Abstract

Heat-Assisted Magnetic Recording (HAMR) is a well-known technology that uses the concept of a plasmonic antenna to shrink the optical focused spot to sizes of tens of nanometers, in order to overcome the limits of conventional magnetic recording and to reach areal density >1 Tb/in2. In this paper, we propose a novel concept that allows to increase a power transfer to the recording media deposited on the patterned substrate that takes a full advantage of the resonant antenna conditions to achieve further intensity enhancement in the gap and consequently high-power transfer to the recording media. Apart from the high field enhancement, the proposed concept ensures uniform field distribution in the gap that translates into uniform and higher temperature in the recording media, which is highly desired in the HAMR technology.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Study of high order plasmonic modes on ceramic nanodisks

Jacek Gosciniak, John Justice, Umar Khan, Mircea Modreanu, and Brian Corbett
Opt. Express 25(5) 5244-5254 (2017)

Role of antenna modes and field enhancement in second harmonic generation from dipole nanoantennas

Domenico de Ceglia, Maria Antonietta Vincenti, Costantino De Angelis, Andrea Locatelli, Joseph W. Haus, and Michael Scalora
Opt. Express 23(2) 1715-1729 (2015)

Design of a monopole-antenna-based resonant nanocavity for detection of optical power from hybrid plasmonic waveguides

Kelvin J. A. Ooi, Ping Bai, Ming Xia Gu, and Lay Kee Ang
Opt. Express 19(18) 17075-17085 (2011)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structure,” J. Appl. Phys. 98(1), 011101 (2005).
    [Crossref]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  3. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [Crossref] [PubMed]
  4. J. B. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bull. 37(08), 768–779 (2012).
    [Crossref]
  5. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
    [Crossref] [PubMed]
  6. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. in Opt. and Phot. 1(3), 438–483 (2009).
    [Crossref]
  7. V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
    [Crossref] [PubMed]
  8. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]
  9. D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B Condens. Matter Mater. Phys. 85(4), 045434 (2012).
    [Crossref]
  10. A. Portela, T. Yano, Ch. Santschi, H. Matsui, T. Hayashi, M. Hara, O. J. F. Martin, and H. Tabata, “Spectral tenability of realistic plasmonic nanoantennas,” Appl. Phys. Lett. 105(9), 091105 (2014).
    [Crossref]
  11. R. Esteban, G. Aguirregabiria, A. G. Borisov, Y. M. Wang, P. Nordlander, G. W. Bryant, and J. Aizpurua, “The Morphology of Narrow Gaps Modifies the Plasmonic Response,” ACS Photonics 2(2), 295–305 (2015).
    [Crossref]
  12. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008).
    [Crossref] [PubMed]
  13. V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas,” Nano Lett. 15, 8148−8154 (2015).
    [Crossref] [PubMed]
  14. W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
  15. B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
    [Crossref]
  16. N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
    [Crossref]
  17. J. Gosciniak, M. Mooney, M. Gubbins, and B. Corbett, “Novel Mach-Zehnder interferometer waveguide as a light delivery system for a heat assisted magnetic recording,” IEEE Trans. Magn. 52(2), 3000307 (2015).
  18. J. Gosciniak, M. Mooney, M. Gubbins, and B. Corbett, “Novel droplet near-field transducer for a heat-assisted magnetic recording,” Nanophotonics 4(1), 503–510 (2015).
    [Crossref]
  19. J. Gosciniak, J. Justice, U. Khan, M. Modreanu, and B. Corbett, “Study of high order plasmonic modes on ceramic nanodisks,” Opt. Express 25(5), 5244–5254 (2017).
    [Crossref] [PubMed]
  20. J. Gosciniak, J. Justice, U. Khan, and B. Corbett, “Study of TiN nanodisks with regard to application for Heat-Assisted Magnetic Recording,” MRS Adv. 1(5), 317–326 (2016).
    [Crossref]
  21. http://www.comsol.com/products/4.3a/
  22. K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003).
    [Crossref] [PubMed]

2017 (1)

J. Gosciniak, J. Justice, U. Khan, M. Modreanu, and B. Corbett, “Study of high order plasmonic modes on ceramic nanodisks,” Opt. Express 25(5), 5244–5254 (2017).
[Crossref] [PubMed]

2016 (1)

J. Gosciniak, J. Justice, U. Khan, and B. Corbett, “Study of TiN nanodisks with regard to application for Heat-Assisted Magnetic Recording,” MRS Adv. 1(5), 317–326 (2016).
[Crossref]

2015 (4)

J. Gosciniak, M. Mooney, M. Gubbins, and B. Corbett, “Novel Mach-Zehnder interferometer waveguide as a light delivery system for a heat assisted magnetic recording,” IEEE Trans. Magn. 52(2), 3000307 (2015).

J. Gosciniak, M. Mooney, M. Gubbins, and B. Corbett, “Novel droplet near-field transducer for a heat-assisted magnetic recording,” Nanophotonics 4(1), 503–510 (2015).
[Crossref]

R. Esteban, G. Aguirregabiria, A. G. Borisov, Y. M. Wang, P. Nordlander, G. W. Bryant, and J. Aizpurua, “The Morphology of Narrow Gaps Modifies the Plasmonic Response,” ACS Photonics 2(2), 295–305 (2015).
[Crossref]

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas,” Nano Lett. 15, 8148−8154 (2015).
[Crossref] [PubMed]

2014 (2)

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

A. Portela, T. Yano, Ch. Santschi, H. Matsui, T. Hayashi, M. Hara, O. J. F. Martin, and H. Tabata, “Spectral tenability of realistic plasmonic nanoantennas,” Appl. Phys. Lett. 105(9), 091105 (2014).
[Crossref]

2012 (2)

D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B Condens. Matter Mater. Phys. 85(4), 045434 (2012).
[Crossref]

J. B. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bull. 37(08), 768–779 (2012).
[Crossref]

2011 (1)

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

2010 (2)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

2009 (2)

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. in Opt. and Phot. 1(3), 438–483 (2009).
[Crossref]

2008 (1)

H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008).
[Crossref] [PubMed]

2006 (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

2005 (2)

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structure,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

2003 (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003).
[Crossref] [PubMed]

Aguirregabiria, G.

R. Esteban, G. Aguirregabiria, A. G. Borisov, Y. M. Wang, P. Nordlander, G. W. Bryant, and J. Aizpurua, “The Morphology of Narrow Gaps Modifies the Plasmonic Response,” ACS Photonics 2(2), 295–305 (2015).
[Crossref]

Aizpurua, J.

R. Esteban, G. Aguirregabiria, A. G. Borisov, Y. M. Wang, P. Nordlander, G. W. Bryant, and J. Aizpurua, “The Morphology of Narrow Gaps Modifies the Plasmonic Response,” ACS Photonics 2(2), 295–305 (2015).
[Crossref]

Albrecht, T. R.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Andryieuski, A.

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas,” Nano Lett. 15, 8148−8154 (2015).
[Crossref] [PubMed]

Atwater, H. A.

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structure,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

Balamane, H.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Bergman, D. J.

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003).
[Crossref] [PubMed]

Bharadwaj, P.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. in Opt. and Phot. 1(3), 438–483 (2009).
[Crossref]

Boltasseva, A.

J. B. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bull. 37(08), 768–779 (2012).
[Crossref]

Boone, T. D.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Borisov, A. G.

R. Esteban, G. Aguirregabiria, A. G. Borisov, Y. M. Wang, P. Nordlander, G. W. Bryant, and J. Aizpurua, “The Morphology of Narrow Gaps Modifies the Plasmonic Response,” ACS Photonics 2(2), 295–305 (2015).
[Crossref]

Bozhevolnyi, S. I.

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas,” Nano Lett. 15, 8148−8154 (2015).
[Crossref] [PubMed]

D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B Condens. Matter Mater. Phys. 85(4), 045434 (2012).
[Crossref]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Bryant, G. W.

R. Esteban, G. Aguirregabiria, A. G. Borisov, Y. M. Wang, P. Nordlander, G. W. Bryant, and J. Aizpurua, “The Morphology of Narrow Gaps Modifies the Plasmonic Response,” ACS Photonics 2(2), 295–305 (2015).
[Crossref]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Challener, W. A.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).

Corbett, B.

J. Gosciniak, J. Justice, U. Khan, M. Modreanu, and B. Corbett, “Study of high order plasmonic modes on ceramic nanodisks,” Opt. Express 25(5), 5244–5254 (2017).
[Crossref] [PubMed]

J. Gosciniak, J. Justice, U. Khan, and B. Corbett, “Study of TiN nanodisks with regard to application for Heat-Assisted Magnetic Recording,” MRS Adv. 1(5), 317–326 (2016).
[Crossref]

J. Gosciniak, M. Mooney, M. Gubbins, and B. Corbett, “Novel Mach-Zehnder interferometer waveguide as a light delivery system for a heat assisted magnetic recording,” IEEE Trans. Magn. 52(2), 3000307 (2015).

J. Gosciniak, M. Mooney, M. Gubbins, and B. Corbett, “Novel droplet near-field transducer for a heat-assisted magnetic recording,” Nanophotonics 4(1), 503–510 (2015).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Deutsch, B.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. in Opt. and Phot. 1(3), 438–483 (2009).
[Crossref]

Dobisz, E.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Eisler, H.-J.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Esteban, R.

R. Esteban, G. Aguirregabiria, A. G. Borisov, Y. M. Wang, P. Nordlander, G. W. Bryant, and J. Aizpurua, “The Morphology of Narrow Gaps Modifies the Plasmonic Response,” ACS Photonics 2(2), 295–305 (2015).
[Crossref]

Fernández-Domínguez, A. I.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

Fischer, H.

H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008).
[Crossref] [PubMed]

Gage, E. C.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).

Gao, K.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

Giannini, V.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

Gokemeijer, N. J.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).

Gosciniak, J.

J. Gosciniak, J. Justice, U. Khan, M. Modreanu, and B. Corbett, “Study of high order plasmonic modes on ceramic nanodisks,” Opt. Express 25(5), 5244–5254 (2017).
[Crossref] [PubMed]

J. Gosciniak, J. Justice, U. Khan, and B. Corbett, “Study of TiN nanodisks with regard to application for Heat-Assisted Magnetic Recording,” MRS Adv. 1(5), 317–326 (2016).
[Crossref]

J. Gosciniak, M. Mooney, M. Gubbins, and B. Corbett, “Novel droplet near-field transducer for a heat-assisted magnetic recording,” Nanophotonics 4(1), 503–510 (2015).
[Crossref]

J. Gosciniak, M. Mooney, M. Gubbins, and B. Corbett, “Novel Mach-Zehnder interferometer waveguide as a light delivery system for a heat assisted magnetic recording,” IEEE Trans. Magn. 52(2), 3000307 (2015).

Gramotnev, D. K.

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas,” Nano Lett. 15, 8148−8154 (2015).
[Crossref] [PubMed]

D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B Condens. Matter Mater. Phys. 85(4), 045434 (2012).
[Crossref]

Gubbins, M.

J. Gosciniak, M. Mooney, M. Gubbins, and B. Corbett, “Novel Mach-Zehnder interferometer waveguide as a light delivery system for a heat assisted magnetic recording,” IEEE Trans. Magn. 52(2), 3000307 (2015).

J. Gosciniak, M. Mooney, M. Gubbins, and B. Corbett, “Novel droplet near-field transducer for a heat-assisted magnetic recording,” Nanophotonics 4(1), 503–510 (2015).
[Crossref]

Hammack, A. T.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

Hara, M.

A. Portela, T. Yano, Ch. Santschi, H. Matsui, T. Hayashi, M. Hara, O. J. F. Martin, and H. Tabata, “Spectral tenability of realistic plasmonic nanoantennas,” Appl. Phys. Lett. 105(9), 091105 (2014).
[Crossref]

Hayashi, T.

A. Portela, T. Yano, Ch. Santschi, H. Matsui, T. Hayashi, M. Hara, O. J. F. Martin, and H. Tabata, “Spectral tenability of realistic plasmonic nanoantennas,” Appl. Phys. Lett. 105(9), 091105 (2014).
[Crossref]

Hecht, B.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Heck, S. C.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

Hellwig, O.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Hirotsune, A.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Hsia, Y.-T.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).

Itagi, A. V.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).

Ju, G.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Justice, J.

J. Gosciniak, J. Justice, U. Khan, M. Modreanu, and B. Corbett, “Study of high order plasmonic modes on ceramic nanodisks,” Opt. Express 25(5), 5244–5254 (2017).
[Crossref] [PubMed]

J. Gosciniak, J. Justice, U. Khan, and B. Corbett, “Study of TiN nanodisks with regard to application for Heat-Assisted Magnetic Recording,” MRS Adv. 1(5), 317–326 (2016).
[Crossref]

Karns, D.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).

Katine, J. A.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Kercher, D. S.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Khan, U.

J. Gosciniak, J. Justice, U. Khan, M. Modreanu, and B. Corbett, “Study of high order plasmonic modes on ceramic nanodisks,” Opt. Express 25(5), 5244–5254 (2017).
[Crossref] [PubMed]

J. Gosciniak, J. Justice, U. Khan, and B. Corbett, “Study of TiN nanodisks with regard to application for Heat-Assisted Magnetic Recording,” MRS Adv. 1(5), 317–326 (2016).
[Crossref]

Khurgin, J. B.

J. B. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bull. 37(08), 768–779 (2012).
[Crossref]

Lavrinenko, A. V.

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas,” Nano Lett. 15, 8148−8154 (2015).
[Crossref] [PubMed]

Li, J.-L.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Li, K.

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003).
[Crossref] [PubMed]

Maier, S. A.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structure,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

Malureanu, R.

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas,” Nano Lett. 15, 8148−8154 (2015).
[Crossref] [PubMed]

Martin, O. J. F.

A. Portela, T. Yano, Ch. Santschi, H. Matsui, T. Hayashi, M. Hara, O. J. F. Martin, and H. Tabata, “Spectral tenability of realistic plasmonic nanoantennas,” Appl. Phys. Lett. 105(9), 091105 (2014).
[Crossref]

H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008).
[Crossref] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Matsui, H.

A. Portela, T. Yano, Ch. Santschi, H. Matsui, T. Hayashi, M. Hara, O. J. F. Martin, and H. Tabata, “Spectral tenability of realistic plasmonic nanoantennas,” Appl. Phys. Lett. 105(9), 091105 (2014).
[Crossref]

Modreanu, M.

J. Gosciniak, J. Justice, U. Khan, M. Modreanu, and B. Corbett, “Study of high order plasmonic modes on ceramic nanodisks,” Opt. Express 25(5), 5244–5254 (2017).
[Crossref] [PubMed]

Mooney, M.

J. Gosciniak, M. Mooney, M. Gubbins, and B. Corbett, “Novel droplet near-field transducer for a heat-assisted magnetic recording,” Nanophotonics 4(1), 503–510 (2015).
[Crossref]

J. Gosciniak, M. Mooney, M. Gubbins, and B. Corbett, “Novel Mach-Zehnder interferometer waveguide as a light delivery system for a heat assisted magnetic recording,” IEEE Trans. Magn. 52(2), 3000307 (2015).

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Nemoto, H.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Nordlander, P.

R. Esteban, G. Aguirregabiria, A. G. Borisov, Y. M. Wang, P. Nordlander, G. W. Bryant, and J. Aizpurua, “The Morphology of Narrow Gaps Modifies the Plasmonic Response,” ACS Photonics 2(2), 295–305 (2015).
[Crossref]

Novotny, L.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. in Opt. and Phot. 1(3), 438–483 (2009).
[Crossref]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Peng, C.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).

Peng, W.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).

Peng, Y.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).

Pohl, D. W.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Poon, C. C.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Pors, A.

D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B Condens. Matter Mater. Phys. 85(4), 045434 (2012).
[Crossref]

Portela, A.

A. Portela, T. Yano, Ch. Santschi, H. Matsui, T. Hayashi, M. Hara, O. J. F. Martin, and H. Tabata, “Spectral tenability of realistic plasmonic nanoantennas,” Appl. Phys. Lett. 105(9), 091105 (2014).
[Crossref]

Radko, I. P.

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas,” Nano Lett. 15, 8148−8154 (2015).
[Crossref] [PubMed]

Rawat, V.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Robertson, N.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Rottmayer, R. E.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).

Ruiz, R.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Santschi, Ch.

A. Portela, T. Yano, Ch. Santschi, H. Matsui, T. Hayashi, M. Hara, O. J. F. Martin, and H. Tabata, “Spectral tenability of realistic plasmonic nanoantennas,” Appl. Phys. Lett. 105(9), 091105 (2014).
[Crossref]

Scholz, W.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Seigler, M. A.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).

Stipe, B. C.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Stockman, M. I.

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003).
[Crossref] [PubMed]

Strand, T. C.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Tabata, H.

A. Portela, T. Yano, Ch. Santschi, H. Matsui, T. Hayashi, M. Hara, O. J. F. Martin, and H. Tabata, “Spectral tenability of realistic plasmonic nanoantennas,” Appl. Phys. Lett. 105(9), 091105 (2014).
[Crossref]

Terris, B. D.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Volkov, V. S.

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas,” Nano Lett. 15, 8148−8154 (2015).
[Crossref] [PubMed]

Wang, Y. M.

R. Esteban, G. Aguirregabiria, A. G. Borisov, Y. M. Wang, P. Nordlander, G. W. Bryant, and J. Aizpurua, “The Morphology of Narrow Gaps Modifies the Plasmonic Response,” ACS Photonics 2(2), 295–305 (2015).
[Crossref]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Willatzen, M.

D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B Condens. Matter Mater. Phys. 85(4), 045434 (2012).
[Crossref]

Xu, X.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

Yang, X. M.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).

Yano, T.

A. Portela, T. Yano, Ch. Santschi, H. Matsui, T. Hayashi, M. Hara, O. J. F. Martin, and H. Tabata, “Spectral tenability of realistic plasmonic nanoantennas,” Appl. Phys. Lett. 105(9), 091105 (2014).
[Crossref]

Zenin, V. A.

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas,” Nano Lett. 15, 8148−8154 (2015).
[Crossref] [PubMed]

Zhou, N.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

Zhu, X.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).

ACS Photonics (1)

R. Esteban, G. Aguirregabiria, A. G. Borisov, Y. M. Wang, P. Nordlander, G. W. Bryant, and J. Aizpurua, “The Morphology of Narrow Gaps Modifies the Plasmonic Response,” ACS Photonics 2(2), 295–305 (2015).
[Crossref]

Adv. in Opt. and Phot. (1)

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. in Opt. and Phot. 1(3), 438–483 (2009).
[Crossref]

Appl. Phys. Lett. (1)

A. Portela, T. Yano, Ch. Santschi, H. Matsui, T. Hayashi, M. Hara, O. J. F. Martin, and H. Tabata, “Spectral tenability of realistic plasmonic nanoantennas,” Appl. Phys. Lett. 105(9), 091105 (2014).
[Crossref]

Chem. Rev. (1)

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

IEEE Trans. Magn. (1)

J. Gosciniak, M. Mooney, M. Gubbins, and B. Corbett, “Novel Mach-Zehnder interferometer waveguide as a light delivery system for a heat assisted magnetic recording,” IEEE Trans. Magn. 52(2), 3000307 (2015).

J. Appl. Phys. (1)

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structure,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

MRS Adv. (1)

J. Gosciniak, J. Justice, U. Khan, and B. Corbett, “Study of TiN nanodisks with regard to application for Heat-Assisted Magnetic Recording,” MRS Adv. 1(5), 317–326 (2016).
[Crossref]

MRS Bull. (1)

J. B. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bull. 37(08), 768–779 (2012).
[Crossref]

Nano Lett. (1)

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas,” Nano Lett. 15, 8148−8154 (2015).
[Crossref] [PubMed]

Nanophotonics (2)

J. Gosciniak, M. Mooney, M. Gubbins, and B. Corbett, “Novel droplet near-field transducer for a heat-assisted magnetic recording,” Nanophotonics 4(1), 503–510 (2015).
[Crossref]

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Nat. Photonics (2)

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Express (2)

H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008).
[Crossref] [PubMed]

J. Gosciniak, J. Justice, U. Khan, M. Modreanu, and B. Corbett, “Study of high order plasmonic modes on ceramic nanodisks,” Opt. Express 25(5), 5244–5254 (2017).
[Crossref] [PubMed]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B Condens. Matter Mater. Phys. 85(4), 045434 (2012).
[Crossref]

Phys. Rev. Lett. (1)

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003).
[Crossref] [PubMed]

Science (2)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Other (1)

http://www.comsol.com/products/4.3a/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Proposed novel arrangement to achieve high intensity enhancement in the gap and, consequently, high power transfer to the recording media (a) based on nanoantenna arrangement and (b) tapered plasmonic waveguide. Here, the heat-assisted magnetic recording is combined with the patterned media to form nanoantenna that is able to excite resonant mode.
Fig. 2
Fig. 2 Two metal stripes separated by a nanogap on a dielectric substrate with the incident polarization parallel to the long stripe axis.
Fig. 3
Fig. 3 (a) Numerical simulation setup with nanodisk working as a transducer and resonant dipole antenna to examine a field enhancement in the gap between transducer and antenna. The light couples to the transducer to excite a desired mode with a charge distribution in a direction of the antenna to enable coupling of the longitudinal component of the electric field to the resonant antenna. (b) Equivalent simulation setup with the antenna replaced by the image plane.
Fig. 4
Fig. 4 Electric field calculated at the center of the gap versus wavelength performed for different antenna lengths. The nanodisk thickness was kept at h = 20 nm for radii of (a) r = 150 nm and (b) r = 125nm, respectively. The electric field distributions for different nanoantenna lengths corresponding to the maximum field in the gap are presented above the graphs.
Fig. 5
Fig. 5 (a) Electric field calculated at the termination of the nanodisk and nanoantenna versus wavelength performed for disk with r = 150 nm and antenna length of l = 65 nm. The electric field distribution of the disk and antenna corresponding to the maximum electric field is presented above the graph. (b) Electric field calculated at the center of the gap between the nanodisk and the image plane versus wavelength for a disk radius of r = 150 nm. The electric field distribution corresponding to the maximum electric field in the gap is presented above the graph.

Metrics