Abstract

In the upcoming 5G systems, the use of optical attocells will be largely exploited, with the aim of extending connectivity to multiple users, while reducing coverage holes in indoor environments. The deployment of light emitting diodes (LEDs) should be well considered in order to use the optimal number of attocells to guarantee both illumination and connectivity, as a large and unnecessary number of attocells in a room is not useful and can cause interference among neighboring lighting cells. On the other hand, a low number of LEDs may not guarantee the whole illumination/data coverage, causing outage to users attempting to access the medium. In this paper, we investigate the problem of optimal LEDs placement in indoor environments, subject to constraints on illumination and outage based on user data rate. Two approaches are introduced, focusing on (i) the minimization of the number of LEDs to be used to provide required services, and (ii) the maximization of number of users to be served with a fixed number of LEDs, respectively. Numerical results are carried out in different room scenarios, which distinguish from the probability density function of users laying in such environments.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Resource allocation in a multi-color DS-OCDMA VLC cellular architecture

Marwan Hammouda, Anna Maria Vegni, Jürgen Peissig, and Mauro Biagi
Opt. Express 26(5) 5940-5961 (2018)

Smart LED allocation scheme for efficient multiuser visible light communication networks

Atul Sewaiwar, Samrat Vikramaditya Tiwari, and Yeon Ho Chung
Opt. Express 23(10) 13015-13024 (2015)

Hybrid Visible Light and Power Line Communication for Indoor Multiuser Downlink

Hao Ma, Lutz Lampe, and Steve Hranilovic
J. Opt. Commun. Netw. 9(8) 635-647 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. B. Rahaim and T. D. C. Little, “Toward practical integration of dual-use VLC within 5G networks,” IEEE Wireless Commun. 22(4), 97–103 (2015).
    [Crossref]
  2. L. Feng, R. Q. Hu, J. Wang, P. Xu, and Y. Qian, “Applying VLC in 5G networks: architectures and key technologies,” IEEE Network 30(6), 77–83 (2016).
    [Crossref]
  3. M. Ismail, M. Zeeshan Shakir, K. A. Qaraqe, and E. Serpedin, “Radio frequency and visible light communication internetworking,” in IEEE Green Heterog. Wireless Networks, (Wiley-IEEE Press, 2016).
    [Crossref]
  4. J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun. 11(3), 367–379 (1993).
    [Crossref]
  5. H. Haas, “High-speed wireless networking using visible light,” SPIE Newsroom,  1, 1–3 (2013).
  6. S. Pergoloni, M. Biagi, S. Colonnese, R. Cusani, and G. Scarano, “Optimized LEDs footprinting for indoor visible light communication networks,” IEEE Photon. Technol. Lett. 28(4), 532–535 (2016).
    [Crossref]
  7. T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consumer Electron. 50(1), 100–107 (2004).
    [Crossref]
  8. C. Chen, D. A. Basnayaka, and H. Haas, “Downlink performance of optical attocell networks,” J. Lightweight Technol. 34(1), 137–156 (2016).
    [Crossref]
  9. Z. Wang, C. Yu, W.-D Zhong, J. Chen, and W. Chen, “Performance of a novel LED lamp arrangement to reduce SNR fluctuation for multi-user visible light communication systems,” Opt. Express,  20, 4564–4573 (2012).
    [Crossref] [PubMed]
  10. I. Stefan and H. Haas, “Analysis of optimal placement of LED arrays for visible light communication,” in “Proc. of IEEE 77th Vehicular Technology Conference (VTC Spring)”, Dresden, 1–5 (2013).
  11. H. Chowdhury and M. Katz, “Data download on move in indoor hybrid (radio-optical) WLAN-VLC hotspot coverages,” in “Proc. of IEEE 77th Vehicular Technology Conference (VTC Spring)”, Dresden, 1–5 (2013).
  12. M. R. Zenaidi, Z. Rezki, M. Abdallah, K. A. Qaraqe, and M. S. Alouini, “Achievable rate-region of VLC/RF communications with an energy harvesting relay,” in “Proc. of GLOBECOM 2017 – 2017 IEEE Global Communications Conference”, Singapore, 1–7 (2017).
  13. X. Bao, X. Zhu, T. Song, and Y. Ou, “Protocol design and capacity analysis in hybrid network of visible light communication and OFDMA systems,” IEEE Trans. Vehicular Technol. 63(4), 1770–1778 (2014).
    [Crossref]
  14. H. Tabassum and E. Hossain, “Coverage and rate analysis for co-existing RF/VLC downlink cellular networks,” IEEE Trans. Wireless Commun. 17(4), 2588–2601 (2018).
    [Crossref]
  15. A. Vavoulas, H. G. Sandalidis, T. A. Tsiftsis, and N. Vaiopoulos, “Coverage aspects of indoor VLC networks,” J. Lightwave Technol. 33(23), 4915–4921 (2015).
    [Crossref]
  16. L. Yin and H. Haas, “Coverage analysis of multiuser visible light communication networks,” IEEE Trans. Wireless Commun. 17(3), 1630–1643 (2018).
    [Crossref]
  17. Shashikant, R. Saini, and A. Gupta, “Comparative analysis of coverage aspects for various LEDs placement schemes in indoor VLC system,” in “Proc. of 2nd International Conference for Convergence in Technology (I2CT)”, Mumbai, 487–491 (2017).
  18. Shashikant, P. Garg, and A. Gupta, “Comparative analysis of hexagonal VLC nodes deployment schemes,” in “Proc. of 4th International Conference on Signal Processing, Computing and Control (ISPCC)”, Solan, 368–372 (2017).
  19. S. Menounou, A. N. Stassinakis, H. E. Nistazakis, G. S. Tombras, and H. G. Sandalidis, “Coverage area estimation for high performance eSSK visible light communication systems,” in “Proc. of Panhellenic Conference on Electronics and Telecommunications (PACET)”, Xanthi, 1–4 (2017).
  20. C. Chen, W. D. Zhong, and Dehao Wu, “Communication coverage improvement of indoor SDM-VLC system using NHS-OFDM with a modified imaging receiver,” in “Proc. of IEEE International Conference on Communications Workshops (ICC)”, Kuala Lumpur, 315–320 (2016).
  21. C. Chen, W. D. Zhong, and D. Wu, “On the coverage of multiple-input multiple-output visible light communications [Invited],” J. Opt. Commun. Network. 9(9), 31–41 (2017).
    [Crossref]
  22. A. Garcia-Armada, “SNR gap approximation for M-PSK-based bit loading,” IEEE Trans. Wireless Commun. 5(1), 57–60 (2006).
    [Crossref]
  23. A.M. Vegni, M. Hammouda, J. Peissig, and M. Biagi, “Resource Allocation in a multi-color DS-OCDMA VLC Cellular Architecture,” Opt. Express 26(5), 5940–5961 (2018).
    [Crossref] [PubMed]

2018 (3)

H. Tabassum and E. Hossain, “Coverage and rate analysis for co-existing RF/VLC downlink cellular networks,” IEEE Trans. Wireless Commun. 17(4), 2588–2601 (2018).
[Crossref]

L. Yin and H. Haas, “Coverage analysis of multiuser visible light communication networks,” IEEE Trans. Wireless Commun. 17(3), 1630–1643 (2018).
[Crossref]

A.M. Vegni, M. Hammouda, J. Peissig, and M. Biagi, “Resource Allocation in a multi-color DS-OCDMA VLC Cellular Architecture,” Opt. Express 26(5), 5940–5961 (2018).
[Crossref] [PubMed]

2017 (1)

C. Chen, W. D. Zhong, and D. Wu, “On the coverage of multiple-input multiple-output visible light communications [Invited],” J. Opt. Commun. Network. 9(9), 31–41 (2017).
[Crossref]

2016 (3)

L. Feng, R. Q. Hu, J. Wang, P. Xu, and Y. Qian, “Applying VLC in 5G networks: architectures and key technologies,” IEEE Network 30(6), 77–83 (2016).
[Crossref]

S. Pergoloni, M. Biagi, S. Colonnese, R. Cusani, and G. Scarano, “Optimized LEDs footprinting for indoor visible light communication networks,” IEEE Photon. Technol. Lett. 28(4), 532–535 (2016).
[Crossref]

C. Chen, D. A. Basnayaka, and H. Haas, “Downlink performance of optical attocell networks,” J. Lightweight Technol. 34(1), 137–156 (2016).
[Crossref]

2015 (2)

M. B. Rahaim and T. D. C. Little, “Toward practical integration of dual-use VLC within 5G networks,” IEEE Wireless Commun. 22(4), 97–103 (2015).
[Crossref]

A. Vavoulas, H. G. Sandalidis, T. A. Tsiftsis, and N. Vaiopoulos, “Coverage aspects of indoor VLC networks,” J. Lightwave Technol. 33(23), 4915–4921 (2015).
[Crossref]

2014 (1)

X. Bao, X. Zhu, T. Song, and Y. Ou, “Protocol design and capacity analysis in hybrid network of visible light communication and OFDMA systems,” IEEE Trans. Vehicular Technol. 63(4), 1770–1778 (2014).
[Crossref]

2013 (1)

H. Haas, “High-speed wireless networking using visible light,” SPIE Newsroom,  1, 1–3 (2013).

2012 (1)

Z. Wang, C. Yu, W.-D Zhong, J. Chen, and W. Chen, “Performance of a novel LED lamp arrangement to reduce SNR fluctuation for multi-user visible light communication systems,” Opt. Express,  20, 4564–4573 (2012).
[Crossref] [PubMed]

2006 (1)

A. Garcia-Armada, “SNR gap approximation for M-PSK-based bit loading,” IEEE Trans. Wireless Commun. 5(1), 57–60 (2006).
[Crossref]

2004 (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consumer Electron. 50(1), 100–107 (2004).
[Crossref]

1993 (1)

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun. 11(3), 367–379 (1993).
[Crossref]

Abdallah, M.

M. R. Zenaidi, Z. Rezki, M. Abdallah, K. A. Qaraqe, and M. S. Alouini, “Achievable rate-region of VLC/RF communications with an energy harvesting relay,” in “Proc. of GLOBECOM 2017 – 2017 IEEE Global Communications Conference”, Singapore, 1–7 (2017).

Alouini, M. S.

M. R. Zenaidi, Z. Rezki, M. Abdallah, K. A. Qaraqe, and M. S. Alouini, “Achievable rate-region of VLC/RF communications with an energy harvesting relay,” in “Proc. of GLOBECOM 2017 – 2017 IEEE Global Communications Conference”, Singapore, 1–7 (2017).

Bao, X.

X. Bao, X. Zhu, T. Song, and Y. Ou, “Protocol design and capacity analysis in hybrid network of visible light communication and OFDMA systems,” IEEE Trans. Vehicular Technol. 63(4), 1770–1778 (2014).
[Crossref]

Barry, J. R.

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun. 11(3), 367–379 (1993).
[Crossref]

Basnayaka, D. A.

C. Chen, D. A. Basnayaka, and H. Haas, “Downlink performance of optical attocell networks,” J. Lightweight Technol. 34(1), 137–156 (2016).
[Crossref]

Biagi, M.

A.M. Vegni, M. Hammouda, J. Peissig, and M. Biagi, “Resource Allocation in a multi-color DS-OCDMA VLC Cellular Architecture,” Opt. Express 26(5), 5940–5961 (2018).
[Crossref] [PubMed]

S. Pergoloni, M. Biagi, S. Colonnese, R. Cusani, and G. Scarano, “Optimized LEDs footprinting for indoor visible light communication networks,” IEEE Photon. Technol. Lett. 28(4), 532–535 (2016).
[Crossref]

Chen, C.

C. Chen, W. D. Zhong, and D. Wu, “On the coverage of multiple-input multiple-output visible light communications [Invited],” J. Opt. Commun. Network. 9(9), 31–41 (2017).
[Crossref]

C. Chen, D. A. Basnayaka, and H. Haas, “Downlink performance of optical attocell networks,” J. Lightweight Technol. 34(1), 137–156 (2016).
[Crossref]

C. Chen, W. D. Zhong, and Dehao Wu, “Communication coverage improvement of indoor SDM-VLC system using NHS-OFDM with a modified imaging receiver,” in “Proc. of IEEE International Conference on Communications Workshops (ICC)”, Kuala Lumpur, 315–320 (2016).

Chen, J.

Z. Wang, C. Yu, W.-D Zhong, J. Chen, and W. Chen, “Performance of a novel LED lamp arrangement to reduce SNR fluctuation for multi-user visible light communication systems,” Opt. Express,  20, 4564–4573 (2012).
[Crossref] [PubMed]

Chen, W.

Z. Wang, C. Yu, W.-D Zhong, J. Chen, and W. Chen, “Performance of a novel LED lamp arrangement to reduce SNR fluctuation for multi-user visible light communication systems,” Opt. Express,  20, 4564–4573 (2012).
[Crossref] [PubMed]

Chowdhury, H.

H. Chowdhury and M. Katz, “Data download on move in indoor hybrid (radio-optical) WLAN-VLC hotspot coverages,” in “Proc. of IEEE 77th Vehicular Technology Conference (VTC Spring)”, Dresden, 1–5 (2013).

Colonnese, S.

S. Pergoloni, M. Biagi, S. Colonnese, R. Cusani, and G. Scarano, “Optimized LEDs footprinting for indoor visible light communication networks,” IEEE Photon. Technol. Lett. 28(4), 532–535 (2016).
[Crossref]

Cusani, R.

S. Pergoloni, M. Biagi, S. Colonnese, R. Cusani, and G. Scarano, “Optimized LEDs footprinting for indoor visible light communication networks,” IEEE Photon. Technol. Lett. 28(4), 532–535 (2016).
[Crossref]

Feng, L.

L. Feng, R. Q. Hu, J. Wang, P. Xu, and Y. Qian, “Applying VLC in 5G networks: architectures and key technologies,” IEEE Network 30(6), 77–83 (2016).
[Crossref]

Garcia-Armada, A.

A. Garcia-Armada, “SNR gap approximation for M-PSK-based bit loading,” IEEE Trans. Wireless Commun. 5(1), 57–60 (2006).
[Crossref]

Garg, P.

Shashikant, P. Garg, and A. Gupta, “Comparative analysis of hexagonal VLC nodes deployment schemes,” in “Proc. of 4th International Conference on Signal Processing, Computing and Control (ISPCC)”, Solan, 368–372 (2017).

Gupta, A.

Shashikant, P. Garg, and A. Gupta, “Comparative analysis of hexagonal VLC nodes deployment schemes,” in “Proc. of 4th International Conference on Signal Processing, Computing and Control (ISPCC)”, Solan, 368–372 (2017).

Shashikant, R. Saini, and A. Gupta, “Comparative analysis of coverage aspects for various LEDs placement schemes in indoor VLC system,” in “Proc. of 2nd International Conference for Convergence in Technology (I2CT)”, Mumbai, 487–491 (2017).

Haas, H.

L. Yin and H. Haas, “Coverage analysis of multiuser visible light communication networks,” IEEE Trans. Wireless Commun. 17(3), 1630–1643 (2018).
[Crossref]

C. Chen, D. A. Basnayaka, and H. Haas, “Downlink performance of optical attocell networks,” J. Lightweight Technol. 34(1), 137–156 (2016).
[Crossref]

H. Haas, “High-speed wireless networking using visible light,” SPIE Newsroom,  1, 1–3 (2013).

I. Stefan and H. Haas, “Analysis of optimal placement of LED arrays for visible light communication,” in “Proc. of IEEE 77th Vehicular Technology Conference (VTC Spring)”, Dresden, 1–5 (2013).

Hammouda, M.

A.M. Vegni, M. Hammouda, J. Peissig, and M. Biagi, “Resource Allocation in a multi-color DS-OCDMA VLC Cellular Architecture,” Opt. Express 26(5), 5940–5961 (2018).
[Crossref] [PubMed]

Hossain, E.

H. Tabassum and E. Hossain, “Coverage and rate analysis for co-existing RF/VLC downlink cellular networks,” IEEE Trans. Wireless Commun. 17(4), 2588–2601 (2018).
[Crossref]

Hu, R. Q.

L. Feng, R. Q. Hu, J. Wang, P. Xu, and Y. Qian, “Applying VLC in 5G networks: architectures and key technologies,” IEEE Network 30(6), 77–83 (2016).
[Crossref]

Ismail, M.

M. Ismail, M. Zeeshan Shakir, K. A. Qaraqe, and E. Serpedin, “Radio frequency and visible light communication internetworking,” in IEEE Green Heterog. Wireless Networks, (Wiley-IEEE Press, 2016).
[Crossref]

Kahn, J. M.

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun. 11(3), 367–379 (1993).
[Crossref]

Katz, M.

H. Chowdhury and M. Katz, “Data download on move in indoor hybrid (radio-optical) WLAN-VLC hotspot coverages,” in “Proc. of IEEE 77th Vehicular Technology Conference (VTC Spring)”, Dresden, 1–5 (2013).

Komine, T.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consumer Electron. 50(1), 100–107 (2004).
[Crossref]

Krause, W. J.

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun. 11(3), 367–379 (1993).
[Crossref]

Lee, E. A.

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun. 11(3), 367–379 (1993).
[Crossref]

Little, T. D. C.

M. B. Rahaim and T. D. C. Little, “Toward practical integration of dual-use VLC within 5G networks,” IEEE Wireless Commun. 22(4), 97–103 (2015).
[Crossref]

Menounou, S.

S. Menounou, A. N. Stassinakis, H. E. Nistazakis, G. S. Tombras, and H. G. Sandalidis, “Coverage area estimation for high performance eSSK visible light communication systems,” in “Proc. of Panhellenic Conference on Electronics and Telecommunications (PACET)”, Xanthi, 1–4 (2017).

Messerschmitt, D. G.

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun. 11(3), 367–379 (1993).
[Crossref]

Nakagawa, M.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consumer Electron. 50(1), 100–107 (2004).
[Crossref]

Nistazakis, H. E.

S. Menounou, A. N. Stassinakis, H. E. Nistazakis, G. S. Tombras, and H. G. Sandalidis, “Coverage area estimation for high performance eSSK visible light communication systems,” in “Proc. of Panhellenic Conference on Electronics and Telecommunications (PACET)”, Xanthi, 1–4 (2017).

Ou, Y.

X. Bao, X. Zhu, T. Song, and Y. Ou, “Protocol design and capacity analysis in hybrid network of visible light communication and OFDMA systems,” IEEE Trans. Vehicular Technol. 63(4), 1770–1778 (2014).
[Crossref]

Peissig, J.

A.M. Vegni, M. Hammouda, J. Peissig, and M. Biagi, “Resource Allocation in a multi-color DS-OCDMA VLC Cellular Architecture,” Opt. Express 26(5), 5940–5961 (2018).
[Crossref] [PubMed]

Pergoloni, S.

S. Pergoloni, M. Biagi, S. Colonnese, R. Cusani, and G. Scarano, “Optimized LEDs footprinting for indoor visible light communication networks,” IEEE Photon. Technol. Lett. 28(4), 532–535 (2016).
[Crossref]

Qaraqe, K. A.

M. Ismail, M. Zeeshan Shakir, K. A. Qaraqe, and E. Serpedin, “Radio frequency and visible light communication internetworking,” in IEEE Green Heterog. Wireless Networks, (Wiley-IEEE Press, 2016).
[Crossref]

M. R. Zenaidi, Z. Rezki, M. Abdallah, K. A. Qaraqe, and M. S. Alouini, “Achievable rate-region of VLC/RF communications with an energy harvesting relay,” in “Proc. of GLOBECOM 2017 – 2017 IEEE Global Communications Conference”, Singapore, 1–7 (2017).

Qian, Y.

L. Feng, R. Q. Hu, J. Wang, P. Xu, and Y. Qian, “Applying VLC in 5G networks: architectures and key technologies,” IEEE Network 30(6), 77–83 (2016).
[Crossref]

Rahaim, M. B.

M. B. Rahaim and T. D. C. Little, “Toward practical integration of dual-use VLC within 5G networks,” IEEE Wireless Commun. 22(4), 97–103 (2015).
[Crossref]

Rezki, Z.

M. R. Zenaidi, Z. Rezki, M. Abdallah, K. A. Qaraqe, and M. S. Alouini, “Achievable rate-region of VLC/RF communications with an energy harvesting relay,” in “Proc. of GLOBECOM 2017 – 2017 IEEE Global Communications Conference”, Singapore, 1–7 (2017).

Saini, R.

Shashikant, R. Saini, and A. Gupta, “Comparative analysis of coverage aspects for various LEDs placement schemes in indoor VLC system,” in “Proc. of 2nd International Conference for Convergence in Technology (I2CT)”, Mumbai, 487–491 (2017).

Sandalidis, H. G.

A. Vavoulas, H. G. Sandalidis, T. A. Tsiftsis, and N. Vaiopoulos, “Coverage aspects of indoor VLC networks,” J. Lightwave Technol. 33(23), 4915–4921 (2015).
[Crossref]

S. Menounou, A. N. Stassinakis, H. E. Nistazakis, G. S. Tombras, and H. G. Sandalidis, “Coverage area estimation for high performance eSSK visible light communication systems,” in “Proc. of Panhellenic Conference on Electronics and Telecommunications (PACET)”, Xanthi, 1–4 (2017).

Scarano, G.

S. Pergoloni, M. Biagi, S. Colonnese, R. Cusani, and G. Scarano, “Optimized LEDs footprinting for indoor visible light communication networks,” IEEE Photon. Technol. Lett. 28(4), 532–535 (2016).
[Crossref]

Serpedin, E.

M. Ismail, M. Zeeshan Shakir, K. A. Qaraqe, and E. Serpedin, “Radio frequency and visible light communication internetworking,” in IEEE Green Heterog. Wireless Networks, (Wiley-IEEE Press, 2016).
[Crossref]

Shashikant,

Shashikant, P. Garg, and A. Gupta, “Comparative analysis of hexagonal VLC nodes deployment schemes,” in “Proc. of 4th International Conference on Signal Processing, Computing and Control (ISPCC)”, Solan, 368–372 (2017).

Shashikant, R. Saini, and A. Gupta, “Comparative analysis of coverage aspects for various LEDs placement schemes in indoor VLC system,” in “Proc. of 2nd International Conference for Convergence in Technology (I2CT)”, Mumbai, 487–491 (2017).

Song, T.

X. Bao, X. Zhu, T. Song, and Y. Ou, “Protocol design and capacity analysis in hybrid network of visible light communication and OFDMA systems,” IEEE Trans. Vehicular Technol. 63(4), 1770–1778 (2014).
[Crossref]

Stassinakis, A. N.

S. Menounou, A. N. Stassinakis, H. E. Nistazakis, G. S. Tombras, and H. G. Sandalidis, “Coverage area estimation for high performance eSSK visible light communication systems,” in “Proc. of Panhellenic Conference on Electronics and Telecommunications (PACET)”, Xanthi, 1–4 (2017).

Stefan, I.

I. Stefan and H. Haas, “Analysis of optimal placement of LED arrays for visible light communication,” in “Proc. of IEEE 77th Vehicular Technology Conference (VTC Spring)”, Dresden, 1–5 (2013).

Tabassum, H.

H. Tabassum and E. Hossain, “Coverage and rate analysis for co-existing RF/VLC downlink cellular networks,” IEEE Trans. Wireless Commun. 17(4), 2588–2601 (2018).
[Crossref]

Tombras, G. S.

S. Menounou, A. N. Stassinakis, H. E. Nistazakis, G. S. Tombras, and H. G. Sandalidis, “Coverage area estimation for high performance eSSK visible light communication systems,” in “Proc. of Panhellenic Conference on Electronics and Telecommunications (PACET)”, Xanthi, 1–4 (2017).

Tsiftsis, T. A.

A. Vavoulas, H. G. Sandalidis, T. A. Tsiftsis, and N. Vaiopoulos, “Coverage aspects of indoor VLC networks,” J. Lightwave Technol. 33(23), 4915–4921 (2015).
[Crossref]

Vaiopoulos, N.

A. Vavoulas, H. G. Sandalidis, T. A. Tsiftsis, and N. Vaiopoulos, “Coverage aspects of indoor VLC networks,” J. Lightwave Technol. 33(23), 4915–4921 (2015).
[Crossref]

Vavoulas, A.

A. Vavoulas, H. G. Sandalidis, T. A. Tsiftsis, and N. Vaiopoulos, “Coverage aspects of indoor VLC networks,” J. Lightwave Technol. 33(23), 4915–4921 (2015).
[Crossref]

Vegni, A.M.

A.M. Vegni, M. Hammouda, J. Peissig, and M. Biagi, “Resource Allocation in a multi-color DS-OCDMA VLC Cellular Architecture,” Opt. Express 26(5), 5940–5961 (2018).
[Crossref] [PubMed]

Wang, J.

L. Feng, R. Q. Hu, J. Wang, P. Xu, and Y. Qian, “Applying VLC in 5G networks: architectures and key technologies,” IEEE Network 30(6), 77–83 (2016).
[Crossref]

Wang, Z.

Z. Wang, C. Yu, W.-D Zhong, J. Chen, and W. Chen, “Performance of a novel LED lamp arrangement to reduce SNR fluctuation for multi-user visible light communication systems,” Opt. Express,  20, 4564–4573 (2012).
[Crossref] [PubMed]

Wu, D.

C. Chen, W. D. Zhong, and D. Wu, “On the coverage of multiple-input multiple-output visible light communications [Invited],” J. Opt. Commun. Network. 9(9), 31–41 (2017).
[Crossref]

Wu, Dehao

C. Chen, W. D. Zhong, and Dehao Wu, “Communication coverage improvement of indoor SDM-VLC system using NHS-OFDM with a modified imaging receiver,” in “Proc. of IEEE International Conference on Communications Workshops (ICC)”, Kuala Lumpur, 315–320 (2016).

Xu, P.

L. Feng, R. Q. Hu, J. Wang, P. Xu, and Y. Qian, “Applying VLC in 5G networks: architectures and key technologies,” IEEE Network 30(6), 77–83 (2016).
[Crossref]

Yin, L.

L. Yin and H. Haas, “Coverage analysis of multiuser visible light communication networks,” IEEE Trans. Wireless Commun. 17(3), 1630–1643 (2018).
[Crossref]

Yu, C.

Z. Wang, C. Yu, W.-D Zhong, J. Chen, and W. Chen, “Performance of a novel LED lamp arrangement to reduce SNR fluctuation for multi-user visible light communication systems,” Opt. Express,  20, 4564–4573 (2012).
[Crossref] [PubMed]

Zeeshan Shakir, M.

M. Ismail, M. Zeeshan Shakir, K. A. Qaraqe, and E. Serpedin, “Radio frequency and visible light communication internetworking,” in IEEE Green Heterog. Wireless Networks, (Wiley-IEEE Press, 2016).
[Crossref]

Zenaidi, M. R.

M. R. Zenaidi, Z. Rezki, M. Abdallah, K. A. Qaraqe, and M. S. Alouini, “Achievable rate-region of VLC/RF communications with an energy harvesting relay,” in “Proc. of GLOBECOM 2017 – 2017 IEEE Global Communications Conference”, Singapore, 1–7 (2017).

Zhong, W. D.

C. Chen, W. D. Zhong, and D. Wu, “On the coverage of multiple-input multiple-output visible light communications [Invited],” J. Opt. Commun. Network. 9(9), 31–41 (2017).
[Crossref]

C. Chen, W. D. Zhong, and Dehao Wu, “Communication coverage improvement of indoor SDM-VLC system using NHS-OFDM with a modified imaging receiver,” in “Proc. of IEEE International Conference on Communications Workshops (ICC)”, Kuala Lumpur, 315–320 (2016).

Zhong, W.-D

Z. Wang, C. Yu, W.-D Zhong, J. Chen, and W. Chen, “Performance of a novel LED lamp arrangement to reduce SNR fluctuation for multi-user visible light communication systems,” Opt. Express,  20, 4564–4573 (2012).
[Crossref] [PubMed]

Zhu, X.

X. Bao, X. Zhu, T. Song, and Y. Ou, “Protocol design and capacity analysis in hybrid network of visible light communication and OFDMA systems,” IEEE Trans. Vehicular Technol. 63(4), 1770–1778 (2014).
[Crossref]

IEEE J. Sel. Areas Commun. (1)

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun. 11(3), 367–379 (1993).
[Crossref]

IEEE Network (1)

L. Feng, R. Q. Hu, J. Wang, P. Xu, and Y. Qian, “Applying VLC in 5G networks: architectures and key technologies,” IEEE Network 30(6), 77–83 (2016).
[Crossref]

IEEE Photon. Technol. Lett. (1)

S. Pergoloni, M. Biagi, S. Colonnese, R. Cusani, and G. Scarano, “Optimized LEDs footprinting for indoor visible light communication networks,” IEEE Photon. Technol. Lett. 28(4), 532–535 (2016).
[Crossref]

IEEE Trans. Consumer Electron. (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consumer Electron. 50(1), 100–107 (2004).
[Crossref]

IEEE Trans. Vehicular Technol. (1)

X. Bao, X. Zhu, T. Song, and Y. Ou, “Protocol design and capacity analysis in hybrid network of visible light communication and OFDMA systems,” IEEE Trans. Vehicular Technol. 63(4), 1770–1778 (2014).
[Crossref]

IEEE Trans. Wireless Commun. (3)

H. Tabassum and E. Hossain, “Coverage and rate analysis for co-existing RF/VLC downlink cellular networks,” IEEE Trans. Wireless Commun. 17(4), 2588–2601 (2018).
[Crossref]

L. Yin and H. Haas, “Coverage analysis of multiuser visible light communication networks,” IEEE Trans. Wireless Commun. 17(3), 1630–1643 (2018).
[Crossref]

A. Garcia-Armada, “SNR gap approximation for M-PSK-based bit loading,” IEEE Trans. Wireless Commun. 5(1), 57–60 (2006).
[Crossref]

IEEE Wireless Commun. (1)

M. B. Rahaim and T. D. C. Little, “Toward practical integration of dual-use VLC within 5G networks,” IEEE Wireless Commun. 22(4), 97–103 (2015).
[Crossref]

J. Lightwave Technol. (1)

A. Vavoulas, H. G. Sandalidis, T. A. Tsiftsis, and N. Vaiopoulos, “Coverage aspects of indoor VLC networks,” J. Lightwave Technol. 33(23), 4915–4921 (2015).
[Crossref]

J. Lightweight Technol. (1)

C. Chen, D. A. Basnayaka, and H. Haas, “Downlink performance of optical attocell networks,” J. Lightweight Technol. 34(1), 137–156 (2016).
[Crossref]

J. Opt. Commun. Network. (1)

C. Chen, W. D. Zhong, and D. Wu, “On the coverage of multiple-input multiple-output visible light communications [Invited],” J. Opt. Commun. Network. 9(9), 31–41 (2017).
[Crossref]

Opt. Express (2)

Z. Wang, C. Yu, W.-D Zhong, J. Chen, and W. Chen, “Performance of a novel LED lamp arrangement to reduce SNR fluctuation for multi-user visible light communication systems,” Opt. Express,  20, 4564–4573 (2012).
[Crossref] [PubMed]

A.M. Vegni, M. Hammouda, J. Peissig, and M. Biagi, “Resource Allocation in a multi-color DS-OCDMA VLC Cellular Architecture,” Opt. Express 26(5), 5940–5961 (2018).
[Crossref] [PubMed]

SPIE Newsroom (1)

H. Haas, “High-speed wireless networking using visible light,” SPIE Newsroom,  1, 1–3 (2013).

Other (8)

M. Ismail, M. Zeeshan Shakir, K. A. Qaraqe, and E. Serpedin, “Radio frequency and visible light communication internetworking,” in IEEE Green Heterog. Wireless Networks, (Wiley-IEEE Press, 2016).
[Crossref]

I. Stefan and H. Haas, “Analysis of optimal placement of LED arrays for visible light communication,” in “Proc. of IEEE 77th Vehicular Technology Conference (VTC Spring)”, Dresden, 1–5 (2013).

H. Chowdhury and M. Katz, “Data download on move in indoor hybrid (radio-optical) WLAN-VLC hotspot coverages,” in “Proc. of IEEE 77th Vehicular Technology Conference (VTC Spring)”, Dresden, 1–5 (2013).

M. R. Zenaidi, Z. Rezki, M. Abdallah, K. A. Qaraqe, and M. S. Alouini, “Achievable rate-region of VLC/RF communications with an energy harvesting relay,” in “Proc. of GLOBECOM 2017 – 2017 IEEE Global Communications Conference”, Singapore, 1–7 (2017).

Shashikant, R. Saini, and A. Gupta, “Comparative analysis of coverage aspects for various LEDs placement schemes in indoor VLC system,” in “Proc. of 2nd International Conference for Convergence in Technology (I2CT)”, Mumbai, 487–491 (2017).

Shashikant, P. Garg, and A. Gupta, “Comparative analysis of hexagonal VLC nodes deployment schemes,” in “Proc. of 4th International Conference on Signal Processing, Computing and Control (ISPCC)”, Solan, 368–372 (2017).

S. Menounou, A. N. Stassinakis, H. E. Nistazakis, G. S. Tombras, and H. G. Sandalidis, “Coverage area estimation for high performance eSSK visible light communication systems,” in “Proc. of Panhellenic Conference on Electronics and Telecommunications (PACET)”, Xanthi, 1–4 (2017).

C. Chen, W. D. Zhong, and Dehao Wu, “Communication coverage improvement of indoor SDM-VLC system using NHS-OFDM with a modified imaging receiver,” in “Proc. of IEEE International Conference on Communications Workshops (ICC)”, Kuala Lumpur, 315–320 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Open office scenario. (a) Room configuration, and (b) probability density function.
Fig. 2
Fig. 2 Probability density function of a museum room configuration.
Fig. 3
Fig. 3 ACM in open office scenario, in case of (a) = 10 Mb/s, (b) = 25 Mb/s, and (c) = 50 Mb/s.
Fig. 4
Fig. 4 ACM in museum room scenario, in case of (a) = 10 Mb/s, (b) = 25 Mb/s, and (c) = 50 Mb/s.
Fig. 5
Fig. 5 ACM in open office, for θ = 70°.
Fig. 6
Fig. 6 AUM in open office scenario, in case of (a) = 10 Mb/s, (b) = 25 Mb/s, and (c) = 50 Mb/s.
Fig. 7
Fig. 7 AUM in museum scenario, in case of (a) = 10 Mb/s, (b) = 25 Mb/s, and (c) = 50 Mb/s.
Fig. 8
Fig. 8 ACM in museum room scenario vs. outage, for min = 50 Mb/s.
Fig. 9
Fig. 9 AUM in museum room scenario vs. outage, for min = 50 Mb/s.

Tables (2)

Tables Icon

Table 1 Percentage of solutions for different values of and NC when θ = 70°, U = 4, step for LED placement set to 0.5 meters.

Tables Icon

Table 2 Percentage of solutions for different values of Imin and NC when θ = 70°, U = 4, step for LED placement set to 0.5 meters and = 70 Mb/s.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

p U ( x , y ) = p U ( 1 ) ( x , y ) + p U ( 2 ) ( x , y ) + p U ( 3 ) ( x , y ) ,
2 p U ( 2 ) ( x , y ) = P H ,
1 p U ( 1 ) ( x , y ) = 1 P H ,
p U 1 , U 2 ( x 1 , y 1 , x 2 , y 2 ) = p U 2 | U 1 ( x 2 , y 2 | x 1 , y 1 ) p U 1 ( x 1 , y 1 ) ,
p U ( x N U , y N U ) = p N U | U 1 , U 2 , , U N U 1 ( x N U , y N U | x N 1 , y N 1 , x N 2 , y N 2 , , x N U 1 , y N U 1 ) p U 1 ( x 1 , y 1 ) p U 2 ( x 2 , y 2 ) p N U ( x N U , y 1 ) .
= B log 2 ( 1 + P | h | 2 𝒩 0 B Γ ) ,
h ( x , y , x k , y k ) = { ρ k ( b + 1 ) A k T s g ( ψ k ) d , k ( b + 1 ) 2 π d , k b + 3 2 , if ψ k ψ C , k , 0 , if ψ k > ψ C , k ,
d , k = ( x x k ) 2 + ( y y k ) 2 + z 2 ,
g ( ψ k ) = n 2 sin 2 ( ψ C , k ) ,
( x , y , x k , y k ) = B log 2 ( 1 + P | h ( x , y , x k , y k ) | 2 𝒩 0 B Γ ) .
¯ ( x , y ) = U ( x , y , x k , y k ) p U ( x k , y k ) d x k d y k ,
¯ ( x N U , y N U | x L , y L ) = = 1 L ( x , y , x U , y U ) p U ( x N U , y N U ) d x N U d y N U ,
( x , y , x U , y U ) = k = 1 U ( x , y , x k , y k ) .
P out = Pr { ¯ ( x N U , y N U | x L , y L ) ) } .
min N C s . t . P out δ I I min N U = U min
I = P | h ( x , y , x k , y k ) | 2 η ,
max N U s . t . P out δ N C = N C max I I min

Metrics