Abstract

We study the propagation of waves in a set of absorbing subwavelength scatterers positioned on a stealth hyperuniform point pattern. We show that spatial correlations in the disorder substantially enhance absorption compared to a fully disordered structure with the same density of scatterers. The non-resonant nature of the mechanism provides broad angular and spectral robustness. These results demonstrate the possibility to design low-density materials with blackbody-like absorption.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-density hyperuniform materials can be transparent

O. Leseur, R. Pierrat, and R. Carminati
Optica 3(7) 763-767 (2016)

Path length enhancement in disordered media for increased absorption

Rajeshkumar Mupparapu, Kevin Vynck, Tomas Svensson, Matteo Burresi, and Diederik S. Wiersma
Opt. Express 23(24) A1472-A1484 (2015)

Role of short-range order in manipulating light absorption in disordered media

M. Q. Liu, C. Y. Zhao, B. X. Wang, and Xing Fang
J. Opt. Soc. Am. B 35(3) 504-513 (2018)

References

  • View by:
  • |
  • |
  • |

  1. I. Sarbu and C. Sebarchievici, Solar Heating and Cooling Systems (Academic Press, Amsterdam, 2016).
  2. A. Polman, M. Knight, E. C. Garnett, B. Ehrler, and W. C. Sinke, “Photovoltaic materials: Present efficiencies and future challenges,” Science 352, aad4424–1 (2016).
    [Crossref] [PubMed]
  3. M. Osawa, Surface-Enhanced Infrared Absorption Spectroscopy (John Wiley & Sons, Ltd, 2006).
  4. B. Sapoval, O. Haeberlé, and S. Russ, “Acoustical properties of irregular and fractal cavities,” J. Acoust. Soc. Am. 102, 2014–2019 (1997).
    [Crossref]
  5. V. Leroy, A. Strybulevych, M. Lanoy, F. Lemoult, A. Tourin, and J. H. Page, “Superabsorption of acoustic waves with bubble metascreens,” Phys. Rev. B 91, 020301 (2015).
    [Crossref]
  6. S. Brûlé, E. Javelaud, S. Enoch, and S. Guenneau, “Experiments on Seismic Metamaterials: Molding Surface Waves,” Phys. Rev. Lett. 112, 133901 (2014).
    [Crossref] [PubMed]
  7. M. Benzaouia, G. Tokic, O. D. Miller, D. K. P. Yue, and S. G. Johnson, “From solar cells to ocean buoys: Wide-bandwidth limits to absorption by metaparticle arrays,” arXiv 1804.00600 (2018).
  8. M. Hutley and D. Maystre, “The total absorption of light by a diffraction grating,” Opt. Commun. 19, 431–436 (1976).
    [Crossref]
  9. Y. Chong, L. Ge, H. Cao, and A. Stone, “Coherent Perfect Absorbers: Time-Reversed Lasers,” Phys. Rev. Lett. 105, 053901 (2010).
    [Crossref] [PubMed]
  10. W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889 (2011).
    [Crossref] [PubMed]
  11. Y. D. Chong and A. D. Stone, “Hidden Black: Coherent Enhancement of Absorption in Strongly Scattering Media,” Phys. Rev. Lett. 107, 163901 (2011).
    [Crossref] [PubMed]
  12. C. W. Hsu, A. Goetschy, Y. Bromberg, A. D. Stone, and H. Cao, “Broadband Coherent Enhancement of Transmission and Absorption in Disordered Media,” Phys. Rev. Lett. 115, 223901 (2015).
    [Crossref] [PubMed]
  13. S. F. Liew, S. M. Popoff, S. W. Sheehan, A. Goetschy, C. A. Schmuttenmaer, A. D. Stone, and H. Cao, “Coherent Control of Photocurrent in a Strongly Scattering Photoelectrochemical System,” ACS Photonics 3, 449–455 (2016).
    [Crossref]
  14. E. H. Sargent, “Colloidal quantum dot solar cells,” Nat. Photonics 6, 133–135 (2012).
    [Crossref]
  15. R. Mupparapu, K. Vynck, T. Svensson, M. Burresi, and D. S. Wiersma, “Path length enhancement in disordered media for increased absorption,” Opt. Express 23, A1472–A1484 (2015).
    [Crossref] [PubMed]
  16. V. B. Koman, C. Santschi, and O. J. F. Martin, “Maximal absorption regime in random media,” Opt. Express 24, A1306 (2016).
    [Crossref] [PubMed]
  17. W.-K. Lee, S. Yu, C. J. Engel, T. Reese, D. Rhee, W. Chen, and T. W. Odom, “Concurrent design of quasi-random photonic nanostructures,” Proc. Natl. Acad. Sci. U.S.A. 114, 8734–8739 (2017).
    [Crossref] [PubMed]
  18. D. M. Maurice, “The structure and transparency of the cornea,” J. Physiol.  136, 263 (1957).
    [Crossref] [PubMed]
  19. S. Fraden and G. Maret, “Multiple light scattering from concentrated, interacting suspensions,” Phys. Rev. Lett. 65, 512 (1990).
    [Crossref] [PubMed]
  20. A. Yamilov and H. Cao, “Density of resonant states and a manifestation of photonic band structure in small clusters of spherical particles,” Phys. Rev. B 68, 085111 (2003).
    [Crossref]
  21. L. F. Rojas Ochoa, J. M. Mendez Alcaraz, J. J. Sáenz, P. Schurtenberger, and F. Scheffold, “Photonic Properties of Strongly Correlated Colloidal Liquids,” Phys. Rev. Lett. 93, 073903 (2004).
    [Crossref] [PubMed]
  22. M. Rechtsman, A. Szameit, F. Dreisow, M. Heinrich, R. Keil, S. Nolte, and M. Segev, “Amorphous Photonic Lattices: Band Gaps, Effective Mass, and Suppressed Transport,” Phys. Rev. Lett. 106, 193904 (2011).
    [Crossref] [PubMed]
  23. G. M. Conley, M. Burresi, F. Pratesi, K. Vynck, and D. S. Wiersma, “Light Transport and Localization in Two-Dimensional Correlated Disorder,” Phys. Rev. Lett. 112, 143901 (2014).
    [Crossref] [PubMed]
  24. O. Leseur, R. Pierrat, and R. Carminati, “High-density hyperuniform materials can be transparent,” Optica 3, 763–767 (2016).
    [Crossref]
  25. L. S. Froufe Pérez, M. Engel, J. J. Sáenz, and F. Scheffold, “Band gap formation and Anderson localization in disordered photonic materials with structural correlations,” Proc. Natl. Acad. Sci. U.S.A. 114, 9570–9574 (2017).
    [Crossref] [PubMed]
  26. K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11, 1017–1022 (2012).
    [Crossref] [PubMed]
  27. O. Leseur, “Diffusion, localisation et absorption de lumière en milieux désordonnés. Impact des corrélations spatiales du désordre,” Ph.D. thesis, Université Pierre et Marie Curie (2016).
  28. B. Wang and C. Zhao, “Effect of dependent scattering on light absorption in highly scattering random media,” Int. J. Heat Mass Transf. 125, 1069–1078 (2018).
    [Crossref]
  29. M. Q. Liu, C. Y. Zhao, B. X. Wang, and X. Fang, “Role of short-range order in manipulating light absorption in disordered media,” J. Opt. Soc. Am. B 35, 504–513 (2018).
    [Crossref]
  30. M. Florescu and G. Gkantzounis, “Hyperuniform disordered structures for enhanced light absorption (Conference Presentation),” in Physics, Simulation, and Photonic Engineering of Photovoltaic Devices VII, vol. 10527 (SPIE, 2018), p. 105270J.
  31. J.-P. Hugonin, M. Besbes, and P. Ben Abdallah, “Fundamental limits for light absorption and scattering induced by cooperative electromagnetic interactions,” Phys. Rev. B 91, 180202 (2015).
    [Crossref]
  32. O. D. Miller, A. G. Polimeridis, M. T. Homer Reid, C. W. Hsu, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Fundamental limits to optical response in absorptive systems,” Opt. Express 24, 3329 (2016).
    [Crossref] [PubMed]
  33. J. D. Jackson, Classical Electrodynamics (John Wiley and Sons, New-York, 1962).
  34. P. Sheng, Introduction to Wave Scattering, Localization and Mesoscopic Phenomena (Academic Press, New York, 1995).
  35. E. Akkermans and G. Montambaux, Mesoscopic Physics of Electrons and Photons (Cambridge University Press, Cambridge, 2007).
    [Crossref]
  36. B. van Tiggelen and A. Lagendijk, “Resonantly induced dipole-dipole interactions in the diffusion of scalar waves,” Phys. Rev. B 50, 16729–16732 (1994).
    [Crossref]
  37. S. Torquato and F. H. Stillinger, “Local density fluctuations, hyperuniformity, and order metrics,” Phys. Rev. E 68, 041113 (2003).
    [Crossref]
  38. M. Florescu, S. Torquato, and P. J. Steinhardt, “Designer disordered materials with large, complete photonic band gaps,” Proc. Natl. Acad. Sci. U.S.A.  106, 20658 (2009).
    [Crossref] [PubMed]
  39. W. Man, M. Florescu, K. Matsuyama, P. Yadak, G. Nahal, S. Hashemizad, E. Williamson, P. Steinhardt, S. Torquato, and P. Chaikin, “Photonic band gap in isotropic hyperuniform disordered solids with low dielectric contrast,” Opt. Express 21, 19972 (2013).
    [Crossref] [PubMed]
  40. N. Muller, J. Haberko, C. Marichy, and F. Scheffold, “Silicon Hyperuniform Disordered Photonic Materials with a Pronounced Gap in the Shortwave Infrared,” Adv. Opt. Mater. 2, 115–119 (2013).
    [Crossref]
  41. M. Florescu, P. J. Steinhardt, and S. Torquato, “Optical cavities and waveguides in hyperuniform disordered photonic solids,” Phys. Rev. B 87, 165116 (2013).
    [Crossref]
  42. W. Man, M. Florescu, E. P. Williamson, Y. He, S. R. Hashemizad, B. Y. C. Leung, D. R. Liner, S. Torquato, P. M. Chaikin, and P. J. Steinhardt, “Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids,” Proc. Natl. Acad. Sci. U.S.A. 110, 15886 (2013).
    [Crossref] [PubMed]
  43. T. Amoah and M. Florescu, “High-Q optical cavities in hyperuniform disordered materials,” Phys. Rev. B 91, 020201 (2015).
    [Crossref]
  44. L. S. Froufe Pérez, M. Engel, P. F. Damasceno, N. Muller, J. Haberko, S. C. Glotzer, and F. Scheffold, “Role of Short-Range Order and Hyperuniformity in the Formation of Band Gaps in Disordered Photonic Materials,” Phys. Rev. Lett. 117, 053902 (2016).
    [Crossref] [PubMed]
  45. O. U. Uche, F. H. Stillinger, and S. Torquato, “Constraints on collective density variables: Two dimensions,” Phys. Rev. E 70, 046122 (2004).
    [Crossref]
  46. S. Torquato, “Hyperuniform states of matter,” Phys. Rep. 745, 1 (2018).
    [Crossref]
  47. M. Lax, “Multiple Scattering of Waves. II. The Effective Field in Dense Systems,” Phys. Rev.  85, 621 (1952).
    [Crossref]
  48. J. Kim and S. Torquato, “Effect of imperfections on the hyperuniformity of many-body systems,” Phys. Rev. B 97, 054105 (2018).
    [Crossref]
  49. J. Ricouvier, R. Pierrat, R. Carminati, P. Tabeling, and P. Yazhgur, “Optimizing Hyperuniformity in Self-Assembled Bidisperse Emulsions,” Phys. Rev. Lett. 119, 208001 (2017).
    [Crossref] [PubMed]
  50. P. M. Piechulla, L. Muehlenbein, R. B. Wehrspohn, S. Nanz, A. Abass, C. Rockstuhl, and A. Sprafke, “Fabrication of Nearly-Hyperuniform Substrates by Tailored Disorder for Photonic Applications,” Adv. Opt. Mater.  6, 1701272 (2018).
    [Crossref]
  51. J. C. Spall, Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control (John Wiley & Sons, 2003).
    [Crossref]
  52. A. Ishimaru, Wave Propagation and Scattering in Random Media (IEEE Press, Oxford, 1997).

2018 (5)

B. Wang and C. Zhao, “Effect of dependent scattering on light absorption in highly scattering random media,” Int. J. Heat Mass Transf. 125, 1069–1078 (2018).
[Crossref]

M. Q. Liu, C. Y. Zhao, B. X. Wang, and X. Fang, “Role of short-range order in manipulating light absorption in disordered media,” J. Opt. Soc. Am. B 35, 504–513 (2018).
[Crossref]

S. Torquato, “Hyperuniform states of matter,” Phys. Rep. 745, 1 (2018).
[Crossref]

J. Kim and S. Torquato, “Effect of imperfections on the hyperuniformity of many-body systems,” Phys. Rev. B 97, 054105 (2018).
[Crossref]

P. M. Piechulla, L. Muehlenbein, R. B. Wehrspohn, S. Nanz, A. Abass, C. Rockstuhl, and A. Sprafke, “Fabrication of Nearly-Hyperuniform Substrates by Tailored Disorder for Photonic Applications,” Adv. Opt. Mater.  6, 1701272 (2018).
[Crossref]

2017 (3)

J. Ricouvier, R. Pierrat, R. Carminati, P. Tabeling, and P. Yazhgur, “Optimizing Hyperuniformity in Self-Assembled Bidisperse Emulsions,” Phys. Rev. Lett. 119, 208001 (2017).
[Crossref] [PubMed]

L. S. Froufe Pérez, M. Engel, J. J. Sáenz, and F. Scheffold, “Band gap formation and Anderson localization in disordered photonic materials with structural correlations,” Proc. Natl. Acad. Sci. U.S.A. 114, 9570–9574 (2017).
[Crossref] [PubMed]

W.-K. Lee, S. Yu, C. J. Engel, T. Reese, D. Rhee, W. Chen, and T. W. Odom, “Concurrent design of quasi-random photonic nanostructures,” Proc. Natl. Acad. Sci. U.S.A. 114, 8734–8739 (2017).
[Crossref] [PubMed]

2016 (6)

S. F. Liew, S. M. Popoff, S. W. Sheehan, A. Goetschy, C. A. Schmuttenmaer, A. D. Stone, and H. Cao, “Coherent Control of Photocurrent in a Strongly Scattering Photoelectrochemical System,” ACS Photonics 3, 449–455 (2016).
[Crossref]

V. B. Koman, C. Santschi, and O. J. F. Martin, “Maximal absorption regime in random media,” Opt. Express 24, A1306 (2016).
[Crossref] [PubMed]

A. Polman, M. Knight, E. C. Garnett, B. Ehrler, and W. C. Sinke, “Photovoltaic materials: Present efficiencies and future challenges,” Science 352, aad4424–1 (2016).
[Crossref] [PubMed]

O. Leseur, R. Pierrat, and R. Carminati, “High-density hyperuniform materials can be transparent,” Optica 3, 763–767 (2016).
[Crossref]

O. D. Miller, A. G. Polimeridis, M. T. Homer Reid, C. W. Hsu, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Fundamental limits to optical response in absorptive systems,” Opt. Express 24, 3329 (2016).
[Crossref] [PubMed]

L. S. Froufe Pérez, M. Engel, P. F. Damasceno, N. Muller, J. Haberko, S. C. Glotzer, and F. Scheffold, “Role of Short-Range Order and Hyperuniformity in the Formation of Band Gaps in Disordered Photonic Materials,” Phys. Rev. Lett. 117, 053902 (2016).
[Crossref] [PubMed]

2015 (5)

T. Amoah and M. Florescu, “High-Q optical cavities in hyperuniform disordered materials,” Phys. Rev. B 91, 020201 (2015).
[Crossref]

J.-P. Hugonin, M. Besbes, and P. Ben Abdallah, “Fundamental limits for light absorption and scattering induced by cooperative electromagnetic interactions,” Phys. Rev. B 91, 180202 (2015).
[Crossref]

V. Leroy, A. Strybulevych, M. Lanoy, F. Lemoult, A. Tourin, and J. H. Page, “Superabsorption of acoustic waves with bubble metascreens,” Phys. Rev. B 91, 020301 (2015).
[Crossref]

C. W. Hsu, A. Goetschy, Y. Bromberg, A. D. Stone, and H. Cao, “Broadband Coherent Enhancement of Transmission and Absorption in Disordered Media,” Phys. Rev. Lett. 115, 223901 (2015).
[Crossref] [PubMed]

R. Mupparapu, K. Vynck, T. Svensson, M. Burresi, and D. S. Wiersma, “Path length enhancement in disordered media for increased absorption,” Opt. Express 23, A1472–A1484 (2015).
[Crossref] [PubMed]

2014 (2)

S. Brûlé, E. Javelaud, S. Enoch, and S. Guenneau, “Experiments on Seismic Metamaterials: Molding Surface Waves,” Phys. Rev. Lett. 112, 133901 (2014).
[Crossref] [PubMed]

G. M. Conley, M. Burresi, F. Pratesi, K. Vynck, and D. S. Wiersma, “Light Transport and Localization in Two-Dimensional Correlated Disorder,” Phys. Rev. Lett. 112, 143901 (2014).
[Crossref] [PubMed]

2013 (4)

W. Man, M. Florescu, K. Matsuyama, P. Yadak, G. Nahal, S. Hashemizad, E. Williamson, P. Steinhardt, S. Torquato, and P. Chaikin, “Photonic band gap in isotropic hyperuniform disordered solids with low dielectric contrast,” Opt. Express 21, 19972 (2013).
[Crossref] [PubMed]

N. Muller, J. Haberko, C. Marichy, and F. Scheffold, “Silicon Hyperuniform Disordered Photonic Materials with a Pronounced Gap in the Shortwave Infrared,” Adv. Opt. Mater. 2, 115–119 (2013).
[Crossref]

M. Florescu, P. J. Steinhardt, and S. Torquato, “Optical cavities and waveguides in hyperuniform disordered photonic solids,” Phys. Rev. B 87, 165116 (2013).
[Crossref]

W. Man, M. Florescu, E. P. Williamson, Y. He, S. R. Hashemizad, B. Y. C. Leung, D. R. Liner, S. Torquato, P. M. Chaikin, and P. J. Steinhardt, “Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids,” Proc. Natl. Acad. Sci. U.S.A. 110, 15886 (2013).
[Crossref] [PubMed]

2012 (2)

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11, 1017–1022 (2012).
[Crossref] [PubMed]

E. H. Sargent, “Colloidal quantum dot solar cells,” Nat. Photonics 6, 133–135 (2012).
[Crossref]

2011 (3)

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889 (2011).
[Crossref] [PubMed]

Y. D. Chong and A. D. Stone, “Hidden Black: Coherent Enhancement of Absorption in Strongly Scattering Media,” Phys. Rev. Lett. 107, 163901 (2011).
[Crossref] [PubMed]

M. Rechtsman, A. Szameit, F. Dreisow, M. Heinrich, R. Keil, S. Nolte, and M. Segev, “Amorphous Photonic Lattices: Band Gaps, Effective Mass, and Suppressed Transport,” Phys. Rev. Lett. 106, 193904 (2011).
[Crossref] [PubMed]

2010 (1)

Y. Chong, L. Ge, H. Cao, and A. Stone, “Coherent Perfect Absorbers: Time-Reversed Lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

2009 (1)

M. Florescu, S. Torquato, and P. J. Steinhardt, “Designer disordered materials with large, complete photonic band gaps,” Proc. Natl. Acad. Sci. U.S.A.  106, 20658 (2009).
[Crossref] [PubMed]

2004 (2)

L. F. Rojas Ochoa, J. M. Mendez Alcaraz, J. J. Sáenz, P. Schurtenberger, and F. Scheffold, “Photonic Properties of Strongly Correlated Colloidal Liquids,” Phys. Rev. Lett. 93, 073903 (2004).
[Crossref] [PubMed]

O. U. Uche, F. H. Stillinger, and S. Torquato, “Constraints on collective density variables: Two dimensions,” Phys. Rev. E 70, 046122 (2004).
[Crossref]

2003 (2)

S. Torquato and F. H. Stillinger, “Local density fluctuations, hyperuniformity, and order metrics,” Phys. Rev. E 68, 041113 (2003).
[Crossref]

A. Yamilov and H. Cao, “Density of resonant states and a manifestation of photonic band structure in small clusters of spherical particles,” Phys. Rev. B 68, 085111 (2003).
[Crossref]

1997 (1)

B. Sapoval, O. Haeberlé, and S. Russ, “Acoustical properties of irregular and fractal cavities,” J. Acoust. Soc. Am. 102, 2014–2019 (1997).
[Crossref]

1994 (1)

B. van Tiggelen and A. Lagendijk, “Resonantly induced dipole-dipole interactions in the diffusion of scalar waves,” Phys. Rev. B 50, 16729–16732 (1994).
[Crossref]

1990 (1)

S. Fraden and G. Maret, “Multiple light scattering from concentrated, interacting suspensions,” Phys. Rev. Lett. 65, 512 (1990).
[Crossref] [PubMed]

1976 (1)

M. Hutley and D. Maystre, “The total absorption of light by a diffraction grating,” Opt. Commun. 19, 431–436 (1976).
[Crossref]

1957 (1)

D. M. Maurice, “The structure and transparency of the cornea,” J. Physiol.  136, 263 (1957).
[Crossref] [PubMed]

1952 (1)

M. Lax, “Multiple Scattering of Waves. II. The Effective Field in Dense Systems,” Phys. Rev.  85, 621 (1952).
[Crossref]

Abass, A.

P. M. Piechulla, L. Muehlenbein, R. B. Wehrspohn, S. Nanz, A. Abass, C. Rockstuhl, and A. Sprafke, “Fabrication of Nearly-Hyperuniform Substrates by Tailored Disorder for Photonic Applications,” Adv. Opt. Mater.  6, 1701272 (2018).
[Crossref]

Akkermans, E.

E. Akkermans and G. Montambaux, Mesoscopic Physics of Electrons and Photons (Cambridge University Press, Cambridge, 2007).
[Crossref]

Amoah, T.

T. Amoah and M. Florescu, “High-Q optical cavities in hyperuniform disordered materials,” Phys. Rev. B 91, 020201 (2015).
[Crossref]

Ben Abdallah, P.

J.-P. Hugonin, M. Besbes, and P. Ben Abdallah, “Fundamental limits for light absorption and scattering induced by cooperative electromagnetic interactions,” Phys. Rev. B 91, 180202 (2015).
[Crossref]

Benzaouia, M.

M. Benzaouia, G. Tokic, O. D. Miller, D. K. P. Yue, and S. G. Johnson, “From solar cells to ocean buoys: Wide-bandwidth limits to absorption by metaparticle arrays,” arXiv 1804.00600 (2018).

Besbes, M.

J.-P. Hugonin, M. Besbes, and P. Ben Abdallah, “Fundamental limits for light absorption and scattering induced by cooperative electromagnetic interactions,” Phys. Rev. B 91, 180202 (2015).
[Crossref]

Bromberg, Y.

C. W. Hsu, A. Goetschy, Y. Bromberg, A. D. Stone, and H. Cao, “Broadband Coherent Enhancement of Transmission and Absorption in Disordered Media,” Phys. Rev. Lett. 115, 223901 (2015).
[Crossref] [PubMed]

Brûlé, S.

S. Brûlé, E. Javelaud, S. Enoch, and S. Guenneau, “Experiments on Seismic Metamaterials: Molding Surface Waves,” Phys. Rev. Lett. 112, 133901 (2014).
[Crossref] [PubMed]

Burresi, M.

R. Mupparapu, K. Vynck, T. Svensson, M. Burresi, and D. S. Wiersma, “Path length enhancement in disordered media for increased absorption,” Opt. Express 23, A1472–A1484 (2015).
[Crossref] [PubMed]

G. M. Conley, M. Burresi, F. Pratesi, K. Vynck, and D. S. Wiersma, “Light Transport and Localization in Two-Dimensional Correlated Disorder,” Phys. Rev. Lett. 112, 143901 (2014).
[Crossref] [PubMed]

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11, 1017–1022 (2012).
[Crossref] [PubMed]

Cao, H.

S. F. Liew, S. M. Popoff, S. W. Sheehan, A. Goetschy, C. A. Schmuttenmaer, A. D. Stone, and H. Cao, “Coherent Control of Photocurrent in a Strongly Scattering Photoelectrochemical System,” ACS Photonics 3, 449–455 (2016).
[Crossref]

C. W. Hsu, A. Goetschy, Y. Bromberg, A. D. Stone, and H. Cao, “Broadband Coherent Enhancement of Transmission and Absorption in Disordered Media,” Phys. Rev. Lett. 115, 223901 (2015).
[Crossref] [PubMed]

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889 (2011).
[Crossref] [PubMed]

Y. Chong, L. Ge, H. Cao, and A. Stone, “Coherent Perfect Absorbers: Time-Reversed Lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

A. Yamilov and H. Cao, “Density of resonant states and a manifestation of photonic band structure in small clusters of spherical particles,” Phys. Rev. B 68, 085111 (2003).
[Crossref]

Carminati, R.

J. Ricouvier, R. Pierrat, R. Carminati, P. Tabeling, and P. Yazhgur, “Optimizing Hyperuniformity in Self-Assembled Bidisperse Emulsions,” Phys. Rev. Lett. 119, 208001 (2017).
[Crossref] [PubMed]

O. Leseur, R. Pierrat, and R. Carminati, “High-density hyperuniform materials can be transparent,” Optica 3, 763–767 (2016).
[Crossref]

Chaikin, P.

W. Man, M. Florescu, K. Matsuyama, P. Yadak, G. Nahal, S. Hashemizad, E. Williamson, P. Steinhardt, S. Torquato, and P. Chaikin, “Photonic band gap in isotropic hyperuniform disordered solids with low dielectric contrast,” Opt. Express 21, 19972 (2013).
[Crossref] [PubMed]

Chaikin, P. M.

W. Man, M. Florescu, E. P. Williamson, Y. He, S. R. Hashemizad, B. Y. C. Leung, D. R. Liner, S. Torquato, P. M. Chaikin, and P. J. Steinhardt, “Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids,” Proc. Natl. Acad. Sci. U.S.A. 110, 15886 (2013).
[Crossref] [PubMed]

Chen, W.

W.-K. Lee, S. Yu, C. J. Engel, T. Reese, D. Rhee, W. Chen, and T. W. Odom, “Concurrent design of quasi-random photonic nanostructures,” Proc. Natl. Acad. Sci. U.S.A. 114, 8734–8739 (2017).
[Crossref] [PubMed]

Chong, Y.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889 (2011).
[Crossref] [PubMed]

Y. Chong, L. Ge, H. Cao, and A. Stone, “Coherent Perfect Absorbers: Time-Reversed Lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

Chong, Y. D.

Y. D. Chong and A. D. Stone, “Hidden Black: Coherent Enhancement of Absorption in Strongly Scattering Media,” Phys. Rev. Lett. 107, 163901 (2011).
[Crossref] [PubMed]

Conley, G. M.

G. M. Conley, M. Burresi, F. Pratesi, K. Vynck, and D. S. Wiersma, “Light Transport and Localization in Two-Dimensional Correlated Disorder,” Phys. Rev. Lett. 112, 143901 (2014).
[Crossref] [PubMed]

Damasceno, P. F.

L. S. Froufe Pérez, M. Engel, P. F. Damasceno, N. Muller, J. Haberko, S. C. Glotzer, and F. Scheffold, “Role of Short-Range Order and Hyperuniformity in the Formation of Band Gaps in Disordered Photonic Materials,” Phys. Rev. Lett. 117, 053902 (2016).
[Crossref] [PubMed]

DeLacy, B. G.

O. D. Miller, A. G. Polimeridis, M. T. Homer Reid, C. W. Hsu, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Fundamental limits to optical response in absorptive systems,” Opt. Express 24, 3329 (2016).
[Crossref] [PubMed]

Dreisow, F.

M. Rechtsman, A. Szameit, F. Dreisow, M. Heinrich, R. Keil, S. Nolte, and M. Segev, “Amorphous Photonic Lattices: Band Gaps, Effective Mass, and Suppressed Transport,” Phys. Rev. Lett. 106, 193904 (2011).
[Crossref] [PubMed]

Ehrler, B.

A. Polman, M. Knight, E. C. Garnett, B. Ehrler, and W. C. Sinke, “Photovoltaic materials: Present efficiencies and future challenges,” Science 352, aad4424–1 (2016).
[Crossref] [PubMed]

Engel, C. J.

W.-K. Lee, S. Yu, C. J. Engel, T. Reese, D. Rhee, W. Chen, and T. W. Odom, “Concurrent design of quasi-random photonic nanostructures,” Proc. Natl. Acad. Sci. U.S.A. 114, 8734–8739 (2017).
[Crossref] [PubMed]

Engel, M.

L. S. Froufe Pérez, M. Engel, J. J. Sáenz, and F. Scheffold, “Band gap formation and Anderson localization in disordered photonic materials with structural correlations,” Proc. Natl. Acad. Sci. U.S.A. 114, 9570–9574 (2017).
[Crossref] [PubMed]

L. S. Froufe Pérez, M. Engel, P. F. Damasceno, N. Muller, J. Haberko, S. C. Glotzer, and F. Scheffold, “Role of Short-Range Order and Hyperuniformity in the Formation of Band Gaps in Disordered Photonic Materials,” Phys. Rev. Lett. 117, 053902 (2016).
[Crossref] [PubMed]

Enoch, S.

S. Brûlé, E. Javelaud, S. Enoch, and S. Guenneau, “Experiments on Seismic Metamaterials: Molding Surface Waves,” Phys. Rev. Lett. 112, 133901 (2014).
[Crossref] [PubMed]

Fang, X.

M. Q. Liu, C. Y. Zhao, B. X. Wang, and X. Fang, “Role of short-range order in manipulating light absorption in disordered media,” J. Opt. Soc. Am. B 35, 504–513 (2018).
[Crossref]

Florescu, M.

T. Amoah and M. Florescu, “High-Q optical cavities in hyperuniform disordered materials,” Phys. Rev. B 91, 020201 (2015).
[Crossref]

M. Florescu, P. J. Steinhardt, and S. Torquato, “Optical cavities and waveguides in hyperuniform disordered photonic solids,” Phys. Rev. B 87, 165116 (2013).
[Crossref]

W. Man, M. Florescu, E. P. Williamson, Y. He, S. R. Hashemizad, B. Y. C. Leung, D. R. Liner, S. Torquato, P. M. Chaikin, and P. J. Steinhardt, “Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids,” Proc. Natl. Acad. Sci. U.S.A. 110, 15886 (2013).
[Crossref] [PubMed]

W. Man, M. Florescu, K. Matsuyama, P. Yadak, G. Nahal, S. Hashemizad, E. Williamson, P. Steinhardt, S. Torquato, and P. Chaikin, “Photonic band gap in isotropic hyperuniform disordered solids with low dielectric contrast,” Opt. Express 21, 19972 (2013).
[Crossref] [PubMed]

M. Florescu, S. Torquato, and P. J. Steinhardt, “Designer disordered materials with large, complete photonic band gaps,” Proc. Natl. Acad. Sci. U.S.A.  106, 20658 (2009).
[Crossref] [PubMed]

M. Florescu and G. Gkantzounis, “Hyperuniform disordered structures for enhanced light absorption (Conference Presentation),” in Physics, Simulation, and Photonic Engineering of Photovoltaic Devices VII, vol. 10527 (SPIE, 2018), p. 105270J.

Fraden, S.

S. Fraden and G. Maret, “Multiple light scattering from concentrated, interacting suspensions,” Phys. Rev. Lett. 65, 512 (1990).
[Crossref] [PubMed]

Froufe Pérez, L. S.

L. S. Froufe Pérez, M. Engel, J. J. Sáenz, and F. Scheffold, “Band gap formation and Anderson localization in disordered photonic materials with structural correlations,” Proc. Natl. Acad. Sci. U.S.A. 114, 9570–9574 (2017).
[Crossref] [PubMed]

L. S. Froufe Pérez, M. Engel, P. F. Damasceno, N. Muller, J. Haberko, S. C. Glotzer, and F. Scheffold, “Role of Short-Range Order and Hyperuniformity in the Formation of Band Gaps in Disordered Photonic Materials,” Phys. Rev. Lett. 117, 053902 (2016).
[Crossref] [PubMed]

Garnett, E. C.

A. Polman, M. Knight, E. C. Garnett, B. Ehrler, and W. C. Sinke, “Photovoltaic materials: Present efficiencies and future challenges,” Science 352, aad4424–1 (2016).
[Crossref] [PubMed]

Ge, L.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889 (2011).
[Crossref] [PubMed]

Y. Chong, L. Ge, H. Cao, and A. Stone, “Coherent Perfect Absorbers: Time-Reversed Lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

Gkantzounis, G.

M. Florescu and G. Gkantzounis, “Hyperuniform disordered structures for enhanced light absorption (Conference Presentation),” in Physics, Simulation, and Photonic Engineering of Photovoltaic Devices VII, vol. 10527 (SPIE, 2018), p. 105270J.

Glotzer, S. C.

L. S. Froufe Pérez, M. Engel, P. F. Damasceno, N. Muller, J. Haberko, S. C. Glotzer, and F. Scheffold, “Role of Short-Range Order and Hyperuniformity in the Formation of Band Gaps in Disordered Photonic Materials,” Phys. Rev. Lett. 117, 053902 (2016).
[Crossref] [PubMed]

Goetschy, A.

S. F. Liew, S. M. Popoff, S. W. Sheehan, A. Goetschy, C. A. Schmuttenmaer, A. D. Stone, and H. Cao, “Coherent Control of Photocurrent in a Strongly Scattering Photoelectrochemical System,” ACS Photonics 3, 449–455 (2016).
[Crossref]

C. W. Hsu, A. Goetschy, Y. Bromberg, A. D. Stone, and H. Cao, “Broadband Coherent Enhancement of Transmission and Absorption in Disordered Media,” Phys. Rev. Lett. 115, 223901 (2015).
[Crossref] [PubMed]

Guenneau, S.

S. Brûlé, E. Javelaud, S. Enoch, and S. Guenneau, “Experiments on Seismic Metamaterials: Molding Surface Waves,” Phys. Rev. Lett. 112, 133901 (2014).
[Crossref] [PubMed]

Haberko, J.

L. S. Froufe Pérez, M. Engel, P. F. Damasceno, N. Muller, J. Haberko, S. C. Glotzer, and F. Scheffold, “Role of Short-Range Order and Hyperuniformity in the Formation of Band Gaps in Disordered Photonic Materials,” Phys. Rev. Lett. 117, 053902 (2016).
[Crossref] [PubMed]

N. Muller, J. Haberko, C. Marichy, and F. Scheffold, “Silicon Hyperuniform Disordered Photonic Materials with a Pronounced Gap in the Shortwave Infrared,” Adv. Opt. Mater. 2, 115–119 (2013).
[Crossref]

Haeberlé, O.

B. Sapoval, O. Haeberlé, and S. Russ, “Acoustical properties of irregular and fractal cavities,” J. Acoust. Soc. Am. 102, 2014–2019 (1997).
[Crossref]

Hashemizad, S.

W. Man, M. Florescu, K. Matsuyama, P. Yadak, G. Nahal, S. Hashemizad, E. Williamson, P. Steinhardt, S. Torquato, and P. Chaikin, “Photonic band gap in isotropic hyperuniform disordered solids with low dielectric contrast,” Opt. Express 21, 19972 (2013).
[Crossref] [PubMed]

Hashemizad, S. R.

W. Man, M. Florescu, E. P. Williamson, Y. He, S. R. Hashemizad, B. Y. C. Leung, D. R. Liner, S. Torquato, P. M. Chaikin, and P. J. Steinhardt, “Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids,” Proc. Natl. Acad. Sci. U.S.A. 110, 15886 (2013).
[Crossref] [PubMed]

He, Y.

W. Man, M. Florescu, E. P. Williamson, Y. He, S. R. Hashemizad, B. Y. C. Leung, D. R. Liner, S. Torquato, P. M. Chaikin, and P. J. Steinhardt, “Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids,” Proc. Natl. Acad. Sci. U.S.A. 110, 15886 (2013).
[Crossref] [PubMed]

Heinrich, M.

M. Rechtsman, A. Szameit, F. Dreisow, M. Heinrich, R. Keil, S. Nolte, and M. Segev, “Amorphous Photonic Lattices: Band Gaps, Effective Mass, and Suppressed Transport,” Phys. Rev. Lett. 106, 193904 (2011).
[Crossref] [PubMed]

Homer Reid, M. T.

O. D. Miller, A. G. Polimeridis, M. T. Homer Reid, C. W. Hsu, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Fundamental limits to optical response in absorptive systems,” Opt. Express 24, 3329 (2016).
[Crossref] [PubMed]

Hsu, C. W.

O. D. Miller, A. G. Polimeridis, M. T. Homer Reid, C. W. Hsu, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Fundamental limits to optical response in absorptive systems,” Opt. Express 24, 3329 (2016).
[Crossref] [PubMed]

C. W. Hsu, A. Goetschy, Y. Bromberg, A. D. Stone, and H. Cao, “Broadband Coherent Enhancement of Transmission and Absorption in Disordered Media,” Phys. Rev. Lett. 115, 223901 (2015).
[Crossref] [PubMed]

Hugonin, J.-P.

J.-P. Hugonin, M. Besbes, and P. Ben Abdallah, “Fundamental limits for light absorption and scattering induced by cooperative electromagnetic interactions,” Phys. Rev. B 91, 180202 (2015).
[Crossref]

Hutley, M.

M. Hutley and D. Maystre, “The total absorption of light by a diffraction grating,” Opt. Commun. 19, 431–436 (1976).
[Crossref]

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media (IEEE Press, Oxford, 1997).

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (John Wiley and Sons, New-York, 1962).

Javelaud, E.

S. Brûlé, E. Javelaud, S. Enoch, and S. Guenneau, “Experiments on Seismic Metamaterials: Molding Surface Waves,” Phys. Rev. Lett. 112, 133901 (2014).
[Crossref] [PubMed]

Joannopoulos, J. D.

O. D. Miller, A. G. Polimeridis, M. T. Homer Reid, C. W. Hsu, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Fundamental limits to optical response in absorptive systems,” Opt. Express 24, 3329 (2016).
[Crossref] [PubMed]

Johnson, S. G.

O. D. Miller, A. G. Polimeridis, M. T. Homer Reid, C. W. Hsu, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Fundamental limits to optical response in absorptive systems,” Opt. Express 24, 3329 (2016).
[Crossref] [PubMed]

M. Benzaouia, G. Tokic, O. D. Miller, D. K. P. Yue, and S. G. Johnson, “From solar cells to ocean buoys: Wide-bandwidth limits to absorption by metaparticle arrays,” arXiv 1804.00600 (2018).

Keil, R.

M. Rechtsman, A. Szameit, F. Dreisow, M. Heinrich, R. Keil, S. Nolte, and M. Segev, “Amorphous Photonic Lattices: Band Gaps, Effective Mass, and Suppressed Transport,” Phys. Rev. Lett. 106, 193904 (2011).
[Crossref] [PubMed]

Kim, J.

J. Kim and S. Torquato, “Effect of imperfections on the hyperuniformity of many-body systems,” Phys. Rev. B 97, 054105 (2018).
[Crossref]

Knight, M.

A. Polman, M. Knight, E. C. Garnett, B. Ehrler, and W. C. Sinke, “Photovoltaic materials: Present efficiencies and future challenges,” Science 352, aad4424–1 (2016).
[Crossref] [PubMed]

Koman, V. B.

V. B. Koman, C. Santschi, and O. J. F. Martin, “Maximal absorption regime in random media,” Opt. Express 24, A1306 (2016).
[Crossref] [PubMed]

Lagendijk, A.

B. van Tiggelen and A. Lagendijk, “Resonantly induced dipole-dipole interactions in the diffusion of scalar waves,” Phys. Rev. B 50, 16729–16732 (1994).
[Crossref]

Lanoy, M.

V. Leroy, A. Strybulevych, M. Lanoy, F. Lemoult, A. Tourin, and J. H. Page, “Superabsorption of acoustic waves with bubble metascreens,” Phys. Rev. B 91, 020301 (2015).
[Crossref]

Lax, M.

M. Lax, “Multiple Scattering of Waves. II. The Effective Field in Dense Systems,” Phys. Rev.  85, 621 (1952).
[Crossref]

Lee, W.-K.

W.-K. Lee, S. Yu, C. J. Engel, T. Reese, D. Rhee, W. Chen, and T. W. Odom, “Concurrent design of quasi-random photonic nanostructures,” Proc. Natl. Acad. Sci. U.S.A. 114, 8734–8739 (2017).
[Crossref] [PubMed]

Lemoult, F.

V. Leroy, A. Strybulevych, M. Lanoy, F. Lemoult, A. Tourin, and J. H. Page, “Superabsorption of acoustic waves with bubble metascreens,” Phys. Rev. B 91, 020301 (2015).
[Crossref]

Leroy, V.

V. Leroy, A. Strybulevych, M. Lanoy, F. Lemoult, A. Tourin, and J. H. Page, “Superabsorption of acoustic waves with bubble metascreens,” Phys. Rev. B 91, 020301 (2015).
[Crossref]

Leseur, O.

O. Leseur, R. Pierrat, and R. Carminati, “High-density hyperuniform materials can be transparent,” Optica 3, 763–767 (2016).
[Crossref]

O. Leseur, “Diffusion, localisation et absorption de lumière en milieux désordonnés. Impact des corrélations spatiales du désordre,” Ph.D. thesis, Université Pierre et Marie Curie (2016).

Leung, B. Y. C.

W. Man, M. Florescu, E. P. Williamson, Y. He, S. R. Hashemizad, B. Y. C. Leung, D. R. Liner, S. Torquato, P. M. Chaikin, and P. J. Steinhardt, “Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids,” Proc. Natl. Acad. Sci. U.S.A. 110, 15886 (2013).
[Crossref] [PubMed]

Liew, S. F.

S. F. Liew, S. M. Popoff, S. W. Sheehan, A. Goetschy, C. A. Schmuttenmaer, A. D. Stone, and H. Cao, “Coherent Control of Photocurrent in a Strongly Scattering Photoelectrochemical System,” ACS Photonics 3, 449–455 (2016).
[Crossref]

Liner, D. R.

W. Man, M. Florescu, E. P. Williamson, Y. He, S. R. Hashemizad, B. Y. C. Leung, D. R. Liner, S. Torquato, P. M. Chaikin, and P. J. Steinhardt, “Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids,” Proc. Natl. Acad. Sci. U.S.A. 110, 15886 (2013).
[Crossref] [PubMed]

Liu, M. Q.

M. Q. Liu, C. Y. Zhao, B. X. Wang, and X. Fang, “Role of short-range order in manipulating light absorption in disordered media,” J. Opt. Soc. Am. B 35, 504–513 (2018).
[Crossref]

Man, W.

W. Man, M. Florescu, K. Matsuyama, P. Yadak, G. Nahal, S. Hashemizad, E. Williamson, P. Steinhardt, S. Torquato, and P. Chaikin, “Photonic band gap in isotropic hyperuniform disordered solids with low dielectric contrast,” Opt. Express 21, 19972 (2013).
[Crossref] [PubMed]

W. Man, M. Florescu, E. P. Williamson, Y. He, S. R. Hashemizad, B. Y. C. Leung, D. R. Liner, S. Torquato, P. M. Chaikin, and P. J. Steinhardt, “Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids,” Proc. Natl. Acad. Sci. U.S.A. 110, 15886 (2013).
[Crossref] [PubMed]

Maret, G.

S. Fraden and G. Maret, “Multiple light scattering from concentrated, interacting suspensions,” Phys. Rev. Lett. 65, 512 (1990).
[Crossref] [PubMed]

Marichy, C.

N. Muller, J. Haberko, C. Marichy, and F. Scheffold, “Silicon Hyperuniform Disordered Photonic Materials with a Pronounced Gap in the Shortwave Infrared,” Adv. Opt. Mater. 2, 115–119 (2013).
[Crossref]

Martin, O. J. F.

V. B. Koman, C. Santschi, and O. J. F. Martin, “Maximal absorption regime in random media,” Opt. Express 24, A1306 (2016).
[Crossref] [PubMed]

Matsuyama, K.

W. Man, M. Florescu, K. Matsuyama, P. Yadak, G. Nahal, S. Hashemizad, E. Williamson, P. Steinhardt, S. Torquato, and P. Chaikin, “Photonic band gap in isotropic hyperuniform disordered solids with low dielectric contrast,” Opt. Express 21, 19972 (2013).
[Crossref] [PubMed]

Maurice, D. M.

D. M. Maurice, “The structure and transparency of the cornea,” J. Physiol.  136, 263 (1957).
[Crossref] [PubMed]

Maystre, D.

M. Hutley and D. Maystre, “The total absorption of light by a diffraction grating,” Opt. Commun. 19, 431–436 (1976).
[Crossref]

Mendez Alcaraz, J. M.

L. F. Rojas Ochoa, J. M. Mendez Alcaraz, J. J. Sáenz, P. Schurtenberger, and F. Scheffold, “Photonic Properties of Strongly Correlated Colloidal Liquids,” Phys. Rev. Lett. 93, 073903 (2004).
[Crossref] [PubMed]

Miller, O. D.

O. D. Miller, A. G. Polimeridis, M. T. Homer Reid, C. W. Hsu, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Fundamental limits to optical response in absorptive systems,” Opt. Express 24, 3329 (2016).
[Crossref] [PubMed]

M. Benzaouia, G. Tokic, O. D. Miller, D. K. P. Yue, and S. G. Johnson, “From solar cells to ocean buoys: Wide-bandwidth limits to absorption by metaparticle arrays,” arXiv 1804.00600 (2018).

Montambaux, G.

E. Akkermans and G. Montambaux, Mesoscopic Physics of Electrons and Photons (Cambridge University Press, Cambridge, 2007).
[Crossref]

Muehlenbein, L.

P. M. Piechulla, L. Muehlenbein, R. B. Wehrspohn, S. Nanz, A. Abass, C. Rockstuhl, and A. Sprafke, “Fabrication of Nearly-Hyperuniform Substrates by Tailored Disorder for Photonic Applications,” Adv. Opt. Mater.  6, 1701272 (2018).
[Crossref]

Muller, N.

L. S. Froufe Pérez, M. Engel, P. F. Damasceno, N. Muller, J. Haberko, S. C. Glotzer, and F. Scheffold, “Role of Short-Range Order and Hyperuniformity in the Formation of Band Gaps in Disordered Photonic Materials,” Phys. Rev. Lett. 117, 053902 (2016).
[Crossref] [PubMed]

N. Muller, J. Haberko, C. Marichy, and F. Scheffold, “Silicon Hyperuniform Disordered Photonic Materials with a Pronounced Gap in the Shortwave Infrared,” Adv. Opt. Mater. 2, 115–119 (2013).
[Crossref]

Mupparapu, R.

R. Mupparapu, K. Vynck, T. Svensson, M. Burresi, and D. S. Wiersma, “Path length enhancement in disordered media for increased absorption,” Opt. Express 23, A1472–A1484 (2015).
[Crossref] [PubMed]

Nahal, G.

W. Man, M. Florescu, K. Matsuyama, P. Yadak, G. Nahal, S. Hashemizad, E. Williamson, P. Steinhardt, S. Torquato, and P. Chaikin, “Photonic band gap in isotropic hyperuniform disordered solids with low dielectric contrast,” Opt. Express 21, 19972 (2013).
[Crossref] [PubMed]

Nanz, S.

P. M. Piechulla, L. Muehlenbein, R. B. Wehrspohn, S. Nanz, A. Abass, C. Rockstuhl, and A. Sprafke, “Fabrication of Nearly-Hyperuniform Substrates by Tailored Disorder for Photonic Applications,” Adv. Opt. Mater.  6, 1701272 (2018).
[Crossref]

Noh, H.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889 (2011).
[Crossref] [PubMed]

Nolte, S.

M. Rechtsman, A. Szameit, F. Dreisow, M. Heinrich, R. Keil, S. Nolte, and M. Segev, “Amorphous Photonic Lattices: Band Gaps, Effective Mass, and Suppressed Transport,” Phys. Rev. Lett. 106, 193904 (2011).
[Crossref] [PubMed]

Odom, T. W.

W.-K. Lee, S. Yu, C. J. Engel, T. Reese, D. Rhee, W. Chen, and T. W. Odom, “Concurrent design of quasi-random photonic nanostructures,” Proc. Natl. Acad. Sci. U.S.A. 114, 8734–8739 (2017).
[Crossref] [PubMed]

Osawa, M.

M. Osawa, Surface-Enhanced Infrared Absorption Spectroscopy (John Wiley & Sons, Ltd, 2006).

Page, J. H.

V. Leroy, A. Strybulevych, M. Lanoy, F. Lemoult, A. Tourin, and J. H. Page, “Superabsorption of acoustic waves with bubble metascreens,” Phys. Rev. B 91, 020301 (2015).
[Crossref]

Piechulla, P. M.

P. M. Piechulla, L. Muehlenbein, R. B. Wehrspohn, S. Nanz, A. Abass, C. Rockstuhl, and A. Sprafke, “Fabrication of Nearly-Hyperuniform Substrates by Tailored Disorder for Photonic Applications,” Adv. Opt. Mater.  6, 1701272 (2018).
[Crossref]

Pierrat, R.

J. Ricouvier, R. Pierrat, R. Carminati, P. Tabeling, and P. Yazhgur, “Optimizing Hyperuniformity in Self-Assembled Bidisperse Emulsions,” Phys. Rev. Lett. 119, 208001 (2017).
[Crossref] [PubMed]

O. Leseur, R. Pierrat, and R. Carminati, “High-density hyperuniform materials can be transparent,” Optica 3, 763–767 (2016).
[Crossref]

Polimeridis, A. G.

O. D. Miller, A. G. Polimeridis, M. T. Homer Reid, C. W. Hsu, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Fundamental limits to optical response in absorptive systems,” Opt. Express 24, 3329 (2016).
[Crossref] [PubMed]

Polman, A.

A. Polman, M. Knight, E. C. Garnett, B. Ehrler, and W. C. Sinke, “Photovoltaic materials: Present efficiencies and future challenges,” Science 352, aad4424–1 (2016).
[Crossref] [PubMed]

Popoff, S. M.

S. F. Liew, S. M. Popoff, S. W. Sheehan, A. Goetschy, C. A. Schmuttenmaer, A. D. Stone, and H. Cao, “Coherent Control of Photocurrent in a Strongly Scattering Photoelectrochemical System,” ACS Photonics 3, 449–455 (2016).
[Crossref]

Pratesi, F.

G. M. Conley, M. Burresi, F. Pratesi, K. Vynck, and D. S. Wiersma, “Light Transport and Localization in Two-Dimensional Correlated Disorder,” Phys. Rev. Lett. 112, 143901 (2014).
[Crossref] [PubMed]

Rechtsman, M.

M. Rechtsman, A. Szameit, F. Dreisow, M. Heinrich, R. Keil, S. Nolte, and M. Segev, “Amorphous Photonic Lattices: Band Gaps, Effective Mass, and Suppressed Transport,” Phys. Rev. Lett. 106, 193904 (2011).
[Crossref] [PubMed]

Reese, T.

W.-K. Lee, S. Yu, C. J. Engel, T. Reese, D. Rhee, W. Chen, and T. W. Odom, “Concurrent design of quasi-random photonic nanostructures,” Proc. Natl. Acad. Sci. U.S.A. 114, 8734–8739 (2017).
[Crossref] [PubMed]

Rhee, D.

W.-K. Lee, S. Yu, C. J. Engel, T. Reese, D. Rhee, W. Chen, and T. W. Odom, “Concurrent design of quasi-random photonic nanostructures,” Proc. Natl. Acad. Sci. U.S.A. 114, 8734–8739 (2017).
[Crossref] [PubMed]

Riboli, F.

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11, 1017–1022 (2012).
[Crossref] [PubMed]

Ricouvier, J.

J. Ricouvier, R. Pierrat, R. Carminati, P. Tabeling, and P. Yazhgur, “Optimizing Hyperuniformity in Self-Assembled Bidisperse Emulsions,” Phys. Rev. Lett. 119, 208001 (2017).
[Crossref] [PubMed]

Rockstuhl, C.

P. M. Piechulla, L. Muehlenbein, R. B. Wehrspohn, S. Nanz, A. Abass, C. Rockstuhl, and A. Sprafke, “Fabrication of Nearly-Hyperuniform Substrates by Tailored Disorder for Photonic Applications,” Adv. Opt. Mater.  6, 1701272 (2018).
[Crossref]

Rojas Ochoa, L. F.

L. F. Rojas Ochoa, J. M. Mendez Alcaraz, J. J. Sáenz, P. Schurtenberger, and F. Scheffold, “Photonic Properties of Strongly Correlated Colloidal Liquids,” Phys. Rev. Lett. 93, 073903 (2004).
[Crossref] [PubMed]

Russ, S.

B. Sapoval, O. Haeberlé, and S. Russ, “Acoustical properties of irregular and fractal cavities,” J. Acoust. Soc. Am. 102, 2014–2019 (1997).
[Crossref]

Sáenz, J. J.

L. S. Froufe Pérez, M. Engel, J. J. Sáenz, and F. Scheffold, “Band gap formation and Anderson localization in disordered photonic materials with structural correlations,” Proc. Natl. Acad. Sci. U.S.A. 114, 9570–9574 (2017).
[Crossref] [PubMed]

L. F. Rojas Ochoa, J. M. Mendez Alcaraz, J. J. Sáenz, P. Schurtenberger, and F. Scheffold, “Photonic Properties of Strongly Correlated Colloidal Liquids,” Phys. Rev. Lett. 93, 073903 (2004).
[Crossref] [PubMed]

Santschi, C.

V. B. Koman, C. Santschi, and O. J. F. Martin, “Maximal absorption regime in random media,” Opt. Express 24, A1306 (2016).
[Crossref] [PubMed]

Sapoval, B.

B. Sapoval, O. Haeberlé, and S. Russ, “Acoustical properties of irregular and fractal cavities,” J. Acoust. Soc. Am. 102, 2014–2019 (1997).
[Crossref]

Sarbu, I.

I. Sarbu and C. Sebarchievici, Solar Heating and Cooling Systems (Academic Press, Amsterdam, 2016).

Sargent, E. H.

E. H. Sargent, “Colloidal quantum dot solar cells,” Nat. Photonics 6, 133–135 (2012).
[Crossref]

Scheffold, F.

L. S. Froufe Pérez, M. Engel, J. J. Sáenz, and F. Scheffold, “Band gap formation and Anderson localization in disordered photonic materials with structural correlations,” Proc. Natl. Acad. Sci. U.S.A. 114, 9570–9574 (2017).
[Crossref] [PubMed]

L. S. Froufe Pérez, M. Engel, P. F. Damasceno, N. Muller, J. Haberko, S. C. Glotzer, and F. Scheffold, “Role of Short-Range Order and Hyperuniformity in the Formation of Band Gaps in Disordered Photonic Materials,” Phys. Rev. Lett. 117, 053902 (2016).
[Crossref] [PubMed]

N. Muller, J. Haberko, C. Marichy, and F. Scheffold, “Silicon Hyperuniform Disordered Photonic Materials with a Pronounced Gap in the Shortwave Infrared,” Adv. Opt. Mater. 2, 115–119 (2013).
[Crossref]

L. F. Rojas Ochoa, J. M. Mendez Alcaraz, J. J. Sáenz, P. Schurtenberger, and F. Scheffold, “Photonic Properties of Strongly Correlated Colloidal Liquids,” Phys. Rev. Lett. 93, 073903 (2004).
[Crossref] [PubMed]

Schmuttenmaer, C. A.

S. F. Liew, S. M. Popoff, S. W. Sheehan, A. Goetschy, C. A. Schmuttenmaer, A. D. Stone, and H. Cao, “Coherent Control of Photocurrent in a Strongly Scattering Photoelectrochemical System,” ACS Photonics 3, 449–455 (2016).
[Crossref]

Schurtenberger, P.

L. F. Rojas Ochoa, J. M. Mendez Alcaraz, J. J. Sáenz, P. Schurtenberger, and F. Scheffold, “Photonic Properties of Strongly Correlated Colloidal Liquids,” Phys. Rev. Lett. 93, 073903 (2004).
[Crossref] [PubMed]

Sebarchievici, C.

I. Sarbu and C. Sebarchievici, Solar Heating and Cooling Systems (Academic Press, Amsterdam, 2016).

Segev, M.

M. Rechtsman, A. Szameit, F. Dreisow, M. Heinrich, R. Keil, S. Nolte, and M. Segev, “Amorphous Photonic Lattices: Band Gaps, Effective Mass, and Suppressed Transport,” Phys. Rev. Lett. 106, 193904 (2011).
[Crossref] [PubMed]

Sheehan, S. W.

S. F. Liew, S. M. Popoff, S. W. Sheehan, A. Goetschy, C. A. Schmuttenmaer, A. D. Stone, and H. Cao, “Coherent Control of Photocurrent in a Strongly Scattering Photoelectrochemical System,” ACS Photonics 3, 449–455 (2016).
[Crossref]

Sheng, P.

P. Sheng, Introduction to Wave Scattering, Localization and Mesoscopic Phenomena (Academic Press, New York, 1995).

Sinke, W. C.

A. Polman, M. Knight, E. C. Garnett, B. Ehrler, and W. C. Sinke, “Photovoltaic materials: Present efficiencies and future challenges,” Science 352, aad4424–1 (2016).
[Crossref] [PubMed]

Soljacic, M.

O. D. Miller, A. G. Polimeridis, M. T. Homer Reid, C. W. Hsu, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Fundamental limits to optical response in absorptive systems,” Opt. Express 24, 3329 (2016).
[Crossref] [PubMed]

Spall, J. C.

J. C. Spall, Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control (John Wiley & Sons, 2003).
[Crossref]

Sprafke, A.

P. M. Piechulla, L. Muehlenbein, R. B. Wehrspohn, S. Nanz, A. Abass, C. Rockstuhl, and A. Sprafke, “Fabrication of Nearly-Hyperuniform Substrates by Tailored Disorder for Photonic Applications,” Adv. Opt. Mater.  6, 1701272 (2018).
[Crossref]

Steinhardt, P.

W. Man, M. Florescu, K. Matsuyama, P. Yadak, G. Nahal, S. Hashemizad, E. Williamson, P. Steinhardt, S. Torquato, and P. Chaikin, “Photonic band gap in isotropic hyperuniform disordered solids with low dielectric contrast,” Opt. Express 21, 19972 (2013).
[Crossref] [PubMed]

Steinhardt, P. J.

M. Florescu, P. J. Steinhardt, and S. Torquato, “Optical cavities and waveguides in hyperuniform disordered photonic solids,” Phys. Rev. B 87, 165116 (2013).
[Crossref]

W. Man, M. Florescu, E. P. Williamson, Y. He, S. R. Hashemizad, B. Y. C. Leung, D. R. Liner, S. Torquato, P. M. Chaikin, and P. J. Steinhardt, “Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids,” Proc. Natl. Acad. Sci. U.S.A. 110, 15886 (2013).
[Crossref] [PubMed]

M. Florescu, S. Torquato, and P. J. Steinhardt, “Designer disordered materials with large, complete photonic band gaps,” Proc. Natl. Acad. Sci. U.S.A.  106, 20658 (2009).
[Crossref] [PubMed]

Stillinger, F. H.

O. U. Uche, F. H. Stillinger, and S. Torquato, “Constraints on collective density variables: Two dimensions,” Phys. Rev. E 70, 046122 (2004).
[Crossref]

S. Torquato and F. H. Stillinger, “Local density fluctuations, hyperuniformity, and order metrics,” Phys. Rev. E 68, 041113 (2003).
[Crossref]

Stone, A.

Y. Chong, L. Ge, H. Cao, and A. Stone, “Coherent Perfect Absorbers: Time-Reversed Lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

Stone, A. D.

S. F. Liew, S. M. Popoff, S. W. Sheehan, A. Goetschy, C. A. Schmuttenmaer, A. D. Stone, and H. Cao, “Coherent Control of Photocurrent in a Strongly Scattering Photoelectrochemical System,” ACS Photonics 3, 449–455 (2016).
[Crossref]

C. W. Hsu, A. Goetschy, Y. Bromberg, A. D. Stone, and H. Cao, “Broadband Coherent Enhancement of Transmission and Absorption in Disordered Media,” Phys. Rev. Lett. 115, 223901 (2015).
[Crossref] [PubMed]

Y. D. Chong and A. D. Stone, “Hidden Black: Coherent Enhancement of Absorption in Strongly Scattering Media,” Phys. Rev. Lett. 107, 163901 (2011).
[Crossref] [PubMed]

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889 (2011).
[Crossref] [PubMed]

Strybulevych, A.

V. Leroy, A. Strybulevych, M. Lanoy, F. Lemoult, A. Tourin, and J. H. Page, “Superabsorption of acoustic waves with bubble metascreens,” Phys. Rev. B 91, 020301 (2015).
[Crossref]

Svensson, T.

R. Mupparapu, K. Vynck, T. Svensson, M. Burresi, and D. S. Wiersma, “Path length enhancement in disordered media for increased absorption,” Opt. Express 23, A1472–A1484 (2015).
[Crossref] [PubMed]

Szameit, A.

M. Rechtsman, A. Szameit, F. Dreisow, M. Heinrich, R. Keil, S. Nolte, and M. Segev, “Amorphous Photonic Lattices: Band Gaps, Effective Mass, and Suppressed Transport,” Phys. Rev. Lett. 106, 193904 (2011).
[Crossref] [PubMed]

Tabeling, P.

J. Ricouvier, R. Pierrat, R. Carminati, P. Tabeling, and P. Yazhgur, “Optimizing Hyperuniformity in Self-Assembled Bidisperse Emulsions,” Phys. Rev. Lett. 119, 208001 (2017).
[Crossref] [PubMed]

Tokic, G.

M. Benzaouia, G. Tokic, O. D. Miller, D. K. P. Yue, and S. G. Johnson, “From solar cells to ocean buoys: Wide-bandwidth limits to absorption by metaparticle arrays,” arXiv 1804.00600 (2018).

Torquato, S.

J. Kim and S. Torquato, “Effect of imperfections on the hyperuniformity of many-body systems,” Phys. Rev. B 97, 054105 (2018).
[Crossref]

S. Torquato, “Hyperuniform states of matter,” Phys. Rep. 745, 1 (2018).
[Crossref]

W. Man, M. Florescu, E. P. Williamson, Y. He, S. R. Hashemizad, B. Y. C. Leung, D. R. Liner, S. Torquato, P. M. Chaikin, and P. J. Steinhardt, “Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids,” Proc. Natl. Acad. Sci. U.S.A. 110, 15886 (2013).
[Crossref] [PubMed]

M. Florescu, P. J. Steinhardt, and S. Torquato, “Optical cavities and waveguides in hyperuniform disordered photonic solids,” Phys. Rev. B 87, 165116 (2013).
[Crossref]

W. Man, M. Florescu, K. Matsuyama, P. Yadak, G. Nahal, S. Hashemizad, E. Williamson, P. Steinhardt, S. Torquato, and P. Chaikin, “Photonic band gap in isotropic hyperuniform disordered solids with low dielectric contrast,” Opt. Express 21, 19972 (2013).
[Crossref] [PubMed]

M. Florescu, S. Torquato, and P. J. Steinhardt, “Designer disordered materials with large, complete photonic band gaps,” Proc. Natl. Acad. Sci. U.S.A.  106, 20658 (2009).
[Crossref] [PubMed]

O. U. Uche, F. H. Stillinger, and S. Torquato, “Constraints on collective density variables: Two dimensions,” Phys. Rev. E 70, 046122 (2004).
[Crossref]

S. Torquato and F. H. Stillinger, “Local density fluctuations, hyperuniformity, and order metrics,” Phys. Rev. E 68, 041113 (2003).
[Crossref]

Tourin, A.

V. Leroy, A. Strybulevych, M. Lanoy, F. Lemoult, A. Tourin, and J. H. Page, “Superabsorption of acoustic waves with bubble metascreens,” Phys. Rev. B 91, 020301 (2015).
[Crossref]

Uche, O. U.

O. U. Uche, F. H. Stillinger, and S. Torquato, “Constraints on collective density variables: Two dimensions,” Phys. Rev. E 70, 046122 (2004).
[Crossref]

van Tiggelen, B.

B. van Tiggelen and A. Lagendijk, “Resonantly induced dipole-dipole interactions in the diffusion of scalar waves,” Phys. Rev. B 50, 16729–16732 (1994).
[Crossref]

Vynck, K.

R. Mupparapu, K. Vynck, T. Svensson, M. Burresi, and D. S. Wiersma, “Path length enhancement in disordered media for increased absorption,” Opt. Express 23, A1472–A1484 (2015).
[Crossref] [PubMed]

G. M. Conley, M. Burresi, F. Pratesi, K. Vynck, and D. S. Wiersma, “Light Transport and Localization in Two-Dimensional Correlated Disorder,” Phys. Rev. Lett. 112, 143901 (2014).
[Crossref] [PubMed]

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11, 1017–1022 (2012).
[Crossref] [PubMed]

Wan, W.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889 (2011).
[Crossref] [PubMed]

Wang, B.

B. Wang and C. Zhao, “Effect of dependent scattering on light absorption in highly scattering random media,” Int. J. Heat Mass Transf. 125, 1069–1078 (2018).
[Crossref]

Wang, B. X.

M. Q. Liu, C. Y. Zhao, B. X. Wang, and X. Fang, “Role of short-range order in manipulating light absorption in disordered media,” J. Opt. Soc. Am. B 35, 504–513 (2018).
[Crossref]

Wehrspohn, R. B.

P. M. Piechulla, L. Muehlenbein, R. B. Wehrspohn, S. Nanz, A. Abass, C. Rockstuhl, and A. Sprafke, “Fabrication of Nearly-Hyperuniform Substrates by Tailored Disorder for Photonic Applications,” Adv. Opt. Mater.  6, 1701272 (2018).
[Crossref]

Wiersma, D. S.

R. Mupparapu, K. Vynck, T. Svensson, M. Burresi, and D. S. Wiersma, “Path length enhancement in disordered media for increased absorption,” Opt. Express 23, A1472–A1484 (2015).
[Crossref] [PubMed]

G. M. Conley, M. Burresi, F. Pratesi, K. Vynck, and D. S. Wiersma, “Light Transport and Localization in Two-Dimensional Correlated Disorder,” Phys. Rev. Lett. 112, 143901 (2014).
[Crossref] [PubMed]

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11, 1017–1022 (2012).
[Crossref] [PubMed]

Williamson, E.

W. Man, M. Florescu, K. Matsuyama, P. Yadak, G. Nahal, S. Hashemizad, E. Williamson, P. Steinhardt, S. Torquato, and P. Chaikin, “Photonic band gap in isotropic hyperuniform disordered solids with low dielectric contrast,” Opt. Express 21, 19972 (2013).
[Crossref] [PubMed]

Williamson, E. P.

W. Man, M. Florescu, E. P. Williamson, Y. He, S. R. Hashemizad, B. Y. C. Leung, D. R. Liner, S. Torquato, P. M. Chaikin, and P. J. Steinhardt, “Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids,” Proc. Natl. Acad. Sci. U.S.A. 110, 15886 (2013).
[Crossref] [PubMed]

Yadak, P.

W. Man, M. Florescu, K. Matsuyama, P. Yadak, G. Nahal, S. Hashemizad, E. Williamson, P. Steinhardt, S. Torquato, and P. Chaikin, “Photonic band gap in isotropic hyperuniform disordered solids with low dielectric contrast,” Opt. Express 21, 19972 (2013).
[Crossref] [PubMed]

Yamilov, A.

A. Yamilov and H. Cao, “Density of resonant states and a manifestation of photonic band structure in small clusters of spherical particles,” Phys. Rev. B 68, 085111 (2003).
[Crossref]

Yazhgur, P.

J. Ricouvier, R. Pierrat, R. Carminati, P. Tabeling, and P. Yazhgur, “Optimizing Hyperuniformity in Self-Assembled Bidisperse Emulsions,” Phys. Rev. Lett. 119, 208001 (2017).
[Crossref] [PubMed]

Yu, S.

W.-K. Lee, S. Yu, C. J. Engel, T. Reese, D. Rhee, W. Chen, and T. W. Odom, “Concurrent design of quasi-random photonic nanostructures,” Proc. Natl. Acad. Sci. U.S.A. 114, 8734–8739 (2017).
[Crossref] [PubMed]

Yue, D. K. P.

M. Benzaouia, G. Tokic, O. D. Miller, D. K. P. Yue, and S. G. Johnson, “From solar cells to ocean buoys: Wide-bandwidth limits to absorption by metaparticle arrays,” arXiv 1804.00600 (2018).

Zhao, C.

B. Wang and C. Zhao, “Effect of dependent scattering on light absorption in highly scattering random media,” Int. J. Heat Mass Transf. 125, 1069–1078 (2018).
[Crossref]

Zhao, C. Y.

M. Q. Liu, C. Y. Zhao, B. X. Wang, and X. Fang, “Role of short-range order in manipulating light absorption in disordered media,” J. Opt. Soc. Am. B 35, 504–513 (2018).
[Crossref]

ACS Photonics (1)

S. F. Liew, S. M. Popoff, S. W. Sheehan, A. Goetschy, C. A. Schmuttenmaer, A. D. Stone, and H. Cao, “Coherent Control of Photocurrent in a Strongly Scattering Photoelectrochemical System,” ACS Photonics 3, 449–455 (2016).
[Crossref]

Adv. Opt. Mater (1)

P. M. Piechulla, L. Muehlenbein, R. B. Wehrspohn, S. Nanz, A. Abass, C. Rockstuhl, and A. Sprafke, “Fabrication of Nearly-Hyperuniform Substrates by Tailored Disorder for Photonic Applications,” Adv. Opt. Mater.  6, 1701272 (2018).
[Crossref]

Adv. Opt. Mater. (1)

N. Muller, J. Haberko, C. Marichy, and F. Scheffold, “Silicon Hyperuniform Disordered Photonic Materials with a Pronounced Gap in the Shortwave Infrared,” Adv. Opt. Mater. 2, 115–119 (2013).
[Crossref]

Int. J. Heat Mass Transf. (1)

B. Wang and C. Zhao, “Effect of dependent scattering on light absorption in highly scattering random media,” Int. J. Heat Mass Transf. 125, 1069–1078 (2018).
[Crossref]

J. Acoust. Soc. Am. (1)

B. Sapoval, O. Haeberlé, and S. Russ, “Acoustical properties of irregular and fractal cavities,” J. Acoust. Soc. Am. 102, 2014–2019 (1997).
[Crossref]

J. Opt. Soc. Am. B (1)

M. Q. Liu, C. Y. Zhao, B. X. Wang, and X. Fang, “Role of short-range order in manipulating light absorption in disordered media,” J. Opt. Soc. Am. B 35, 504–513 (2018).
[Crossref]

J. Physiol (1)

D. M. Maurice, “The structure and transparency of the cornea,” J. Physiol.  136, 263 (1957).
[Crossref] [PubMed]

Nat. Mater. (1)

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11, 1017–1022 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

E. H. Sargent, “Colloidal quantum dot solar cells,” Nat. Photonics 6, 133–135 (2012).
[Crossref]

Opt. Commun. (1)

M. Hutley and D. Maystre, “The total absorption of light by a diffraction grating,” Opt. Commun. 19, 431–436 (1976).
[Crossref]

Opt. Express (4)

R. Mupparapu, K. Vynck, T. Svensson, M. Burresi, and D. S. Wiersma, “Path length enhancement in disordered media for increased absorption,” Opt. Express 23, A1472–A1484 (2015).
[Crossref] [PubMed]

V. B. Koman, C. Santschi, and O. J. F. Martin, “Maximal absorption regime in random media,” Opt. Express 24, A1306 (2016).
[Crossref] [PubMed]

O. D. Miller, A. G. Polimeridis, M. T. Homer Reid, C. W. Hsu, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Fundamental limits to optical response in absorptive systems,” Opt. Express 24, 3329 (2016).
[Crossref] [PubMed]

W. Man, M. Florescu, K. Matsuyama, P. Yadak, G. Nahal, S. Hashemizad, E. Williamson, P. Steinhardt, S. Torquato, and P. Chaikin, “Photonic band gap in isotropic hyperuniform disordered solids with low dielectric contrast,” Opt. Express 21, 19972 (2013).
[Crossref] [PubMed]

Optica (1)

O. Leseur, R. Pierrat, and R. Carminati, “High-density hyperuniform materials can be transparent,” Optica 3, 763–767 (2016).
[Crossref]

Phys. Rep. (1)

S. Torquato, “Hyperuniform states of matter,” Phys. Rep. 745, 1 (2018).
[Crossref]

Phys. Rev (1)

M. Lax, “Multiple Scattering of Waves. II. The Effective Field in Dense Systems,” Phys. Rev.  85, 621 (1952).
[Crossref]

Phys. Rev. B (7)

J. Kim and S. Torquato, “Effect of imperfections on the hyperuniformity of many-body systems,” Phys. Rev. B 97, 054105 (2018).
[Crossref]

T. Amoah and M. Florescu, “High-Q optical cavities in hyperuniform disordered materials,” Phys. Rev. B 91, 020201 (2015).
[Crossref]

M. Florescu, P. J. Steinhardt, and S. Torquato, “Optical cavities and waveguides in hyperuniform disordered photonic solids,” Phys. Rev. B 87, 165116 (2013).
[Crossref]

B. van Tiggelen and A. Lagendijk, “Resonantly induced dipole-dipole interactions in the diffusion of scalar waves,” Phys. Rev. B 50, 16729–16732 (1994).
[Crossref]

A. Yamilov and H. Cao, “Density of resonant states and a manifestation of photonic band structure in small clusters of spherical particles,” Phys. Rev. B 68, 085111 (2003).
[Crossref]

J.-P. Hugonin, M. Besbes, and P. Ben Abdallah, “Fundamental limits for light absorption and scattering induced by cooperative electromagnetic interactions,” Phys. Rev. B 91, 180202 (2015).
[Crossref]

V. Leroy, A. Strybulevych, M. Lanoy, F. Lemoult, A. Tourin, and J. H. Page, “Superabsorption of acoustic waves with bubble metascreens,” Phys. Rev. B 91, 020301 (2015).
[Crossref]

Phys. Rev. E (2)

S. Torquato and F. H. Stillinger, “Local density fluctuations, hyperuniformity, and order metrics,” Phys. Rev. E 68, 041113 (2003).
[Crossref]

O. U. Uche, F. H. Stillinger, and S. Torquato, “Constraints on collective density variables: Two dimensions,” Phys. Rev. E 70, 046122 (2004).
[Crossref]

Phys. Rev. Lett. (10)

L. S. Froufe Pérez, M. Engel, P. F. Damasceno, N. Muller, J. Haberko, S. C. Glotzer, and F. Scheffold, “Role of Short-Range Order and Hyperuniformity in the Formation of Band Gaps in Disordered Photonic Materials,” Phys. Rev. Lett. 117, 053902 (2016).
[Crossref] [PubMed]

J. Ricouvier, R. Pierrat, R. Carminati, P. Tabeling, and P. Yazhgur, “Optimizing Hyperuniformity in Self-Assembled Bidisperse Emulsions,” Phys. Rev. Lett. 119, 208001 (2017).
[Crossref] [PubMed]

S. Brûlé, E. Javelaud, S. Enoch, and S. Guenneau, “Experiments on Seismic Metamaterials: Molding Surface Waves,” Phys. Rev. Lett. 112, 133901 (2014).
[Crossref] [PubMed]

Y. Chong, L. Ge, H. Cao, and A. Stone, “Coherent Perfect Absorbers: Time-Reversed Lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

S. Fraden and G. Maret, “Multiple light scattering from concentrated, interacting suspensions,” Phys. Rev. Lett. 65, 512 (1990).
[Crossref] [PubMed]

Y. D. Chong and A. D. Stone, “Hidden Black: Coherent Enhancement of Absorption in Strongly Scattering Media,” Phys. Rev. Lett. 107, 163901 (2011).
[Crossref] [PubMed]

C. W. Hsu, A. Goetschy, Y. Bromberg, A. D. Stone, and H. Cao, “Broadband Coherent Enhancement of Transmission and Absorption in Disordered Media,” Phys. Rev. Lett. 115, 223901 (2015).
[Crossref] [PubMed]

L. F. Rojas Ochoa, J. M. Mendez Alcaraz, J. J. Sáenz, P. Schurtenberger, and F. Scheffold, “Photonic Properties of Strongly Correlated Colloidal Liquids,” Phys. Rev. Lett. 93, 073903 (2004).
[Crossref] [PubMed]

M. Rechtsman, A. Szameit, F. Dreisow, M. Heinrich, R. Keil, S. Nolte, and M. Segev, “Amorphous Photonic Lattices: Band Gaps, Effective Mass, and Suppressed Transport,” Phys. Rev. Lett. 106, 193904 (2011).
[Crossref] [PubMed]

G. M. Conley, M. Burresi, F. Pratesi, K. Vynck, and D. S. Wiersma, “Light Transport and Localization in Two-Dimensional Correlated Disorder,” Phys. Rev. Lett. 112, 143901 (2014).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A (1)

M. Florescu, S. Torquato, and P. J. Steinhardt, “Designer disordered materials with large, complete photonic band gaps,” Proc. Natl. Acad. Sci. U.S.A.  106, 20658 (2009).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (3)

W. Man, M. Florescu, E. P. Williamson, Y. He, S. R. Hashemizad, B. Y. C. Leung, D. R. Liner, S. Torquato, P. M. Chaikin, and P. J. Steinhardt, “Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids,” Proc. Natl. Acad. Sci. U.S.A. 110, 15886 (2013).
[Crossref] [PubMed]

L. S. Froufe Pérez, M. Engel, J. J. Sáenz, and F. Scheffold, “Band gap formation and Anderson localization in disordered photonic materials with structural correlations,” Proc. Natl. Acad. Sci. U.S.A. 114, 9570–9574 (2017).
[Crossref] [PubMed]

W.-K. Lee, S. Yu, C. J. Engel, T. Reese, D. Rhee, W. Chen, and T. W. Odom, “Concurrent design of quasi-random photonic nanostructures,” Proc. Natl. Acad. Sci. U.S.A. 114, 8734–8739 (2017).
[Crossref] [PubMed]

Science (2)

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889 (2011).
[Crossref] [PubMed]

A. Polman, M. Knight, E. C. Garnett, B. Ehrler, and W. C. Sinke, “Photovoltaic materials: Present efficiencies and future challenges,” Science 352, aad4424–1 (2016).
[Crossref] [PubMed]

Other (10)

M. Osawa, Surface-Enhanced Infrared Absorption Spectroscopy (John Wiley & Sons, Ltd, 2006).

M. Benzaouia, G. Tokic, O. D. Miller, D. K. P. Yue, and S. G. Johnson, “From solar cells to ocean buoys: Wide-bandwidth limits to absorption by metaparticle arrays,” arXiv 1804.00600 (2018).

O. Leseur, “Diffusion, localisation et absorption de lumière en milieux désordonnés. Impact des corrélations spatiales du désordre,” Ph.D. thesis, Université Pierre et Marie Curie (2016).

I. Sarbu and C. Sebarchievici, Solar Heating and Cooling Systems (Academic Press, Amsterdam, 2016).

M. Florescu and G. Gkantzounis, “Hyperuniform disordered structures for enhanced light absorption (Conference Presentation),” in Physics, Simulation, and Photonic Engineering of Photovoltaic Devices VII, vol. 10527 (SPIE, 2018), p. 105270J.

J. D. Jackson, Classical Electrodynamics (John Wiley and Sons, New-York, 1962).

P. Sheng, Introduction to Wave Scattering, Localization and Mesoscopic Phenomena (Academic Press, New York, 1995).

E. Akkermans and G. Montambaux, Mesoscopic Physics of Electrons and Photons (Cambridge University Press, Cambridge, 2007).
[Crossref]

J. C. Spall, Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control (John Wiley & Sons, 2003).
[Crossref]

A. Ishimaru, Wave Propagation and Scattering in Random Media (IEEE Press, Oxford, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Normalized absorbed power averaged over 60 configurations, versus the ISA absorption optical thickness L / a B , for hyperuniform (black solid line) and uncorrelated (red solid line) materials. Parameters: L / s B = 15 , k 0 s B = 13 , N = 30000 scatterers, χ = 0.44. Black dotted line: absorption by a homogeneous material with a complex refractive index equal to the effective index of the hyperuniform material (obtained by a fitting procedure). Red dotted line: absorption by an uncorrelated medium computed using a Monte Carlo simulation. (b) Ratio P a H / P a U measuring the absorption enhancement in the hyperuniform material.
Fig. 2
Fig. 2 (a) Normalized average absorption versus the angle of incidence. Same parameters as in Fig. 1 with L / a B = 2 . (b) Normalized average absorption versus the illumination frequency at normal incidence. Same parameters as in Fig. 1 with Q = 3 and η = 0.94 which gives L / s B = 15 , L / a B = 1 and k 0 s B = 13 for ω/ω0 = 1.49. The vertical dashed blue line indicates the cutoff frequency ωc = Kc/4 deliminating the transparency region λ> 8π/K.
Fig. 3
Fig. 3 Illustration of the numerical computation process. (a) Configuration generated numerically on a square of size 3L containing 90000 points. (b) One of the three bands used for the Maxwell simulation as a disordered pseudo-slab containing 30000 scatterers. The absorbed power is computed on the blue hatched square V. θ0 is the angle of incidence of the plane-wave illumination.
Fig. 4
Fig. 4 Comparison of the power absorbed by different types of structures as a function of the incident angle θ0. For all simulations, the geometry (slab), the number of scatterers and the optical properties of each scatterer are preserved. Parameters: L / s B = 15 , L / a B = 1 , k 0 s B = 13 and N = 30000 scatterers.
Fig. 5
Fig. 5 System of interest to compute the average field (homogeneous slab).
Fig. 6
Fig. 6 Example of fitting of the effective refractive index of the average field inside the cloud. The average field is compared with the analytical solution of the field propagating inside an (transversally) infinite homogeneous slab of same refractive index. Calculations were done on 60 stealth hyperuniform configurations made of N = 30000 dipoles with χ = 0.444, L / s B = 15 and (a) L / a B = 0 (no absorption) or (b) L / a B = 0.5 .
Fig. 7
Fig. 7 Relative standard deviation of the absorption in a correlated (black, down) and uncorrelated (red, up) cloud. Same parameters as in Fig. 1 of the main text. Error bars were estimated by boostrapping on 10000 resampling and taking ±3 times the standard deviation obtained from the displayed value.
Fig. 8
Fig. 8 Normalized average absorbed power for stealth hyperuniform structures operating in the transparent conditions showing weak variability of the absorption mean free path a H with the correlations.
Fig. 9
Fig. 9 Estimated gain for large optical thicknesses.

Equations (45)

Equations on this page are rendered with MathJax. Learn more.

P a = P ¯ a P ˜ s .
P a P 0 P ˜ s .
S ( q ) = 1 N | j = 1 N exp [ i q r j ] | 2
max [ P a H P a U ] 0.243 L s B .
X = X + δ X .
E ( r , ω ) = E ( r , ω ) + δ E ( r , ω )
I ( r , ω ) = | E ( r , ω ) | 2 = | E ( r , ω ) | 2 + | δ E ( r , ω ) | 2 = I ¯ ( r , ω ) + I ˜ ( r , ω )
P e ( ω ) = 1 2 Re V j E 0 * d 3 r ,
P a ( ω ) = 1 2 Re V j E * d 3 r ,
P s ( ω ) = 1 2 Re S ( E s × H s * ) n S d 2 r .
P e ( ω ) = P e ¯ ( ω ) + P e ˜ ( ω ) = P e ¯ ( ω ) ,
P a ( ω ) = P a ¯ ( ω ) + P a ˜ ( ω ) ,
P s ( ω ) = P s ¯ ( ω ) + P s ˜ ( ω )
1 e = 1 a + 1 s .
P e ¯ ( ω ) = 1 2 Re V j E 0 * d 3 r ,
P a ¯ ( ω ) = 1 2 Re V j E * d 3 r ,
P s ¯ ( ω ) = 1 2 Re S [ E s × H s * ] n S d 2 r
j ( r , ω ) = i ω P ( r , ω ) = i ω ϵ 0 [ n eff ( ω ) 2 1 ] E ( r , ω ) .
P e ¯ ( ω ) = P a ¯ ( ω ) + P s ¯ ( ω ) .
E i ( ω ) = E 0 ( r i , ω ) + k 0 2 α ( ω ) j = 1 , j i N G 0 ( r i r j ) E j ( ω )
G 0 ( r r ) = i 4 H 0 ( 1 ) ( k 0 | r r | )
P a P 0 = σ a L | E 0 | 2 i V | E i | 2
E 0 ( z ) = E 0 exp ( i k 0 z ) .
E ( r , ω ) = E 0 ( r , ω ) + k 0 2 α ( ω ) j = 1 N G 0 ( r r j ) E j ( ω )
E ( z ) = t 1 r eff H 2 { exp [ i k 0 ( n eff H 1 ) z ] + γ exp [ i k 0 ( n eff H + 1 ) z ] } E 0 ( z )
e H = 1 2 k 0 n eff H
P a H P 0 = ω 2 Im [ P E * ] d z [ ϵ 0 c I 0 2 ] 1
E ( z ) = t exp ( i k 0 n eff H z ) E 0 .
P a H P 0 = | t | 2 2 n eff H Im [ n eff H 2 ] [ 1 exp ( 2 k 0 n eff H L ) ] = [ 1 R ] [ 1 exp ( 2 k 0 n eff H L ) ]
P a H P 0 = [ 1 R ] [ 1 exp ( L a H ) ]
P a H P 0 = [ 1 exp ( L a B ) ]
c s B 2 d 2 u ˜ d z 2 c u ˜ a B = P ¯ s B
P ¯ ( z ) = P 0 exp ( z e B )
u ˜ ( z = 0 ) z 0 d u ˜ d z ( z = 0 ) = 0 ,
u ˜ ( z = L ) + z 0 d u ˜ d z ( z = L ) = 0 ,
u ˜ = P 0 γ c [ α + exp ( z ) + α exp ( z ) exp ( z e B ) ]
α ± = [ ( 1 + z 0 e B ) ( 1 z 0 ) exp ( L ) ± ( 1 z 0 e B ) ( 1 ± z 0 ) exp ( L e B ) ] × [ 2 ( 1 + z 0 2 2 ) sinh ( L ) + 2 z 0 cosh ( L ) ] 1 ,
γ = 2 1 + s B 2 / a B 2
P a U = c a B 0 L u ( z ) d z
P a U P 0 = e B a B [ 1 γ ] [ 1 exp ( L e B ) ] + a B { α + [ exp ( L ) 1 ] + α [ 1 exp ( L ) ] }
P a U P 0 = ( 1 + z 0 s B ) 2 s B a B [ 1 + 2 z 0 s B ( 1 + z 0 s B ) ] s B a B + O ( s B a B ) .
G ( L s B , L a B ) = P a H P a U .
G ( L / a B ) = 0
[ L a B ] optimum = 1.256 ,
max [ P a H P a U ] ~ 0.243 L s B .

Metrics