Abstract

We have recently experimentally demonstrated that a novel liquid crystal-based photonic transducer for sensing systems could be utilized as an active Q-switch in a miniaturised and integrated waveguide laser system. In this paper, we now present a comprehensive numerical modelling study of this novel laser architecture by deriving a set of equations that accurately describe the temporal optical response of the liquid crystal cell as a function of applied voltage and by combining this theoretical model with laser-rate equations. We validate the accuracy of this model by comparing the results with previously obtained data and find them in excellent agreement. This enables us to predict that under realistic conditions and moderate pump power levels of 500 mW, the laser system should be capable of generating peak power levels in excess of 1.1 kW with pulse widths of about 20 ns, corresponding to pulse energies > 20 μJ. We believe that such a low-cost and ultra-compact laser source could find applications ranging from trace gas sensing and LIDAR to material processing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Compact integrated actively Q-switched waveguide laser

Christoph Wieschendorf, Josiah Firth, Leonardo Silvestri, Simon Gross, François Ladouceur, Michael J. Withford, David J. Spence, and Alex Fuerbach
Opt. Express 25(3) 1692-1701 (2017)

Diode-pumped, actively internal-Q-switched Nd:MgO:PPLN laser

Y. H. Chen, Y. C. Chang, C. H. Lin, and T. Y. Chung
Opt. Express 16(3) 2048-2055 (2008)

References

  • View by:
  • |
  • |
  • |

  1. F. J. McClung and R. W. Hellwarth, “Giant optical pulsations from Ruby,” Appl. Opt. 1, 103–105 (1962).
    [Crossref]
  2. T. Kitagawa, K. Hattori, M. Shimizu, Y. Ohmori, and M. Kobayashi, “Guided-wave laser based on erbium-doped silica planar lightwave circuit,” Electron. Lett. 27, 334–335 (1991).
    [Crossref]
  3. H. Suche, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, W. Sohler, S. Balsamo, I. Montrosset, and K. K. Wong, “Efficient Q-switched Ti:Er:LiNbO3 waveguide laser,” Electron. Lett. 34, 1228–1230 (1998).
    [Crossref]
  4. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
    [Crossref] [PubMed]
  5. G. Della Valle, S. Taccheo, R. Osellame, A. Festa, G. Cerullo, and P. Laporta, “1.5 μm single longitudinal mode waveguide laser fabricated by femtosecond laser writing,” Opt. Express 15, 3190–3194 (2007).
    [Crossref] [PubMed]
  6. G. D. Marshall, P. Dekker, M. Ams, J. A. Piper, and M. J. Withford, “Directly written monolithic waveguide laser incorporating a distributed feedback waveguide-Bragg grating,” Opt. Lett. 33, 956–958 (2008).
    [Crossref] [PubMed]
  7. J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31, 1890–1901 (1995).
    [Crossref]
  8. H. J. Eichler, D. Grebe, I. Iryanto, and R. Macdonald, “Active Q-Switching of a solid state laser using nematic liquid crystal modulators,” Mol. Cryst. Liq. Cryst. 320, 89–99 (1998).
    [Crossref]
  9. J. Firth, F. Ladouceur, Z. Brodzeli, M. Wyres, and L. Silvestri, “A novel optical telemetry system applied to flowmeter networks,” Flow Meas. Instrumentation 48, 15–19 (2016).
    [Crossref]
  10. A. A. Abed, H. Srinivas, J. Firth, F. Ladouceur, N. H. Lovell, and L. Silvestri, “A biopotential optrode array: operationprinciples and simulations,” Sci. Reports 8, 2690 (2018).
    [Crossref]
  11. C. Wieschendorf, J. Firth, L. Silvestri, S. Gross, F. Ladouceur, M. Withford, D. Spence, and A. Fuerbach, “Compact integrated actively Q-switched waveguide laser,” Opt. Express 25, 1692–1701 (2017).
    [Crossref]
  12. Z. Brodzeli, L. Silvestri, A. Michie, Q. Guo, E. Pozhidaev, V. Chigrinov, and F. Ladouceur, “Sensors at your fibre tips: a novel liquid crystal-based photonic rransducer for sensing systems,” J. Light. Technol. 31, 2940–2946 (2013).
    [Crossref]
  13. A. D. Kiselev and V. G. Chigrinov, “Optics of short-pitch deformed-helix ferroelectric liquid crystals: Symmetries, exceptional points, and polarization-resolved angular patterns,” Phys. Rev. E 90, 042504 (2014).
    [Crossref]
  14. S. R. Restaino and S. W. Teare, Introduction to liquid crystals for optical design and engineering (SPIE, 2015).
    [Crossref]
  15. B. H. Lee, I. G. Kim, S. W. Cho, and S. Lee, “Effect of process parameters on the characteristics of indium tin oxide thin film for flat panel display application,” Thin Solid Films 302, 25–30 (1997).
    [Crossref]
  16. B. Christian, Chirality in liquid crystals (pringer, 2001), Chap. 8.
  17. E. Pozhidaev, V. Chigrinov, A. Murauski, V. Molkin, D. Tao, and H. S. Kwok, “V-shaped electro-optical mode based on deformed-helix ferroelectric liquid crystal with subwavelength pitch,” J. Soc. for Inf. Disp. 20, 273–278 (2012).
    [Crossref]
  18. L. A. Beresnev, V. G. Chigrinov, D. I. Dergachev, E. P. Poshidaev, J. Funfschilling, and M. Schadt, “Deformed helix ferroelectric liquid crystal display: a new electrooptic mode in ferroelectric chiral smectic-C liquid crystals,” Liq. Cryst. 5, 1171–1177 (1989).
    [Crossref]
  19. Z. Brodzeli, L. Silvestri, A. Michie, Q. Guo, E. P. Pozhidaev, V. Chigrinov, and F. Ladouceur, “Reflective mode of deformed-helix ferroelectric liquid crystal cells for sensing applications,” Liq. Cryst. 40, 1427–1435 (2013).
    [Crossref]
  20. M. Schubert, “Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems,” Phys. Rev. B 53, 4265–4274 (1996).
    [Crossref]
  21. L. Silvestri, H. Srinivas, and F. Ladouceur, “Effective dielectric tensor of deformed-helix ferroelectric liquid crystals with subwavelength pitch and large tilt angle,” Phys. Rev. E 98, 052707 (2018).
    [Crossref]
  22. D. Marcuse, “Classical derivation of the laser rate equation,” IEEE J. Quantum Electron. 25, 1228–1231, (1983).
    [Crossref]
  23. A. D. Kiselev, E. P. Pozhidaev, V. G. Chigrinov, and H. S. Kwok, “Polarization-gratings approach to deformed-helix ferroelectric liquid crystals with subwavelength pitch,” Phys. Rev. E 83, 31703 (2011).
    [Crossref]
  24. X. Zou and H. Toratani, “Evaluation of spectroscopic properties of Yb3+-doped glasses,” Phys. Rev. B 52, 15889 (1995).
    [Crossref]
  25. A. Fuerbach, A. Fernandez, A. Apolonski, T. Fuji, and F. Krausz, “Chirped-pulse oscillators for the generation of high-energy femtosecond laser pulses,” Laser Part. Beams 23, 113–116 (2005).
    [Crossref]
  26. G. Palmer, S. Gross, A. Fuerbach, D. G. Lancaster, and M. J. Withford, “High slope efficiency and high refractive index change in direct-written Yb-doped waveguide lasers with depressed claddings,” Opt. Express 21, 17413–17420 (2013).
    [Crossref] [PubMed]
  27. A. V. Kaznacheev and E. P. Pozhidaev, “Effect of boundary surfaces on the effective dielectric susceptibility of the helical structure of a ferroelectric liquid crystal,” J. Exp. Theor. Phys. 121, 355–361 (2015).
    [Crossref]
  28. A. V. Kaznacheev and E. P. Pozhidaev, “Anchoring energy and orientational elasticity of a ferroelectric liquid crystal,” J. Exp. Theor. Phys. 114, 1043–1051 (2012).
    [Crossref]
  29. Q. Guo, A. K. Srivastava, E. P. Pozhidaev, V. G. Chigrinov, and H. S. Kwok, “Optimization of alignment quality of ferroelectric liquid crystals by controlling anchoring energy,” Appl. Phys. Express 7, 21701 (2014).
    [Crossref]
  30. E. Pozhidaev, S. Torgova, M. Minchenko, C. A. R. Yednak, A. Strigazzi, and E. Miraldi, “Phase modulation and ellipticity of the light transmitted through a smectic C* layer with short helix pitch,” Liq. Cryst. 37, 1067–1081 (2010).
    [Crossref]
  31. X. Yan, F. W. Mont, D. J. Poxson, M. F. Schubert, J. K. Kim, J. Cho, and E. F. Schubert, “Refractive-Index-Matched Indium-Tin-Oxide electrodes for liquid crystal displays,” Jpn. J. Appl. Phys. 48, 120203 (2009).
    [Crossref]

2018 (2)

A. A. Abed, H. Srinivas, J. Firth, F. Ladouceur, N. H. Lovell, and L. Silvestri, “A biopotential optrode array: operationprinciples and simulations,” Sci. Reports 8, 2690 (2018).
[Crossref]

L. Silvestri, H. Srinivas, and F. Ladouceur, “Effective dielectric tensor of deformed-helix ferroelectric liquid crystals with subwavelength pitch and large tilt angle,” Phys. Rev. E 98, 052707 (2018).
[Crossref]

2017 (1)

C. Wieschendorf, J. Firth, L. Silvestri, S. Gross, F. Ladouceur, M. Withford, D. Spence, and A. Fuerbach, “Compact integrated actively Q-switched waveguide laser,” Opt. Express 25, 1692–1701 (2017).
[Crossref]

2016 (1)

J. Firth, F. Ladouceur, Z. Brodzeli, M. Wyres, and L. Silvestri, “A novel optical telemetry system applied to flowmeter networks,” Flow Meas. Instrumentation 48, 15–19 (2016).
[Crossref]

2015 (1)

A. V. Kaznacheev and E. P. Pozhidaev, “Effect of boundary surfaces on the effective dielectric susceptibility of the helical structure of a ferroelectric liquid crystal,” J. Exp. Theor. Phys. 121, 355–361 (2015).
[Crossref]

2014 (2)

Q. Guo, A. K. Srivastava, E. P. Pozhidaev, V. G. Chigrinov, and H. S. Kwok, “Optimization of alignment quality of ferroelectric liquid crystals by controlling anchoring energy,” Appl. Phys. Express 7, 21701 (2014).
[Crossref]

A. D. Kiselev and V. G. Chigrinov, “Optics of short-pitch deformed-helix ferroelectric liquid crystals: Symmetries, exceptional points, and polarization-resolved angular patterns,” Phys. Rev. E 90, 042504 (2014).
[Crossref]

2013 (3)

Z. Brodzeli, L. Silvestri, A. Michie, Q. Guo, E. Pozhidaev, V. Chigrinov, and F. Ladouceur, “Sensors at your fibre tips: a novel liquid crystal-based photonic rransducer for sensing systems,” J. Light. Technol. 31, 2940–2946 (2013).
[Crossref]

Z. Brodzeli, L. Silvestri, A. Michie, Q. Guo, E. P. Pozhidaev, V. Chigrinov, and F. Ladouceur, “Reflective mode of deformed-helix ferroelectric liquid crystal cells for sensing applications,” Liq. Cryst. 40, 1427–1435 (2013).
[Crossref]

G. Palmer, S. Gross, A. Fuerbach, D. G. Lancaster, and M. J. Withford, “High slope efficiency and high refractive index change in direct-written Yb-doped waveguide lasers with depressed claddings,” Opt. Express 21, 17413–17420 (2013).
[Crossref] [PubMed]

2012 (2)

A. V. Kaznacheev and E. P. Pozhidaev, “Anchoring energy and orientational elasticity of a ferroelectric liquid crystal,” J. Exp. Theor. Phys. 114, 1043–1051 (2012).
[Crossref]

E. Pozhidaev, V. Chigrinov, A. Murauski, V. Molkin, D. Tao, and H. S. Kwok, “V-shaped electro-optical mode based on deformed-helix ferroelectric liquid crystal with subwavelength pitch,” J. Soc. for Inf. Disp. 20, 273–278 (2012).
[Crossref]

2011 (1)

A. D. Kiselev, E. P. Pozhidaev, V. G. Chigrinov, and H. S. Kwok, “Polarization-gratings approach to deformed-helix ferroelectric liquid crystals with subwavelength pitch,” Phys. Rev. E 83, 31703 (2011).
[Crossref]

2010 (1)

E. Pozhidaev, S. Torgova, M. Minchenko, C. A. R. Yednak, A. Strigazzi, and E. Miraldi, “Phase modulation and ellipticity of the light transmitted through a smectic C* layer with short helix pitch,” Liq. Cryst. 37, 1067–1081 (2010).
[Crossref]

2009 (1)

X. Yan, F. W. Mont, D. J. Poxson, M. F. Schubert, J. K. Kim, J. Cho, and E. F. Schubert, “Refractive-Index-Matched Indium-Tin-Oxide electrodes for liquid crystal displays,” Jpn. J. Appl. Phys. 48, 120203 (2009).
[Crossref]

2008 (1)

G. D. Marshall, P. Dekker, M. Ams, J. A. Piper, and M. J. Withford, “Directly written monolithic waveguide laser incorporating a distributed feedback waveguide-Bragg grating,” Opt. Lett. 33, 956–958 (2008).
[Crossref] [PubMed]

2007 (1)

G. Della Valle, S. Taccheo, R. Osellame, A. Festa, G. Cerullo, and P. Laporta, “1.5 μm single longitudinal mode waveguide laser fabricated by femtosecond laser writing,” Opt. Express 15, 3190–3194 (2007).
[Crossref] [PubMed]

2005 (1)

A. Fuerbach, A. Fernandez, A. Apolonski, T. Fuji, and F. Krausz, “Chirped-pulse oscillators for the generation of high-energy femtosecond laser pulses,” Laser Part. Beams 23, 113–116 (2005).
[Crossref]

1998 (2)

H. J. Eichler, D. Grebe, I. Iryanto, and R. Macdonald, “Active Q-Switching of a solid state laser using nematic liquid crystal modulators,” Mol. Cryst. Liq. Cryst. 320, 89–99 (1998).
[Crossref]

H. Suche, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, W. Sohler, S. Balsamo, I. Montrosset, and K. K. Wong, “Efficient Q-switched Ti:Er:LiNbO3 waveguide laser,” Electron. Lett. 34, 1228–1230 (1998).
[Crossref]

1997 (1)

B. H. Lee, I. G. Kim, S. W. Cho, and S. Lee, “Effect of process parameters on the characteristics of indium tin oxide thin film for flat panel display application,” Thin Solid Films 302, 25–30 (1997).
[Crossref]

1996 (2)

M. Schubert, “Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems,” Phys. Rev. B 53, 4265–4274 (1996).
[Crossref]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
[Crossref] [PubMed]

1995 (2)

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31, 1890–1901 (1995).
[Crossref]

X. Zou and H. Toratani, “Evaluation of spectroscopic properties of Yb3+-doped glasses,” Phys. Rev. B 52, 15889 (1995).
[Crossref]

1991 (1)

T. Kitagawa, K. Hattori, M. Shimizu, Y. Ohmori, and M. Kobayashi, “Guided-wave laser based on erbium-doped silica planar lightwave circuit,” Electron. Lett. 27, 334–335 (1991).
[Crossref]

1989 (1)

L. A. Beresnev, V. G. Chigrinov, D. I. Dergachev, E. P. Poshidaev, J. Funfschilling, and M. Schadt, “Deformed helix ferroelectric liquid crystal display: a new electrooptic mode in ferroelectric chiral smectic-C liquid crystals,” Liq. Cryst. 5, 1171–1177 (1989).
[Crossref]

1983 (1)

D. Marcuse, “Classical derivation of the laser rate equation,” IEEE J. Quantum Electron. 25, 1228–1231, (1983).
[Crossref]

1962 (1)

F. J. McClung and R. W. Hellwarth, “Giant optical pulsations from Ruby,” Appl. Opt. 1, 103–105 (1962).
[Crossref]

Abed, A. A.

A. A. Abed, H. Srinivas, J. Firth, F. Ladouceur, N. H. Lovell, and L. Silvestri, “A biopotential optrode array: operationprinciples and simulations,” Sci. Reports 8, 2690 (2018).
[Crossref]

Ams, M.

G. D. Marshall, P. Dekker, M. Ams, J. A. Piper, and M. J. Withford, “Directly written monolithic waveguide laser incorporating a distributed feedback waveguide-Bragg grating,” Opt. Lett. 33, 956–958 (2008).
[Crossref] [PubMed]

Apolonski, A.

A. Fuerbach, A. Fernandez, A. Apolonski, T. Fuji, and F. Krausz, “Chirped-pulse oscillators for the generation of high-energy femtosecond laser pulses,” Laser Part. Beams 23, 113–116 (2005).
[Crossref]

Balsamo, S.

H. Suche, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, W. Sohler, S. Balsamo, I. Montrosset, and K. K. Wong, “Efficient Q-switched Ti:Er:LiNbO3 waveguide laser,” Electron. Lett. 34, 1228–1230 (1998).
[Crossref]

Beresnev, L. A.

L. A. Beresnev, V. G. Chigrinov, D. I. Dergachev, E. P. Poshidaev, J. Funfschilling, and M. Schadt, “Deformed helix ferroelectric liquid crystal display: a new electrooptic mode in ferroelectric chiral smectic-C liquid crystals,” Liq. Cryst. 5, 1171–1177 (1989).
[Crossref]

Brodzeli, Z.

J. Firth, F. Ladouceur, Z. Brodzeli, M. Wyres, and L. Silvestri, “A novel optical telemetry system applied to flowmeter networks,” Flow Meas. Instrumentation 48, 15–19 (2016).
[Crossref]

Z. Brodzeli, L. Silvestri, A. Michie, Q. Guo, E. Pozhidaev, V. Chigrinov, and F. Ladouceur, “Sensors at your fibre tips: a novel liquid crystal-based photonic rransducer for sensing systems,” J. Light. Technol. 31, 2940–2946 (2013).
[Crossref]

Z. Brodzeli, L. Silvestri, A. Michie, Q. Guo, E. P. Pozhidaev, V. Chigrinov, and F. Ladouceur, “Reflective mode of deformed-helix ferroelectric liquid crystal cells for sensing applications,” Liq. Cryst. 40, 1427–1435 (2013).
[Crossref]

Cerullo, G.

G. Della Valle, S. Taccheo, R. Osellame, A. Festa, G. Cerullo, and P. Laporta, “1.5 μm single longitudinal mode waveguide laser fabricated by femtosecond laser writing,” Opt. Express 15, 3190–3194 (2007).
[Crossref] [PubMed]

Chigrinov, V.

Z. Brodzeli, L. Silvestri, A. Michie, Q. Guo, E. Pozhidaev, V. Chigrinov, and F. Ladouceur, “Sensors at your fibre tips: a novel liquid crystal-based photonic rransducer for sensing systems,” J. Light. Technol. 31, 2940–2946 (2013).
[Crossref]

Z. Brodzeli, L. Silvestri, A. Michie, Q. Guo, E. P. Pozhidaev, V. Chigrinov, and F. Ladouceur, “Reflective mode of deformed-helix ferroelectric liquid crystal cells for sensing applications,” Liq. Cryst. 40, 1427–1435 (2013).
[Crossref]

E. Pozhidaev, V. Chigrinov, A. Murauski, V. Molkin, D. Tao, and H. S. Kwok, “V-shaped electro-optical mode based on deformed-helix ferroelectric liquid crystal with subwavelength pitch,” J. Soc. for Inf. Disp. 20, 273–278 (2012).
[Crossref]

Chigrinov, V. G.

A. D. Kiselev and V. G. Chigrinov, “Optics of short-pitch deformed-helix ferroelectric liquid crystals: Symmetries, exceptional points, and polarization-resolved angular patterns,” Phys. Rev. E 90, 042504 (2014).
[Crossref]

Q. Guo, A. K. Srivastava, E. P. Pozhidaev, V. G. Chigrinov, and H. S. Kwok, “Optimization of alignment quality of ferroelectric liquid crystals by controlling anchoring energy,” Appl. Phys. Express 7, 21701 (2014).
[Crossref]

A. D. Kiselev, E. P. Pozhidaev, V. G. Chigrinov, and H. S. Kwok, “Polarization-gratings approach to deformed-helix ferroelectric liquid crystals with subwavelength pitch,” Phys. Rev. E 83, 31703 (2011).
[Crossref]

L. A. Beresnev, V. G. Chigrinov, D. I. Dergachev, E. P. Poshidaev, J. Funfschilling, and M. Schadt, “Deformed helix ferroelectric liquid crystal display: a new electrooptic mode in ferroelectric chiral smectic-C liquid crystals,” Liq. Cryst. 5, 1171–1177 (1989).
[Crossref]

Cho, J.

X. Yan, F. W. Mont, D. J. Poxson, M. F. Schubert, J. K. Kim, J. Cho, and E. F. Schubert, “Refractive-Index-Matched Indium-Tin-Oxide electrodes for liquid crystal displays,” Jpn. J. Appl. Phys. 48, 120203 (2009).
[Crossref]

Cho, S. W.

B. H. Lee, I. G. Kim, S. W. Cho, and S. Lee, “Effect of process parameters on the characteristics of indium tin oxide thin film for flat panel display application,” Thin Solid Films 302, 25–30 (1997).
[Crossref]

Christian, B.

B. Christian, Chirality in liquid crystals (pringer, 2001), Chap. 8.

Davis, K. M.

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
[Crossref] [PubMed]

Degnan, J. J.

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31, 1890–1901 (1995).
[Crossref]

Dekker, P.

G. D. Marshall, P. Dekker, M. Ams, J. A. Piper, and M. J. Withford, “Directly written monolithic waveguide laser incorporating a distributed feedback waveguide-Bragg grating,” Opt. Lett. 33, 956–958 (2008).
[Crossref] [PubMed]

Della Valle, G.

G. Della Valle, S. Taccheo, R. Osellame, A. Festa, G. Cerullo, and P. Laporta, “1.5 μm single longitudinal mode waveguide laser fabricated by femtosecond laser writing,” Opt. Express 15, 3190–3194 (2007).
[Crossref] [PubMed]

Dergachev, D. I.

L. A. Beresnev, V. G. Chigrinov, D. I. Dergachev, E. P. Poshidaev, J. Funfschilling, and M. Schadt, “Deformed helix ferroelectric liquid crystal display: a new electrooptic mode in ferroelectric chiral smectic-C liquid crystals,” Liq. Cryst. 5, 1171–1177 (1989).
[Crossref]

Eichler, H. J.

H. J. Eichler, D. Grebe, I. Iryanto, and R. Macdonald, “Active Q-Switching of a solid state laser using nematic liquid crystal modulators,” Mol. Cryst. Liq. Cryst. 320, 89–99 (1998).
[Crossref]

Fernandez, A.

A. Fuerbach, A. Fernandez, A. Apolonski, T. Fuji, and F. Krausz, “Chirped-pulse oscillators for the generation of high-energy femtosecond laser pulses,” Laser Part. Beams 23, 113–116 (2005).
[Crossref]

Festa, A.

G. Della Valle, S. Taccheo, R. Osellame, A. Festa, G. Cerullo, and P. Laporta, “1.5 μm single longitudinal mode waveguide laser fabricated by femtosecond laser writing,” Opt. Express 15, 3190–3194 (2007).
[Crossref] [PubMed]

Firth, J.

A. A. Abed, H. Srinivas, J. Firth, F. Ladouceur, N. H. Lovell, and L. Silvestri, “A biopotential optrode array: operationprinciples and simulations,” Sci. Reports 8, 2690 (2018).
[Crossref]

C. Wieschendorf, J. Firth, L. Silvestri, S. Gross, F. Ladouceur, M. Withford, D. Spence, and A. Fuerbach, “Compact integrated actively Q-switched waveguide laser,” Opt. Express 25, 1692–1701 (2017).
[Crossref]

J. Firth, F. Ladouceur, Z. Brodzeli, M. Wyres, and L. Silvestri, “A novel optical telemetry system applied to flowmeter networks,” Flow Meas. Instrumentation 48, 15–19 (2016).
[Crossref]

Fuerbach, A.

C. Wieschendorf, J. Firth, L. Silvestri, S. Gross, F. Ladouceur, M. Withford, D. Spence, and A. Fuerbach, “Compact integrated actively Q-switched waveguide laser,” Opt. Express 25, 1692–1701 (2017).
[Crossref]

G. Palmer, S. Gross, A. Fuerbach, D. G. Lancaster, and M. J. Withford, “High slope efficiency and high refractive index change in direct-written Yb-doped waveguide lasers with depressed claddings,” Opt. Express 21, 17413–17420 (2013).
[Crossref] [PubMed]

A. Fuerbach, A. Fernandez, A. Apolonski, T. Fuji, and F. Krausz, “Chirped-pulse oscillators for the generation of high-energy femtosecond laser pulses,” Laser Part. Beams 23, 113–116 (2005).
[Crossref]

Fuji, T.

A. Fuerbach, A. Fernandez, A. Apolonski, T. Fuji, and F. Krausz, “Chirped-pulse oscillators for the generation of high-energy femtosecond laser pulses,” Laser Part. Beams 23, 113–116 (2005).
[Crossref]

Funfschilling, J.

L. A. Beresnev, V. G. Chigrinov, D. I. Dergachev, E. P. Poshidaev, J. Funfschilling, and M. Schadt, “Deformed helix ferroelectric liquid crystal display: a new electrooptic mode in ferroelectric chiral smectic-C liquid crystals,” Liq. Cryst. 5, 1171–1177 (1989).
[Crossref]

Grebe, D.

H. J. Eichler, D. Grebe, I. Iryanto, and R. Macdonald, “Active Q-Switching of a solid state laser using nematic liquid crystal modulators,” Mol. Cryst. Liq. Cryst. 320, 89–99 (1998).
[Crossref]

Gross, S.

C. Wieschendorf, J. Firth, L. Silvestri, S. Gross, F. Ladouceur, M. Withford, D. Spence, and A. Fuerbach, “Compact integrated actively Q-switched waveguide laser,” Opt. Express 25, 1692–1701 (2017).
[Crossref]

G. Palmer, S. Gross, A. Fuerbach, D. G. Lancaster, and M. J. Withford, “High slope efficiency and high refractive index change in direct-written Yb-doped waveguide lasers with depressed claddings,” Opt. Express 21, 17413–17420 (2013).
[Crossref] [PubMed]

Guo, Q.

Q. Guo, A. K. Srivastava, E. P. Pozhidaev, V. G. Chigrinov, and H. S. Kwok, “Optimization of alignment quality of ferroelectric liquid crystals by controlling anchoring energy,” Appl. Phys. Express 7, 21701 (2014).
[Crossref]

Z. Brodzeli, L. Silvestri, A. Michie, Q. Guo, E. P. Pozhidaev, V. Chigrinov, and F. Ladouceur, “Reflective mode of deformed-helix ferroelectric liquid crystal cells for sensing applications,” Liq. Cryst. 40, 1427–1435 (2013).
[Crossref]

Z. Brodzeli, L. Silvestri, A. Michie, Q. Guo, E. Pozhidaev, V. Chigrinov, and F. Ladouceur, “Sensors at your fibre tips: a novel liquid crystal-based photonic rransducer for sensing systems,” J. Light. Technol. 31, 2940–2946 (2013).
[Crossref]

Hattori, K.

T. Kitagawa, K. Hattori, M. Shimizu, Y. Ohmori, and M. Kobayashi, “Guided-wave laser based on erbium-doped silica planar lightwave circuit,” Electron. Lett. 27, 334–335 (1991).
[Crossref]

Hellwarth, R. W.

F. J. McClung and R. W. Hellwarth, “Giant optical pulsations from Ruby,” Appl. Opt. 1, 103–105 (1962).
[Crossref]

Hirao, K.

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
[Crossref] [PubMed]

Iryanto, I.

H. J. Eichler, D. Grebe, I. Iryanto, and R. Macdonald, “Active Q-Switching of a solid state laser using nematic liquid crystal modulators,” Mol. Cryst. Liq. Cryst. 320, 89–99 (1998).
[Crossref]

Kaznacheev, A. V.

A. V. Kaznacheev and E. P. Pozhidaev, “Effect of boundary surfaces on the effective dielectric susceptibility of the helical structure of a ferroelectric liquid crystal,” J. Exp. Theor. Phys. 121, 355–361 (2015).
[Crossref]

A. V. Kaznacheev and E. P. Pozhidaev, “Anchoring energy and orientational elasticity of a ferroelectric liquid crystal,” J. Exp. Theor. Phys. 114, 1043–1051 (2012).
[Crossref]

Kim, I. G.

B. H. Lee, I. G. Kim, S. W. Cho, and S. Lee, “Effect of process parameters on the characteristics of indium tin oxide thin film for flat panel display application,” Thin Solid Films 302, 25–30 (1997).
[Crossref]

Kim, J. K.

X. Yan, F. W. Mont, D. J. Poxson, M. F. Schubert, J. K. Kim, J. Cho, and E. F. Schubert, “Refractive-Index-Matched Indium-Tin-Oxide electrodes for liquid crystal displays,” Jpn. J. Appl. Phys. 48, 120203 (2009).
[Crossref]

Kiselev, A. D.

A. D. Kiselev and V. G. Chigrinov, “Optics of short-pitch deformed-helix ferroelectric liquid crystals: Symmetries, exceptional points, and polarization-resolved angular patterns,” Phys. Rev. E 90, 042504 (2014).
[Crossref]

A. D. Kiselev, E. P. Pozhidaev, V. G. Chigrinov, and H. S. Kwok, “Polarization-gratings approach to deformed-helix ferroelectric liquid crystals with subwavelength pitch,” Phys. Rev. E 83, 31703 (2011).
[Crossref]

Kitagawa, T.

T. Kitagawa, K. Hattori, M. Shimizu, Y. Ohmori, and M. Kobayashi, “Guided-wave laser based on erbium-doped silica planar lightwave circuit,” Electron. Lett. 27, 334–335 (1991).
[Crossref]

Kobayashi, M.

T. Kitagawa, K. Hattori, M. Shimizu, Y. Ohmori, and M. Kobayashi, “Guided-wave laser based on erbium-doped silica planar lightwave circuit,” Electron. Lett. 27, 334–335 (1991).
[Crossref]

Krausz, F.

A. Fuerbach, A. Fernandez, A. Apolonski, T. Fuji, and F. Krausz, “Chirped-pulse oscillators for the generation of high-energy femtosecond laser pulses,” Laser Part. Beams 23, 113–116 (2005).
[Crossref]

Kwok, H. S.

Q. Guo, A. K. Srivastava, E. P. Pozhidaev, V. G. Chigrinov, and H. S. Kwok, “Optimization of alignment quality of ferroelectric liquid crystals by controlling anchoring energy,” Appl. Phys. Express 7, 21701 (2014).
[Crossref]

E. Pozhidaev, V. Chigrinov, A. Murauski, V. Molkin, D. Tao, and H. S. Kwok, “V-shaped electro-optical mode based on deformed-helix ferroelectric liquid crystal with subwavelength pitch,” J. Soc. for Inf. Disp. 20, 273–278 (2012).
[Crossref]

A. D. Kiselev, E. P. Pozhidaev, V. G. Chigrinov, and H. S. Kwok, “Polarization-gratings approach to deformed-helix ferroelectric liquid crystals with subwavelength pitch,” Phys. Rev. E 83, 31703 (2011).
[Crossref]

Ladouceur, F.

L. Silvestri, H. Srinivas, and F. Ladouceur, “Effective dielectric tensor of deformed-helix ferroelectric liquid crystals with subwavelength pitch and large tilt angle,” Phys. Rev. E 98, 052707 (2018).
[Crossref]

A. A. Abed, H. Srinivas, J. Firth, F. Ladouceur, N. H. Lovell, and L. Silvestri, “A biopotential optrode array: operationprinciples and simulations,” Sci. Reports 8, 2690 (2018).
[Crossref]

C. Wieschendorf, J. Firth, L. Silvestri, S. Gross, F. Ladouceur, M. Withford, D. Spence, and A. Fuerbach, “Compact integrated actively Q-switched waveguide laser,” Opt. Express 25, 1692–1701 (2017).
[Crossref]

J. Firth, F. Ladouceur, Z. Brodzeli, M. Wyres, and L. Silvestri, “A novel optical telemetry system applied to flowmeter networks,” Flow Meas. Instrumentation 48, 15–19 (2016).
[Crossref]

Z. Brodzeli, L. Silvestri, A. Michie, Q. Guo, E. Pozhidaev, V. Chigrinov, and F. Ladouceur, “Sensors at your fibre tips: a novel liquid crystal-based photonic rransducer for sensing systems,” J. Light. Technol. 31, 2940–2946 (2013).
[Crossref]

Z. Brodzeli, L. Silvestri, A. Michie, Q. Guo, E. P. Pozhidaev, V. Chigrinov, and F. Ladouceur, “Reflective mode of deformed-helix ferroelectric liquid crystal cells for sensing applications,” Liq. Cryst. 40, 1427–1435 (2013).
[Crossref]

Lancaster, D. G.

G. Palmer, S. Gross, A. Fuerbach, D. G. Lancaster, and M. J. Withford, “High slope efficiency and high refractive index change in direct-written Yb-doped waveguide lasers with depressed claddings,” Opt. Express 21, 17413–17420 (2013).
[Crossref] [PubMed]

Laporta, P.

G. Della Valle, S. Taccheo, R. Osellame, A. Festa, G. Cerullo, and P. Laporta, “1.5 μm single longitudinal mode waveguide laser fabricated by femtosecond laser writing,” Opt. Express 15, 3190–3194 (2007).
[Crossref] [PubMed]

Lee, B. H.

B. H. Lee, I. G. Kim, S. W. Cho, and S. Lee, “Effect of process parameters on the characteristics of indium tin oxide thin film for flat panel display application,” Thin Solid Films 302, 25–30 (1997).
[Crossref]

Lee, S.

B. H. Lee, I. G. Kim, S. W. Cho, and S. Lee, “Effect of process parameters on the characteristics of indium tin oxide thin film for flat panel display application,” Thin Solid Films 302, 25–30 (1997).
[Crossref]

Lovell, N. H.

A. A. Abed, H. Srinivas, J. Firth, F. Ladouceur, N. H. Lovell, and L. Silvestri, “A biopotential optrode array: operationprinciples and simulations,” Sci. Reports 8, 2690 (2018).
[Crossref]

Macdonald, R.

H. J. Eichler, D. Grebe, I. Iryanto, and R. Macdonald, “Active Q-Switching of a solid state laser using nematic liquid crystal modulators,” Mol. Cryst. Liq. Cryst. 320, 89–99 (1998).
[Crossref]

Marcuse, D.

D. Marcuse, “Classical derivation of the laser rate equation,” IEEE J. Quantum Electron. 25, 1228–1231, (1983).
[Crossref]

Marshall, G. D.

G. D. Marshall, P. Dekker, M. Ams, J. A. Piper, and M. J. Withford, “Directly written monolithic waveguide laser incorporating a distributed feedback waveguide-Bragg grating,” Opt. Lett. 33, 956–958 (2008).
[Crossref] [PubMed]

McClung, F. J.

F. J. McClung and R. W. Hellwarth, “Giant optical pulsations from Ruby,” Appl. Opt. 1, 103–105 (1962).
[Crossref]

Michie, A.

Z. Brodzeli, L. Silvestri, A. Michie, Q. Guo, E. Pozhidaev, V. Chigrinov, and F. Ladouceur, “Sensors at your fibre tips: a novel liquid crystal-based photonic rransducer for sensing systems,” J. Light. Technol. 31, 2940–2946 (2013).
[Crossref]

Z. Brodzeli, L. Silvestri, A. Michie, Q. Guo, E. P. Pozhidaev, V. Chigrinov, and F. Ladouceur, “Reflective mode of deformed-helix ferroelectric liquid crystal cells for sensing applications,” Liq. Cryst. 40, 1427–1435 (2013).
[Crossref]

Minchenko, M.

E. Pozhidaev, S. Torgova, M. Minchenko, C. A. R. Yednak, A. Strigazzi, and E. Miraldi, “Phase modulation and ellipticity of the light transmitted through a smectic C* layer with short helix pitch,” Liq. Cryst. 37, 1067–1081 (2010).
[Crossref]

Miraldi, E.

E. Pozhidaev, S. Torgova, M. Minchenko, C. A. R. Yednak, A. Strigazzi, and E. Miraldi, “Phase modulation and ellipticity of the light transmitted through a smectic C* layer with short helix pitch,” Liq. Cryst. 37, 1067–1081 (2010).
[Crossref]

Miura, K.

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
[Crossref] [PubMed]

Molkin, V.

E. Pozhidaev, V. Chigrinov, A. Murauski, V. Molkin, D. Tao, and H. S. Kwok, “V-shaped electro-optical mode based on deformed-helix ferroelectric liquid crystal with subwavelength pitch,” J. Soc. for Inf. Disp. 20, 273–278 (2012).
[Crossref]

Mont, F. W.

X. Yan, F. W. Mont, D. J. Poxson, M. F. Schubert, J. K. Kim, J. Cho, and E. F. Schubert, “Refractive-Index-Matched Indium-Tin-Oxide electrodes for liquid crystal displays,” Jpn. J. Appl. Phys. 48, 120203 (2009).
[Crossref]

Montrosset, I.

H. Suche, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, W. Sohler, S. Balsamo, I. Montrosset, and K. K. Wong, “Efficient Q-switched Ti:Er:LiNbO3 waveguide laser,” Electron. Lett. 34, 1228–1230 (1998).
[Crossref]

Murauski, A.

E. Pozhidaev, V. Chigrinov, A. Murauski, V. Molkin, D. Tao, and H. S. Kwok, “V-shaped electro-optical mode based on deformed-helix ferroelectric liquid crystal with subwavelength pitch,” J. Soc. for Inf. Disp. 20, 273–278 (2012).
[Crossref]

Oesselke, T.

H. Suche, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, W. Sohler, S. Balsamo, I. Montrosset, and K. K. Wong, “Efficient Q-switched Ti:Er:LiNbO3 waveguide laser,” Electron. Lett. 34, 1228–1230 (1998).
[Crossref]

Ohmori, Y.

T. Kitagawa, K. Hattori, M. Shimizu, Y. Ohmori, and M. Kobayashi, “Guided-wave laser based on erbium-doped silica planar lightwave circuit,” Electron. Lett. 27, 334–335 (1991).
[Crossref]

Osellame, R.

G. Della Valle, S. Taccheo, R. Osellame, A. Festa, G. Cerullo, and P. Laporta, “1.5 μm single longitudinal mode waveguide laser fabricated by femtosecond laser writing,” Opt. Express 15, 3190–3194 (2007).
[Crossref] [PubMed]

Palmer, G.

G. Palmer, S. Gross, A. Fuerbach, D. G. Lancaster, and M. J. Withford, “High slope efficiency and high refractive index change in direct-written Yb-doped waveguide lasers with depressed claddings,” Opt. Express 21, 17413–17420 (2013).
[Crossref] [PubMed]

Pandavenes, J.

H. Suche, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, W. Sohler, S. Balsamo, I. Montrosset, and K. K. Wong, “Efficient Q-switched Ti:Er:LiNbO3 waveguide laser,” Electron. Lett. 34, 1228–1230 (1998).
[Crossref]

Piper, J. A.

G. D. Marshall, P. Dekker, M. Ams, J. A. Piper, and M. J. Withford, “Directly written monolithic waveguide laser incorporating a distributed feedback waveguide-Bragg grating,” Opt. Lett. 33, 956–958 (2008).
[Crossref] [PubMed]

Poshidaev, E. P.

L. A. Beresnev, V. G. Chigrinov, D. I. Dergachev, E. P. Poshidaev, J. Funfschilling, and M. Schadt, “Deformed helix ferroelectric liquid crystal display: a new electrooptic mode in ferroelectric chiral smectic-C liquid crystals,” Liq. Cryst. 5, 1171–1177 (1989).
[Crossref]

Poxson, D. J.

X. Yan, F. W. Mont, D. J. Poxson, M. F. Schubert, J. K. Kim, J. Cho, and E. F. Schubert, “Refractive-Index-Matched Indium-Tin-Oxide electrodes for liquid crystal displays,” Jpn. J. Appl. Phys. 48, 120203 (2009).
[Crossref]

Pozhidaev, E.

Z. Brodzeli, L. Silvestri, A. Michie, Q. Guo, E. Pozhidaev, V. Chigrinov, and F. Ladouceur, “Sensors at your fibre tips: a novel liquid crystal-based photonic rransducer for sensing systems,” J. Light. Technol. 31, 2940–2946 (2013).
[Crossref]

E. Pozhidaev, V. Chigrinov, A. Murauski, V. Molkin, D. Tao, and H. S. Kwok, “V-shaped electro-optical mode based on deformed-helix ferroelectric liquid crystal with subwavelength pitch,” J. Soc. for Inf. Disp. 20, 273–278 (2012).
[Crossref]

E. Pozhidaev, S. Torgova, M. Minchenko, C. A. R. Yednak, A. Strigazzi, and E. Miraldi, “Phase modulation and ellipticity of the light transmitted through a smectic C* layer with short helix pitch,” Liq. Cryst. 37, 1067–1081 (2010).
[Crossref]

Pozhidaev, E. P.

A. V. Kaznacheev and E. P. Pozhidaev, “Effect of boundary surfaces on the effective dielectric susceptibility of the helical structure of a ferroelectric liquid crystal,” J. Exp. Theor. Phys. 121, 355–361 (2015).
[Crossref]

Q. Guo, A. K. Srivastava, E. P. Pozhidaev, V. G. Chigrinov, and H. S. Kwok, “Optimization of alignment quality of ferroelectric liquid crystals by controlling anchoring energy,” Appl. Phys. Express 7, 21701 (2014).
[Crossref]

Z. Brodzeli, L. Silvestri, A. Michie, Q. Guo, E. P. Pozhidaev, V. Chigrinov, and F. Ladouceur, “Reflective mode of deformed-helix ferroelectric liquid crystal cells for sensing applications,” Liq. Cryst. 40, 1427–1435 (2013).
[Crossref]

A. V. Kaznacheev and E. P. Pozhidaev, “Anchoring energy and orientational elasticity of a ferroelectric liquid crystal,” J. Exp. Theor. Phys. 114, 1043–1051 (2012).
[Crossref]

A. D. Kiselev, E. P. Pozhidaev, V. G. Chigrinov, and H. S. Kwok, “Polarization-gratings approach to deformed-helix ferroelectric liquid crystals with subwavelength pitch,” Phys. Rev. E 83, 31703 (2011).
[Crossref]

Restaino, S. R.

S. R. Restaino and S. W. Teare, Introduction to liquid crystals for optical design and engineering (SPIE, 2015).
[Crossref]

Ricken, R.

H. Suche, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, W. Sohler, S. Balsamo, I. Montrosset, and K. K. Wong, “Efficient Q-switched Ti:Er:LiNbO3 waveguide laser,” Electron. Lett. 34, 1228–1230 (1998).
[Crossref]

Rochhausen, K.

H. Suche, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, W. Sohler, S. Balsamo, I. Montrosset, and K. K. Wong, “Efficient Q-switched Ti:Er:LiNbO3 waveguide laser,” Electron. Lett. 34, 1228–1230 (1998).
[Crossref]

Schadt, M.

L. A. Beresnev, V. G. Chigrinov, D. I. Dergachev, E. P. Poshidaev, J. Funfschilling, and M. Schadt, “Deformed helix ferroelectric liquid crystal display: a new electrooptic mode in ferroelectric chiral smectic-C liquid crystals,” Liq. Cryst. 5, 1171–1177 (1989).
[Crossref]

Schubert, E. F.

X. Yan, F. W. Mont, D. J. Poxson, M. F. Schubert, J. K. Kim, J. Cho, and E. F. Schubert, “Refractive-Index-Matched Indium-Tin-Oxide electrodes for liquid crystal displays,” Jpn. J. Appl. Phys. 48, 120203 (2009).
[Crossref]

Schubert, M.

M. Schubert, “Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems,” Phys. Rev. B 53, 4265–4274 (1996).
[Crossref]

Schubert, M. F.

X. Yan, F. W. Mont, D. J. Poxson, M. F. Schubert, J. K. Kim, J. Cho, and E. F. Schubert, “Refractive-Index-Matched Indium-Tin-Oxide electrodes for liquid crystal displays,” Jpn. J. Appl. Phys. 48, 120203 (2009).
[Crossref]

Shimizu, M.

T. Kitagawa, K. Hattori, M. Shimizu, Y. Ohmori, and M. Kobayashi, “Guided-wave laser based on erbium-doped silica planar lightwave circuit,” Electron. Lett. 27, 334–335 (1991).
[Crossref]

Silvestri, L.

A. A. Abed, H. Srinivas, J. Firth, F. Ladouceur, N. H. Lovell, and L. Silvestri, “A biopotential optrode array: operationprinciples and simulations,” Sci. Reports 8, 2690 (2018).
[Crossref]

L. Silvestri, H. Srinivas, and F. Ladouceur, “Effective dielectric tensor of deformed-helix ferroelectric liquid crystals with subwavelength pitch and large tilt angle,” Phys. Rev. E 98, 052707 (2018).
[Crossref]

C. Wieschendorf, J. Firth, L. Silvestri, S. Gross, F. Ladouceur, M. Withford, D. Spence, and A. Fuerbach, “Compact integrated actively Q-switched waveguide laser,” Opt. Express 25, 1692–1701 (2017).
[Crossref]

J. Firth, F. Ladouceur, Z. Brodzeli, M. Wyres, and L. Silvestri, “A novel optical telemetry system applied to flowmeter networks,” Flow Meas. Instrumentation 48, 15–19 (2016).
[Crossref]

Z. Brodzeli, L. Silvestri, A. Michie, Q. Guo, E. Pozhidaev, V. Chigrinov, and F. Ladouceur, “Sensors at your fibre tips: a novel liquid crystal-based photonic rransducer for sensing systems,” J. Light. Technol. 31, 2940–2946 (2013).
[Crossref]

Z. Brodzeli, L. Silvestri, A. Michie, Q. Guo, E. P. Pozhidaev, V. Chigrinov, and F. Ladouceur, “Reflective mode of deformed-helix ferroelectric liquid crystal cells for sensing applications,” Liq. Cryst. 40, 1427–1435 (2013).
[Crossref]

Sohler, W.

H. Suche, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, W. Sohler, S. Balsamo, I. Montrosset, and K. K. Wong, “Efficient Q-switched Ti:Er:LiNbO3 waveguide laser,” Electron. Lett. 34, 1228–1230 (1998).
[Crossref]

Spence, D.

C. Wieschendorf, J. Firth, L. Silvestri, S. Gross, F. Ladouceur, M. Withford, D. Spence, and A. Fuerbach, “Compact integrated actively Q-switched waveguide laser,” Opt. Express 25, 1692–1701 (2017).
[Crossref]

Srinivas, H.

A. A. Abed, H. Srinivas, J. Firth, F. Ladouceur, N. H. Lovell, and L. Silvestri, “A biopotential optrode array: operationprinciples and simulations,” Sci. Reports 8, 2690 (2018).
[Crossref]

L. Silvestri, H. Srinivas, and F. Ladouceur, “Effective dielectric tensor of deformed-helix ferroelectric liquid crystals with subwavelength pitch and large tilt angle,” Phys. Rev. E 98, 052707 (2018).
[Crossref]

Srivastava, A. K.

Q. Guo, A. K. Srivastava, E. P. Pozhidaev, V. G. Chigrinov, and H. S. Kwok, “Optimization of alignment quality of ferroelectric liquid crystals by controlling anchoring energy,” Appl. Phys. Express 7, 21701 (2014).
[Crossref]

Strigazzi, A.

E. Pozhidaev, S. Torgova, M. Minchenko, C. A. R. Yednak, A. Strigazzi, and E. Miraldi, “Phase modulation and ellipticity of the light transmitted through a smectic C* layer with short helix pitch,” Liq. Cryst. 37, 1067–1081 (2010).
[Crossref]

Suche, H.

H. Suche, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, W. Sohler, S. Balsamo, I. Montrosset, and K. K. Wong, “Efficient Q-switched Ti:Er:LiNbO3 waveguide laser,” Electron. Lett. 34, 1228–1230 (1998).
[Crossref]

Sugimoto, N.

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
[Crossref] [PubMed]

Taccheo, S.

G. Della Valle, S. Taccheo, R. Osellame, A. Festa, G. Cerullo, and P. Laporta, “1.5 μm single longitudinal mode waveguide laser fabricated by femtosecond laser writing,” Opt. Express 15, 3190–3194 (2007).
[Crossref] [PubMed]

Tao, D.

E. Pozhidaev, V. Chigrinov, A. Murauski, V. Molkin, D. Tao, and H. S. Kwok, “V-shaped electro-optical mode based on deformed-helix ferroelectric liquid crystal with subwavelength pitch,” J. Soc. for Inf. Disp. 20, 273–278 (2012).
[Crossref]

Teare, S. W.

S. R. Restaino and S. W. Teare, Introduction to liquid crystals for optical design and engineering (SPIE, 2015).
[Crossref]

Toratani, H.

X. Zou and H. Toratani, “Evaluation of spectroscopic properties of Yb3+-doped glasses,” Phys. Rev. B 52, 15889 (1995).
[Crossref]

Torgova, S.

E. Pozhidaev, S. Torgova, M. Minchenko, C. A. R. Yednak, A. Strigazzi, and E. Miraldi, “Phase modulation and ellipticity of the light transmitted through a smectic C* layer with short helix pitch,” Liq. Cryst. 37, 1067–1081 (2010).
[Crossref]

Wieschendorf, C.

C. Wieschendorf, J. Firth, L. Silvestri, S. Gross, F. Ladouceur, M. Withford, D. Spence, and A. Fuerbach, “Compact integrated actively Q-switched waveguide laser,” Opt. Express 25, 1692–1701 (2017).
[Crossref]

Withford, M.

C. Wieschendorf, J. Firth, L. Silvestri, S. Gross, F. Ladouceur, M. Withford, D. Spence, and A. Fuerbach, “Compact integrated actively Q-switched waveguide laser,” Opt. Express 25, 1692–1701 (2017).
[Crossref]

Withford, M. J.

G. Palmer, S. Gross, A. Fuerbach, D. G. Lancaster, and M. J. Withford, “High slope efficiency and high refractive index change in direct-written Yb-doped waveguide lasers with depressed claddings,” Opt. Express 21, 17413–17420 (2013).
[Crossref] [PubMed]

G. D. Marshall, P. Dekker, M. Ams, J. A. Piper, and M. J. Withford, “Directly written monolithic waveguide laser incorporating a distributed feedback waveguide-Bragg grating,” Opt. Lett. 33, 956–958 (2008).
[Crossref] [PubMed]

Wong, K. K.

H. Suche, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, W. Sohler, S. Balsamo, I. Montrosset, and K. K. Wong, “Efficient Q-switched Ti:Er:LiNbO3 waveguide laser,” Electron. Lett. 34, 1228–1230 (1998).
[Crossref]

Wyres, M.

J. Firth, F. Ladouceur, Z. Brodzeli, M. Wyres, and L. Silvestri, “A novel optical telemetry system applied to flowmeter networks,” Flow Meas. Instrumentation 48, 15–19 (2016).
[Crossref]

Yan, X.

X. Yan, F. W. Mont, D. J. Poxson, M. F. Schubert, J. K. Kim, J. Cho, and E. F. Schubert, “Refractive-Index-Matched Indium-Tin-Oxide electrodes for liquid crystal displays,” Jpn. J. Appl. Phys. 48, 120203 (2009).
[Crossref]

Yednak, C. A. R.

E. Pozhidaev, S. Torgova, M. Minchenko, C. A. R. Yednak, A. Strigazzi, and E. Miraldi, “Phase modulation and ellipticity of the light transmitted through a smectic C* layer with short helix pitch,” Liq. Cryst. 37, 1067–1081 (2010).
[Crossref]

Zou, X.

X. Zou and H. Toratani, “Evaluation of spectroscopic properties of Yb3+-doped glasses,” Phys. Rev. B 52, 15889 (1995).
[Crossref]

Appl. Opt. (1)

F. J. McClung and R. W. Hellwarth, “Giant optical pulsations from Ruby,” Appl. Opt. 1, 103–105 (1962).
[Crossref]

Appl. Phys. Express (1)

Q. Guo, A. K. Srivastava, E. P. Pozhidaev, V. G. Chigrinov, and H. S. Kwok, “Optimization of alignment quality of ferroelectric liquid crystals by controlling anchoring energy,” Appl. Phys. Express 7, 21701 (2014).
[Crossref]

Electron. Lett. (2)

T. Kitagawa, K. Hattori, M. Shimizu, Y. Ohmori, and M. Kobayashi, “Guided-wave laser based on erbium-doped silica planar lightwave circuit,” Electron. Lett. 27, 334–335 (1991).
[Crossref]

H. Suche, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, W. Sohler, S. Balsamo, I. Montrosset, and K. K. Wong, “Efficient Q-switched Ti:Er:LiNbO3 waveguide laser,” Electron. Lett. 34, 1228–1230 (1998).
[Crossref]

Flow Meas. Instrumentation (1)

J. Firth, F. Ladouceur, Z. Brodzeli, M. Wyres, and L. Silvestri, “A novel optical telemetry system applied to flowmeter networks,” Flow Meas. Instrumentation 48, 15–19 (2016).
[Crossref]

IEEE J. Quantum Electron. (2)

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31, 1890–1901 (1995).
[Crossref]

D. Marcuse, “Classical derivation of the laser rate equation,” IEEE J. Quantum Electron. 25, 1228–1231, (1983).
[Crossref]

J. Exp. Theor. Phys. (2)

A. V. Kaznacheev and E. P. Pozhidaev, “Effect of boundary surfaces on the effective dielectric susceptibility of the helical structure of a ferroelectric liquid crystal,” J. Exp. Theor. Phys. 121, 355–361 (2015).
[Crossref]

A. V. Kaznacheev and E. P. Pozhidaev, “Anchoring energy and orientational elasticity of a ferroelectric liquid crystal,” J. Exp. Theor. Phys. 114, 1043–1051 (2012).
[Crossref]

J. Light. Technol. (1)

Z. Brodzeli, L. Silvestri, A. Michie, Q. Guo, E. Pozhidaev, V. Chigrinov, and F. Ladouceur, “Sensors at your fibre tips: a novel liquid crystal-based photonic rransducer for sensing systems,” J. Light. Technol. 31, 2940–2946 (2013).
[Crossref]

J. Soc. for Inf. Disp. (1)

E. Pozhidaev, V. Chigrinov, A. Murauski, V. Molkin, D. Tao, and H. S. Kwok, “V-shaped electro-optical mode based on deformed-helix ferroelectric liquid crystal with subwavelength pitch,” J. Soc. for Inf. Disp. 20, 273–278 (2012).
[Crossref]

Jpn. J. Appl. Phys. (1)

X. Yan, F. W. Mont, D. J. Poxson, M. F. Schubert, J. K. Kim, J. Cho, and E. F. Schubert, “Refractive-Index-Matched Indium-Tin-Oxide electrodes for liquid crystal displays,” Jpn. J. Appl. Phys. 48, 120203 (2009).
[Crossref]

Laser Part. Beams (1)

A. Fuerbach, A. Fernandez, A. Apolonski, T. Fuji, and F. Krausz, “Chirped-pulse oscillators for the generation of high-energy femtosecond laser pulses,” Laser Part. Beams 23, 113–116 (2005).
[Crossref]

Liq. Cryst. (3)

E. Pozhidaev, S. Torgova, M. Minchenko, C. A. R. Yednak, A. Strigazzi, and E. Miraldi, “Phase modulation and ellipticity of the light transmitted through a smectic C* layer with short helix pitch,” Liq. Cryst. 37, 1067–1081 (2010).
[Crossref]

L. A. Beresnev, V. G. Chigrinov, D. I. Dergachev, E. P. Poshidaev, J. Funfschilling, and M. Schadt, “Deformed helix ferroelectric liquid crystal display: a new electrooptic mode in ferroelectric chiral smectic-C liquid crystals,” Liq. Cryst. 5, 1171–1177 (1989).
[Crossref]

Z. Brodzeli, L. Silvestri, A. Michie, Q. Guo, E. P. Pozhidaev, V. Chigrinov, and F. Ladouceur, “Reflective mode of deformed-helix ferroelectric liquid crystal cells for sensing applications,” Liq. Cryst. 40, 1427–1435 (2013).
[Crossref]

Mol. Cryst. Liq. Cryst. (1)

H. J. Eichler, D. Grebe, I. Iryanto, and R. Macdonald, “Active Q-Switching of a solid state laser using nematic liquid crystal modulators,” Mol. Cryst. Liq. Cryst. 320, 89–99 (1998).
[Crossref]

Opt. Express (3)

G. Della Valle, S. Taccheo, R. Osellame, A. Festa, G. Cerullo, and P. Laporta, “1.5 μm single longitudinal mode waveguide laser fabricated by femtosecond laser writing,” Opt. Express 15, 3190–3194 (2007).
[Crossref] [PubMed]

G. Palmer, S. Gross, A. Fuerbach, D. G. Lancaster, and M. J. Withford, “High slope efficiency and high refractive index change in direct-written Yb-doped waveguide lasers with depressed claddings,” Opt. Express 21, 17413–17420 (2013).
[Crossref] [PubMed]

C. Wieschendorf, J. Firth, L. Silvestri, S. Gross, F. Ladouceur, M. Withford, D. Spence, and A. Fuerbach, “Compact integrated actively Q-switched waveguide laser,” Opt. Express 25, 1692–1701 (2017).
[Crossref]

Opt. Lett. (2)

G. D. Marshall, P. Dekker, M. Ams, J. A. Piper, and M. J. Withford, “Directly written monolithic waveguide laser incorporating a distributed feedback waveguide-Bragg grating,” Opt. Lett. 33, 956–958 (2008).
[Crossref] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
[Crossref] [PubMed]

Phys. Rev. B (2)

M. Schubert, “Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems,” Phys. Rev. B 53, 4265–4274 (1996).
[Crossref]

X. Zou and H. Toratani, “Evaluation of spectroscopic properties of Yb3+-doped glasses,” Phys. Rev. B 52, 15889 (1995).
[Crossref]

Phys. Rev. E (3)

A. D. Kiselev, E. P. Pozhidaev, V. G. Chigrinov, and H. S. Kwok, “Polarization-gratings approach to deformed-helix ferroelectric liquid crystals with subwavelength pitch,” Phys. Rev. E 83, 31703 (2011).
[Crossref]

L. Silvestri, H. Srinivas, and F. Ladouceur, “Effective dielectric tensor of deformed-helix ferroelectric liquid crystals with subwavelength pitch and large tilt angle,” Phys. Rev. E 98, 052707 (2018).
[Crossref]

A. D. Kiselev and V. G. Chigrinov, “Optics of short-pitch deformed-helix ferroelectric liquid crystals: Symmetries, exceptional points, and polarization-resolved angular patterns,” Phys. Rev. E 90, 042504 (2014).
[Crossref]

Sci. Reports (1)

A. A. Abed, H. Srinivas, J. Firth, F. Ladouceur, N. H. Lovell, and L. Silvestri, “A biopotential optrode array: operationprinciples and simulations,” Sci. Reports 8, 2690 (2018).
[Crossref]

Thin Solid Films (1)

B. H. Lee, I. G. Kim, S. W. Cho, and S. Lee, “Effect of process parameters on the characteristics of indium tin oxide thin film for flat panel display application,” Thin Solid Films 302, 25–30 (1997).
[Crossref]

Other (2)

B. Christian, Chirality in liquid crystals (pringer, 2001), Chap. 8.

S. R. Restaino and S. W. Teare, Introduction to liquid crystals for optical design and engineering (SPIE, 2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1:
Fig. 1: (a) The liquid crystal cell used in experiments, width=length=2 cm, thickness=4 mm. (b) The layered structure of the active area in a liquid crystal cell.
Fig. 2:
Fig. 2: (a) Coordinates and orientations of molecules in the liquid crystal layer with Smectic-C* phase. (b) Setup of crossed polarizer/analyzer for liquid crystal cell. (PBS: Polarizing Beam Splitter)
Fig. 3:
Fig. 3: (a) The crossed reflectance as a function of half-wave and quarter-wave plate angles and (b) crossed reflectance as a function of half-wave plate angle without (grey) / with a quarter-wave plate rotated by θwpq = 45° (red) for the 9.0 μm thick liquid crystal cell.
Fig. 4:
Fig. 4: (a) Schematic of the controlled optical loss measurement and (b) under the square wave signals with the constant amplitude of 60V, modulation depths are 30% at 198 kHz, 18% at 326 kHz and 6% at 914 kHz.
Fig. 5:
Fig. 5: (a) The square wave signals with the frequency of 5 Hz and the duty cycle of 50% are applied on the liquid crystal cell and (b) corresponding optical loss controlled by the electrical signals, in which the modulation depth is around 97% (close to 100%).
Fig. 6:
Fig. 6: (a) Schematic of the laser setup. In this setup, the pump light is coupled to a waveguide through a dichroic in-coupling mirror. Additionally, the polarizing beam splitter combined with waveplates and liquid crystal cell acts as a actively-controlled variable output-coupling mirror. (b) Cross-section of the depressed-cladding waveguides.
Fig. 7:
Fig. 7: The crossed reflectance of the 3.3 μm (a) (b) and the 9.0 μm (c) (d) thick liquid crystal cells as a function of time under varying electric signals. The grey line represents experimental measurement results, while the red line represents the corresponding numerical simulation results.
Fig. 8:
Fig. 8: (a) Experimental (red circles) and simulation results (grey squares) of pulse width and (b) peak power as a function of the applied voltage for the 9.0μm thick cell.
Fig. 9:
Fig. 9: (a) Experimental results (red squares) and simulation results (grey squares) of average output power as a function of absorbed pump power and (b) simulation results of pulse width and peak power as a function of repetition rate.
Fig. 10:
Fig. 10: (a) Q-Switched laser pulses with a repetition rate of 5 kHz from the simulation model and (b) the shortest Q-Switched laser pulses from the model with a pulse width of 20 ns and a peak power of 650.94 W. It could be achieved, when the amplitude of applied voltage is 88.05 V, the pump power is 400 mW and the optical losses is reduced to 10.00%.

Tables (3)

Tables Icon

Table 1: Optical and Physical Parameters in the Numerical Model

Tables Icon

Table 2: Prediction of Q-Switched Lasers with Low Optical Losses and/or High Pump Power

Tables Icon

Table 3: Prediction of Q-Switched Lasers at the Temperature of 55 °C

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

τ c φ ( z , t ) t = ( p 0 2 π ) 2 2 φ ( z , t ) z 2 E ( t ) E crit sin φ ( z , t ) ,
R = sin 2 [ 2 π λ d Δ n ( E ) ] sin 2 [ 2 β 2 Ω ( E ) ] ,
R = ( sin ( 2 π d Δ n ( E ) λ ) sin ( 2 θ wpq ) cos [ 4 θ wph 2 ( θ wpq + β Ω ( E ) ) ] + cos ( 2 π d Δ n ( E ) λ ) sin [ 4 θ wph 2 ( θ wpq + β Ω ( E ) ) ] ) 2 .
R θ wpq = 45 ° = 1 2 + 1 2 cos [ 4 π d Δ n ( E ) λ + 8 θ wph 4 ( β Ω ( E ) ) ] .
eff = ( x x eff x y eff 0 x y eff y y eff 0 0 0 z z eff ) .
φ ( z , t ) = q 0 z + α E sin ( q 0 z ) ,
x x eff + δ cos 2 θ t x y eff = α E δ 2 sin θ t cos θ t y y eff 2 ( 1 + x x eff ) + α E 2 δ 4 sin 2 θ t z z eff 2 ( 1 + x x eff ) + α E 2 δ 4 x x eff sin 2 θ t ,
α E ( t ) = E eff ( t ) / E crit ,
E eff ( t ) = { [ 1 exp ( t τ c ) ] E 0 0 t t p [ exp ( t t p τ c ) exp ( t τ c ) ] E 0 t > t p .
Ω ( t ) = α E ( t ) 4 δ sin ( 2 θ t ) x x eff y y , 0 eff ,
Δ n ( t ) = x x eff y y eff + α E ( t ) 2 x x eff y y , 0 eff x x eff y y , 0 eff y y eff x x eff δ sin 2 ( 2 θ t ) 8 .
n t = n c ϕ σ emi n τ f + W p ( n tot n ) ,
ϕ t = c ϕ σ emi n ϕ τ d + S ,
τ d = 2 L c ( R + δ ) .

Metrics