Abstract

The rate of heat transfer by thermal radiation is a function of the number of channels that carry the electromagnetic energy, and the capacity of each channel to convey the electromagnetic energy. In this research, we show that we can increase the number of these channels for a given emitter volume, and accordingly, we can enhance both near- and far-field thermal radiation exchange. We increase the number of channels by carving a variety of slots with different sizes. Using a modified finite-difference time-domain simulation, we show that the interweaved L slots achieved higher rates of heat transfer than the flat slab and straight slots (all having the same volume) by 15 and 2.5 times, respectively, for far-field thermal radiation (separation gap dc = 30 μm), and 5.6730 and 1.145 times for near-field thermal radiation (dc = 0.5 μm).

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Near-field radiative heat transfer between metamaterial thin films

Soumyadipta Basu and Mathieu Francoeur
Opt. Lett. 39(5) 1266-1269 (2014)

Hyperbolic metamaterial-based near-field thermophotovoltaic system for hundreds of nanometer vacuum gap

Seokmin Jin, Mikyung Lim, Seung S. Lee, and Bong Jae Lee
Opt. Express 24(6) A635-A649 (2016)

Near-field thermophotovoltaic energy conversion using an intermediate transparent substrate

Takuya Inoue, Kohei Watanabe, Takashi Asano, and Susumu Noda
Opt. Express 26(2) A192-A208 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Basu, Near-Field Radiative Heat Transfer across Nanometer Vacuum Gaps: Fundamentals and Applications, 1st ed. (Elsevier, 2016).
  2. N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, “Colloquium: Phononics: Manipulating heat flow with electronic analogs and beyond,” Rev. Mod. Phys. 84(3), 1045–1066 (2012).
    [Crossref]
  3. M. Elzouka and S. Ndao, “High Temperature Near-Field NanoThermoMechanical Rectification,” Sci. Rep. 7, 44901 (2017).
    [Crossref] [PubMed]
  4. R. Xie, C. T. Bui, B. Varghese, Q. Zhang, C. H. Sow, B. Li, and J. T. L. Thong, “An electrically tuned solid-state thermal memory based on metal-insulator transition of single-crystalline VO2 nanobeams,” Adv. Funct. Mater. 21(9), 1602–1607 (2011).
    [Crossref]
  5. L. Wang and B. Li, “Thermal memory: a storage of phononic information,” Phys. Rev. Lett. 101(26), 267203 (2008).
    [Crossref] [PubMed]
  6. M. Elzouka and S. Ndao, “Near-field NanoThermoMechanical memory,” Appl. Phys. Lett. 105(24), 243510 (2014).
    [Crossref]
  7. A. Narayanaswamy, S. Shen, L. Hu, X. Chen, and G. Chen, “Breakdown of the Planck blackbody radiation law at nanoscale gaps,” Appl. Phys., A Mater. Sci. Process. 96(2), 357–362 (2009).
    [Crossref]
  8. L. Hu, A. Narayanaswamy, X. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law,” Appl. Phys. Lett. 92(13), 133106 (2008).
    [Crossref]
  9. B. Song, A. Fiorino, E. Meyhofer, and P. Reddy, “Near-field radiative thermal transport: From theory to experiment,” AIP Adv. 5(5), 053503 (2015).
    [Crossref]
  10. R. St-Gelais, L. Zhu, S. Fan, and M. Lipson, “Near-field radiative heat transfer between parallel structures in the deep subwavelength regime,” Nat. Nanotechnol. 11(6), 515–519 (2016).
    [Crossref] [PubMed]
  11. J. Dai, S. A. Dyakov, and M. Yan, “Enhanced near-field radiative heat transfer between corrugated metal plates: Role of spoof surface plasmon polaritons,” Phys. Rev. B Condens. Matter Mater. Phys. 92(3), 035419 (2015).
    [Crossref]
  12. X. Liu, B. Zhao, and Z. M. Zhang, “Enhanced near-field thermal radiation and reduced Casimir stiction between doped-Si gratings,” Phys. Rev. A 91(6), 062510 (2015).
    [Crossref]
  13. R. Guérout, J. Lussange, F. S. S. Rosa, J.-P. J.-P. Hugonin, D. A. R. Dalvit, J.-J. J.-J. Greffet, A. Lambrecht, and S. Reynaud, “Enhanced radiative heat transfer between nanostructured gold plates,” Phys. Rev. B Condens. Matter Mater. Phys. 395(1), 12154 (2012).
    [Crossref]
  14. J. Lussange, R. Guérout, F. S. S. Rosa, J.-J. Greffet, A. Lambrecht, and S. Reynaud, “Radiative heat transfer between two dielectric nanogratings in the scattering approach,” Phys. Rev. B Condens. Matter Mater. Phys. 86(8), 085432 (2012).
    [Crossref]
  15. S.-A. Biehs, F. S. S. Rosa, and P. Ben-Abdallah, “Modulation of near-field heat transfer between two gratings,” Appl. Phys. Lett. 98(24), 243102 (2011).
    [Crossref]
  16. A. Didari and M. Pinar Mengüç, “Near-field thermal emission between corrugated Surfaces separated by nano-Gaps,” J. Quant. Spectrosc. Radiat. Transf. 158, 43–51 (2015).
    [Crossref]
  17. S.-A. Biehs, “Thermal heat radiation, near-field energy density and near-field radiative heat transfer of coated materials,” Eur. Phys. J. B 58(4), 423–431 (2007).
    [Crossref]
  18. M. Francoeur, M. P. Mengüç, and R. Vaillon, “Coexistence of multiple regimes for near-field thermal radiation between two layers supporting surface phonon polaritons in the infrared,” Phys. Rev. B Condens. Matter Mater. Phys. 84(7), 075436 (2011).
    [Crossref]
  19. H. Iizuka and S. Fan, “Significant Enhancement of Near-Field Electromagnetic Heat Transfer in a Multilayer Structure through Multiple Surface-States Coupling,” Phys. Rev. Lett. 120(6), 063901 (2018).
    [Crossref] [PubMed]
  20. O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljacic, “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 85(15), 155422 (2012).
    [Crossref]
  21. X. L. Liu and Z. M. Zhang, “Graphene-assisted near-field radiative heat transfer between corrugated polar materials,” Appl. Phys. Lett. 104(25), 251911 (2014).
    [Crossref]
  22. M. Elzouka and S. Ndao, “Meshed doped silicon photonic crystals for manipulating near-field thermal radiation,” J. Quant. Spectrosc. Radiat. Transf. 204, 56–62 (2018).
    [Crossref]
  23. M. Elzouka and S. Ndao, “Meshed doped silicon photonic crystals for manipulating near-field thermal radiation,” J. Quant. Spectrosc. Radiat. Transf. 204, 56–62 (2018).
    [Crossref]
  24. X. L. Liu, R. Z. Zhang, and Z. M. Zhang, “Near-field radiative heat transfer with doped-silicon nanostructured metamaterials,” Int. J. Heat Mass Tran. 73, 389–398 (2014).
    [Crossref]
  25. J. Dai, S. A. Dyakov, S. I. Bozhevolnyi, and M. Yan, “Near-field radiative heat transfer between metasurfaces: A full-wave study based on two-dimensional grooved metal plates,” Phys. Rev. B 94(12), 125431 (2016).
    [Crossref]
  26. X. Liu and Z. Zhang, “Near-Field Thermal Radiation between Metasurfaces,” ACS Photonics 2(9), 1320–1326 (2015).
    [Crossref]
  27. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
    [Crossref]
  28. C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
    [Crossref] [PubMed]
  29. R. Kubo, “The fluctuation-dissipation theorem,” Rep. Prog. Phys. 29(1), 255 (1966).
    [Crossref]
  30. A. Rodriguez and S. G. Johnson, “Efficient generation of correlated random numbers using Chebyshev-optimal magnitude-only IIR filters,” eprint arXiv:physics/0703152 (2007).
  31. J. D. Joannopoulos, S. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008).
  32. A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials,” Phys. Rev. Lett. 107(11), 114302 (2011).
    [Crossref] [PubMed]
  33. G. Parisi, P. Zilio, and F. Romanato, “Complex Bloch-modes calculation of plasmonic crystal slabs by means of finite elements method,” Opt. Express 20(15), 16690 (2012).
    [Crossref]
  34. L. Tian, Z. Zhang, J. Liu, K. Zhou, Y. Gao, and S. Liu, “Compact spoof surface plasmon polaritons waveguide drilled with L-shaped grooves,” Opt. Express 24(25), 28693–28703 (2016).
    [Crossref] [PubMed]

2018 (3)

H. Iizuka and S. Fan, “Significant Enhancement of Near-Field Electromagnetic Heat Transfer in a Multilayer Structure through Multiple Surface-States Coupling,” Phys. Rev. Lett. 120(6), 063901 (2018).
[Crossref] [PubMed]

M. Elzouka and S. Ndao, “Meshed doped silicon photonic crystals for manipulating near-field thermal radiation,” J. Quant. Spectrosc. Radiat. Transf. 204, 56–62 (2018).
[Crossref]

M. Elzouka and S. Ndao, “Meshed doped silicon photonic crystals for manipulating near-field thermal radiation,” J. Quant. Spectrosc. Radiat. Transf. 204, 56–62 (2018).
[Crossref]

2017 (1)

M. Elzouka and S. Ndao, “High Temperature Near-Field NanoThermoMechanical Rectification,” Sci. Rep. 7, 44901 (2017).
[Crossref] [PubMed]

2016 (3)

R. St-Gelais, L. Zhu, S. Fan, and M. Lipson, “Near-field radiative heat transfer between parallel structures in the deep subwavelength regime,” Nat. Nanotechnol. 11(6), 515–519 (2016).
[Crossref] [PubMed]

J. Dai, S. A. Dyakov, S. I. Bozhevolnyi, and M. Yan, “Near-field radiative heat transfer between metasurfaces: A full-wave study based on two-dimensional grooved metal plates,” Phys. Rev. B 94(12), 125431 (2016).
[Crossref]

L. Tian, Z. Zhang, J. Liu, K. Zhou, Y. Gao, and S. Liu, “Compact spoof surface plasmon polaritons waveguide drilled with L-shaped grooves,” Opt. Express 24(25), 28693–28703 (2016).
[Crossref] [PubMed]

2015 (5)

X. Liu and Z. Zhang, “Near-Field Thermal Radiation between Metasurfaces,” ACS Photonics 2(9), 1320–1326 (2015).
[Crossref]

J. Dai, S. A. Dyakov, and M. Yan, “Enhanced near-field radiative heat transfer between corrugated metal plates: Role of spoof surface plasmon polaritons,” Phys. Rev. B Condens. Matter Mater. Phys. 92(3), 035419 (2015).
[Crossref]

X. Liu, B. Zhao, and Z. M. Zhang, “Enhanced near-field thermal radiation and reduced Casimir stiction between doped-Si gratings,” Phys. Rev. A 91(6), 062510 (2015).
[Crossref]

B. Song, A. Fiorino, E. Meyhofer, and P. Reddy, “Near-field radiative thermal transport: From theory to experiment,” AIP Adv. 5(5), 053503 (2015).
[Crossref]

A. Didari and M. Pinar Mengüç, “Near-field thermal emission between corrugated Surfaces separated by nano-Gaps,” J. Quant. Spectrosc. Radiat. Transf. 158, 43–51 (2015).
[Crossref]

2014 (3)

X. L. Liu and Z. M. Zhang, “Graphene-assisted near-field radiative heat transfer between corrugated polar materials,” Appl. Phys. Lett. 104(25), 251911 (2014).
[Crossref]

M. Elzouka and S. Ndao, “Near-field NanoThermoMechanical memory,” Appl. Phys. Lett. 105(24), 243510 (2014).
[Crossref]

X. L. Liu, R. Z. Zhang, and Z. M. Zhang, “Near-field radiative heat transfer with doped-silicon nanostructured metamaterials,” Int. J. Heat Mass Tran. 73, 389–398 (2014).
[Crossref]

2012 (5)

G. Parisi, P. Zilio, and F. Romanato, “Complex Bloch-modes calculation of plasmonic crystal slabs by means of finite elements method,” Opt. Express 20(15), 16690 (2012).
[Crossref]

R. Guérout, J. Lussange, F. S. S. Rosa, J.-P. J.-P. Hugonin, D. A. R. Dalvit, J.-J. J.-J. Greffet, A. Lambrecht, and S. Reynaud, “Enhanced radiative heat transfer between nanostructured gold plates,” Phys. Rev. B Condens. Matter Mater. Phys. 395(1), 12154 (2012).
[Crossref]

J. Lussange, R. Guérout, F. S. S. Rosa, J.-J. Greffet, A. Lambrecht, and S. Reynaud, “Radiative heat transfer between two dielectric nanogratings in the scattering approach,” Phys. Rev. B Condens. Matter Mater. Phys. 86(8), 085432 (2012).
[Crossref]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljacic, “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 85(15), 155422 (2012).
[Crossref]

N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, “Colloquium: Phononics: Manipulating heat flow with electronic analogs and beyond,” Rev. Mod. Phys. 84(3), 1045–1066 (2012).
[Crossref]

2011 (4)

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Coexistence of multiple regimes for near-field thermal radiation between two layers supporting surface phonon polaritons in the infrared,” Phys. Rev. B Condens. Matter Mater. Phys. 84(7), 075436 (2011).
[Crossref]

S.-A. Biehs, F. S. S. Rosa, and P. Ben-Abdallah, “Modulation of near-field heat transfer between two gratings,” Appl. Phys. Lett. 98(24), 243102 (2011).
[Crossref]

R. Xie, C. T. Bui, B. Varghese, Q. Zhang, C. H. Sow, B. Li, and J. T. L. Thong, “An electrically tuned solid-state thermal memory based on metal-insulator transition of single-crystalline VO2 nanobeams,” Adv. Funct. Mater. 21(9), 1602–1607 (2011).
[Crossref]

A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials,” Phys. Rev. Lett. 107(11), 114302 (2011).
[Crossref] [PubMed]

2010 (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

2009 (1)

A. Narayanaswamy, S. Shen, L. Hu, X. Chen, and G. Chen, “Breakdown of the Planck blackbody radiation law at nanoscale gaps,” Appl. Phys., A Mater. Sci. Process. 96(2), 357–362 (2009).
[Crossref]

2008 (2)

L. Hu, A. Narayanaswamy, X. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law,” Appl. Phys. Lett. 92(13), 133106 (2008).
[Crossref]

L. Wang and B. Li, “Thermal memory: a storage of phononic information,” Phys. Rev. Lett. 101(26), 267203 (2008).
[Crossref] [PubMed]

2007 (1)

S.-A. Biehs, “Thermal heat radiation, near-field energy density and near-field radiative heat transfer of coated materials,” Eur. Phys. J. B 58(4), 423–431 (2007).
[Crossref]

2004 (1)

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[Crossref] [PubMed]

1966 (1)

R. Kubo, “The fluctuation-dissipation theorem,” Rep. Prog. Phys. 29(1), 255 (1966).
[Crossref]

Ben-Abdallah, P.

S.-A. Biehs, F. S. S. Rosa, and P. Ben-Abdallah, “Modulation of near-field heat transfer between two gratings,” Appl. Phys. Lett. 98(24), 243102 (2011).
[Crossref]

Bermel, P.

A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials,” Phys. Rev. Lett. 107(11), 114302 (2011).
[Crossref] [PubMed]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Biehs, S.-A.

S.-A. Biehs, F. S. S. Rosa, and P. Ben-Abdallah, “Modulation of near-field heat transfer between two gratings,” Appl. Phys. Lett. 98(24), 243102 (2011).
[Crossref]

S.-A. Biehs, “Thermal heat radiation, near-field energy density and near-field radiative heat transfer of coated materials,” Eur. Phys. J. B 58(4), 423–431 (2007).
[Crossref]

Bozhevolnyi, S. I.

J. Dai, S. A. Dyakov, S. I. Bozhevolnyi, and M. Yan, “Near-field radiative heat transfer between metasurfaces: A full-wave study based on two-dimensional grooved metal plates,” Phys. Rev. B 94(12), 125431 (2016).
[Crossref]

Bui, C. T.

R. Xie, C. T. Bui, B. Varghese, Q. Zhang, C. H. Sow, B. Li, and J. T. L. Thong, “An electrically tuned solid-state thermal memory based on metal-insulator transition of single-crystalline VO2 nanobeams,” Adv. Funct. Mater. 21(9), 1602–1607 (2011).
[Crossref]

Buljan, H.

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljacic, “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 85(15), 155422 (2012).
[Crossref]

Celanovic, I.

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljacic, “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 85(15), 155422 (2012).
[Crossref]

A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials,” Phys. Rev. Lett. 107(11), 114302 (2011).
[Crossref] [PubMed]

Chen, G.

A. Narayanaswamy, S. Shen, L. Hu, X. Chen, and G. Chen, “Breakdown of the Planck blackbody radiation law at nanoscale gaps,” Appl. Phys., A Mater. Sci. Process. 96(2), 357–362 (2009).
[Crossref]

L. Hu, A. Narayanaswamy, X. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law,” Appl. Phys. Lett. 92(13), 133106 (2008).
[Crossref]

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[Crossref] [PubMed]

Chen, X.

A. Narayanaswamy, S. Shen, L. Hu, X. Chen, and G. Chen, “Breakdown of the Planck blackbody radiation law at nanoscale gaps,” Appl. Phys., A Mater. Sci. Process. 96(2), 357–362 (2009).
[Crossref]

L. Hu, A. Narayanaswamy, X. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law,” Appl. Phys. Lett. 92(13), 133106 (2008).
[Crossref]

Dai, J.

J. Dai, S. A. Dyakov, S. I. Bozhevolnyi, and M. Yan, “Near-field radiative heat transfer between metasurfaces: A full-wave study based on two-dimensional grooved metal plates,” Phys. Rev. B 94(12), 125431 (2016).
[Crossref]

J. Dai, S. A. Dyakov, and M. Yan, “Enhanced near-field radiative heat transfer between corrugated metal plates: Role of spoof surface plasmon polaritons,” Phys. Rev. B Condens. Matter Mater. Phys. 92(3), 035419 (2015).
[Crossref]

Dalvit, D. A. R.

R. Guérout, J. Lussange, F. S. S. Rosa, J.-P. J.-P. Hugonin, D. A. R. Dalvit, J.-J. J.-J. Greffet, A. Lambrecht, and S. Reynaud, “Enhanced radiative heat transfer between nanostructured gold plates,” Phys. Rev. B Condens. Matter Mater. Phys. 395(1), 12154 (2012).
[Crossref]

Didari, A.

A. Didari and M. Pinar Mengüç, “Near-field thermal emission between corrugated Surfaces separated by nano-Gaps,” J. Quant. Spectrosc. Radiat. Transf. 158, 43–51 (2015).
[Crossref]

Dyakov, S. A.

J. Dai, S. A. Dyakov, S. I. Bozhevolnyi, and M. Yan, “Near-field radiative heat transfer between metasurfaces: A full-wave study based on two-dimensional grooved metal plates,” Phys. Rev. B 94(12), 125431 (2016).
[Crossref]

J. Dai, S. A. Dyakov, and M. Yan, “Enhanced near-field radiative heat transfer between corrugated metal plates: Role of spoof surface plasmon polaritons,” Phys. Rev. B Condens. Matter Mater. Phys. 92(3), 035419 (2015).
[Crossref]

Elzouka, M.

M. Elzouka and S. Ndao, “Meshed doped silicon photonic crystals for manipulating near-field thermal radiation,” J. Quant. Spectrosc. Radiat. Transf. 204, 56–62 (2018).
[Crossref]

M. Elzouka and S. Ndao, “Meshed doped silicon photonic crystals for manipulating near-field thermal radiation,” J. Quant. Spectrosc. Radiat. Transf. 204, 56–62 (2018).
[Crossref]

M. Elzouka and S. Ndao, “High Temperature Near-Field NanoThermoMechanical Rectification,” Sci. Rep. 7, 44901 (2017).
[Crossref] [PubMed]

M. Elzouka and S. Ndao, “Near-field NanoThermoMechanical memory,” Appl. Phys. Lett. 105(24), 243510 (2014).
[Crossref]

Fan, S.

H. Iizuka and S. Fan, “Significant Enhancement of Near-Field Electromagnetic Heat Transfer in a Multilayer Structure through Multiple Surface-States Coupling,” Phys. Rev. Lett. 120(6), 063901 (2018).
[Crossref] [PubMed]

R. St-Gelais, L. Zhu, S. Fan, and M. Lipson, “Near-field radiative heat transfer between parallel structures in the deep subwavelength regime,” Nat. Nanotechnol. 11(6), 515–519 (2016).
[Crossref] [PubMed]

Fiorino, A.

B. Song, A. Fiorino, E. Meyhofer, and P. Reddy, “Near-field radiative thermal transport: From theory to experiment,” AIP Adv. 5(5), 053503 (2015).
[Crossref]

Francoeur, M.

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Coexistence of multiple regimes for near-field thermal radiation between two layers supporting surface phonon polaritons in the infrared,” Phys. Rev. B Condens. Matter Mater. Phys. 84(7), 075436 (2011).
[Crossref]

Gao, Y.

L. Tian, Z. Zhang, J. Liu, K. Zhou, Y. Gao, and S. Liu, “Compact spoof surface plasmon polaritons waveguide drilled with L-shaped grooves,” Opt. Express 24(25), 28693–28703 (2016).
[Crossref] [PubMed]

Greffet, J.-J.

J. Lussange, R. Guérout, F. S. S. Rosa, J.-J. Greffet, A. Lambrecht, and S. Reynaud, “Radiative heat transfer between two dielectric nanogratings in the scattering approach,” Phys. Rev. B Condens. Matter Mater. Phys. 86(8), 085432 (2012).
[Crossref]

Greffet, J.-J. J.-J.

R. Guérout, J. Lussange, F. S. S. Rosa, J.-P. J.-P. Hugonin, D. A. R. Dalvit, J.-J. J.-J. Greffet, A. Lambrecht, and S. Reynaud, “Enhanced radiative heat transfer between nanostructured gold plates,” Phys. Rev. B Condens. Matter Mater. Phys. 395(1), 12154 (2012).
[Crossref]

Guérout, R.

J. Lussange, R. Guérout, F. S. S. Rosa, J.-J. Greffet, A. Lambrecht, and S. Reynaud, “Radiative heat transfer between two dielectric nanogratings in the scattering approach,” Phys. Rev. B Condens. Matter Mater. Phys. 86(8), 085432 (2012).
[Crossref]

R. Guérout, J. Lussange, F. S. S. Rosa, J.-P. J.-P. Hugonin, D. A. R. Dalvit, J.-J. J.-J. Greffet, A. Lambrecht, and S. Reynaud, “Enhanced radiative heat transfer between nanostructured gold plates,” Phys. Rev. B Condens. Matter Mater. Phys. 395(1), 12154 (2012).
[Crossref]

Hänggi, P.

N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, “Colloquium: Phononics: Manipulating heat flow with electronic analogs and beyond,” Rev. Mod. Phys. 84(3), 1045–1066 (2012).
[Crossref]

Hu, L.

A. Narayanaswamy, S. Shen, L. Hu, X. Chen, and G. Chen, “Breakdown of the Planck blackbody radiation law at nanoscale gaps,” Appl. Phys., A Mater. Sci. Process. 96(2), 357–362 (2009).
[Crossref]

L. Hu, A. Narayanaswamy, X. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law,” Appl. Phys. Lett. 92(13), 133106 (2008).
[Crossref]

Hugonin, J.-P. J.-P.

R. Guérout, J. Lussange, F. S. S. Rosa, J.-P. J.-P. Hugonin, D. A. R. Dalvit, J.-J. J.-J. Greffet, A. Lambrecht, and S. Reynaud, “Enhanced radiative heat transfer between nanostructured gold plates,” Phys. Rev. B Condens. Matter Mater. Phys. 395(1), 12154 (2012).
[Crossref]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Iizuka, H.

H. Iizuka and S. Fan, “Significant Enhancement of Near-Field Electromagnetic Heat Transfer in a Multilayer Structure through Multiple Surface-States Coupling,” Phys. Rev. Lett. 120(6), 063901 (2018).
[Crossref] [PubMed]

Ilic, O.

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljacic, “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 85(15), 155422 (2012).
[Crossref]

A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials,” Phys. Rev. Lett. 107(11), 114302 (2011).
[Crossref] [PubMed]

Jablan, M.

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljacic, “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 85(15), 155422 (2012).
[Crossref]

Joannopoulos, J. D.

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljacic, “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 85(15), 155422 (2012).
[Crossref]

A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials,” Phys. Rev. Lett. 107(11), 114302 (2011).
[Crossref] [PubMed]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[Crossref] [PubMed]

Johnson, S. G.

A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials,” Phys. Rev. Lett. 107(11), 114302 (2011).
[Crossref] [PubMed]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Kubo, R.

R. Kubo, “The fluctuation-dissipation theorem,” Rep. Prog. Phys. 29(1), 255 (1966).
[Crossref]

Lambrecht, A.

J. Lussange, R. Guérout, F. S. S. Rosa, J.-J. Greffet, A. Lambrecht, and S. Reynaud, “Radiative heat transfer between two dielectric nanogratings in the scattering approach,” Phys. Rev. B Condens. Matter Mater. Phys. 86(8), 085432 (2012).
[Crossref]

R. Guérout, J. Lussange, F. S. S. Rosa, J.-P. J.-P. Hugonin, D. A. R. Dalvit, J.-J. J.-J. Greffet, A. Lambrecht, and S. Reynaud, “Enhanced radiative heat transfer between nanostructured gold plates,” Phys. Rev. B Condens. Matter Mater. Phys. 395(1), 12154 (2012).
[Crossref]

Li, B.

N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, “Colloquium: Phononics: Manipulating heat flow with electronic analogs and beyond,” Rev. Mod. Phys. 84(3), 1045–1066 (2012).
[Crossref]

R. Xie, C. T. Bui, B. Varghese, Q. Zhang, C. H. Sow, B. Li, and J. T. L. Thong, “An electrically tuned solid-state thermal memory based on metal-insulator transition of single-crystalline VO2 nanobeams,” Adv. Funct. Mater. 21(9), 1602–1607 (2011).
[Crossref]

L. Wang and B. Li, “Thermal memory: a storage of phononic information,” Phys. Rev. Lett. 101(26), 267203 (2008).
[Crossref] [PubMed]

Li, N.

N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, “Colloquium: Phononics: Manipulating heat flow with electronic analogs and beyond,” Rev. Mod. Phys. 84(3), 1045–1066 (2012).
[Crossref]

Lipson, M.

R. St-Gelais, L. Zhu, S. Fan, and M. Lipson, “Near-field radiative heat transfer between parallel structures in the deep subwavelength regime,” Nat. Nanotechnol. 11(6), 515–519 (2016).
[Crossref] [PubMed]

Liu, J.

L. Tian, Z. Zhang, J. Liu, K. Zhou, Y. Gao, and S. Liu, “Compact spoof surface plasmon polaritons waveguide drilled with L-shaped grooves,” Opt. Express 24(25), 28693–28703 (2016).
[Crossref] [PubMed]

Liu, S.

L. Tian, Z. Zhang, J. Liu, K. Zhou, Y. Gao, and S. Liu, “Compact spoof surface plasmon polaritons waveguide drilled with L-shaped grooves,” Opt. Express 24(25), 28693–28703 (2016).
[Crossref] [PubMed]

Liu, X.

X. Liu and Z. Zhang, “Near-Field Thermal Radiation between Metasurfaces,” ACS Photonics 2(9), 1320–1326 (2015).
[Crossref]

X. Liu, B. Zhao, and Z. M. Zhang, “Enhanced near-field thermal radiation and reduced Casimir stiction between doped-Si gratings,” Phys. Rev. A 91(6), 062510 (2015).
[Crossref]

Liu, X. L.

X. L. Liu, R. Z. Zhang, and Z. M. Zhang, “Near-field radiative heat transfer with doped-silicon nanostructured metamaterials,” Int. J. Heat Mass Tran. 73, 389–398 (2014).
[Crossref]

X. L. Liu and Z. M. Zhang, “Graphene-assisted near-field radiative heat transfer between corrugated polar materials,” Appl. Phys. Lett. 104(25), 251911 (2014).
[Crossref]

Luo, C.

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[Crossref] [PubMed]

Lussange, J.

J. Lussange, R. Guérout, F. S. S. Rosa, J.-J. Greffet, A. Lambrecht, and S. Reynaud, “Radiative heat transfer between two dielectric nanogratings in the scattering approach,” Phys. Rev. B Condens. Matter Mater. Phys. 86(8), 085432 (2012).
[Crossref]

R. Guérout, J. Lussange, F. S. S. Rosa, J.-P. J.-P. Hugonin, D. A. R. Dalvit, J.-J. J.-J. Greffet, A. Lambrecht, and S. Reynaud, “Enhanced radiative heat transfer between nanostructured gold plates,” Phys. Rev. B Condens. Matter Mater. Phys. 395(1), 12154 (2012).
[Crossref]

Mengüç, M. P.

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Coexistence of multiple regimes for near-field thermal radiation between two layers supporting surface phonon polaritons in the infrared,” Phys. Rev. B Condens. Matter Mater. Phys. 84(7), 075436 (2011).
[Crossref]

Meyhofer, E.

B. Song, A. Fiorino, E. Meyhofer, and P. Reddy, “Near-field radiative thermal transport: From theory to experiment,” AIP Adv. 5(5), 053503 (2015).
[Crossref]

Narayanaswamy, A.

A. Narayanaswamy, S. Shen, L. Hu, X. Chen, and G. Chen, “Breakdown of the Planck blackbody radiation law at nanoscale gaps,” Appl. Phys., A Mater. Sci. Process. 96(2), 357–362 (2009).
[Crossref]

L. Hu, A. Narayanaswamy, X. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law,” Appl. Phys. Lett. 92(13), 133106 (2008).
[Crossref]

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[Crossref] [PubMed]

Ndao, S.

M. Elzouka and S. Ndao, “Meshed doped silicon photonic crystals for manipulating near-field thermal radiation,” J. Quant. Spectrosc. Radiat. Transf. 204, 56–62 (2018).
[Crossref]

M. Elzouka and S. Ndao, “Meshed doped silicon photonic crystals for manipulating near-field thermal radiation,” J. Quant. Spectrosc. Radiat. Transf. 204, 56–62 (2018).
[Crossref]

M. Elzouka and S. Ndao, “High Temperature Near-Field NanoThermoMechanical Rectification,” Sci. Rep. 7, 44901 (2017).
[Crossref] [PubMed]

M. Elzouka and S. Ndao, “Near-field NanoThermoMechanical memory,” Appl. Phys. Lett. 105(24), 243510 (2014).
[Crossref]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Parisi, G.

G. Parisi, P. Zilio, and F. Romanato, “Complex Bloch-modes calculation of plasmonic crystal slabs by means of finite elements method,” Opt. Express 20(15), 16690 (2012).
[Crossref]

Pinar Mengüç, M.

A. Didari and M. Pinar Mengüç, “Near-field thermal emission between corrugated Surfaces separated by nano-Gaps,” J. Quant. Spectrosc. Radiat. Transf. 158, 43–51 (2015).
[Crossref]

Reddy, P.

B. Song, A. Fiorino, E. Meyhofer, and P. Reddy, “Near-field radiative thermal transport: From theory to experiment,” AIP Adv. 5(5), 053503 (2015).
[Crossref]

Ren, J.

N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, “Colloquium: Phononics: Manipulating heat flow with electronic analogs and beyond,” Rev. Mod. Phys. 84(3), 1045–1066 (2012).
[Crossref]

Reynaud, S.

J. Lussange, R. Guérout, F. S. S. Rosa, J.-J. Greffet, A. Lambrecht, and S. Reynaud, “Radiative heat transfer between two dielectric nanogratings in the scattering approach,” Phys. Rev. B Condens. Matter Mater. Phys. 86(8), 085432 (2012).
[Crossref]

R. Guérout, J. Lussange, F. S. S. Rosa, J.-P. J.-P. Hugonin, D. A. R. Dalvit, J.-J. J.-J. Greffet, A. Lambrecht, and S. Reynaud, “Enhanced radiative heat transfer between nanostructured gold plates,” Phys. Rev. B Condens. Matter Mater. Phys. 395(1), 12154 (2012).
[Crossref]

Rodriguez, A. W.

A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials,” Phys. Rev. Lett. 107(11), 114302 (2011).
[Crossref] [PubMed]

Romanato, F.

G. Parisi, P. Zilio, and F. Romanato, “Complex Bloch-modes calculation of plasmonic crystal slabs by means of finite elements method,” Opt. Express 20(15), 16690 (2012).
[Crossref]

Rosa, F. S. S.

J. Lussange, R. Guérout, F. S. S. Rosa, J.-J. Greffet, A. Lambrecht, and S. Reynaud, “Radiative heat transfer between two dielectric nanogratings in the scattering approach,” Phys. Rev. B Condens. Matter Mater. Phys. 86(8), 085432 (2012).
[Crossref]

R. Guérout, J. Lussange, F. S. S. Rosa, J.-P. J.-P. Hugonin, D. A. R. Dalvit, J.-J. J.-J. Greffet, A. Lambrecht, and S. Reynaud, “Enhanced radiative heat transfer between nanostructured gold plates,” Phys. Rev. B Condens. Matter Mater. Phys. 395(1), 12154 (2012).
[Crossref]

S.-A. Biehs, F. S. S. Rosa, and P. Ben-Abdallah, “Modulation of near-field heat transfer between two gratings,” Appl. Phys. Lett. 98(24), 243102 (2011).
[Crossref]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Shen, S.

A. Narayanaswamy, S. Shen, L. Hu, X. Chen, and G. Chen, “Breakdown of the Planck blackbody radiation law at nanoscale gaps,” Appl. Phys., A Mater. Sci. Process. 96(2), 357–362 (2009).
[Crossref]

Soljacic, M.

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljacic, “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 85(15), 155422 (2012).
[Crossref]

A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials,” Phys. Rev. Lett. 107(11), 114302 (2011).
[Crossref] [PubMed]

Song, B.

B. Song, A. Fiorino, E. Meyhofer, and P. Reddy, “Near-field radiative thermal transport: From theory to experiment,” AIP Adv. 5(5), 053503 (2015).
[Crossref]

Sow, C. H.

R. Xie, C. T. Bui, B. Varghese, Q. Zhang, C. H. Sow, B. Li, and J. T. L. Thong, “An electrically tuned solid-state thermal memory based on metal-insulator transition of single-crystalline VO2 nanobeams,” Adv. Funct. Mater. 21(9), 1602–1607 (2011).
[Crossref]

St-Gelais, R.

R. St-Gelais, L. Zhu, S. Fan, and M. Lipson, “Near-field radiative heat transfer between parallel structures in the deep subwavelength regime,” Nat. Nanotechnol. 11(6), 515–519 (2016).
[Crossref] [PubMed]

Thong, J. T. L.

R. Xie, C. T. Bui, B. Varghese, Q. Zhang, C. H. Sow, B. Li, and J. T. L. Thong, “An electrically tuned solid-state thermal memory based on metal-insulator transition of single-crystalline VO2 nanobeams,” Adv. Funct. Mater. 21(9), 1602–1607 (2011).
[Crossref]

Tian, L.

L. Tian, Z. Zhang, J. Liu, K. Zhou, Y. Gao, and S. Liu, “Compact spoof surface plasmon polaritons waveguide drilled with L-shaped grooves,” Opt. Express 24(25), 28693–28703 (2016).
[Crossref] [PubMed]

Vaillon, R.

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Coexistence of multiple regimes for near-field thermal radiation between two layers supporting surface phonon polaritons in the infrared,” Phys. Rev. B Condens. Matter Mater. Phys. 84(7), 075436 (2011).
[Crossref]

Varghese, B.

R. Xie, C. T. Bui, B. Varghese, Q. Zhang, C. H. Sow, B. Li, and J. T. L. Thong, “An electrically tuned solid-state thermal memory based on metal-insulator transition of single-crystalline VO2 nanobeams,” Adv. Funct. Mater. 21(9), 1602–1607 (2011).
[Crossref]

Wang, L.

N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, “Colloquium: Phononics: Manipulating heat flow with electronic analogs and beyond,” Rev. Mod. Phys. 84(3), 1045–1066 (2012).
[Crossref]

L. Wang and B. Li, “Thermal memory: a storage of phononic information,” Phys. Rev. Lett. 101(26), 267203 (2008).
[Crossref] [PubMed]

Xie, R.

R. Xie, C. T. Bui, B. Varghese, Q. Zhang, C. H. Sow, B. Li, and J. T. L. Thong, “An electrically tuned solid-state thermal memory based on metal-insulator transition of single-crystalline VO2 nanobeams,” Adv. Funct. Mater. 21(9), 1602–1607 (2011).
[Crossref]

Yan, M.

J. Dai, S. A. Dyakov, S. I. Bozhevolnyi, and M. Yan, “Near-field radiative heat transfer between metasurfaces: A full-wave study based on two-dimensional grooved metal plates,” Phys. Rev. B 94(12), 125431 (2016).
[Crossref]

J. Dai, S. A. Dyakov, and M. Yan, “Enhanced near-field radiative heat transfer between corrugated metal plates: Role of spoof surface plasmon polaritons,” Phys. Rev. B Condens. Matter Mater. Phys. 92(3), 035419 (2015).
[Crossref]

Zhang, G.

N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, “Colloquium: Phononics: Manipulating heat flow with electronic analogs and beyond,” Rev. Mod. Phys. 84(3), 1045–1066 (2012).
[Crossref]

Zhang, Q.

R. Xie, C. T. Bui, B. Varghese, Q. Zhang, C. H. Sow, B. Li, and J. T. L. Thong, “An electrically tuned solid-state thermal memory based on metal-insulator transition of single-crystalline VO2 nanobeams,” Adv. Funct. Mater. 21(9), 1602–1607 (2011).
[Crossref]

Zhang, R. Z.

X. L. Liu, R. Z. Zhang, and Z. M. Zhang, “Near-field radiative heat transfer with doped-silicon nanostructured metamaterials,” Int. J. Heat Mass Tran. 73, 389–398 (2014).
[Crossref]

Zhang, Z.

L. Tian, Z. Zhang, J. Liu, K. Zhou, Y. Gao, and S. Liu, “Compact spoof surface plasmon polaritons waveguide drilled with L-shaped grooves,” Opt. Express 24(25), 28693–28703 (2016).
[Crossref] [PubMed]

X. Liu and Z. Zhang, “Near-Field Thermal Radiation between Metasurfaces,” ACS Photonics 2(9), 1320–1326 (2015).
[Crossref]

Zhang, Z. M.

X. Liu, B. Zhao, and Z. M. Zhang, “Enhanced near-field thermal radiation and reduced Casimir stiction between doped-Si gratings,” Phys. Rev. A 91(6), 062510 (2015).
[Crossref]

X. L. Liu, R. Z. Zhang, and Z. M. Zhang, “Near-field radiative heat transfer with doped-silicon nanostructured metamaterials,” Int. J. Heat Mass Tran. 73, 389–398 (2014).
[Crossref]

X. L. Liu and Z. M. Zhang, “Graphene-assisted near-field radiative heat transfer between corrugated polar materials,” Appl. Phys. Lett. 104(25), 251911 (2014).
[Crossref]

Zhao, B.

X. Liu, B. Zhao, and Z. M. Zhang, “Enhanced near-field thermal radiation and reduced Casimir stiction between doped-Si gratings,” Phys. Rev. A 91(6), 062510 (2015).
[Crossref]

Zhou, K.

L. Tian, Z. Zhang, J. Liu, K. Zhou, Y. Gao, and S. Liu, “Compact spoof surface plasmon polaritons waveguide drilled with L-shaped grooves,” Opt. Express 24(25), 28693–28703 (2016).
[Crossref] [PubMed]

Zhu, L.

R. St-Gelais, L. Zhu, S. Fan, and M. Lipson, “Near-field radiative heat transfer between parallel structures in the deep subwavelength regime,” Nat. Nanotechnol. 11(6), 515–519 (2016).
[Crossref] [PubMed]

Zilio, P.

G. Parisi, P. Zilio, and F. Romanato, “Complex Bloch-modes calculation of plasmonic crystal slabs by means of finite elements method,” Opt. Express 20(15), 16690 (2012).
[Crossref]

ACS Photonics (1)

X. Liu and Z. Zhang, “Near-Field Thermal Radiation between Metasurfaces,” ACS Photonics 2(9), 1320–1326 (2015).
[Crossref]

Adv. Funct. Mater. (1)

R. Xie, C. T. Bui, B. Varghese, Q. Zhang, C. H. Sow, B. Li, and J. T. L. Thong, “An electrically tuned solid-state thermal memory based on metal-insulator transition of single-crystalline VO2 nanobeams,” Adv. Funct. Mater. 21(9), 1602–1607 (2011).
[Crossref]

AIP Adv. (1)

B. Song, A. Fiorino, E. Meyhofer, and P. Reddy, “Near-field radiative thermal transport: From theory to experiment,” AIP Adv. 5(5), 053503 (2015).
[Crossref]

Appl. Phys. Lett. (4)

S.-A. Biehs, F. S. S. Rosa, and P. Ben-Abdallah, “Modulation of near-field heat transfer between two gratings,” Appl. Phys. Lett. 98(24), 243102 (2011).
[Crossref]

M. Elzouka and S. Ndao, “Near-field NanoThermoMechanical memory,” Appl. Phys. Lett. 105(24), 243510 (2014).
[Crossref]

L. Hu, A. Narayanaswamy, X. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law,” Appl. Phys. Lett. 92(13), 133106 (2008).
[Crossref]

X. L. Liu and Z. M. Zhang, “Graphene-assisted near-field radiative heat transfer between corrugated polar materials,” Appl. Phys. Lett. 104(25), 251911 (2014).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

A. Narayanaswamy, S. Shen, L. Hu, X. Chen, and G. Chen, “Breakdown of the Planck blackbody radiation law at nanoscale gaps,” Appl. Phys., A Mater. Sci. Process. 96(2), 357–362 (2009).
[Crossref]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Eur. Phys. J. B (1)

S.-A. Biehs, “Thermal heat radiation, near-field energy density and near-field radiative heat transfer of coated materials,” Eur. Phys. J. B 58(4), 423–431 (2007).
[Crossref]

Int. J. Heat Mass Tran. (1)

X. L. Liu, R. Z. Zhang, and Z. M. Zhang, “Near-field radiative heat transfer with doped-silicon nanostructured metamaterials,” Int. J. Heat Mass Tran. 73, 389–398 (2014).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (3)

M. Elzouka and S. Ndao, “Meshed doped silicon photonic crystals for manipulating near-field thermal radiation,” J. Quant. Spectrosc. Radiat. Transf. 204, 56–62 (2018).
[Crossref]

M. Elzouka and S. Ndao, “Meshed doped silicon photonic crystals for manipulating near-field thermal radiation,” J. Quant. Spectrosc. Radiat. Transf. 204, 56–62 (2018).
[Crossref]

A. Didari and M. Pinar Mengüç, “Near-field thermal emission between corrugated Surfaces separated by nano-Gaps,” J. Quant. Spectrosc. Radiat. Transf. 158, 43–51 (2015).
[Crossref]

Nat. Nanotechnol. (1)

R. St-Gelais, L. Zhu, S. Fan, and M. Lipson, “Near-field radiative heat transfer between parallel structures in the deep subwavelength regime,” Nat. Nanotechnol. 11(6), 515–519 (2016).
[Crossref] [PubMed]

Opt. Express (2)

G. Parisi, P. Zilio, and F. Romanato, “Complex Bloch-modes calculation of plasmonic crystal slabs by means of finite elements method,” Opt. Express 20(15), 16690 (2012).
[Crossref]

L. Tian, Z. Zhang, J. Liu, K. Zhou, Y. Gao, and S. Liu, “Compact spoof surface plasmon polaritons waveguide drilled with L-shaped grooves,” Opt. Express 24(25), 28693–28703 (2016).
[Crossref] [PubMed]

Phys. Rev. A (1)

X. Liu, B. Zhao, and Z. M. Zhang, “Enhanced near-field thermal radiation and reduced Casimir stiction between doped-Si gratings,” Phys. Rev. A 91(6), 062510 (2015).
[Crossref]

Phys. Rev. B (1)

J. Dai, S. A. Dyakov, S. I. Bozhevolnyi, and M. Yan, “Near-field radiative heat transfer between metasurfaces: A full-wave study based on two-dimensional grooved metal plates,” Phys. Rev. B 94(12), 125431 (2016).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (5)

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljacic, “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 85(15), 155422 (2012).
[Crossref]

R. Guérout, J. Lussange, F. S. S. Rosa, J.-P. J.-P. Hugonin, D. A. R. Dalvit, J.-J. J.-J. Greffet, A. Lambrecht, and S. Reynaud, “Enhanced radiative heat transfer between nanostructured gold plates,” Phys. Rev. B Condens. Matter Mater. Phys. 395(1), 12154 (2012).
[Crossref]

J. Lussange, R. Guérout, F. S. S. Rosa, J.-J. Greffet, A. Lambrecht, and S. Reynaud, “Radiative heat transfer between two dielectric nanogratings in the scattering approach,” Phys. Rev. B Condens. Matter Mater. Phys. 86(8), 085432 (2012).
[Crossref]

J. Dai, S. A. Dyakov, and M. Yan, “Enhanced near-field radiative heat transfer between corrugated metal plates: Role of spoof surface plasmon polaritons,” Phys. Rev. B Condens. Matter Mater. Phys. 92(3), 035419 (2015).
[Crossref]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Coexistence of multiple regimes for near-field thermal radiation between two layers supporting surface phonon polaritons in the infrared,” Phys. Rev. B Condens. Matter Mater. Phys. 84(7), 075436 (2011).
[Crossref]

Phys. Rev. Lett. (4)

H. Iizuka and S. Fan, “Significant Enhancement of Near-Field Electromagnetic Heat Transfer in a Multilayer Structure through Multiple Surface-States Coupling,” Phys. Rev. Lett. 120(6), 063901 (2018).
[Crossref] [PubMed]

L. Wang and B. Li, “Thermal memory: a storage of phononic information,” Phys. Rev. Lett. 101(26), 267203 (2008).
[Crossref] [PubMed]

A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials,” Phys. Rev. Lett. 107(11), 114302 (2011).
[Crossref] [PubMed]

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

R. Kubo, “The fluctuation-dissipation theorem,” Rep. Prog. Phys. 29(1), 255 (1966).
[Crossref]

Rev. Mod. Phys. (1)

N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, “Colloquium: Phononics: Manipulating heat flow with electronic analogs and beyond,” Rev. Mod. Phys. 84(3), 1045–1066 (2012).
[Crossref]

Sci. Rep. (1)

M. Elzouka and S. Ndao, “High Temperature Near-Field NanoThermoMechanical Rectification,” Sci. Rep. 7, 44901 (2017).
[Crossref] [PubMed]

Other (3)

S. Basu, Near-Field Radiative Heat Transfer across Nanometer Vacuum Gaps: Fundamentals and Applications, 1st ed. (Elsevier, 2016).

A. Rodriguez and S. G. Johnson, “Efficient generation of correlated random numbers using Chebyshev-optimal magnitude-only IIR filters,” eprint arXiv:physics/0703152 (2007).

J. D. Joannopoulos, S. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Layout of interweaved L slots (a) and the straight slots (b).
Fig. 2
Fig. 2 Interweaved L versus straight slots. (a) and (b) are contour plot of transmission factor calculated by FDTD for straight slots and L slots, respectively. The dispersion relation can be identified by tracking the local maxima (the bright colors). (c) is the integrated transmission factor with respect to Bloch wave vector k x . Results are for separation gap dc = 0.5 μm. More resonant modes for interweaved L structure than straight slot.
Fig. 3
Fig. 3 Total heat transfer versus separation gap for polarizations TE (a), TM (b) and TE + TM (c). (d) A schematic representation for the different cases. All the total heat transfer values are scaled to the TE + TM heat transfer between two flat surfaces at separation 30 μm. The total heat transfer is calculated assuming emitter and receiver temperatures of 300 K and 0 K, respectively.
Fig. 4
Fig. 4 Transmission factor contour plot for straight slots with separation gaps 0.5, 5, 10, and 30 μm (a,b,c, and d), and interweaved L slots with separation gaps 0.5, 5, 10, and 30 μm (e,f,g, and h). The scal color intensity is consistent throught all plots.
Fig. 5
Fig. 5 Transmission factor integrated with respect to kx calculated for separation gaps dc of 0.5, 5, 10 and 30 μm (a,b,c, and d), for interweaved L and straight slots structures.
Fig. 6
Fig. 6 Dispersion relation and magnetic field plot of sampled resonant modes for interweaved L slots, with a separation gap of 0.5 μm.
Fig. 7
Fig. 7 dispersion relation and magnetic field plot of sampled resonant modes for interweaved L slots, with a separation gap of 5 μm.
Fig. 8
Fig. 8 Dispersion relation and magnetic field plot of sampled resonant modes for straight slots, with a separation gap of 0.5 μm.
Fig. 9
Fig. 9 Dispersion relation and magnetic field plot of sampled resonant modes for straight slots, with a separation gap of 5 μm. For large wavevector (modes M, N, and W), the resonant mode of one slot can’t couple to the slot on the other side, because the gap size is larger than the decay length of the evanescent waves. If the gap size is smaller than the decay length of the waves (modes R, S and T), the evanescent modes on the two sides can couple.
Fig. 10
Fig. 10 Dispersion relation and magnetic field plot of sampled resonant modes for straight slots, with a separation gap of 10 μm. Note how the evanescent resonant modes with large wavevector can’t couple to the modes on the other side (modes P, Q and V).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d 2 P d t 2 +γ dP dt + ω 0 2 P= ω p 2 ε v E+K( t )
J α r ( r ,ω ) J β r * ( r , ω )= 1 π ( ω ε ν ε r '' ( ω ) )Θ( ω,T )δ( r r )δ( ω ω ) δ αβ
Θ( ω,T )= ω e ω k B T 1
K α r ( r ,ω ) K β r * ( r , ω )=C Θ( ω,T )
E( x )=E( x+ Λ x )  e i k x Λ x
q( ω,T )= k x =0 2π/ Λ x Θ( ω,T )ϕ( ω, k x )d k x

Metrics