Abstract

Up to now, the measurement of radio-frequency (RF) electric field achieved using the electromagnetically-induced transparency (EIT) of Rydberg atoms has proved to be of high-sensitivity and shows a potential to produce a promising atomic RF receiver at resonance between two chosen Rydberg states. In this paper, we study the extension of the feasibility of digital communication via this quantum-based antenna over a continuously tunable RF-carrier at off-resonance. Our experiment shows that the digital communication at a rate of 500 kbps can be performed reliably within a tunable bandwidth of 200 MHz near a 10.22 GHz carrier. Outside of this range, the bit error rate (BER) increases, rising to, for example, 15% at an RF-detuning of ±150 MHz. In the measurement, the time-varying RF field is retrieved by detecting the optical power of the probe laser at the center frequency of RF-induced symmetric or asymmetric Autler-Townes splitting in EIT. Prior to the digital test, we studied the RF-reception quality as a function of various parameters including the RF detuning and found that a choice of linear gain response to the RF-amplitude can suppress the signal distortion. The modulating signal can be decoded at speeds up to 500 kHz in the tunable bandwidth. Our test consolidates the physical basis for reliable communication and spectral sensing over a wider broadband RF-carrier, which paves a way for the concurrent multi-channel communications founded on the same pair of Rydberg states.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Rydberg-atom based radio-frequency electrometry using frequency modulation spectroscopy in room temperature vapor cells

Santosh Kumar, Haoquan Fan, Harald Kübler, Akbar J. Jahangiri, and James P. Shaffer
Opt. Express 25(8) 8625-8637 (2017)

High sensitivity spectroscopy of cesium Rydberg atoms using electromagnetically induced transparency

Jianming Zhao, Xingbo Zhu, Linjie Zhang, Zhigang Feng, Changyong Li, and Suotang Jia
Opt. Express 17(18) 15821-15826 (2009)

Fiber-coupled vapor cell for a portable Rydberg atom-based radio frequency electric field sensor

Matt T. Simons, Joshua A. Gordon, and Christopher L. Holloway
Appl. Opt. 57(22) 6456-6460 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. Kitching, S. Knappe, and E. A. Donley, “Atomic sensors - A review,” IEEE Sens. J. 11, 1749–1758 (2011).
    [Crossref]
  2. C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Mod. Phys. 89, 1–39 (2017).
    [Crossref]
  3. J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
    [Crossref]
  4. H. Q. Fan, S. Kumar, J. Sedlacek, H. Kübler, S. Karimkashi, and J. P. Shaffer, “Atom based RF electric field sensing,” J. Phys. B 48, 202001 (2015).
    [Crossref]
  5. S.H. Autler and C.H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100, 703–722 (1955).
    [Crossref]
  6. D. Petrosyan, J. Otterbach, and M. Fleischhauer, “Electromagnetically induced transparency with Rydberg atoms,” Phys. Rev. Lett. 107, 213601 (2011).
    [Crossref] [PubMed]
  7. S. Kumar, H. Q. Fan, H. Kübler, J. T. Sheng, and J. P. Shaffer, “Atom-based sensing of weak radio frequency electric fields using homodyne readout,” Sci. Rep. 7, 42981 (2017).
    [Crossref] [PubMed]
  8. C. L. Holloway, M. T. Simons, J. A. Gordon, A. Dienstfrey, D. A. Anderson, and G. Raithel, “Electric field metrology for SI traceability: systematic measurement uncertainties in electromagnetically induced transparency inatomic vapor,” J. Appl. Phys. 121, 233106 (2017).
    [Crossref]
  9. C. L. Holloway, J. A. Gordon, S. Jefferts, A. Schwarzkopf, D. A. Anderson, S. A. Miller, N. Thaicharoen, and G. Raithel, “Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements,” IEEE Trans. Antennas Propag. 62, 6169–6182 (2014).
    [Crossref]
  10. M. T. Simons, J. A. Gordon, C. L. Holloway, D. A. Anderson, S. A. Miller, and G. Raithel, “Using frequency detuning to improve the sensitivity of electric field measurements via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms,” Appl. Phys. Lett. 108, 174101 (2016).
    [Crossref]
  11. Y. C. Jiao, L. P. Hao, X. X. Han, S. Y. Bai, G. Raithel, J. M. Zhao, and S. T. Jia, “Atom-based radio-frequency field calibration and polarization measurement using cesium nDJ floquet states,” Phys. Rev. Appl. 8, 14028 (2017).
    [Crossref]
  12. D. A. Anderson and G. Raithel, “Continuous-frequency measurements of high-intensity microwave electric fields with atomic vapor cells,” Appl. Phys. Lett. 111, 053504 (2017).
    [Crossref]
  13. C. L. Holloway, M. T. Simons, J. A. Gordon, P. F. Wilson, C. M. Cooke, D. A. Anderson, and G. Raithel, “Atom-based RF electric field metrology: from self-calibrated measurements to subwavelength and near-field imaging,”IEEE Trans. Electromagn. Compat. 59, 717–728 (2017).
    [Crossref]
  14. D. H. Meyer, K. C. Cox, F. K. Fatemi, and P. D. Kunz, “Digital communication with Rydberg atoms and amplitude-modulated microwave fields,” Appl. Phys. Lett. 112, 211108 (2018).
    [Crossref]
  15. A. B. Deb and N. Kjærgaard, “Radio-over-fiber using an optical antenna based on Rydberg states of atoms,” Appl. Phys. Lett. 112, 211106 (2018).
    [Crossref]
  16. Y. Jiao, X. Han, J. Fan, G. Raithel, J. Zhao, and S. Jia, “Atom-based quantum receiver for amplitude- and frequency-modulated baseband signals in high-frequency radio communication,” arXiv 1804.07044 (2018).
  17. D. A. Anderson, R. E. Sapiro, and G. Raithel, “An atomic receiver for AM and FM radio communication,” arXiv 1808.08589 (2018).
  18. S. Haykin, D. J. Thomson, and J. H. Reed, “Spectrum sensing for cognitive radio,” Proc. IEEE 97, 849–877 (2009).
    [Crossref]
  19. F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag. 52, 74–80 (2014).
    [Crossref]
  20. H. Lin, Y. Tian, B. Tan, and S. Gu, “Differential detection scheme for compact CPT atomic clocks,” Europhys. Lett. 119, 23001 (2017).
    [Crossref]
  21. N. Šibalić, J. D. Pritchard, C. S. Adams, and K. J. Weatherill, “ARC: An open-source library for calculating properties of alkali Rydberg atoms,” Comput. Phys. Commun. 220, 319–331(2017).
    [Crossref]
  22. J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
    [Crossref] [PubMed]
  23. Y. Q. Li and M. Xiao, “Transient properties of an electromagnetically induced transparency in three-level atoms,” Opt. Lett. 20, 1489–1491 (1995).
    [Crossref] [PubMed]
  24. Q. Zhang, Z. Bai, and G. Huang, “Fast-responding property of electromagnetically induced transparency in Rydberg atoms,” Phys. Rev. A 97, 043821 (2018).
    [Crossref]
  25. J. S. Seybold, Introduction to RF Propagation(John Wiley and Sons, 2005).
    [Crossref]
  26. P. Bardell, W. McAnney, and J. Savir, Built-in test for VLSI: pseudorandom techniques(Wiley, 1987).

2018 (3)

D. H. Meyer, K. C. Cox, F. K. Fatemi, and P. D. Kunz, “Digital communication with Rydberg atoms and amplitude-modulated microwave fields,” Appl. Phys. Lett. 112, 211108 (2018).
[Crossref]

A. B. Deb and N. Kjærgaard, “Radio-over-fiber using an optical antenna based on Rydberg states of atoms,” Appl. Phys. Lett. 112, 211106 (2018).
[Crossref]

Q. Zhang, Z. Bai, and G. Huang, “Fast-responding property of electromagnetically induced transparency in Rydberg atoms,” Phys. Rev. A 97, 043821 (2018).
[Crossref]

2017 (8)

Y. C. Jiao, L. P. Hao, X. X. Han, S. Y. Bai, G. Raithel, J. M. Zhao, and S. T. Jia, “Atom-based radio-frequency field calibration and polarization measurement using cesium nDJ floquet states,” Phys. Rev. Appl. 8, 14028 (2017).
[Crossref]

D. A. Anderson and G. Raithel, “Continuous-frequency measurements of high-intensity microwave electric fields with atomic vapor cells,” Appl. Phys. Lett. 111, 053504 (2017).
[Crossref]

C. L. Holloway, M. T. Simons, J. A. Gordon, P. F. Wilson, C. M. Cooke, D. A. Anderson, and G. Raithel, “Atom-based RF electric field metrology: from self-calibrated measurements to subwavelength and near-field imaging,”IEEE Trans. Electromagn. Compat. 59, 717–728 (2017).
[Crossref]

H. Lin, Y. Tian, B. Tan, and S. Gu, “Differential detection scheme for compact CPT atomic clocks,” Europhys. Lett. 119, 23001 (2017).
[Crossref]

N. Šibalić, J. D. Pritchard, C. S. Adams, and K. J. Weatherill, “ARC: An open-source library for calculating properties of alkali Rydberg atoms,” Comput. Phys. Commun. 220, 319–331(2017).
[Crossref]

C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Mod. Phys. 89, 1–39 (2017).
[Crossref]

S. Kumar, H. Q. Fan, H. Kübler, J. T. Sheng, and J. P. Shaffer, “Atom-based sensing of weak radio frequency electric fields using homodyne readout,” Sci. Rep. 7, 42981 (2017).
[Crossref] [PubMed]

C. L. Holloway, M. T. Simons, J. A. Gordon, A. Dienstfrey, D. A. Anderson, and G. Raithel, “Electric field metrology for SI traceability: systematic measurement uncertainties in electromagnetically induced transparency inatomic vapor,” J. Appl. Phys. 121, 233106 (2017).
[Crossref]

2016 (1)

M. T. Simons, J. A. Gordon, C. L. Holloway, D. A. Anderson, S. A. Miller, and G. Raithel, “Using frequency detuning to improve the sensitivity of electric field measurements via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms,” Appl. Phys. Lett. 108, 174101 (2016).
[Crossref]

2015 (1)

H. Q. Fan, S. Kumar, J. Sedlacek, H. Kübler, S. Karimkashi, and J. P. Shaffer, “Atom based RF electric field sensing,” J. Phys. B 48, 202001 (2015).
[Crossref]

2014 (2)

C. L. Holloway, J. A. Gordon, S. Jefferts, A. Schwarzkopf, D. A. Anderson, S. A. Miller, N. Thaicharoen, and G. Raithel, “Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements,” IEEE Trans. Antennas Propag. 62, 6169–6182 (2014).
[Crossref]

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag. 52, 74–80 (2014).
[Crossref]

2012 (1)

J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]

2011 (2)

J. Kitching, S. Knappe, and E. A. Donley, “Atomic sensors - A review,” IEEE Sens. J. 11, 1749–1758 (2011).
[Crossref]

D. Petrosyan, J. Otterbach, and M. Fleischhauer, “Electromagnetically induced transparency with Rydberg atoms,” Phys. Rev. Lett. 107, 213601 (2011).
[Crossref] [PubMed]

2009 (1)

S. Haykin, D. J. Thomson, and J. H. Reed, “Spectrum sensing for cognitive radio,” Proc. IEEE 97, 849–877 (2009).
[Crossref]

1995 (2)

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[Crossref] [PubMed]

Y. Q. Li and M. Xiao, “Transient properties of an electromagnetically induced transparency in three-level atoms,” Opt. Lett. 20, 1489–1491 (1995).
[Crossref] [PubMed]

1955 (1)

S.H. Autler and C.H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100, 703–722 (1955).
[Crossref]

Adams, C. S.

N. Šibalić, J. D. Pritchard, C. S. Adams, and K. J. Weatherill, “ARC: An open-source library for calculating properties of alkali Rydberg atoms,” Comput. Phys. Commun. 220, 319–331(2017).
[Crossref]

Anderson, D. A.

C. L. Holloway, M. T. Simons, J. A. Gordon, A. Dienstfrey, D. A. Anderson, and G. Raithel, “Electric field metrology for SI traceability: systematic measurement uncertainties in electromagnetically induced transparency inatomic vapor,” J. Appl. Phys. 121, 233106 (2017).
[Crossref]

D. A. Anderson and G. Raithel, “Continuous-frequency measurements of high-intensity microwave electric fields with atomic vapor cells,” Appl. Phys. Lett. 111, 053504 (2017).
[Crossref]

C. L. Holloway, M. T. Simons, J. A. Gordon, P. F. Wilson, C. M. Cooke, D. A. Anderson, and G. Raithel, “Atom-based RF electric field metrology: from self-calibrated measurements to subwavelength and near-field imaging,”IEEE Trans. Electromagn. Compat. 59, 717–728 (2017).
[Crossref]

M. T. Simons, J. A. Gordon, C. L. Holloway, D. A. Anderson, S. A. Miller, and G. Raithel, “Using frequency detuning to improve the sensitivity of electric field measurements via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms,” Appl. Phys. Lett. 108, 174101 (2016).
[Crossref]

C. L. Holloway, J. A. Gordon, S. Jefferts, A. Schwarzkopf, D. A. Anderson, S. A. Miller, N. Thaicharoen, and G. Raithel, “Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements,” IEEE Trans. Antennas Propag. 62, 6169–6182 (2014).
[Crossref]

D. A. Anderson, R. E. Sapiro, and G. Raithel, “An atomic receiver for AM and FM radio communication,” arXiv 1808.08589 (2018).

Autler, S.H.

S.H. Autler and C.H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100, 703–722 (1955).
[Crossref]

Bai, S. Y.

Y. C. Jiao, L. P. Hao, X. X. Han, S. Y. Bai, G. Raithel, J. M. Zhao, and S. T. Jia, “Atom-based radio-frequency field calibration and polarization measurement using cesium nDJ floquet states,” Phys. Rev. Appl. 8, 14028 (2017).
[Crossref]

Bai, Z.

Q. Zhang, Z. Bai, and G. Huang, “Fast-responding property of electromagnetically induced transparency in Rydberg atoms,” Phys. Rev. A 97, 043821 (2018).
[Crossref]

Bardell, P.

P. Bardell, W. McAnney, and J. Savir, Built-in test for VLSI: pseudorandom techniques(Wiley, 1987).

Boccardi, F.

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag. 52, 74–80 (2014).
[Crossref]

Cappellaro, P.

C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Mod. Phys. 89, 1–39 (2017).
[Crossref]

Cooke, C. M.

C. L. Holloway, M. T. Simons, J. A. Gordon, P. F. Wilson, C. M. Cooke, D. A. Anderson, and G. Raithel, “Atom-based RF electric field metrology: from self-calibrated measurements to subwavelength and near-field imaging,”IEEE Trans. Electromagn. Compat. 59, 717–728 (2017).
[Crossref]

Cox, K. C.

D. H. Meyer, K. C. Cox, F. K. Fatemi, and P. D. Kunz, “Digital communication with Rydberg atoms and amplitude-modulated microwave fields,” Appl. Phys. Lett. 112, 211108 (2018).
[Crossref]

Deb, A. B.

A. B. Deb and N. Kjærgaard, “Radio-over-fiber using an optical antenna based on Rydberg states of atoms,” Appl. Phys. Lett. 112, 211106 (2018).
[Crossref]

Degen, C. L.

C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Mod. Phys. 89, 1–39 (2017).
[Crossref]

Dienstfrey, A.

C. L. Holloway, M. T. Simons, J. A. Gordon, A. Dienstfrey, D. A. Anderson, and G. Raithel, “Electric field metrology for SI traceability: systematic measurement uncertainties in electromagnetically induced transparency inatomic vapor,” J. Appl. Phys. 121, 233106 (2017).
[Crossref]

Donley, E. A.

J. Kitching, S. Knappe, and E. A. Donley, “Atomic sensors - A review,” IEEE Sens. J. 11, 1749–1758 (2011).
[Crossref]

Fan, H. Q.

S. Kumar, H. Q. Fan, H. Kübler, J. T. Sheng, and J. P. Shaffer, “Atom-based sensing of weak radio frequency electric fields using homodyne readout,” Sci. Rep. 7, 42981 (2017).
[Crossref] [PubMed]

H. Q. Fan, S. Kumar, J. Sedlacek, H. Kübler, S. Karimkashi, and J. P. Shaffer, “Atom based RF electric field sensing,” J. Phys. B 48, 202001 (2015).
[Crossref]

Fan, J.

Y. Jiao, X. Han, J. Fan, G. Raithel, J. Zhao, and S. Jia, “Atom-based quantum receiver for amplitude- and frequency-modulated baseband signals in high-frequency radio communication,” arXiv 1804.07044 (2018).

Fatemi, F. K.

D. H. Meyer, K. C. Cox, F. K. Fatemi, and P. D. Kunz, “Digital communication with Rydberg atoms and amplitude-modulated microwave fields,” Appl. Phys. Lett. 112, 211108 (2018).
[Crossref]

Fleischhauer, M.

D. Petrosyan, J. Otterbach, and M. Fleischhauer, “Electromagnetically induced transparency with Rydberg atoms,” Phys. Rev. Lett. 107, 213601 (2011).
[Crossref] [PubMed]

Gea-Banacloche, J.

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[Crossref] [PubMed]

Gordon, J. A.

C. L. Holloway, M. T. Simons, J. A. Gordon, A. Dienstfrey, D. A. Anderson, and G. Raithel, “Electric field metrology for SI traceability: systematic measurement uncertainties in electromagnetically induced transparency inatomic vapor,” J. Appl. Phys. 121, 233106 (2017).
[Crossref]

C. L. Holloway, M. T. Simons, J. A. Gordon, P. F. Wilson, C. M. Cooke, D. A. Anderson, and G. Raithel, “Atom-based RF electric field metrology: from self-calibrated measurements to subwavelength and near-field imaging,”IEEE Trans. Electromagn. Compat. 59, 717–728 (2017).
[Crossref]

M. T. Simons, J. A. Gordon, C. L. Holloway, D. A. Anderson, S. A. Miller, and G. Raithel, “Using frequency detuning to improve the sensitivity of electric field measurements via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms,” Appl. Phys. Lett. 108, 174101 (2016).
[Crossref]

C. L. Holloway, J. A. Gordon, S. Jefferts, A. Schwarzkopf, D. A. Anderson, S. A. Miller, N. Thaicharoen, and G. Raithel, “Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements,” IEEE Trans. Antennas Propag. 62, 6169–6182 (2014).
[Crossref]

Gu, S.

H. Lin, Y. Tian, B. Tan, and S. Gu, “Differential detection scheme for compact CPT atomic clocks,” Europhys. Lett. 119, 23001 (2017).
[Crossref]

Han, X.

Y. Jiao, X. Han, J. Fan, G. Raithel, J. Zhao, and S. Jia, “Atom-based quantum receiver for amplitude- and frequency-modulated baseband signals in high-frequency radio communication,” arXiv 1804.07044 (2018).

Han, X. X.

Y. C. Jiao, L. P. Hao, X. X. Han, S. Y. Bai, G. Raithel, J. M. Zhao, and S. T. Jia, “Atom-based radio-frequency field calibration and polarization measurement using cesium nDJ floquet states,” Phys. Rev. Appl. 8, 14028 (2017).
[Crossref]

Hao, L. P.

Y. C. Jiao, L. P. Hao, X. X. Han, S. Y. Bai, G. Raithel, J. M. Zhao, and S. T. Jia, “Atom-based radio-frequency field calibration and polarization measurement using cesium nDJ floquet states,” Phys. Rev. Appl. 8, 14028 (2017).
[Crossref]

Haykin, S.

S. Haykin, D. J. Thomson, and J. H. Reed, “Spectrum sensing for cognitive radio,” Proc. IEEE 97, 849–877 (2009).
[Crossref]

Heath, R. W.

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag. 52, 74–80 (2014).
[Crossref]

Holloway, C. L.

C. L. Holloway, M. T. Simons, J. A. Gordon, P. F. Wilson, C. M. Cooke, D. A. Anderson, and G. Raithel, “Atom-based RF electric field metrology: from self-calibrated measurements to subwavelength and near-field imaging,”IEEE Trans. Electromagn. Compat. 59, 717–728 (2017).
[Crossref]

C. L. Holloway, M. T. Simons, J. A. Gordon, A. Dienstfrey, D. A. Anderson, and G. Raithel, “Electric field metrology for SI traceability: systematic measurement uncertainties in electromagnetically induced transparency inatomic vapor,” J. Appl. Phys. 121, 233106 (2017).
[Crossref]

M. T. Simons, J. A. Gordon, C. L. Holloway, D. A. Anderson, S. A. Miller, and G. Raithel, “Using frequency detuning to improve the sensitivity of electric field measurements via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms,” Appl. Phys. Lett. 108, 174101 (2016).
[Crossref]

C. L. Holloway, J. A. Gordon, S. Jefferts, A. Schwarzkopf, D. A. Anderson, S. A. Miller, N. Thaicharoen, and G. Raithel, “Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements,” IEEE Trans. Antennas Propag. 62, 6169–6182 (2014).
[Crossref]

Huang, G.

Q. Zhang, Z. Bai, and G. Huang, “Fast-responding property of electromagnetically induced transparency in Rydberg atoms,” Phys. Rev. A 97, 043821 (2018).
[Crossref]

Jefferts, S.

C. L. Holloway, J. A. Gordon, S. Jefferts, A. Schwarzkopf, D. A. Anderson, S. A. Miller, N. Thaicharoen, and G. Raithel, “Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements,” IEEE Trans. Antennas Propag. 62, 6169–6182 (2014).
[Crossref]

Jia, S.

Y. Jiao, X. Han, J. Fan, G. Raithel, J. Zhao, and S. Jia, “Atom-based quantum receiver for amplitude- and frequency-modulated baseband signals in high-frequency radio communication,” arXiv 1804.07044 (2018).

Jia, S. T.

Y. C. Jiao, L. P. Hao, X. X. Han, S. Y. Bai, G. Raithel, J. M. Zhao, and S. T. Jia, “Atom-based radio-frequency field calibration and polarization measurement using cesium nDJ floquet states,” Phys. Rev. Appl. 8, 14028 (2017).
[Crossref]

Jiao, Y.

Y. Jiao, X. Han, J. Fan, G. Raithel, J. Zhao, and S. Jia, “Atom-based quantum receiver for amplitude- and frequency-modulated baseband signals in high-frequency radio communication,” arXiv 1804.07044 (2018).

Jiao, Y. C.

Y. C. Jiao, L. P. Hao, X. X. Han, S. Y. Bai, G. Raithel, J. M. Zhao, and S. T. Jia, “Atom-based radio-frequency field calibration and polarization measurement using cesium nDJ floquet states,” Phys. Rev. Appl. 8, 14028 (2017).
[Crossref]

Jin, S.

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[Crossref] [PubMed]

Karimkashi, S.

H. Q. Fan, S. Kumar, J. Sedlacek, H. Kübler, S. Karimkashi, and J. P. Shaffer, “Atom based RF electric field sensing,” J. Phys. B 48, 202001 (2015).
[Crossref]

Kitching, J.

J. Kitching, S. Knappe, and E. A. Donley, “Atomic sensors - A review,” IEEE Sens. J. 11, 1749–1758 (2011).
[Crossref]

Kjærgaard, N.

A. B. Deb and N. Kjærgaard, “Radio-over-fiber using an optical antenna based on Rydberg states of atoms,” Appl. Phys. Lett. 112, 211106 (2018).
[Crossref]

Knappe, S.

J. Kitching, S. Knappe, and E. A. Donley, “Atomic sensors - A review,” IEEE Sens. J. 11, 1749–1758 (2011).
[Crossref]

Kübler, H.

S. Kumar, H. Q. Fan, H. Kübler, J. T. Sheng, and J. P. Shaffer, “Atom-based sensing of weak radio frequency electric fields using homodyne readout,” Sci. Rep. 7, 42981 (2017).
[Crossref] [PubMed]

H. Q. Fan, S. Kumar, J. Sedlacek, H. Kübler, S. Karimkashi, and J. P. Shaffer, “Atom based RF electric field sensing,” J. Phys. B 48, 202001 (2015).
[Crossref]

J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]

Kumar, S.

S. Kumar, H. Q. Fan, H. Kübler, J. T. Sheng, and J. P. Shaffer, “Atom-based sensing of weak radio frequency electric fields using homodyne readout,” Sci. Rep. 7, 42981 (2017).
[Crossref] [PubMed]

H. Q. Fan, S. Kumar, J. Sedlacek, H. Kübler, S. Karimkashi, and J. P. Shaffer, “Atom based RF electric field sensing,” J. Phys. B 48, 202001 (2015).
[Crossref]

Kunz, P. D.

D. H. Meyer, K. C. Cox, F. K. Fatemi, and P. D. Kunz, “Digital communication with Rydberg atoms and amplitude-modulated microwave fields,” Appl. Phys. Lett. 112, 211108 (2018).
[Crossref]

Li, Y.

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[Crossref] [PubMed]

Li, Y. Q.

Y. Q. Li and M. Xiao, “Transient properties of an electromagnetically induced transparency in three-level atoms,” Opt. Lett. 20, 1489–1491 (1995).
[Crossref] [PubMed]

Lin, H.

H. Lin, Y. Tian, B. Tan, and S. Gu, “Differential detection scheme for compact CPT atomic clocks,” Europhys. Lett. 119, 23001 (2017).
[Crossref]

Löw, R.

J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]

Lozano, A.

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag. 52, 74–80 (2014).
[Crossref]

Marzetta, T. L.

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag. 52, 74–80 (2014).
[Crossref]

McAnney, W.

P. Bardell, W. McAnney, and J. Savir, Built-in test for VLSI: pseudorandom techniques(Wiley, 1987).

Meyer, D. H.

D. H. Meyer, K. C. Cox, F. K. Fatemi, and P. D. Kunz, “Digital communication with Rydberg atoms and amplitude-modulated microwave fields,” Appl. Phys. Lett. 112, 211108 (2018).
[Crossref]

Miller, S. A.

M. T. Simons, J. A. Gordon, C. L. Holloway, D. A. Anderson, S. A. Miller, and G. Raithel, “Using frequency detuning to improve the sensitivity of electric field measurements via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms,” Appl. Phys. Lett. 108, 174101 (2016).
[Crossref]

C. L. Holloway, J. A. Gordon, S. Jefferts, A. Schwarzkopf, D. A. Anderson, S. A. Miller, N. Thaicharoen, and G. Raithel, “Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements,” IEEE Trans. Antennas Propag. 62, 6169–6182 (2014).
[Crossref]

Otterbach, J.

D. Petrosyan, J. Otterbach, and M. Fleischhauer, “Electromagnetically induced transparency with Rydberg atoms,” Phys. Rev. Lett. 107, 213601 (2011).
[Crossref] [PubMed]

Petrosyan, D.

D. Petrosyan, J. Otterbach, and M. Fleischhauer, “Electromagnetically induced transparency with Rydberg atoms,” Phys. Rev. Lett. 107, 213601 (2011).
[Crossref] [PubMed]

Pfau, T.

J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]

Popovski, P.

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag. 52, 74–80 (2014).
[Crossref]

Pritchard, J. D.

N. Šibalić, J. D. Pritchard, C. S. Adams, and K. J. Weatherill, “ARC: An open-source library for calculating properties of alkali Rydberg atoms,” Comput. Phys. Commun. 220, 319–331(2017).
[Crossref]

Raithel, G.

C. L. Holloway, M. T. Simons, J. A. Gordon, A. Dienstfrey, D. A. Anderson, and G. Raithel, “Electric field metrology for SI traceability: systematic measurement uncertainties in electromagnetically induced transparency inatomic vapor,” J. Appl. Phys. 121, 233106 (2017).
[Crossref]

Y. C. Jiao, L. P. Hao, X. X. Han, S. Y. Bai, G. Raithel, J. M. Zhao, and S. T. Jia, “Atom-based radio-frequency field calibration and polarization measurement using cesium nDJ floquet states,” Phys. Rev. Appl. 8, 14028 (2017).
[Crossref]

C. L. Holloway, M. T. Simons, J. A. Gordon, P. F. Wilson, C. M. Cooke, D. A. Anderson, and G. Raithel, “Atom-based RF electric field metrology: from self-calibrated measurements to subwavelength and near-field imaging,”IEEE Trans. Electromagn. Compat. 59, 717–728 (2017).
[Crossref]

D. A. Anderson and G. Raithel, “Continuous-frequency measurements of high-intensity microwave electric fields with atomic vapor cells,” Appl. Phys. Lett. 111, 053504 (2017).
[Crossref]

M. T. Simons, J. A. Gordon, C. L. Holloway, D. A. Anderson, S. A. Miller, and G. Raithel, “Using frequency detuning to improve the sensitivity of electric field measurements via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms,” Appl. Phys. Lett. 108, 174101 (2016).
[Crossref]

C. L. Holloway, J. A. Gordon, S. Jefferts, A. Schwarzkopf, D. A. Anderson, S. A. Miller, N. Thaicharoen, and G. Raithel, “Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements,” IEEE Trans. Antennas Propag. 62, 6169–6182 (2014).
[Crossref]

D. A. Anderson, R. E. Sapiro, and G. Raithel, “An atomic receiver for AM and FM radio communication,” arXiv 1808.08589 (2018).

Y. Jiao, X. Han, J. Fan, G. Raithel, J. Zhao, and S. Jia, “Atom-based quantum receiver for amplitude- and frequency-modulated baseband signals in high-frequency radio communication,” arXiv 1804.07044 (2018).

Reed, J. H.

S. Haykin, D. J. Thomson, and J. H. Reed, “Spectrum sensing for cognitive radio,” Proc. IEEE 97, 849–877 (2009).
[Crossref]

Reinhard, F.

C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Mod. Phys. 89, 1–39 (2017).
[Crossref]

Sapiro, R. E.

D. A. Anderson, R. E. Sapiro, and G. Raithel, “An atomic receiver for AM and FM radio communication,” arXiv 1808.08589 (2018).

Savir, J.

P. Bardell, W. McAnney, and J. Savir, Built-in test for VLSI: pseudorandom techniques(Wiley, 1987).

Schwarzkopf, A.

C. L. Holloway, J. A. Gordon, S. Jefferts, A. Schwarzkopf, D. A. Anderson, S. A. Miller, N. Thaicharoen, and G. Raithel, “Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements,” IEEE Trans. Antennas Propag. 62, 6169–6182 (2014).
[Crossref]

Schwettmann, A.

J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]

Sedlacek, J.

H. Q. Fan, S. Kumar, J. Sedlacek, H. Kübler, S. Karimkashi, and J. P. Shaffer, “Atom based RF electric field sensing,” J. Phys. B 48, 202001 (2015).
[Crossref]

Sedlacek, J. A.

J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]

Seybold, J. S.

J. S. Seybold, Introduction to RF Propagation(John Wiley and Sons, 2005).
[Crossref]

Shaffer, J. P.

S. Kumar, H. Q. Fan, H. Kübler, J. T. Sheng, and J. P. Shaffer, “Atom-based sensing of weak radio frequency electric fields using homodyne readout,” Sci. Rep. 7, 42981 (2017).
[Crossref] [PubMed]

H. Q. Fan, S. Kumar, J. Sedlacek, H. Kübler, S. Karimkashi, and J. P. Shaffer, “Atom based RF electric field sensing,” J. Phys. B 48, 202001 (2015).
[Crossref]

J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]

Sheng, J. T.

S. Kumar, H. Q. Fan, H. Kübler, J. T. Sheng, and J. P. Shaffer, “Atom-based sensing of weak radio frequency electric fields using homodyne readout,” Sci. Rep. 7, 42981 (2017).
[Crossref] [PubMed]

Šibalic, N.

N. Šibalić, J. D. Pritchard, C. S. Adams, and K. J. Weatherill, “ARC: An open-source library for calculating properties of alkali Rydberg atoms,” Comput. Phys. Commun. 220, 319–331(2017).
[Crossref]

Simons, M. T.

C. L. Holloway, M. T. Simons, J. A. Gordon, A. Dienstfrey, D. A. Anderson, and G. Raithel, “Electric field metrology for SI traceability: systematic measurement uncertainties in electromagnetically induced transparency inatomic vapor,” J. Appl. Phys. 121, 233106 (2017).
[Crossref]

C. L. Holloway, M. T. Simons, J. A. Gordon, P. F. Wilson, C. M. Cooke, D. A. Anderson, and G. Raithel, “Atom-based RF electric field metrology: from self-calibrated measurements to subwavelength and near-field imaging,”IEEE Trans. Electromagn. Compat. 59, 717–728 (2017).
[Crossref]

M. T. Simons, J. A. Gordon, C. L. Holloway, D. A. Anderson, S. A. Miller, and G. Raithel, “Using frequency detuning to improve the sensitivity of electric field measurements via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms,” Appl. Phys. Lett. 108, 174101 (2016).
[Crossref]

Tan, B.

H. Lin, Y. Tian, B. Tan, and S. Gu, “Differential detection scheme for compact CPT atomic clocks,” Europhys. Lett. 119, 23001 (2017).
[Crossref]

Thaicharoen, N.

C. L. Holloway, J. A. Gordon, S. Jefferts, A. Schwarzkopf, D. A. Anderson, S. A. Miller, N. Thaicharoen, and G. Raithel, “Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements,” IEEE Trans. Antennas Propag. 62, 6169–6182 (2014).
[Crossref]

Thomson, D. J.

S. Haykin, D. J. Thomson, and J. H. Reed, “Spectrum sensing for cognitive radio,” Proc. IEEE 97, 849–877 (2009).
[Crossref]

Tian, Y.

H. Lin, Y. Tian, B. Tan, and S. Gu, “Differential detection scheme for compact CPT atomic clocks,” Europhys. Lett. 119, 23001 (2017).
[Crossref]

Townes, C.H.

S.H. Autler and C.H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100, 703–722 (1955).
[Crossref]

Weatherill, K. J.

N. Šibalić, J. D. Pritchard, C. S. Adams, and K. J. Weatherill, “ARC: An open-source library for calculating properties of alkali Rydberg atoms,” Comput. Phys. Commun. 220, 319–331(2017).
[Crossref]

Wilson, P. F.

C. L. Holloway, M. T. Simons, J. A. Gordon, P. F. Wilson, C. M. Cooke, D. A. Anderson, and G. Raithel, “Atom-based RF electric field metrology: from self-calibrated measurements to subwavelength and near-field imaging,”IEEE Trans. Electromagn. Compat. 59, 717–728 (2017).
[Crossref]

Xiao, M.

Y. Q. Li and M. Xiao, “Transient properties of an electromagnetically induced transparency in three-level atoms,” Opt. Lett. 20, 1489–1491 (1995).
[Crossref] [PubMed]

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[Crossref] [PubMed]

Zhang, Q.

Q. Zhang, Z. Bai, and G. Huang, “Fast-responding property of electromagnetically induced transparency in Rydberg atoms,” Phys. Rev. A 97, 043821 (2018).
[Crossref]

Zhao, J.

Y. Jiao, X. Han, J. Fan, G. Raithel, J. Zhao, and S. Jia, “Atom-based quantum receiver for amplitude- and frequency-modulated baseband signals in high-frequency radio communication,” arXiv 1804.07044 (2018).

Zhao, J. M.

Y. C. Jiao, L. P. Hao, X. X. Han, S. Y. Bai, G. Raithel, J. M. Zhao, and S. T. Jia, “Atom-based radio-frequency field calibration and polarization measurement using cesium nDJ floquet states,” Phys. Rev. Appl. 8, 14028 (2017).
[Crossref]

Appl. Phys. Lett. (4)

M. T. Simons, J. A. Gordon, C. L. Holloway, D. A. Anderson, S. A. Miller, and G. Raithel, “Using frequency detuning to improve the sensitivity of electric field measurements via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms,” Appl. Phys. Lett. 108, 174101 (2016).
[Crossref]

D. A. Anderson and G. Raithel, “Continuous-frequency measurements of high-intensity microwave electric fields with atomic vapor cells,” Appl. Phys. Lett. 111, 053504 (2017).
[Crossref]

D. H. Meyer, K. C. Cox, F. K. Fatemi, and P. D. Kunz, “Digital communication with Rydberg atoms and amplitude-modulated microwave fields,” Appl. Phys. Lett. 112, 211108 (2018).
[Crossref]

A. B. Deb and N. Kjærgaard, “Radio-over-fiber using an optical antenna based on Rydberg states of atoms,” Appl. Phys. Lett. 112, 211106 (2018).
[Crossref]

Comput. Phys. Commun. (1)

N. Šibalić, J. D. Pritchard, C. S. Adams, and K. J. Weatherill, “ARC: An open-source library for calculating properties of alkali Rydberg atoms,” Comput. Phys. Commun. 220, 319–331(2017).
[Crossref]

Europhys. Lett. (1)

H. Lin, Y. Tian, B. Tan, and S. Gu, “Differential detection scheme for compact CPT atomic clocks,” Europhys. Lett. 119, 23001 (2017).
[Crossref]

IEEE Commun. Mag. (1)

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag. 52, 74–80 (2014).
[Crossref]

IEEE Sens. J. (1)

J. Kitching, S. Knappe, and E. A. Donley, “Atomic sensors - A review,” IEEE Sens. J. 11, 1749–1758 (2011).
[Crossref]

IEEE Trans. Antennas Propag. (1)

C. L. Holloway, J. A. Gordon, S. Jefferts, A. Schwarzkopf, D. A. Anderson, S. A. Miller, N. Thaicharoen, and G. Raithel, “Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements,” IEEE Trans. Antennas Propag. 62, 6169–6182 (2014).
[Crossref]

IEEE Trans. Electromagn. Compat. (1)

C. L. Holloway, M. T. Simons, J. A. Gordon, P. F. Wilson, C. M. Cooke, D. A. Anderson, and G. Raithel, “Atom-based RF electric field metrology: from self-calibrated measurements to subwavelength and near-field imaging,”IEEE Trans. Electromagn. Compat. 59, 717–728 (2017).
[Crossref]

J. Appl. Phys. (1)

C. L. Holloway, M. T. Simons, J. A. Gordon, A. Dienstfrey, D. A. Anderson, and G. Raithel, “Electric field metrology for SI traceability: systematic measurement uncertainties in electromagnetically induced transparency inatomic vapor,” J. Appl. Phys. 121, 233106 (2017).
[Crossref]

J. Phys. B (1)

H. Q. Fan, S. Kumar, J. Sedlacek, H. Kübler, S. Karimkashi, and J. P. Shaffer, “Atom based RF electric field sensing,” J. Phys. B 48, 202001 (2015).
[Crossref]

Nat. Phys. (1)

J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]

Opt. Lett. (1)

Y. Q. Li and M. Xiao, “Transient properties of an electromagnetically induced transparency in three-level atoms,” Opt. Lett. 20, 1489–1491 (1995).
[Crossref] [PubMed]

Phys. Rev. (1)

S.H. Autler and C.H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100, 703–722 (1955).
[Crossref]

Phys. Rev. A (2)

Q. Zhang, Z. Bai, and G. Huang, “Fast-responding property of electromagnetically induced transparency in Rydberg atoms,” Phys. Rev. A 97, 043821 (2018).
[Crossref]

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[Crossref] [PubMed]

Phys. Rev. Appl. (1)

Y. C. Jiao, L. P. Hao, X. X. Han, S. Y. Bai, G. Raithel, J. M. Zhao, and S. T. Jia, “Atom-based radio-frequency field calibration and polarization measurement using cesium nDJ floquet states,” Phys. Rev. Appl. 8, 14028 (2017).
[Crossref]

Phys. Rev. Lett. (1)

D. Petrosyan, J. Otterbach, and M. Fleischhauer, “Electromagnetically induced transparency with Rydberg atoms,” Phys. Rev. Lett. 107, 213601 (2011).
[Crossref] [PubMed]

Proc. IEEE (1)

S. Haykin, D. J. Thomson, and J. H. Reed, “Spectrum sensing for cognitive radio,” Proc. IEEE 97, 849–877 (2009).
[Crossref]

Rev. Mod. Phys. (1)

C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Mod. Phys. 89, 1–39 (2017).
[Crossref]

Sci. Rep. (1)

S. Kumar, H. Q. Fan, H. Kübler, J. T. Sheng, and J. P. Shaffer, “Atom-based sensing of weak radio frequency electric fields using homodyne readout,” Sci. Rep. 7, 42981 (2017).
[Crossref] [PubMed]

Other (4)

Y. Jiao, X. Han, J. Fan, G. Raithel, J. Zhao, and S. Jia, “Atom-based quantum receiver for amplitude- and frequency-modulated baseband signals in high-frequency radio communication,” arXiv 1804.07044 (2018).

D. A. Anderson, R. E. Sapiro, and G. Raithel, “An atomic receiver for AM and FM radio communication,” arXiv 1808.08589 (2018).

J. S. Seybold, Introduction to RF Propagation(John Wiley and Sons, 2005).
[Crossref]

P. Bardell, W. McAnney, and J. Savir, Built-in test for VLSI: pseudorandom techniques(Wiley, 1987).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental setup of the Rydberg-atom-based RF-receiver with differential detection. The coupling and probe lasers counter-propagate through the rubidium vapor cell, and form a ladder-type EIT. An RF E-field couples the two Rydberg states 59D5/2 and 60P3/2, resulting in an Autler-Townes splitting. Inset: Relevant energy levels of the rubidium atom. Note that a neighboring state 59D3/2 lies about 50 MHz below 59D5/2, which distorts the observed spectrum and it will be discussed in text later. AOM: acoustic optic modulator; BS: beam splitter; DM: dichroic mirror; GT: Glan-Taylor prism; HWP: half-wavelength plate; PBS: polarizing beam splitter.
Fig. 2
Fig. 2 The linear dependence of the frequency shift of the Autler-Townes splitting center, f1/2f0, on the RF detuning Δ RF . A pair of typical asymmetric AT-splitting spectra is shown in the inset at RF detunings ±50 MHz relative to the energy difference between Rydberg states 59D5/2 and 60P3/2 (10.22 GHz).
Fig. 3
Fig. 3 SNR of the differential demodulated signal on the balanced detector versus RF-detunings for different modulation frequencies fmod (a) and its dependence on the modulation frequency for finer steps of fmod (b). The SNR is larger than 10 dB in a carrier bandwidth up to 200 MHz for modulation frequencies less than 1 MHz. A calculation is also presented in (a) based on the steady solution of Eq. 1, where the intrusion of the neighbor Rydberg states is not included.
Fig. 4
Fig. 4 The response of the probe transmission to the applied RF-field over the RF-detuning range. The probe photodiode linearly responds to the RF-field in a wide dynamic range varying from weak field E ~ 1 V/m to strong end E ~ 10 V/m but has a maximum gain performance at zero detuning. Curves from top to bottom, respectively, corresponding to RF-detuning 0, -20 MHz, 20 MHz, -50 MHz, and 50 MHz with respect to the on-resonant frequency (10.22 GHz) in (a), which is well understood with the help of a theoretical simulation shown in (b). A careful selection of linear response range will give a pure spectrum as indicated by the red line in (c).
Fig. 5
Fig. 5 A digital communication tested using a benchmark of PRBS signal transferring at a bit rate of 500 kbps. Three typical waveform transfers are shown in (a), (b) and (c), respectively, corresponding to RF-detuning 0, 100 MHz and 150 MHz with respect to the on-resonant frequency (10.22 GHz). The BER determined by comparing the decoded and source digital signals rises up with RF-detuning, up to 20% at Δ R F = 160 MHz in (d).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ρ ˙ = 1 i [ H , ρ ] + L decay ( ρ ) ,
H = [ Δ c Δ R F Ω M 2 0 0 Ω M 2 Δ c Ω c 2 0 0 Ω c 2 0 Ω p 2 0 0 Ω p 2 Δ p ] ,

Metrics