H. Liao, “High-quality see-through surgical guidance system using enhanced 3-D autostereoscopic augmented reality,” IEEE Trans. Biomed. Eng. 64, 1815–1825 (2017).
[Crossref]

Z. Fan, G. Chen, Y. Xia, T. Huang, and H. Liao, “Accurate 3D autostereoscopic display using optimized parameters through quantitative calibration,” J. Opt. Soc. Am. A 34, 804–812 (2017).
[Crossref]

Z. Fan, S. Zhang, Y. Weng, G. Chen, and H. Liao, “3D quantitative evaluation system for autostereoscopic display,” J. Disp. Technol. 12, 1185–1196 (2016).
[Crossref]

Cho, S.-W.

Y. Kim, G. Park, S.-W. Cho, J.-H. Jung, B. Lee, Y. Choi, and M.-G. Lee, “Integral imaging with reduced color moire pattern by using a slanted lens array,” Proc. SPIE 6803, 68031L (2008).
[Crossref]

Choi, Y.

Y. Kim, G. Park, S.-W. Cho, J.-H. Jung, B. Lee, Y. Choi, and M.-G. Lee, “Integral imaging with reduced color moire pattern by using a slanted lens array,” Proc. SPIE 6803, 68031L (2008).
[Crossref]

Choi, Y.-J.

J.-Y. Son, V. Saveljev, S.-H. Shin, Y.-J. Choi, and S.-S. Kim, “Moire pattern reduction in full-parallax autostereoscopic imaging systems using two crossed lenticular plates as a viewing zone forming optics,” in Proceedings of The International Display Workshops, vol. 10 (Institute of Image Information and Television Engineers of Japan and Society of Information Display, 2003), pp. 1401–1404.

Dohi, T.

H. Liao, T. Dohi, and M. Iwahara, “Improved viewing resolution of integral videography by use of rotated prism sheets,” Opt. Express 15, 4814–4822 (2007).
[Crossref] [PubMed]

H. Liao, M. Iwahara, N. Hata, and T. Dohi, “High-quality integral videography using a multiprojector,” Opt. Express 12, 1067–1076 (2004).
[Crossref]

Eguchi, S.

S. Kawashima, S. Inoue, M. Shiokawa, A. Suzuki, S. Eguchi, Y. Hirakata, J. Koyama, S. Yamazaki, T. Sato, T. Shigenobu, Y. Ohta, S. Mitsui, N. Ueda, and T. Matsuo, “44.1: Distinguished paper: 13.3-in. 8K x 4K 664-ppi OLED display using CAAC-OS FETs,” SID Symp. Dig. Tech. Pap. 45, 627–630 (2014).
[Crossref]

El-Ghoroury, H. S.

H. S. El-Ghoroury and Z. Y. Alpaslan, “Quantum photonic imager (QPI): a new display technology and its applications,” in Proceedings of The International Display Workshops, vol. 21 (Institute of Image Information and Television Engineersof Japan and Society of Information Display, 2014), pp. 1292–1295.

Fan, Z.

Z. Fan, G. Chen, Y. Xia, T. Huang, and H. Liao, “Accurate 3D autostereoscopic display using optimized parameters through quantitative calibration,” J. Opt. Soc. Am. A 34, 804–812 (2017).
[Crossref]

Z. Fan, S. Zhang, Y. Weng, G. Chen, and H. Liao, “3D quantitative evaluation system for autostereoscopic display,” J. Disp. Technol. 12, 1185–1196 (2016).
[Crossref]

Guild, J.

T. Smith and J. Guild, “The C.I.E. colorimetric standards and their use,” Transactions Opt. Soc. 33, 73 (1931).
[Crossref]

Haino, Y.

M. Kanazawa, K. Hamada, I. Kondoh, F. Okano, Y. Haino, and M. Sato, “An ultrahigh-definition display using the pixel-offset method,” J. Soc. Inf. Disp. 12, 93–103 (2004).
[Crossref]

Hamada, K.

M. Kanazawa, K. Hamada, I. Kondoh, F. Okano, Y. Haino, and M. Sato, “An ultrahigh-definition display using the pixel-offset method,” J. Soc. Inf. Disp. 12, 93–103 (2004).
[Crossref]

Hata, N.

H. Liao, M. Iwahara, N. Hata, and T. Dohi, “High-quality integral videography using a multiprojector,” Opt. Express 12, 1067–1076 (2004).
[Crossref]

Hirakata, Y.

S. Kawashima, S. Inoue, M. Shiokawa, A. Suzuki, S. Eguchi, Y. Hirakata, J. Koyama, S. Yamazaki, T. Sato, T. Shigenobu, Y. Ohta, S. Mitsui, N. Ueda, and T. Matsuo, “44.1: Distinguished paper: 13.3-in. 8K x 4K 664-ppi OLED display using CAAC-OS FETs,” SID Symp. Dig. Tech. Pap. 45, 627–630 (2014).
[Crossref]

Hiura, H.

J. Arai, M. Kawakita, T. Yamashita, H. Sasaki, M. Miura, H. Hiura, M. Okui, and F. Okano, “Integral three-dimensional television with video system using pixel-offset method,” Opt. Express 21, 3474–3485 (2013).
[Crossref]

Hopkins, H. H.

H. H. Hopkins, “The frequency response of a defocused optical system,” Proc. Royal Soc. Lond. A: Math. Phys. Eng. Sci. 231, 91–103 (1955).
[Crossref]

Hoshino, H.

J. Arai, H. Hoshino, M. Okui, and F. Okano, “Effects of focusing on the resolution characteristics of integral photography,” J. Opt. Soc. Am. A 20, 996–1004 (2003).
[Crossref]

F. Okano, J. Arai, H. Hoshino, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38, 1072–1078 (1999).
[Crossref]

H. Hoshino, F. Okano, H. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. A 15, 2059–2065 (1998).
[Crossref]

Huang, T.

Z. Fan, G. Chen, Y. Xia, T. Huang, and H. Liao, “Accurate 3D autostereoscopic display using optimized parameters through quantitative calibration,” J. Opt. Soc. Am. A 34, 804–812 (2017).
[Crossref]

Inoguchi, K.

H. Morishima, H. Nose, N. Taniguchi, K. Inoguchi, and S. Matsumura, “Rear-cross-lenticular 3D display without eyeglasses,” Proc. SPIE 3295, 1–10 (1998).

Inoue, S.

S. Kawashima, S. Inoue, M. Shiokawa, A. Suzuki, S. Eguchi, Y. Hirakata, J. Koyama, S. Yamazaki, T. Sato, T. Shigenobu, Y. Ohta, S. Mitsui, N. Ueda, and T. Matsuo, “44.1: Distinguished paper: 13.3-in. 8K x 4K 664-ppi OLED display using CAAC-OS FETs,” SID Symp. Dig. Tech. Pap. 45, 627–630 (2014).
[Crossref]

Isono, H.

H. Hoshino, F. Okano, H. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. A 15, 2059–2065 (1998).
[Crossref]

Iwahara, M.

H. Liao, T. Dohi, and M. Iwahara, “Improved viewing resolution of integral videography by use of rotated prism sheets,” Opt. Express 15, 4814–4822 (2007).
[Crossref] [PubMed]

H. Liao, M. Iwahara, N. Hata, and T. Dohi, “High-quality integral videography using a multiprojector,” Opt. Express 12, 1067–1076 (2004).
[Crossref]

Javidi, B.

A. Stern and B. Javidi, “3-D computational synthetic aperture integral imaging (COMPSAII),” Opt. Express 11, 2446–2451 (2003).
[Crossref] [PubMed]

S.-W. Min, B. Javidi, and B. Lee, “Enhanced three-dimensional integral imaging system by use of double display devices,” Appl. Opt. 42, 4186–4195 (2003).
[Crossref] [PubMed]

B. Lee, S.-W. Min, and B. Javidi, “Theoretical analysis for three-dimensional integral imaging systems with double devices,” Appl. Opt. 41, 4856–4865 (2002).
[Crossref] [PubMed]

Y. Kim, J.-H. Jung, J.-M. Kang, Y. Kim, B. Lee, and B. Javidi, “Resolution-enhanced three-dimensional integral imaging using double display devices,” in LEOS 2007 - IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings, (IEEE, 2007), pp. 356–357.

Jung, J.-H.

Y. Kim, G. Park, J.-H. Jung, J. Kim, and B. Lee, “Color moiré pattern simulation and analysis in three-dimensional integral imaging for finding the moiré-reduced tilted angle of a lens array,” Appl. Opt. 48, 2178–2187 (2009).
[Crossref] [PubMed]

Y. Kim, G. Park, S.-W. Cho, J.-H. Jung, B. Lee, Y. Choi, and M.-G. Lee, “Integral imaging with reduced color moire pattern by using a slanted lens array,” Proc. SPIE 6803, 68031L (2008).
[Crossref]

Y. Kim, J.-H. Jung, J.-M. Kang, Y. Kim, B. Lee, and B. Javidi, “Resolution-enhanced three-dimensional integral imaging using double display devices,” in LEOS 2007 - IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings, (IEEE, 2007), pp. 356–357.

Kanazawa, M.

M. Kanazawa, K. Hamada, I. Kondoh, F. Okano, Y. Haino, and M. Sato, “An ultrahigh-definition display using the pixel-offset method,” J. Soc. Inf. Disp. 12, 93–103 (2004).
[Crossref]

Kang, J.-M.

Y. Kim, J.-H. Jung, J.-M. Kang, Y. Kim, B. Lee, and B. Javidi, “Resolution-enhanced three-dimensional integral imaging using double display devices,” in LEOS 2007 - IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings, (IEEE, 2007), pp. 356–357.

Kano, M.

H. Sasaki, N. Okaichi, H. Watanabe, M. Kano, M. Miura, M. Kawakita, and T. Mishina, “Color moiré and resolution analysis of multiple integral three-dimensional displays,” in Proceedings of The International Display Workshops, vol. 24 (Institute of Image Information and Television Engineers of Japan and Society of Information Display, 2017), pp. 860–863.

H. Sasaki, N. Okaichi, H. Watanabe, M. Kano, M. Kawakita, and T. Mishina, “Color moiré reduction and resolution enhancement technique for integral three-dimensional display,” in 2017 3DTV Conference: The True Vision-Capture, Transmissionand Display of 3D Video (3DTV-CON), (IEEE, 2017), pp. 1–4.

Kawakita, M.

N. Okaichi, M. Kawakita, H. Sasaki, H. Watanabe, and T. Mishina, “High-quality direct-view display combining multiple integral 3D images,” J. Soc. Inf. Disp. 27, 41–52 (2019).
[Crossref]

N. Okaichi, M. Miura, J. Arai, M. Kawakita, and T. Mishina, “Integral 3D display using multiple LCD panels and multi-image combining optical system,” Opt. Express 25, 2805–2817 (2017).
[Crossref]

J. Arai, M. Kawakita, T. Yamashita, H. Sasaki, M. Miura, H. Hiura, M. Okui, and F. Okano, “Integral three-dimensional television with video system using pixel-offset method,” Opt. Express 21, 3474–3485 (2013).
[Crossref]

H. Sasaki, N. Okaichi, H. Watanabe, M. Kano, M. Miura, M. Kawakita, and T. Mishina, “Color moiré and resolution analysis of multiple integral three-dimensional displays,” in Proceedings of The International Display Workshops, vol. 24 (Institute of Image Information and Television Engineers of Japan and Society of Information Display, 2017), pp. 860–863.

H. Sasaki, N. Okaichi, H. Watanabe, M. Kano, M. Kawakita, and T. Mishina, “Color moiré reduction and resolution enhancement technique for integral three-dimensional display,” in 2017 3DTV Conference: The True Vision-Capture, Transmissionand Display of 3D Video (3DTV-CON), (IEEE, 2017), pp. 1–4.

Kawashima, S.

S. Kawashima, S. Inoue, M. Shiokawa, A. Suzuki, S. Eguchi, Y. Hirakata, J. Koyama, S. Yamazaki, T. Sato, T. Shigenobu, Y. Ohta, S. Mitsui, N. Ueda, and T. Matsuo, “44.1: Distinguished paper: 13.3-in. 8K x 4K 664-ppi OLED display using CAAC-OS FETs,” SID Symp. Dig. Tech. Pap. 45, 627–630 (2014).
[Crossref]

Kim, J.

Y. Kim, G. Park, J.-H. Jung, J. Kim, and B. Lee, “Color moiré pattern simulation and analysis in three-dimensional integral imaging for finding the moiré-reduced tilted angle of a lens array,” Appl. Opt. 48, 2178–2187 (2009).
[Crossref] [PubMed]

Kim, S.-S.

J.-Y. Son, V. Saveljev, S.-H. Shin, Y.-J. Choi, and S.-S. Kim, “Moire pattern reduction in full-parallax autostereoscopic imaging systems using two crossed lenticular plates as a viewing zone forming optics,” in Proceedings of The International Display Workshops, vol. 10 (Institute of Image Information and Television Engineers of Japan and Society of Information Display, 2003), pp. 1401–1404.

Kim, Y.

Y. Kim, G. Park, J.-H. Jung, J. Kim, and B. Lee, “Color moiré pattern simulation and analysis in three-dimensional integral imaging for finding the moiré-reduced tilted angle of a lens array,” Appl. Opt. 48, 2178–2187 (2009).
[Crossref] [PubMed]

Y. Kim, G. Park, S.-W. Cho, J.-H. Jung, B. Lee, Y. Choi, and M.-G. Lee, “Integral imaging with reduced color moire pattern by using a slanted lens array,” Proc. SPIE 6803, 68031L (2008).
[Crossref]

Y. Kim, J.-H. Jung, J.-M. Kang, Y. Kim, B. Lee, and B. Javidi, “Resolution-enhanced three-dimensional integral imaging using double display devices,” in LEOS 2007 - IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings, (IEEE, 2007), pp. 356–357.

Y. Kim, J.-H. Jung, J.-M. Kang, Y. Kim, B. Lee, and B. Javidi, “Resolution-enhanced three-dimensional integral imaging using double display devices,” in LEOS 2007 - IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings, (IEEE, 2007), pp. 356–357.

Kobayashi, M.

M. Okui, M. Kobayashi, J. Arai, and F. Okano, “Moiré fringe reduction by optical filters in integral three-dimensional imaging on a color flat-panel display,” Appl. Opt. 44, 4475–4483 (2005).
[Crossref] [PubMed]

Koike, T.

T. Koike, K. Utsugi, and M. Oikawa, “Moiré-reduction methods for integral videography autostereoscopic display with color-filter LCD,” J. Soc. Inf. Disp. 18, 678–685 (2010).
[Crossref]

Kondoh, I.

M. Kanazawa, K. Hamada, I. Kondoh, F. Okano, Y. Haino, and M. Sato, “An ultrahigh-definition display using the pixel-offset method,” J. Soc. Inf. Disp. 12, 93–103 (2004).
[Crossref]

Koyama, J.

S. Kawashima, S. Inoue, M. Shiokawa, A. Suzuki, S. Eguchi, Y. Hirakata, J. Koyama, S. Yamazaki, T. Sato, T. Shigenobu, Y. Ohta, S. Mitsui, N. Ueda, and T. Matsuo, “44.1: Distinguished paper: 13.3-in. 8K x 4K 664-ppi OLED display using CAAC-OS FETs,” SID Symp. Dig. Tech. Pap. 45, 627–630 (2014).
[Crossref]

Lee, B.

Y. Kim, G. Park, J.-H. Jung, J. Kim, and B. Lee, “Color moiré pattern simulation and analysis in three-dimensional integral imaging for finding the moiré-reduced tilted angle of a lens array,” Appl. Opt. 48, 2178–2187 (2009).
[Crossref] [PubMed]

Y. Kim, G. Park, S.-W. Cho, J.-H. Jung, B. Lee, Y. Choi, and M.-G. Lee, “Integral imaging with reduced color moire pattern by using a slanted lens array,” Proc. SPIE 6803, 68031L (2008).
[Crossref]

S.-W. Min, B. Javidi, and B. Lee, “Enhanced three-dimensional integral imaging system by use of double display devices,” Appl. Opt. 42, 4186–4195 (2003).
[Crossref] [PubMed]

B. Lee, S.-W. Min, and B. Javidi, “Theoretical analysis for three-dimensional integral imaging systems with double devices,” Appl. Opt. 41, 4856–4865 (2002).
[Crossref] [PubMed]

Y. Kim, J.-H. Jung, J.-M. Kang, Y. Kim, B. Lee, and B. Javidi, “Resolution-enhanced three-dimensional integral imaging using double display devices,” in LEOS 2007 - IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings, (IEEE, 2007), pp. 356–357.

Lee, M.-G.

Y. Kim, G. Park, S.-W. Cho, J.-H. Jung, B. Lee, Y. Choi, and M.-G. Lee, “Integral imaging with reduced color moire pattern by using a slanted lens array,” Proc. SPIE 6803, 68031L (2008).
[Crossref]

Li, X.

X. Li, Y. Wang, Q.-H. Wang, Y. Liu, and X. Zhou, “Modified integral imaging reconstruction and encryption using an improved SR reconstruction algorithm,” Opt. Lasers Eng. 112, 162–169 (2019).
[Crossref]

Liao, H.

Z. Fan, G. Chen, Y. Xia, T. Huang, and H. Liao, “Accurate 3D autostereoscopic display using optimized parameters through quantitative calibration,” J. Opt. Soc. Am. A 34, 804–812 (2017).
[Crossref]

X. Zhang, G. Chen, and H. Liao, “High-quality see-through surgical guidance system using enhanced 3-D autostereoscopic augmented reality,” IEEE Trans. Biomed. Eng. 64, 1815–1825 (2017).
[Crossref]

Z. Fan, S. Zhang, Y. Weng, G. Chen, and H. Liao, “3D quantitative evaluation system for autostereoscopic display,” J. Disp. Technol. 12, 1185–1196 (2016).
[Crossref]

H. Liao, T. Dohi, and M. Iwahara, “Improved viewing resolution of integral videography by use of rotated prism sheets,” Opt. Express 15, 4814–4822 (2007).
[Crossref] [PubMed]

H. Liao, M. Iwahara, N. Hata, and T. Dohi, “High-quality integral videography using a multiprojector,” Opt. Express 12, 1067–1076 (2004).
[Crossref]

Lippmann, G.

G. Lippmann, “Épreuves réversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7, 821–825 (1908).
[Crossref]

Liu, Y.

X. Li, Y. Wang, Q.-H. Wang, Y. Liu, and X. Zhou, “Modified integral imaging reconstruction and encryption using an improved SR reconstruction algorithm,” Opt. Lasers Eng. 112, 162–169 (2019).
[Crossref]

Matsumura, S.

H. Morishima, H. Nose, N. Taniguchi, K. Inoguchi, and S. Matsumura, “Rear-cross-lenticular 3D display without eyeglasses,” Proc. SPIE 3295, 1–10 (1998).

Matsuo, T.

S. Kawashima, S. Inoue, M. Shiokawa, A. Suzuki, S. Eguchi, Y. Hirakata, J. Koyama, S. Yamazaki, T. Sato, T. Shigenobu, Y. Ohta, S. Mitsui, N. Ueda, and T. Matsuo, “44.1: Distinguished paper: 13.3-in. 8K x 4K 664-ppi OLED display using CAAC-OS FETs,” SID Symp. Dig. Tech. Pap. 45, 627–630 (2014).
[Crossref]

Min, S.-W.

S.-W. Min, B. Javidi, and B. Lee, “Enhanced three-dimensional integral imaging system by use of double display devices,” Appl. Opt. 42, 4186–4195 (2003).
[Crossref] [PubMed]

B. Lee, S.-W. Min, and B. Javidi, “Theoretical analysis for three-dimensional integral imaging systems with double devices,” Appl. Opt. 41, 4856–4865 (2002).
[Crossref] [PubMed]

Mishina, T.

N. Okaichi, M. Kawakita, H. Sasaki, H. Watanabe, and T. Mishina, “High-quality direct-view display combining multiple integral 3D images,” J. Soc. Inf. Disp. 27, 41–52 (2019).
[Crossref]

N. Okaichi, M. Miura, J. Arai, M. Kawakita, and T. Mishina, “Integral 3D display using multiple LCD panels and multi-image combining optical system,” Opt. Express 25, 2805–2817 (2017).
[Crossref]

H. Sasaki, N. Okaichi, H. Watanabe, M. Kano, M. Kawakita, and T. Mishina, “Color moiré reduction and resolution enhancement technique for integral three-dimensional display,” in 2017 3DTV Conference: The True Vision-Capture, Transmissionand Display of 3D Video (3DTV-CON), (IEEE, 2017), pp. 1–4.

H. Sasaki, N. Okaichi, H. Watanabe, M. Kano, M. Miura, M. Kawakita, and T. Mishina, “Color moiré and resolution analysis of multiple integral three-dimensional displays,” in Proceedings of The International Display Workshops, vol. 24 (Institute of Image Information and Television Engineers of Japan and Society of Information Display, 2017), pp. 860–863.

Mitsui, S.

S. Kawashima, S. Inoue, M. Shiokawa, A. Suzuki, S. Eguchi, Y. Hirakata, J. Koyama, S. Yamazaki, T. Sato, T. Shigenobu, Y. Ohta, S. Mitsui, N. Ueda, and T. Matsuo, “44.1: Distinguished paper: 13.3-in. 8K x 4K 664-ppi OLED display using CAAC-OS FETs,” SID Symp. Dig. Tech. Pap. 45, 627–630 (2014).
[Crossref]

Miura, M.

N. Okaichi, M. Miura, J. Arai, M. Kawakita, and T. Mishina, “Integral 3D display using multiple LCD panels and multi-image combining optical system,” Opt. Express 25, 2805–2817 (2017).
[Crossref]

J. Arai, M. Kawakita, T. Yamashita, H. Sasaki, M. Miura, H. Hiura, M. Okui, and F. Okano, “Integral three-dimensional television with video system using pixel-offset method,” Opt. Express 21, 3474–3485 (2013).
[Crossref]

H. Sasaki, N. Okaichi, H. Watanabe, M. Kano, M. Miura, M. Kawakita, and T. Mishina, “Color moiré and resolution analysis of multiple integral three-dimensional displays,” in Proceedings of The International Display Workshops, vol. 24 (Institute of Image Information and Television Engineers of Japan and Society of Information Display, 2017), pp. 860–863.

Morishima, H.

H. Morishima, H. Nose, N. Taniguchi, K. Inoguchi, and S. Matsumura, “Rear-cross-lenticular 3D display without eyeglasses,” Proc. SPIE 3295, 1–10 (1998).

Nose, H.

H. Morishima, H. Nose, N. Taniguchi, K. Inoguchi, and S. Matsumura, “Rear-cross-lenticular 3D display without eyeglasses,” Proc. SPIE 3295, 1–10 (1998).

Ohta, Y.

S. Kawashima, S. Inoue, M. Shiokawa, A. Suzuki, S. Eguchi, Y. Hirakata, J. Koyama, S. Yamazaki, T. Sato, T. Shigenobu, Y. Ohta, S. Mitsui, N. Ueda, and T. Matsuo, “44.1: Distinguished paper: 13.3-in. 8K x 4K 664-ppi OLED display using CAAC-OS FETs,” SID Symp. Dig. Tech. Pap. 45, 627–630 (2014).
[Crossref]

Oikawa, M.

T. Koike, K. Utsugi, and M. Oikawa, “Moiré-reduction methods for integral videography autostereoscopic display with color-filter LCD,” J. Soc. Inf. Disp. 18, 678–685 (2010).
[Crossref]

Okaichi, N.

N. Okaichi, M. Kawakita, H. Sasaki, H. Watanabe, and T. Mishina, “High-quality direct-view display combining multiple integral 3D images,” J. Soc. Inf. Disp. 27, 41–52 (2019).
[Crossref]

N. Okaichi, M. Miura, J. Arai, M. Kawakita, and T. Mishina, “Integral 3D display using multiple LCD panels and multi-image combining optical system,” Opt. Express 25, 2805–2817 (2017).
[Crossref]

H. Sasaki, N. Okaichi, H. Watanabe, M. Kano, M. Miura, M. Kawakita, and T. Mishina, “Color moiré and resolution analysis of multiple integral three-dimensional displays,” in Proceedings of The International Display Workshops, vol. 24 (Institute of Image Information and Television Engineers of Japan and Society of Information Display, 2017), pp. 860–863.

H. Sasaki, N. Okaichi, H. Watanabe, M. Kano, M. Kawakita, and T. Mishina, “Color moiré reduction and resolution enhancement technique for integral three-dimensional display,” in 2017 3DTV Conference: The True Vision-Capture, Transmissionand Display of 3D Video (3DTV-CON), (IEEE, 2017), pp. 1–4.

Okano, F.

J. Arai, M. Kawakita, T. Yamashita, H. Sasaki, M. Miura, H. Hiura, M. Okui, and F. Okano, “Integral three-dimensional television with video system using pixel-offset method,” Opt. Express 21, 3474–3485 (2013).
[Crossref]

M. Okui, M. Kobayashi, J. Arai, and F. Okano, “Moiré fringe reduction by optical filters in integral three-dimensional imaging on a color flat-panel display,” Appl. Opt. 44, 4475–4483 (2005).
[Crossref] [PubMed]

M. Kanazawa, K. Hamada, I. Kondoh, F. Okano, Y. Haino, and M. Sato, “An ultrahigh-definition display using the pixel-offset method,” J. Soc. Inf. Disp. 12, 93–103 (2004).
[Crossref]

J. Arai, H. Hoshino, M. Okui, and F. Okano, “Effects of focusing on the resolution characteristics of integral photography,” J. Opt. Soc. Am. A 20, 996–1004 (2003).
[Crossref]

F. Okano, J. Arai, H. Hoshino, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38, 1072–1078 (1999).
[Crossref]

H. Hoshino, F. Okano, H. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. A 15, 2059–2065 (1998).
[Crossref]

Okui, M.

J. Arai, M. Kawakita, T. Yamashita, H. Sasaki, M. Miura, H. Hiura, M. Okui, and F. Okano, “Integral three-dimensional television with video system using pixel-offset method,” Opt. Express 21, 3474–3485 (2013).
[Crossref]

M. Okui, M. Kobayashi, J. Arai, and F. Okano, “Moiré fringe reduction by optical filters in integral three-dimensional imaging on a color flat-panel display,” Appl. Opt. 44, 4475–4483 (2005).
[Crossref] [PubMed]

J. Arai, H. Hoshino, M. Okui, and F. Okano, “Effects of focusing on the resolution characteristics of integral photography,” J. Opt. Soc. Am. A 20, 996–1004 (2003).
[Crossref]

Park, G.

Y. Kim, G. Park, J.-H. Jung, J. Kim, and B. Lee, “Color moiré pattern simulation and analysis in three-dimensional integral imaging for finding the moiré-reduced tilted angle of a lens array,” Appl. Opt. 48, 2178–2187 (2009).
[Crossref] [PubMed]

Y. Kim, G. Park, S.-W. Cho, J.-H. Jung, B. Lee, Y. Choi, and M.-G. Lee, “Integral imaging with reduced color moire pattern by using a slanted lens array,” Proc. SPIE 6803, 68031L (2008).
[Crossref]

Sasaki, H.

N. Okaichi, M. Kawakita, H. Sasaki, H. Watanabe, and T. Mishina, “High-quality direct-view display combining multiple integral 3D images,” J. Soc. Inf. Disp. 27, 41–52 (2019).
[Crossref]

J. Arai, M. Kawakita, T. Yamashita, H. Sasaki, M. Miura, H. Hiura, M. Okui, and F. Okano, “Integral three-dimensional television with video system using pixel-offset method,” Opt. Express 21, 3474–3485 (2013).
[Crossref]

H. Sasaki, N. Okaichi, H. Watanabe, M. Kano, M. Kawakita, and T. Mishina, “Color moiré reduction and resolution enhancement technique for integral three-dimensional display,” in 2017 3DTV Conference: The True Vision-Capture, Transmissionand Display of 3D Video (3DTV-CON), (IEEE, 2017), pp. 1–4.

H. Sasaki, N. Okaichi, H. Watanabe, M. Kano, M. Miura, M. Kawakita, and T. Mishina, “Color moiré and resolution analysis of multiple integral three-dimensional displays,” in Proceedings of The International Display Workshops, vol. 24 (Institute of Image Information and Television Engineers of Japan and Society of Information Display, 2017), pp. 860–863.

Sato, M.

M. Kanazawa, K. Hamada, I. Kondoh, F. Okano, Y. Haino, and M. Sato, “An ultrahigh-definition display using the pixel-offset method,” J. Soc. Inf. Disp. 12, 93–103 (2004).
[Crossref]

Sato, T.

S. Kawashima, S. Inoue, M. Shiokawa, A. Suzuki, S. Eguchi, Y. Hirakata, J. Koyama, S. Yamazaki, T. Sato, T. Shigenobu, Y. Ohta, S. Mitsui, N. Ueda, and T. Matsuo, “44.1: Distinguished paper: 13.3-in. 8K x 4K 664-ppi OLED display using CAAC-OS FETs,” SID Symp. Dig. Tech. Pap. 45, 627–630 (2014).
[Crossref]

Saveljev, V.

J.-Y. Son, V. Saveljev, S.-H. Shin, Y.-J. Choi, and S.-S. Kim, “Moire pattern reduction in full-parallax autostereoscopic imaging systems using two crossed lenticular plates as a viewing zone forming optics,” in Proceedings of The International Display Workshops, vol. 10 (Institute of Image Information and Television Engineers of Japan and Society of Information Display, 2003), pp. 1401–1404.

Shigenobu, T.

S. Kawashima, S. Inoue, M. Shiokawa, A. Suzuki, S. Eguchi, Y. Hirakata, J. Koyama, S. Yamazaki, T. Sato, T. Shigenobu, Y. Ohta, S. Mitsui, N. Ueda, and T. Matsuo, “44.1: Distinguished paper: 13.3-in. 8K x 4K 664-ppi OLED display using CAAC-OS FETs,” SID Symp. Dig. Tech. Pap. 45, 627–630 (2014).
[Crossref]

Shin, S.-H.

J.-Y. Son, V. Saveljev, S.-H. Shin, Y.-J. Choi, and S.-S. Kim, “Moire pattern reduction in full-parallax autostereoscopic imaging systems using two crossed lenticular plates as a viewing zone forming optics,” in Proceedings of The International Display Workshops, vol. 10 (Institute of Image Information and Television Engineers of Japan and Society of Information Display, 2003), pp. 1401–1404.

Shiokawa, M.

S. Kawashima, S. Inoue, M. Shiokawa, A. Suzuki, S. Eguchi, Y. Hirakata, J. Koyama, S. Yamazaki, T. Sato, T. Shigenobu, Y. Ohta, S. Mitsui, N. Ueda, and T. Matsuo, “44.1: Distinguished paper: 13.3-in. 8K x 4K 664-ppi OLED display using CAAC-OS FETs,” SID Symp. Dig. Tech. Pap. 45, 627–630 (2014).
[Crossref]

Smith, T.

T. Smith and J. Guild, “The C.I.E. colorimetric standards and their use,” Transactions Opt. Soc. 33, 73 (1931).
[Crossref]

Son, J.-Y.

J.-Y. Son, V. Saveljev, S.-H. Shin, Y.-J. Choi, and S.-S. Kim, “Moire pattern reduction in full-parallax autostereoscopic imaging systems using two crossed lenticular plates as a viewing zone forming optics,” in Proceedings of The International Display Workshops, vol. 10 (Institute of Image Information and Television Engineers of Japan and Society of Information Display, 2003), pp. 1401–1404.

Stern, A.

A. Stern and B. Javidi, “3-D computational synthetic aperture integral imaging (COMPSAII),” Opt. Express 11, 2446–2451 (2003).
[Crossref] [PubMed]

Suzuki, A.

S. Kawashima, S. Inoue, M. Shiokawa, A. Suzuki, S. Eguchi, Y. Hirakata, J. Koyama, S. Yamazaki, T. Sato, T. Shigenobu, Y. Ohta, S. Mitsui, N. Ueda, and T. Matsuo, “44.1: Distinguished paper: 13.3-in. 8K x 4K 664-ppi OLED display using CAAC-OS FETs,” SID Symp. Dig. Tech. Pap. 45, 627–630 (2014).
[Crossref]

Taniguchi, N.

H. Morishima, H. Nose, N. Taniguchi, K. Inoguchi, and S. Matsumura, “Rear-cross-lenticular 3D display without eyeglasses,” Proc. SPIE 3295, 1–10 (1998).

Ueda, N.

S. Kawashima, S. Inoue, M. Shiokawa, A. Suzuki, S. Eguchi, Y. Hirakata, J. Koyama, S. Yamazaki, T. Sato, T. Shigenobu, Y. Ohta, S. Mitsui, N. Ueda, and T. Matsuo, “44.1: Distinguished paper: 13.3-in. 8K x 4K 664-ppi OLED display using CAAC-OS FETs,” SID Symp. Dig. Tech. Pap. 45, 627–630 (2014).
[Crossref]

Utsugi, K.

T. Koike, K. Utsugi, and M. Oikawa, “Moiré-reduction methods for integral videography autostereoscopic display with color-filter LCD,” J. Soc. Inf. Disp. 18, 678–685 (2010).
[Crossref]

Wang, Q.-H.

X. Li, Y. Wang, Q.-H. Wang, Y. Liu, and X. Zhou, “Modified integral imaging reconstruction and encryption using an improved SR reconstruction algorithm,” Opt. Lasers Eng. 112, 162–169 (2019).
[Crossref]

Wang, Y.

X. Li, Y. Wang, Q.-H. Wang, Y. Liu, and X. Zhou, “Modified integral imaging reconstruction and encryption using an improved SR reconstruction algorithm,” Opt. Lasers Eng. 112, 162–169 (2019).
[Crossref]

Watanabe, H.

N. Okaichi, M. Kawakita, H. Sasaki, H. Watanabe, and T. Mishina, “High-quality direct-view display combining multiple integral 3D images,” J. Soc. Inf. Disp. 27, 41–52 (2019).
[Crossref]

H. Sasaki, N. Okaichi, H. Watanabe, M. Kano, M. Kawakita, and T. Mishina, “Color moiré reduction and resolution enhancement technique for integral three-dimensional display,” in 2017 3DTV Conference: The True Vision-Capture, Transmissionand Display of 3D Video (3DTV-CON), (IEEE, 2017), pp. 1–4.

H. Sasaki, N. Okaichi, H. Watanabe, M. Kano, M. Miura, M. Kawakita, and T. Mishina, “Color moiré and resolution analysis of multiple integral three-dimensional displays,” in Proceedings of The International Display Workshops, vol. 24 (Institute of Image Information and Television Engineers of Japan and Society of Information Display, 2017), pp. 860–863.

Weng, Y.

Z. Fan, S. Zhang, Y. Weng, G. Chen, and H. Liao, “3D quantitative evaluation system for autostereoscopic display,” J. Disp. Technol. 12, 1185–1196 (2016).
[Crossref]

Xia, Y.

Z. Fan, G. Chen, Y. Xia, T. Huang, and H. Liao, “Accurate 3D autostereoscopic display using optimized parameters through quantitative calibration,” J. Opt. Soc. Am. A 34, 804–812 (2017).
[Crossref]

Yamashita, T.

J. Arai, M. Kawakita, T. Yamashita, H. Sasaki, M. Miura, H. Hiura, M. Okui, and F. Okano, “Integral three-dimensional television with video system using pixel-offset method,” Opt. Express 21, 3474–3485 (2013).
[Crossref]

Yamazaki, S.

S. Kawashima, S. Inoue, M. Shiokawa, A. Suzuki, S. Eguchi, Y. Hirakata, J. Koyama, S. Yamazaki, T. Sato, T. Shigenobu, Y. Ohta, S. Mitsui, N. Ueda, and T. Matsuo, “44.1: Distinguished paper: 13.3-in. 8K x 4K 664-ppi OLED display using CAAC-OS FETs,” SID Symp. Dig. Tech. Pap. 45, 627–630 (2014).
[Crossref]

Yuyama, I.

F. Okano, J. Arai, H. Hoshino, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38, 1072–1078 (1999).
[Crossref]

H. Hoshino, F. Okano, H. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. A 15, 2059–2065 (1998).
[Crossref]

Zhang, S.

Z. Fan, S. Zhang, Y. Weng, G. Chen, and H. Liao, “3D quantitative evaluation system for autostereoscopic display,” J. Disp. Technol. 12, 1185–1196 (2016).
[Crossref]

Zhang, X.

X. Zhang, G. Chen, and H. Liao, “High-quality see-through surgical guidance system using enhanced 3-D autostereoscopic augmented reality,” IEEE Trans. Biomed. Eng. 64, 1815–1825 (2017).
[Crossref]

Zhou, X.

X. Li, Y. Wang, Q.-H. Wang, Y. Liu, and X. Zhou, “Modified integral imaging reconstruction and encryption using an improved SR reconstruction algorithm,” Opt. Lasers Eng. 112, 162–169 (2019).
[Crossref]

Appl. Opt. (4)

M. Okui, M. Kobayashi, J. Arai, and F. Okano, “Moiré fringe reduction by optical filters in integral three-dimensional imaging on a color flat-panel display,” Appl. Opt. 44, 4475–4483 (2005).
[Crossref] [PubMed]

Y. Kim, G. Park, J.-H. Jung, J. Kim, and B. Lee, “Color moiré pattern simulation and analysis in three-dimensional integral imaging for finding the moiré-reduced tilted angle of a lens array,” Appl. Opt. 48, 2178–2187 (2009).
[Crossref] [PubMed]

B. Lee, S.-W. Min, and B. Javidi, “Theoretical analysis for three-dimensional integral imaging systems with double devices,” Appl. Opt. 41, 4856–4865 (2002).
[Crossref] [PubMed]

S.-W. Min, B. Javidi, and B. Lee, “Enhanced three-dimensional integral imaging system by use of double display devices,” Appl. Opt. 42, 4186–4195 (2003).
[Crossref] [PubMed]

Displays (1)

R. Börner, “Four autostereoscopic monitors on the level of industrial prototypes,” Displays 20, 57–64 (1999).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

X. Zhang, G. Chen, and H. Liao, “High-quality see-through surgical guidance system using enhanced 3-D autostereoscopic augmented reality,” IEEE Trans. Biomed. Eng. 64, 1815–1825 (2017).
[Crossref]

J. Disp. Technol. (1)

Z. Fan, S. Zhang, Y. Weng, G. Chen, and H. Liao, “3D quantitative evaluation system for autostereoscopic display,” J. Disp. Technol. 12, 1185–1196 (2016).
[Crossref]

J. Opt. Soc. Am. A (3)

Z. Fan, G. Chen, Y. Xia, T. Huang, and H. Liao, “Accurate 3D autostereoscopic display using optimized parameters through quantitative calibration,” J. Opt. Soc. Am. A 34, 804–812 (2017).
[Crossref]

H. Hoshino, F. Okano, H. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. A 15, 2059–2065 (1998).
[Crossref]

J. Arai, H. Hoshino, M. Okui, and F. Okano, “Effects of focusing on the resolution characteristics of integral photography,” J. Opt. Soc. Am. A 20, 996–1004 (2003).
[Crossref]

J. Phys. Theor. Appl. (1)

G. Lippmann, “Épreuves réversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7, 821–825 (1908).
[Crossref]

J. Soc. Inf. Disp. (3)

T. Koike, K. Utsugi, and M. Oikawa, “Moiré-reduction methods for integral videography autostereoscopic display with color-filter LCD,” J. Soc. Inf. Disp. 18, 678–685 (2010).
[Crossref]

N. Okaichi, M. Kawakita, H. Sasaki, H. Watanabe, and T. Mishina, “High-quality direct-view display combining multiple integral 3D images,” J. Soc. Inf. Disp. 27, 41–52 (2019).
[Crossref]

M. Kanazawa, K. Hamada, I. Kondoh, F. Okano, Y. Haino, and M. Sato, “An ultrahigh-definition display using the pixel-offset method,” J. Soc. Inf. Disp. 12, 93–103 (2004).
[Crossref]

Opt. Eng. (1)

F. Okano, J. Arai, H. Hoshino, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38, 1072–1078 (1999).
[Crossref]

Opt. Express (5)

N. Okaichi, M. Miura, J. Arai, M. Kawakita, and T. Mishina, “Integral 3D display using multiple LCD panels and multi-image combining optical system,” Opt. Express 25, 2805–2817 (2017).
[Crossref]

H. Liao, T. Dohi, and M. Iwahara, “Improved viewing resolution of integral videography by use of rotated prism sheets,” Opt. Express 15, 4814–4822 (2007).
[Crossref] [PubMed]

H. Liao, M. Iwahara, N. Hata, and T. Dohi, “High-quality integral videography using a multiprojector,” Opt. Express 12, 1067–1076 (2004).
[Crossref]

A. Stern and B. Javidi, “3-D computational synthetic aperture integral imaging (COMPSAII),” Opt. Express 11, 2446–2451 (2003).
[Crossref] [PubMed]

J. Arai, M. Kawakita, T. Yamashita, H. Sasaki, M. Miura, H. Hiura, M. Okui, and F. Okano, “Integral three-dimensional television with video system using pixel-offset method,” Opt. Express 21, 3474–3485 (2013).
[Crossref]

Opt. Lasers Eng. (1)

X. Li, Y. Wang, Q.-H. Wang, Y. Liu, and X. Zhou, “Modified integral imaging reconstruction and encryption using an improved SR reconstruction algorithm,” Opt. Lasers Eng. 112, 162–169 (2019).
[Crossref]

Proc. Royal Soc. Lond. A: Math. Phys. Eng. Sci. (1)

H. H. Hopkins, “The frequency response of a defocused optical system,” Proc. Royal Soc. Lond. A: Math. Phys. Eng. Sci. 231, 91–103 (1955).
[Crossref]

Proc. SPIE (2)

Y. Kim, G. Park, S.-W. Cho, J.-H. Jung, B. Lee, Y. Choi, and M.-G. Lee, “Integral imaging with reduced color moire pattern by using a slanted lens array,” Proc. SPIE 6803, 68031L (2008).
[Crossref]

H. Morishima, H. Nose, N. Taniguchi, K. Inoguchi, and S. Matsumura, “Rear-cross-lenticular 3D display without eyeglasses,” Proc. SPIE 3295, 1–10 (1998).

SID Symp. Dig. Tech. Pap. (1)

S. Kawashima, S. Inoue, M. Shiokawa, A. Suzuki, S. Eguchi, Y. Hirakata, J. Koyama, S. Yamazaki, T. Sato, T. Shigenobu, Y. Ohta, S. Mitsui, N. Ueda, and T. Matsuo, “44.1: Distinguished paper: 13.3-in. 8K x 4K 664-ppi OLED display using CAAC-OS FETs,” SID Symp. Dig. Tech. Pap. 45, 627–630 (2014).
[Crossref]

Transactions Opt. Soc. (1)

T. Smith and J. Guild, “The C.I.E. colorimetric standards and their use,” Transactions Opt. Soc. 33, 73 (1931).
[Crossref]

Other (6)

Radiocommunication Sector of International Telecommunication Union, “Parameter values for the HDTV standards for production and international programme exchange,” Recomm. ITU-RBT.709 (2015).

H. Sasaki, N. Okaichi, H. Watanabe, M. Kano, M. Kawakita, and T. Mishina, “Color moiré reduction and resolution enhancement technique for integral three-dimensional display,” in 2017 3DTV Conference: The True Vision-Capture, Transmissionand Display of 3D Video (3DTV-CON), (IEEE, 2017), pp. 1–4.

H. Sasaki, N. Okaichi, H. Watanabe, M. Kano, M. Miura, M. Kawakita, and T. Mishina, “Color moiré and resolution analysis of multiple integral three-dimensional displays,” in Proceedings of The International Display Workshops, vol. 24 (Institute of Image Information and Television Engineers of Japan and Society of Information Display, 2017), pp. 860–863.

J.-Y. Son, V. Saveljev, S.-H. Shin, Y.-J. Choi, and S.-S. Kim, “Moire pattern reduction in full-parallax autostereoscopic imaging systems using two crossed lenticular plates as a viewing zone forming optics,” in Proceedings of The International Display Workshops, vol. 10 (Institute of Image Information and Television Engineers of Japan and Society of Information Display, 2003), pp. 1401–1404.

H. S. El-Ghoroury and Z. Y. Alpaslan, “Quantum photonic imager (QPI): a new display technology and its applications,” in Proceedings of The International Display Workshops, vol. 21 (Institute of Image Information and Television Engineersof Japan and Society of Information Display, 2014), pp. 1292–1295.

Y. Kim, J.-H. Jung, J.-M. Kang, Y. Kim, B. Lee, and B. Javidi, “Resolution-enhanced three-dimensional integral imaging using double display devices,” in LEOS 2007 - IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings, (IEEE, 2007), pp. 356–357.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 (a) Occurrence of color moiré, (b) Spatial luminance distribution on a multiple combined display panel (equivalent representations).
Fig. 2
Fig. 2 (a) Composition of a triple-unit combination, (b) Spatial distribution of the color moiré and schematic of the suppression by a triple-unit combination.
Fig. 3
Fig. 3 Relationship between the radius of the elemental-lens confusion circle and the moiré modulation degree.
Fig. 4
Fig. 4 (a) Lens-shift combination with triple-unit and (b) its displayable spatial frequency bandwidth.
Fig. 5
Fig. 5 Resolution characteristics of the lens-shift combination by the triple-unit in the (a) horizontal and (b) vertical directions.
Fig. 6
Fig. 6 Relationship between the depth position of the reconstructed image and its frequency limitation. The viewing distance from the lens array is L = 100 mm.
Fig. 7
Fig. 7 MTFs of the 3D image displayed at position, z = ±80 mm. The viewing distance from the lens array is L = 1000 mm.
Fig. 8
Fig. 8 Prototype triple-unit combination optical systems.
Fig. 9
Fig. 9 Results of the color moiré, when the entire white is displayed by enlarging a part of the lens array, i.e., 20 × 15 lenses. (a) Single display, (b) Double-unit combination, (c) Triple-unit combination; (d) Normalized average luminance profile by extracting the B- channel alone; (e) Chromaticity diagram of the color moiré.
Fig. 10
Fig. 10 Experimental results of the resolution-chart display by single- and triple-unit displays. Enlargement of the star-chart parts of the lens array, i.e., 61×70 lenses in a single-unit. (a) and (c) Single-unit, and (b) and (d) Triple-unit combined display; The star charts in (a) and (b) are displayed at z = 0 mm, whereas in (c) and (d) they are displayed at z = 80 mm.
Fig. 11
Fig. 11 3D-real-video-image display experiment with ρ ≈ −0.6 pixels. (a) and (d) Experimental results for a single-unit display; (b), (c), and (e) Results of a triple-unit display; (d) and (e) are the enlarged views of (a) and (b); (c) is from other view point (left direction); respectively. Motion parallax can be confirmed.
Fig. 12
Fig. 12 Normalized average luminance profile (B-channel alone) of the blue-background part of Figs. 11(a) and 11(b).

Tables (2)

Tables Icon

Table 1 Specifications of lens array in the experimental setup.

Tables Icon

Table 2 Specifications of display panel in the experimental setup.

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

f moir e = min  | f p x n f L x | ,
c 1 ( x ) = c 0 3 [ F ( 0 ) + 2 n = 1 sinc ( n 3 ) cos  ( 2 π n x P p x ) F ( 2 π n ) ] ,
F ( 2 π n ) = 2 J 1 ( 2 π n ρ ) 2 π n ρ .
ρ = d 2 [ ( 1 l f 1 L ) g 1 ] .
m ( c 1 ) = max  { c 1 ( x ) } min  { c 1 ( x ) } max  { c 1 ( x ) } + min  { c 1 ( x ) } .
c 2 ( x ) = c 1 ( x ) + c 1 ( x + P p x / 2 ) ,
c 3 ( x ) = c 1 ( x ) + c 1 ( x + P p x / 3 ) + c 1 ( x + 2 P p x / 3 ) .
h 31 ( x , y ) = comb ( x δ x , y δ y ) + comb ( x δ x / 2 δ x , y δ y / 2 δ y ) ,
h 32 ( x , y ) = h 31 ( x , y δ y 3 ) = comb ( x δ x , y δ y / 3 δ y ) + comb ( x δ x / 2 δ x , y 5 δ y / 6 δ y ) ,
h 33 ( x , y ) = h 31 ( x , y + δ y 3 ) = comb ( x δ x , y + δ y / 3 δ y ) + comb ( x δ x / 2 δ x , y δ y / 6 δ y ) .
H 31 ( u , v ) = | δ x u δ y v | comb ( δ x u , δ y v ) [ 1 + exp  ( i π δ x u ) exp  ( i π δ y v ) ] ,
H 32 ( u , v ) = | δ x u δ y v | comb ( δ x u , δ y v ) [ exp  ( 2 i π δ y v 3 ) + exp  ( i π δ x u ) exp  ( 5 i π δ y v 3 ) ] ,
H 33 ( u , v ) = | δ x u δ y v | comb ( δ x u , δ y v ) [ exp  ( 2 i π δ y v 3 ) + exp  ( i π δ x u ) exp  ( i π δ y v 3 ) ] .
H 3 ( u , v ) = H 31 ( u , v ) + H 32 ( u , v ) + H 33 ( u , v ) .
D a ( f ) = | 2 J 1 ( π d f ) π d f | .
α = ν | g | ,
α max  = | g | / 2 P p .
β ( z ) = α ( L z ) / | z | .
β nyq = L / 2 P L .
β a = 1.22 L / d .
β lim ( z ) = min  { β ( z ) , β nyq , β a } .
D L z ( α ) = | 1 π r 2 pupil exp  [ 2 i π α x ϵ ( z ) ] d x d y | = | 4 π r b ( K 1 cos  b α λ 2 K 2 sin  b α λ 2 ) | ,
K 1 = 2 [ J 1 ( r b ) ( θ 2 + sin  2 θ 4 ) J 3 ( r b ) ( sin  2 θ 4 + sin  4 θ 8 ) + J 5 ( r b ) ( sin  4 θ 8 + sin  6 θ 12 ) ] ,
K 2 = J 0 ( r b ) sin   θ 2 [ J 2 ( r b ) ( sin   θ 2 + sin   3 θ 6 ) J 4 ( r b ) ( sin   3 θ 6 + sin   5 θ 10 ) + J 6 ( r b ) ( sin   5 θ 10 + sin   7 θ 14 ) ] ,
ϵ ( z ) = | 1 / g 1 / z 1 / l f | ,
D p ( α ) = | sinc ( α w p x / | g | ) | ;
D z ( α ) = D L z ( α ) D p ( α ) .

Metrics