Abstract

Transmission optical diffraction gratings composed of periodic slices of a ferromagnetic liquid crystal and a conventional photoresist polymer are demonstrated. Dependence of diffraction efficiencies of various diffraction orders on an in-plane external magnetic field is investigated. It is shown that diffraction properties can be effectively tuned by magnetic fields as low as a few mT. The tuning mechanism is explained in the framework of a simple empirical model and also by numerical simulations based on the rigorous coupled wave analysis (RCWA). The obtained results provide a proof of principle of operation of magnetically tunable liquid crystalline diffractive optical elements applicable in contactless schemes for control of optical signals.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Electrically tunable prism grating based on a liquid crystal film with a photoconductive layer

Shuan-Yu Huang, He-Yi Zheng, Kai-Yu Yu, Bing-Yau Huang, Hong-Ren Lin, Chia-Rong Lee, and Chie-Tong Kuo
Opt. Mater. Express 2(12) 1791-1796 (2012)

Characterization of the diffraction efficiency of new holographic gratings with a nematic film–polymer-slice sequence structure

Roberto Caputo, Alessandro Veltri, Cesare P. Umeton, and Andrey V. Sukhov
J. Opt. Soc. Am. B 21(11) 1939-1947 (2004)

References

  • View by:
  • |
  • |
  • |

  1. V. A. Soifer, Diffractive optics and nanophotonics, (CRC, 2017).
  2. Y. G. Soskind, Field guide to diffractive optics, (SPIE, 2011).
  3. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed., (Oxford University, 1993).
  4. J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electrooptically controlled liquid-crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
    [Crossref]
  5. I. Drevenšek -Olenik, M. Copic, M. E. Sousa, and G. P. Crawford, “Optical retardation of in-plane switched polymer dispersed liquid crystals,” J. Appl. Phys. 100(3), 033515 (2006).
    [Crossref]
  6. S. M. Morris, D. J. Gardiner, F. Castles, P. J. W. Hands, T. D. Wilkinson, and H. J. Coles, “Fast-switching phase gratings using in-plane addressed short-pitch polymer stabilized chiral nematic liquid crystals,” Appl. Phys. Lett. 99(25), 253502 (2011).
    [Crossref]
  7. F. Fan, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Switchable liquid crystal grating with sub millisecond response,” Appl. Phys. Lett. 100(11), 111105 (2012).
    [Crossref]
  8. V. Yu. Reshetnyak, V. I. Zadorozhnii, I. P. Pinkevych, T. J. Bunning, and D. R. Evans, “Surface plasmon absorption in MoS2 and graphene-MoS2 micro-gratings and the impact of a liquid crystal substrate,” AIP Adv. 8(4), 045024 (2018).
    [Crossref]
  9. D. Xu, G. Tan, and S. T. Wu, “Large-angle and high-efficiency tunable phase grating using fringe field switching liquid crystal,” Opt. Express 23(9), 12274–12285 (2015).
    [Crossref] [PubMed]
  10. Z. Feng and K. Ishikawa, “High-performance switchable grating based on pre-transitional effect of antiferroelectric liquid crystals,” Opt. Express 26(24), 31976–31982 (2018).
    [Crossref] [PubMed]
  11. D. C. Flanders, D. C. Shaver, and H. I. Smith, “Alignment of liquid-crystals using submicrometer periodicity gratings,” Appl. Phys. Lett. 32(10), 597–598 (1978).
    [Crossref]
  12. C. M. Titus and P. J. Bos, “Efficient, polarization-independent, reflective liquid crystal phase grating,” Appl. Phys. Lett. 71(16), 2239–2241 (1997).
    [Crossref]
  13. M. Honma and T. Nose, “Polarization-independent liquid crystal grating fabricated by microrubbing process,” Jpn. J. Appl. Phys. 42(11), 6992–6997 (2003).
    [Crossref]
  14. V. K. Gupta and N. L. Abbot, “Design of surfaces for patterned alignment of liquid crystals on planar curved substrates,” Science 276(5318), 1533–1536 (1997).
    [Crossref]
  15. G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
    [Crossref]
  16. C. Provenzano, P. Pagliusi, and G. Cipparrone, “Electrically tunable two-dimensional liquid crystals gratings induced by polarization holography,” Opt. Express 15(9), 5872–5878 (2007).
    [Crossref] [PubMed]
  17. R. K. Komanduri and M. J. Escuti, “High efficiency reflective liquid crystal polarization gratings,” Appl. Phys. Lett. 95(9), 091106 (2009).
    [Crossref]
  18. J. Sun, A. K. Srivastava, L. Wang, V. G. Chigrinov, and H. S. Kwok, “Optically tunable and rewritable diffraction grating with photoaligned liquid crystals,” Opt. Lett. 38(13), 2342–2344 (2013).
    [Crossref] [PubMed]
  19. C. C. Bowley and G. P. Crawford, “Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials,” Appl. Phys. Lett. 76(16), 2235–2237 (2000).
    [Crossref]
  20. K. Kato, T. Hisaki, and D. Munekazu, “In-Plane Operation of Alignment-Controlled Holographic Polymer-Dispersed Liquid Crystal,” Jpn. J. Appl. Phys. 38(3A), 1466–1469 (1999).
    [Crossref]
  21. T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic Polymer-Dispersed Liquid Crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
    [Crossref]
  22. M. Jazbinšek, I. Drevensek-Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90(8), 3831–3837 (2001).
    [Crossref]
  23. L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable Holographic Polymer-Dispersed Liquid Crystal Reflection Gratings Based on Thiol-Ene Photopolymerization,” Chem. Mater. 15(12), 2477–2484 (2003).
    [Crossref]
  24. R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V. Sukhov, “Development of a new kind of switchable holographic grating made of liquid-crystal films separated by slices of polymeric material,” Opt. Lett. 29(11), 1261–1263 (2004).
    [Crossref] [PubMed]
  25. M. Castriota, A. Fasanella, E. Cazzanelli, L. De Sio, R. Caputo, and C. Umeton, “In situ polarized micro-Raman investigation of periodic structures realized in liquid-crystalline composite materials,” Opt. Express 19(11), 10494–10500 (2011).
    [Crossref] [PubMed]
  26. L. De Sio, L. Ricciardi, S. Serak, M. La Deda, N. Tabiryan, and C. Umeton, “Photo-sensitive liquid crystals for optically controlled diffraction gratings,” J. Mater. Chem. 22(14), 6669–6673 (2012).
    [Crossref]
  27. R. Fernández, S. Gallego, A. Márquez, J. Francés, F. J. Martínez, I. Pascual, and A. Beléndez, “Analysis of holographic polymer-dispersed liquid crystals (HPDLCs) for tunable low frequency diffractive optical elements recording,” Opt. Mater. 76, 295–301 (2018).
    [Crossref]
  28. C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83(22), 4497–4499 (2003).
    [Crossref]
  29. C.-Y. Chen, C.-F. Hsieh, Y.-F. Lin, R.-P. Pan, and C.-L. Pan, “Magnetically tunable room-temperature 2 π liquid crystal terahertz phase shifter,” Opt. Express 12(12), 2625–2630 (2004).
    [Crossref] [PubMed]
  30. C.-J. Lin, Y.-T. Li, C.-F. Hsieh, R.-P. Pan, and C.-L. Pan, “Manipulating terahertz wave by a magnetically tunable liquid crystal phase grating,” Opt. Express 16(5), 2995–3001 (2008).
    [Crossref] [PubMed]
  31. L. Yang, F. Fan, M. Chen, X. Zhang, J. Bai, and S. Chang, “Magnetically induced birefringence of randomly aligned liquid crystals in the terahertz regime under weak magnetic field,” Opt. Mater. Express 6(9), 2803–2811 (2016).
    [Crossref]
  32. L. Zhang, Y.-X. Fan, H. Liu, L.-L. Xu, J.-L. Xue, and Z.-Y. Tao, “Hypersensitive and tunable terahertz wave switch based on non-Bragg structure filled with liquid crystal,” J. Lit. Technol. 35(14), 3092–3098 (2017).
    [Crossref]
  33. L. Zhang, Y.-X. Fan, H. Liu, X. Han, W.-Q. Lu, and Z.-Y. Tao, “A magnetically tunable non-Bragg defect mode in a corrugated waveguide filled with liquid crystals,” Phys. Lett. A 382(14), 1000–1005 (2018).
    [Crossref]
  34. F. Brochard and P. G. De Gennes, “Theory of magnetic suspensions in liquid crystals,” J. Phys. (Paris) 31(7), 691–708 (1970).
    [Crossref]
  35. S. H. Chen and N. M. Amer, “Observation of macroscopic collective behavior and new texture in magnetically doped liquid crystals,” Phys. Rev. Lett. 51(25), 2298–2301 (1983).
    [Crossref]
  36. M. Koneracká, V. Kellnerova, P. Kopčanský, and T. Kuczynski, “Study of magnetic Fredericksz transition in ferronematic,” J. Magn. Mater. 140, 1455–1456 (1995).
    [Crossref]
  37. Y. L. Raikher and V. I. Stepanov, “Transient field-induced birefringence in a ferronematic,” J. Magn. Mater. 201(1–3), 182–185 (1999).
    [Crossref]
  38. N. Podoliak, O. Buchnev, D. V. Bavykin, A. N. Kulak, M. Kaczmarek, and T. J. Sluckin, “Magnetite nanorod thermotropic liquid crystal colloids: synthesis, optics and theory,” J. Colloid Interface Sci. 386(1), 158–166 (2012).
    [Crossref] [PubMed]
  39. N. Podoliak, O. Buchnev, O. Buluy, G. D’Alessandro, M. Kaczmarek, Y. Reznikov, and T. J. Sluckin, “Macroscopic optical effects in low concentration ferronematics,” Soft Matter 7(10), 4742–4749 (2011).
    [Crossref]
  40. P. Kopčanský, I. Potočová, M. Koneracká, M. Timko, J. Jadzyn, G. Czechowski, and A. M. G. Jansen, “The structural instabilities of ferronematic based on liquid crystal with low negative magnetic susceptibility,” Phys. Status Solidi, B Basic Res. 236(2), 450–453 (2003).
    [Crossref]
  41. T. Tóth-Katona, P. Salamon, N. Éber, N. Tomašovičová, Z. Mitróová, and P. Kopčanský, “High concentration ferronematics in low magnetic fields,” J. Magn. Mater. 372, 117–121 (2014).
    [Crossref]
  42. N. Tomašovičová, S. Burylov, V. Gdovinová, A. Tarasov, J. Kovac, N. Burylova, A. Voroshilov, P. Kopčanský, and J. Jadżyn, “Magnetic Freedericksz transition in a ferronematic liquid crystal doped with spindle magnetic particles,” J. Mol. Liq. 267, 390–397 (2018).
    [Crossref]
  43. M. F. Prodanov, O. G. Buluy, E. V. Popova, S. A. Gamzaeva, Y. O. Reznikov, and V. V. Vashchenko, “Magnetic actuation of a thermodynamically stable colloid of ferromagnetic nanoparticles in a liquid crystal,” Soft Matter 12(31), 6601–6609 (2016).
    [Crossref] [PubMed]
  44. A. Mertelj, D. Lisjak, M. Drofenik, and M. Copič, “Ferromagnetism in suspensions of magnetic platelets in liquid crystal,” Nature 504(7479), 237–241 (2013).
    [Crossref] [PubMed]
  45. A. Mertelj and D. Lisjak, “Ferromagnetic nematic liquid crystals,” Liq. Cryst. Rev. 5(1), 1–33 (2017).
    [Crossref]
  46. Q. Liu, P. J. Ackerman, T. C. Lubensky, and I. I. Smalyukh, “Biaxial ferromagnetic liquid crystal colloids,” Proc. Natl. Acad. Sci. U.S.A. 113(38), 10479–10484 (2016).
    [Crossref] [PubMed]
  47. P. Medle Rupnik, D. Lisjak, M. Čopič, S. Čopar, and A. Mertelj, “Field-controlled structures in ferromagnetic cholesteric liquid crystals,” Sci. Adv. 3(10), e1701336 (2017).
    [Crossref] [PubMed]
  48. N. Sebastián, N. Osterman, D. Lisjak, M. Čopič, and A. Mertelj, “Director reorientation dynamics of ferromagnetic nematic liquid crystals,” Soft Matter 14(35), 7180–7189 (2018).
    [Crossref] [PubMed]
  49. T. Potisk, H. Pleiner, D. Svenšek, and H. R. Brand, “Effects of flow on the dynamics of a ferromagnetic nematic liquid crystal,” Phys. Rev. E 97(4), 042705 (2018).
    [Crossref] [PubMed]
  50. Y. Reznikov, A. Glushchenko, and Y. Garbovskiy, “Ferromagnetic and ferroelectric nanoparticles in liquid crystals”, in Liquid crystals with nano and microparticles ed. J. P. Lagerwall and G. Scalia, (World Scientific, 2017.
  51. W. Li, W. Cui, W. Zhang, A. Kastelic, I. Drevensek-Olenik, and X. Zhang, “Characterisation of POLICRYPS structures assembled through a two-step process,” Liq. Cryst. 41(9), 1315–1322 (2014).
    [Crossref]
  52. Z. Ji, X. Zhang, B. Shi, W. Li, W. Luo, I. Drevensek-Olenik, Q. Wu, and J. Xu, “Compartmentalized liquid crystal alignment induced by sparse polymer ribbons with surface relief gratings,” Opt. Lett. 41(2), 336–339 (2016).
    [Crossref] [PubMed]
  53. D. W. Berreman, “Alignment of liquid crystals by grooved surfaces,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 23(3–4), 215–231 (1973).
    [Crossref]
  54. I. Drevenšek -Olenik, M. Fally, and M. A. Ellabban, “Optical anisotropy of holographic polymer-dispersed liquid crystal transmission gratings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(2), 021707 (2006).
    [Crossref] [PubMed]
  55. M. Fally, M. Ellabban, and I. Drevensek-Olenik, “Out-of-phase mixed holographic gratings: a quantative analysis,” Opt. Express 16(9), 6528–6536 (2008).
    [Crossref] [PubMed]
  56. A. E. Costa Pereira and A. Rosato, “Transmission of Nematic Liquid Crystals in Electric Fields,” Revista Brasileira de Fisica. 5(2), 237–241 (1975).
  57. P. Nayek and G. Li, “Superior electro-optic response in multiferroic bismuth ferrite nanoparticle doped nematic liquid crystal device,” Sci. Rep. 5, 10845–1-9 (2015).
    [Crossref]
  58. V. I. Zadorozhnii, I. P. Pinkevich, V. Y. Reshetnyak, S. V. Burylov, and T. J. Sluckin, “Adsorption phenomena and macroscopic properties of ferronematics caused by orientational interactions,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 409(1), 285–292 (2004).
    [Crossref]
  59. O. Buluy, E. Ouskova, Y. Reznikov, A. Glushchenko, J. West, and V. Reshetnyak, “Magnetically induced alignment of FNS,” J. Magn. Mater. 252, 159–161 (2002).
    [Crossref]
  60. T. K. Gaylord and M. G. Moharam, “Thin and thick gratings: terminology clarification,” Appl. Opt. 20(19), 3271–3273 (1981).
    [Crossref] [PubMed]
  61. https://simulation.cloud/electromagnetics, (FlexCompute Inc. 2017).
  62. M. Rubin, “Optical properties of soda lime silica glasses,” Sol. Energy Mater. 12(4), 275–288 (1985).
    [Crossref]
  63. T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
    [Crossref] [PubMed]
  64. O. Prakash Parida and N. Bhat, “Characterization of optical properties of SU-8 and fabrication of optical components,” ICOP Int. Conf. on Opt. and Photon. (CSIO) (2009).
  65. J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” IEEE J. Display Technol. 1(1), 51–61 (2005).
    [Crossref]
  66. S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
    [Crossref]
  67. C. H. Lin, R. H. Chiang, S. H. Liu, C. T. Kuo, and C. Y. Huang, “Rotatable diffractive gratings based on hybrid-aligned cholesteric liquid crystals,” Opt. Express 20(24), 26837–26844 (2012).
    [Crossref] [PubMed]
  68. H. Jau, Y. Li, C. Li, C. Chen, C. Wang, H. K. Bisoyi, T. Lin, T. J. Bunning, and Q. Li, “Light‐Driven Wide‐Range Nonmechanical Beam Steering and Spectrum Scanning Based on a Self‐Organized Liquid Crystal Grating Enabled by a Chiral Molecular Switch,” Adv. Opt. Mater. 3(2), 166–170 (2015).
    [Crossref]
  69. M. Mur, J. A. Sofi, I. Kvasić, A. Mertelj, D. Lisjak, V. Niranjan, I. Muševič, and S. Dhara, “Magnetic-field tuning of whispering gallery mode lasing from ferromagnetic nematic liquid crystal microdroplets,” Opt. Express 25(2), 1073–1083 (2017).
    [Crossref] [PubMed]
  70. M. Ličen, I. Drevenšek-Olenik, L. Čoga, S. Gyergyek, S. Kralj, M. Fally, C. Pruner, P. Geltenbort, U. Gasser, G. Nagy, and J. Klepp, “Neutron diffraction from superparamagnetic colloidal crystals,” J. Phys. Chem. Solids 110, 234–240 (2017).
    [Crossref]
  71. Z. Ji, X. Zhang, Y. Zhang, Z. Wang, I. Drevensek-Olenik, R. Rupp, W. Li, Q. Wu, and J. Xu, “Electrically tunable generation of vectorial vortex beams with micro-patterned liquid crystal structures,” Chin. Opt. Lett. 15(7), 070501- (2017).

2018 (7)

V. Yu. Reshetnyak, V. I. Zadorozhnii, I. P. Pinkevych, T. J. Bunning, and D. R. Evans, “Surface plasmon absorption in MoS2 and graphene-MoS2 micro-gratings and the impact of a liquid crystal substrate,” AIP Adv. 8(4), 045024 (2018).
[Crossref]

Z. Feng and K. Ishikawa, “High-performance switchable grating based on pre-transitional effect of antiferroelectric liquid crystals,” Opt. Express 26(24), 31976–31982 (2018).
[Crossref] [PubMed]

R. Fernández, S. Gallego, A. Márquez, J. Francés, F. J. Martínez, I. Pascual, and A. Beléndez, “Analysis of holographic polymer-dispersed liquid crystals (HPDLCs) for tunable low frequency diffractive optical elements recording,” Opt. Mater. 76, 295–301 (2018).
[Crossref]

L. Zhang, Y.-X. Fan, H. Liu, X. Han, W.-Q. Lu, and Z.-Y. Tao, “A magnetically tunable non-Bragg defect mode in a corrugated waveguide filled with liquid crystals,” Phys. Lett. A 382(14), 1000–1005 (2018).
[Crossref]

N. Tomašovičová, S. Burylov, V. Gdovinová, A. Tarasov, J. Kovac, N. Burylova, A. Voroshilov, P. Kopčanský, and J. Jadżyn, “Magnetic Freedericksz transition in a ferronematic liquid crystal doped with spindle magnetic particles,” J. Mol. Liq. 267, 390–397 (2018).
[Crossref]

N. Sebastián, N. Osterman, D. Lisjak, M. Čopič, and A. Mertelj, “Director reorientation dynamics of ferromagnetic nematic liquid crystals,” Soft Matter 14(35), 7180–7189 (2018).
[Crossref] [PubMed]

T. Potisk, H. Pleiner, D. Svenšek, and H. R. Brand, “Effects of flow on the dynamics of a ferromagnetic nematic liquid crystal,” Phys. Rev. E 97(4), 042705 (2018).
[Crossref] [PubMed]

2017 (5)

P. Medle Rupnik, D. Lisjak, M. Čopič, S. Čopar, and A. Mertelj, “Field-controlled structures in ferromagnetic cholesteric liquid crystals,” Sci. Adv. 3(10), e1701336 (2017).
[Crossref] [PubMed]

A. Mertelj and D. Lisjak, “Ferromagnetic nematic liquid crystals,” Liq. Cryst. Rev. 5(1), 1–33 (2017).
[Crossref]

M. Mur, J. A. Sofi, I. Kvasić, A. Mertelj, D. Lisjak, V. Niranjan, I. Muševič, and S. Dhara, “Magnetic-field tuning of whispering gallery mode lasing from ferromagnetic nematic liquid crystal microdroplets,” Opt. Express 25(2), 1073–1083 (2017).
[Crossref] [PubMed]

M. Ličen, I. Drevenšek-Olenik, L. Čoga, S. Gyergyek, S. Kralj, M. Fally, C. Pruner, P. Geltenbort, U. Gasser, G. Nagy, and J. Klepp, “Neutron diffraction from superparamagnetic colloidal crystals,” J. Phys. Chem. Solids 110, 234–240 (2017).
[Crossref]

L. Zhang, Y.-X. Fan, H. Liu, L.-L. Xu, J.-L. Xue, and Z.-Y. Tao, “Hypersensitive and tunable terahertz wave switch based on non-Bragg structure filled with liquid crystal,” J. Lit. Technol. 35(14), 3092–3098 (2017).
[Crossref]

2016 (4)

L. Yang, F. Fan, M. Chen, X. Zhang, J. Bai, and S. Chang, “Magnetically induced birefringence of randomly aligned liquid crystals in the terahertz regime under weak magnetic field,” Opt. Mater. Express 6(9), 2803–2811 (2016).
[Crossref]

Q. Liu, P. J. Ackerman, T. C. Lubensky, and I. I. Smalyukh, “Biaxial ferromagnetic liquid crystal colloids,” Proc. Natl. Acad. Sci. U.S.A. 113(38), 10479–10484 (2016).
[Crossref] [PubMed]

M. F. Prodanov, O. G. Buluy, E. V. Popova, S. A. Gamzaeva, Y. O. Reznikov, and V. V. Vashchenko, “Magnetic actuation of a thermodynamically stable colloid of ferromagnetic nanoparticles in a liquid crystal,” Soft Matter 12(31), 6601–6609 (2016).
[Crossref] [PubMed]

Z. Ji, X. Zhang, B. Shi, W. Li, W. Luo, I. Drevensek-Olenik, Q. Wu, and J. Xu, “Compartmentalized liquid crystal alignment induced by sparse polymer ribbons with surface relief gratings,” Opt. Lett. 41(2), 336–339 (2016).
[Crossref] [PubMed]

2015 (2)

H. Jau, Y. Li, C. Li, C. Chen, C. Wang, H. K. Bisoyi, T. Lin, T. J. Bunning, and Q. Li, “Light‐Driven Wide‐Range Nonmechanical Beam Steering and Spectrum Scanning Based on a Self‐Organized Liquid Crystal Grating Enabled by a Chiral Molecular Switch,” Adv. Opt. Mater. 3(2), 166–170 (2015).
[Crossref]

D. Xu, G. Tan, and S. T. Wu, “Large-angle and high-efficiency tunable phase grating using fringe field switching liquid crystal,” Opt. Express 23(9), 12274–12285 (2015).
[Crossref] [PubMed]

2014 (3)

T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
[Crossref] [PubMed]

W. Li, W. Cui, W. Zhang, A. Kastelic, I. Drevensek-Olenik, and X. Zhang, “Characterisation of POLICRYPS structures assembled through a two-step process,” Liq. Cryst. 41(9), 1315–1322 (2014).
[Crossref]

T. Tóth-Katona, P. Salamon, N. Éber, N. Tomašovičová, Z. Mitróová, and P. Kopčanský, “High concentration ferronematics in low magnetic fields,” J. Magn. Mater. 372, 117–121 (2014).
[Crossref]

2013 (2)

A. Mertelj, D. Lisjak, M. Drofenik, and M. Copič, “Ferromagnetism in suspensions of magnetic platelets in liquid crystal,” Nature 504(7479), 237–241 (2013).
[Crossref] [PubMed]

J. Sun, A. K. Srivastava, L. Wang, V. G. Chigrinov, and H. S. Kwok, “Optically tunable and rewritable diffraction grating with photoaligned liquid crystals,” Opt. Lett. 38(13), 2342–2344 (2013).
[Crossref] [PubMed]

2012 (4)

F. Fan, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Switchable liquid crystal grating with sub millisecond response,” Appl. Phys. Lett. 100(11), 111105 (2012).
[Crossref]

L. De Sio, L. Ricciardi, S. Serak, M. La Deda, N. Tabiryan, and C. Umeton, “Photo-sensitive liquid crystals for optically controlled diffraction gratings,” J. Mater. Chem. 22(14), 6669–6673 (2012).
[Crossref]

N. Podoliak, O. Buchnev, D. V. Bavykin, A. N. Kulak, M. Kaczmarek, and T. J. Sluckin, “Magnetite nanorod thermotropic liquid crystal colloids: synthesis, optics and theory,” J. Colloid Interface Sci. 386(1), 158–166 (2012).
[Crossref] [PubMed]

C. H. Lin, R. H. Chiang, S. H. Liu, C. T. Kuo, and C. Y. Huang, “Rotatable diffractive gratings based on hybrid-aligned cholesteric liquid crystals,” Opt. Express 20(24), 26837–26844 (2012).
[Crossref] [PubMed]

2011 (3)

N. Podoliak, O. Buchnev, O. Buluy, G. D’Alessandro, M. Kaczmarek, Y. Reznikov, and T. J. Sluckin, “Macroscopic optical effects in low concentration ferronematics,” Soft Matter 7(10), 4742–4749 (2011).
[Crossref]

M. Castriota, A. Fasanella, E. Cazzanelli, L. De Sio, R. Caputo, and C. Umeton, “In situ polarized micro-Raman investigation of periodic structures realized in liquid-crystalline composite materials,” Opt. Express 19(11), 10494–10500 (2011).
[Crossref] [PubMed]

S. M. Morris, D. J. Gardiner, F. Castles, P. J. W. Hands, T. D. Wilkinson, and H. J. Coles, “Fast-switching phase gratings using in-plane addressed short-pitch polymer stabilized chiral nematic liquid crystals,” Appl. Phys. Lett. 99(25), 253502 (2011).
[Crossref]

2009 (1)

R. K. Komanduri and M. J. Escuti, “High efficiency reflective liquid crystal polarization gratings,” Appl. Phys. Lett. 95(9), 091106 (2009).
[Crossref]

2008 (2)

C.-J. Lin, Y.-T. Li, C.-F. Hsieh, R.-P. Pan, and C.-L. Pan, “Manipulating terahertz wave by a magnetically tunable liquid crystal phase grating,” Opt. Express 16(5), 2995–3001 (2008).
[Crossref] [PubMed]

M. Fally, M. Ellabban, and I. Drevensek-Olenik, “Out-of-phase mixed holographic gratings: a quantative analysis,” Opt. Express 16(9), 6528–6536 (2008).
[Crossref] [PubMed]

2007 (1)

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Electrically tunable two-dimensional liquid crystals gratings induced by polarization holography,” Opt. Express 15(9), 5872–5878 (2007).
[Crossref] [PubMed]

2006 (2)

I. Drevenšek -Olenik, M. Copic, M. E. Sousa, and G. P. Crawford, “Optical retardation of in-plane switched polymer dispersed liquid crystals,” J. Appl. Phys. 100(3), 033515 (2006).
[Crossref]

I. Drevenšek -Olenik, M. Fally, and M. A. Ellabban, “Optical anisotropy of holographic polymer-dispersed liquid crystal transmission gratings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(2), 021707 (2006).
[Crossref] [PubMed]

2005 (2)

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” IEEE J. Display Technol. 1(1), 51–61 (2005).
[Crossref]

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

2004 (3)

C.-Y. Chen, C.-F. Hsieh, Y.-F. Lin, R.-P. Pan, and C.-L. Pan, “Magnetically tunable room-temperature 2 π liquid crystal terahertz phase shifter,” Opt. Express 12(12), 2625–2630 (2004).
[Crossref] [PubMed]

R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V. Sukhov, “Development of a new kind of switchable holographic grating made of liquid-crystal films separated by slices of polymeric material,” Opt. Lett. 29(11), 1261–1263 (2004).
[Crossref] [PubMed]

V. I. Zadorozhnii, I. P. Pinkevich, V. Y. Reshetnyak, S. V. Burylov, and T. J. Sluckin, “Adsorption phenomena and macroscopic properties of ferronematics caused by orientational interactions,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 409(1), 285–292 (2004).
[Crossref]

2003 (4)

P. Kopčanský, I. Potočová, M. Koneracká, M. Timko, J. Jadzyn, G. Czechowski, and A. M. G. Jansen, “The structural instabilities of ferronematic based on liquid crystal with low negative magnetic susceptibility,” Phys. Status Solidi, B Basic Res. 236(2), 450–453 (2003).
[Crossref]

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable Holographic Polymer-Dispersed Liquid Crystal Reflection Gratings Based on Thiol-Ene Photopolymerization,” Chem. Mater. 15(12), 2477–2484 (2003).
[Crossref]

C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83(22), 4497–4499 (2003).
[Crossref]

M. Honma and T. Nose, “Polarization-independent liquid crystal grating fabricated by microrubbing process,” Jpn. J. Appl. Phys. 42(11), 6992–6997 (2003).
[Crossref]

2002 (1)

O. Buluy, E. Ouskova, Y. Reznikov, A. Glushchenko, J. West, and V. Reshetnyak, “Magnetically induced alignment of FNS,” J. Magn. Mater. 252, 159–161 (2002).
[Crossref]

2001 (1)

M. Jazbinšek, I. Drevensek-Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90(8), 3831–3837 (2001).
[Crossref]

2000 (2)

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic Polymer-Dispersed Liquid Crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[Crossref]

C. C. Bowley and G. P. Crawford, “Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials,” Appl. Phys. Lett. 76(16), 2235–2237 (2000).
[Crossref]

1999 (2)

K. Kato, T. Hisaki, and D. Munekazu, “In-Plane Operation of Alignment-Controlled Holographic Polymer-Dispersed Liquid Crystal,” Jpn. J. Appl. Phys. 38(3A), 1466–1469 (1999).
[Crossref]

Y. L. Raikher and V. I. Stepanov, “Transient field-induced birefringence in a ferronematic,” J. Magn. Mater. 201(1–3), 182–185 (1999).
[Crossref]

1998 (1)

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

1997 (2)

V. K. Gupta and N. L. Abbot, “Design of surfaces for patterned alignment of liquid crystals on planar curved substrates,” Science 276(5318), 1533–1536 (1997).
[Crossref]

C. M. Titus and P. J. Bos, “Efficient, polarization-independent, reflective liquid crystal phase grating,” Appl. Phys. Lett. 71(16), 2239–2241 (1997).
[Crossref]

1995 (2)

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electrooptically controlled liquid-crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[Crossref]

M. Koneracká, V. Kellnerova, P. Kopčanský, and T. Kuczynski, “Study of magnetic Fredericksz transition in ferronematic,” J. Magn. Mater. 140, 1455–1456 (1995).
[Crossref]

1985 (1)

M. Rubin, “Optical properties of soda lime silica glasses,” Sol. Energy Mater. 12(4), 275–288 (1985).
[Crossref]

1983 (1)

S. H. Chen and N. M. Amer, “Observation of macroscopic collective behavior and new texture in magnetically doped liquid crystals,” Phys. Rev. Lett. 51(25), 2298–2301 (1983).
[Crossref]

1981 (1)

T. K. Gaylord and M. G. Moharam, “Thin and thick gratings: terminology clarification,” Appl. Opt. 20(19), 3271–3273 (1981).
[Crossref] [PubMed]

1978 (1)

D. C. Flanders, D. C. Shaver, and H. I. Smith, “Alignment of liquid-crystals using submicrometer periodicity gratings,” Appl. Phys. Lett. 32(10), 597–598 (1978).
[Crossref]

1975 (1)

A. E. Costa Pereira and A. Rosato, “Transmission of Nematic Liquid Crystals in Electric Fields,” Revista Brasileira de Fisica. 5(2), 237–241 (1975).

1973 (1)

D. W. Berreman, “Alignment of liquid crystals by grooved surfaces,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 23(3–4), 215–231 (1973).
[Crossref]

1970 (1)

F. Brochard and P. G. De Gennes, “Theory of magnetic suspensions in liquid crystals,” J. Phys. (Paris) 31(7), 691–708 (1970).
[Crossref]

Abbot, N. L.

V. K. Gupta and N. L. Abbot, “Design of surfaces for patterned alignment of liquid crystals on planar curved substrates,” Science 276(5318), 1533–1536 (1997).
[Crossref]

Ackerman, P. J.

Q. Liu, P. J. Ackerman, T. C. Lubensky, and I. I. Smalyukh, “Biaxial ferromagnetic liquid crystal colloids,” Proc. Natl. Acad. Sci. U.S.A. 113(38), 10479–10484 (2016).
[Crossref] [PubMed]

Amer, N. M.

S. H. Chen and N. M. Amer, “Observation of macroscopic collective behavior and new texture in magnetically doped liquid crystals,” Phys. Rev. Lett. 51(25), 2298–2301 (1983).
[Crossref]

Bai, J.

L. Yang, F. Fan, M. Chen, X. Zhang, J. Bai, and S. Chang, “Magnetically induced birefringence of randomly aligned liquid crystals in the terahertz regime under weak magnetic field,” Opt. Mater. Express 6(9), 2803–2811 (2016).
[Crossref]

Bavykin, D. V.

N. Podoliak, O. Buchnev, D. V. Bavykin, A. N. Kulak, M. Kaczmarek, and T. J. Sluckin, “Magnetite nanorod thermotropic liquid crystal colloids: synthesis, optics and theory,” J. Colloid Interface Sci. 386(1), 158–166 (2012).
[Crossref] [PubMed]

Beléndez, A.

R. Fernández, S. Gallego, A. Márquez, J. Francés, F. J. Martínez, I. Pascual, and A. Beléndez, “Analysis of holographic polymer-dispersed liquid crystals (HPDLCs) for tunable low frequency diffractive optical elements recording,” Opt. Mater. 76, 295–301 (2018).
[Crossref]

Berreman, D. W.

D. W. Berreman, “Alignment of liquid crystals by grooved surfaces,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 23(3–4), 215–231 (1973).
[Crossref]

Bisoyi, H. K.

H. Jau, Y. Li, C. Li, C. Chen, C. Wang, H. K. Bisoyi, T. Lin, T. J. Bunning, and Q. Li, “Light‐Driven Wide‐Range Nonmechanical Beam Steering and Spectrum Scanning Based on a Self‐Organized Liquid Crystal Grating Enabled by a Chiral Molecular Switch,” Adv. Opt. Mater. 3(2), 166–170 (2015).
[Crossref]

Bos, P. J.

C. M. Titus and P. J. Bos, “Efficient, polarization-independent, reflective liquid crystal phase grating,” Appl. Phys. Lett. 71(16), 2239–2241 (1997).
[Crossref]

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electrooptically controlled liquid-crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[Crossref]

Bowley, C. C.

C. C. Bowley and G. P. Crawford, “Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials,” Appl. Phys. Lett. 76(16), 2235–2237 (2000).
[Crossref]

Brand, H. R.

T. Potisk, H. Pleiner, D. Svenšek, and H. R. Brand, “Effects of flow on the dynamics of a ferromagnetic nematic liquid crystal,” Phys. Rev. E 97(4), 042705 (2018).
[Crossref] [PubMed]

Brandelik, D. M.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable Holographic Polymer-Dispersed Liquid Crystal Reflection Gratings Based on Thiol-Ene Photopolymerization,” Chem. Mater. 15(12), 2477–2484 (2003).
[Crossref]

Brochard, F.

F. Brochard and P. G. De Gennes, “Theory of magnetic suspensions in liquid crystals,” J. Phys. (Paris) 31(7), 691–708 (1970).
[Crossref]

Buchnev, O.

N. Podoliak, O. Buchnev, D. V. Bavykin, A. N. Kulak, M. Kaczmarek, and T. J. Sluckin, “Magnetite nanorod thermotropic liquid crystal colloids: synthesis, optics and theory,” J. Colloid Interface Sci. 386(1), 158–166 (2012).
[Crossref] [PubMed]

N. Podoliak, O. Buchnev, O. Buluy, G. D’Alessandro, M. Kaczmarek, Y. Reznikov, and T. J. Sluckin, “Macroscopic optical effects in low concentration ferronematics,” Soft Matter 7(10), 4742–4749 (2011).
[Crossref]

Buluy, O.

N. Podoliak, O. Buchnev, O. Buluy, G. D’Alessandro, M. Kaczmarek, Y. Reznikov, and T. J. Sluckin, “Macroscopic optical effects in low concentration ferronematics,” Soft Matter 7(10), 4742–4749 (2011).
[Crossref]

O. Buluy, E. Ouskova, Y. Reznikov, A. Glushchenko, J. West, and V. Reshetnyak, “Magnetically induced alignment of FNS,” J. Magn. Mater. 252, 159–161 (2002).
[Crossref]

Buluy, O. G.

M. F. Prodanov, O. G. Buluy, E. V. Popova, S. A. Gamzaeva, Y. O. Reznikov, and V. V. Vashchenko, “Magnetic actuation of a thermodynamically stable colloid of ferromagnetic nanoparticles in a liquid crystal,” Soft Matter 12(31), 6601–6609 (2016).
[Crossref] [PubMed]

Bunning, T. J.

V. Yu. Reshetnyak, V. I. Zadorozhnii, I. P. Pinkevych, T. J. Bunning, and D. R. Evans, “Surface plasmon absorption in MoS2 and graphene-MoS2 micro-gratings and the impact of a liquid crystal substrate,” AIP Adv. 8(4), 045024 (2018).
[Crossref]

H. Jau, Y. Li, C. Li, C. Chen, C. Wang, H. K. Bisoyi, T. Lin, T. J. Bunning, and Q. Li, “Light‐Driven Wide‐Range Nonmechanical Beam Steering and Spectrum Scanning Based on a Self‐Organized Liquid Crystal Grating Enabled by a Chiral Molecular Switch,” Adv. Opt. Mater. 3(2), 166–170 (2015).
[Crossref]

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable Holographic Polymer-Dispersed Liquid Crystal Reflection Gratings Based on Thiol-Ene Photopolymerization,” Chem. Mater. 15(12), 2477–2484 (2003).
[Crossref]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic Polymer-Dispersed Liquid Crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[Crossref]

Burylov, S.

N. Tomašovičová, S. Burylov, V. Gdovinová, A. Tarasov, J. Kovac, N. Burylova, A. Voroshilov, P. Kopčanský, and J. Jadżyn, “Magnetic Freedericksz transition in a ferronematic liquid crystal doped with spindle magnetic particles,” J. Mol. Liq. 267, 390–397 (2018).
[Crossref]

Burylov, S. V.

V. I. Zadorozhnii, I. P. Pinkevich, V. Y. Reshetnyak, S. V. Burylov, and T. J. Sluckin, “Adsorption phenomena and macroscopic properties of ferronematics caused by orientational interactions,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 409(1), 285–292 (2004).
[Crossref]

Burylova, N.

N. Tomašovičová, S. Burylov, V. Gdovinová, A. Tarasov, J. Kovac, N. Burylova, A. Voroshilov, P. Kopčanský, and J. Jadżyn, “Magnetic Freedericksz transition in a ferronematic liquid crystal doped with spindle magnetic particles,” J. Mol. Liq. 267, 390–397 (2018).
[Crossref]

Callan-Jones, A.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Caputo, R.

M. Castriota, A. Fasanella, E. Cazzanelli, L. De Sio, R. Caputo, and C. Umeton, “In situ polarized micro-Raman investigation of periodic structures realized in liquid-crystalline composite materials,” Opt. Express 19(11), 10494–10500 (2011).
[Crossref] [PubMed]

R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V. Sukhov, “Development of a new kind of switchable holographic grating made of liquid-crystal films separated by slices of polymeric material,” Opt. Lett. 29(11), 1261–1263 (2004).
[Crossref] [PubMed]

Castles, F.

S. M. Morris, D. J. Gardiner, F. Castles, P. J. W. Hands, T. D. Wilkinson, and H. J. Coles, “Fast-switching phase gratings using in-plane addressed short-pitch polymer stabilized chiral nematic liquid crystals,” Appl. Phys. Lett. 99(25), 253502 (2011).
[Crossref]

Castriota, M.

M. Castriota, A. Fasanella, E. Cazzanelli, L. De Sio, R. Caputo, and C. Umeton, “In situ polarized micro-Raman investigation of periodic structures realized in liquid-crystalline composite materials,” Opt. Express 19(11), 10494–10500 (2011).
[Crossref] [PubMed]

Cazzanelli, E.

M. Castriota, A. Fasanella, E. Cazzanelli, L. De Sio, R. Caputo, and C. Umeton, “In situ polarized micro-Raman investigation of periodic structures realized in liquid-crystalline composite materials,” Opt. Express 19(11), 10494–10500 (2011).
[Crossref] [PubMed]

Chandra, S.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable Holographic Polymer-Dispersed Liquid Crystal Reflection Gratings Based on Thiol-Ene Photopolymerization,” Chem. Mater. 15(12), 2477–2484 (2003).
[Crossref]

Chang, S.

L. Yang, F. Fan, M. Chen, X. Zhang, J. Bai, and S. Chang, “Magnetically induced birefringence of randomly aligned liquid crystals in the terahertz regime under weak magnetic field,” Opt. Mater. Express 6(9), 2803–2811 (2016).
[Crossref]

Chen, C.

H. Jau, Y. Li, C. Li, C. Chen, C. Wang, H. K. Bisoyi, T. Lin, T. J. Bunning, and Q. Li, “Light‐Driven Wide‐Range Nonmechanical Beam Steering and Spectrum Scanning Based on a Self‐Organized Liquid Crystal Grating Enabled by a Chiral Molecular Switch,” Adv. Opt. Mater. 3(2), 166–170 (2015).
[Crossref]

Chen, C.-Y.

C.-Y. Chen, C.-F. Hsieh, Y.-F. Lin, R.-P. Pan, and C.-L. Pan, “Magnetically tunable room-temperature 2 π liquid crystal terahertz phase shifter,” Opt. Express 12(12), 2625–2630 (2004).
[Crossref] [PubMed]

C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83(22), 4497–4499 (2003).
[Crossref]

Chen, J.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electrooptically controlled liquid-crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[Crossref]

Chen, M.

L. Yang, F. Fan, M. Chen, X. Zhang, J. Bai, and S. Chang, “Magnetically induced birefringence of randomly aligned liquid crystals in the terahertz regime under weak magnetic field,” Opt. Mater. Express 6(9), 2803–2811 (2016).
[Crossref]

Chen, S. H.

S. H. Chen and N. M. Amer, “Observation of macroscopic collective behavior and new texture in magnetically doped liquid crystals,” Phys. Rev. Lett. 51(25), 2298–2301 (1983).
[Crossref]

Chiang, R. H.

C. H. Lin, R. H. Chiang, S. H. Liu, C. T. Kuo, and C. Y. Huang, “Rotatable diffractive gratings based on hybrid-aligned cholesteric liquid crystals,” Opt. Express 20(24), 26837–26844 (2012).
[Crossref] [PubMed]

Chigrinov, V. G.

J. Sun, A. K. Srivastava, L. Wang, V. G. Chigrinov, and H. S. Kwok, “Optically tunable and rewritable diffraction grating with photoaligned liquid crystals,” Opt. Lett. 38(13), 2342–2344 (2013).
[Crossref] [PubMed]

F. Fan, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Switchable liquid crystal grating with sub millisecond response,” Appl. Phys. Lett. 100(11), 111105 (2012).
[Crossref]

Cipparrone, G.

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Electrically tunable two-dimensional liquid crystals gratings induced by polarization holography,” Opt. Express 15(9), 5872–5878 (2007).
[Crossref] [PubMed]

Coga, L.

M. Ličen, I. Drevenšek-Olenik, L. Čoga, S. Gyergyek, S. Kralj, M. Fally, C. Pruner, P. Geltenbort, U. Gasser, G. Nagy, and J. Klepp, “Neutron diffraction from superparamagnetic colloidal crystals,” J. Phys. Chem. Solids 110, 234–240 (2017).
[Crossref]

Coles, H. J.

S. M. Morris, D. J. Gardiner, F. Castles, P. J. W. Hands, T. D. Wilkinson, and H. J. Coles, “Fast-switching phase gratings using in-plane addressed short-pitch polymer stabilized chiral nematic liquid crystals,” Appl. Phys. Lett. 99(25), 253502 (2011).
[Crossref]

Copar, S.

P. Medle Rupnik, D. Lisjak, M. Čopič, S. Čopar, and A. Mertelj, “Field-controlled structures in ferromagnetic cholesteric liquid crystals,” Sci. Adv. 3(10), e1701336 (2017).
[Crossref] [PubMed]

Copic, M.

N. Sebastián, N. Osterman, D. Lisjak, M. Čopič, and A. Mertelj, “Director reorientation dynamics of ferromagnetic nematic liquid crystals,” Soft Matter 14(35), 7180–7189 (2018).
[Crossref] [PubMed]

P. Medle Rupnik, D. Lisjak, M. Čopič, S. Čopar, and A. Mertelj, “Field-controlled structures in ferromagnetic cholesteric liquid crystals,” Sci. Adv. 3(10), e1701336 (2017).
[Crossref] [PubMed]

A. Mertelj, D. Lisjak, M. Drofenik, and M. Copič, “Ferromagnetism in suspensions of magnetic platelets in liquid crystal,” Nature 504(7479), 237–241 (2013).
[Crossref] [PubMed]

I. Drevenšek -Olenik, M. Copic, M. E. Sousa, and G. P. Crawford, “Optical retardation of in-plane switched polymer dispersed liquid crystals,” J. Appl. Phys. 100(3), 033515 (2006).
[Crossref]

Costa Pereira, A. E.

A. E. Costa Pereira and A. Rosato, “Transmission of Nematic Liquid Crystals in Electric Fields,” Revista Brasileira de Fisica. 5(2), 237–241 (1975).

Crawford, G. P.

I. Drevenšek -Olenik, M. Copic, M. E. Sousa, and G. P. Crawford, “Optical retardation of in-plane switched polymer dispersed liquid crystals,” J. Appl. Phys. 100(3), 033515 (2006).
[Crossref]

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

M. Jazbinšek, I. Drevensek-Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90(8), 3831–3837 (2001).
[Crossref]

C. C. Bowley and G. P. Crawford, “Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials,” Appl. Phys. Lett. 76(16), 2235–2237 (2000).
[Crossref]

Cui, W.

W. Li, W. Cui, W. Zhang, A. Kastelic, I. Drevensek-Olenik, and X. Zhang, “Characterisation of POLICRYPS structures assembled through a two-step process,” Liq. Cryst. 41(9), 1315–1322 (2014).
[Crossref]

Czechowski, G.

P. Kopčanský, I. Potočová, M. Koneracká, M. Timko, J. Jadzyn, G. Czechowski, and A. M. G. Jansen, “The structural instabilities of ferronematic based on liquid crystal with low negative magnetic susceptibility,” Phys. Status Solidi, B Basic Res. 236(2), 450–453 (2003).
[Crossref]

D’Alessandro, G.

N. Podoliak, O. Buchnev, O. Buluy, G. D’Alessandro, M. Kaczmarek, Y. Reznikov, and T. J. Sluckin, “Macroscopic optical effects in low concentration ferronematics,” Soft Matter 7(10), 4742–4749 (2011).
[Crossref]

De Gennes, P. G.

F. Brochard and P. G. De Gennes, “Theory of magnetic suspensions in liquid crystals,” J. Phys. (Paris) 31(7), 691–708 (1970).
[Crossref]

De Sio, L.

L. De Sio, L. Ricciardi, S. Serak, M. La Deda, N. Tabiryan, and C. Umeton, “Photo-sensitive liquid crystals for optically controlled diffraction gratings,” J. Mater. Chem. 22(14), 6669–6673 (2012).
[Crossref]

M. Castriota, A. Fasanella, E. Cazzanelli, L. De Sio, R. Caputo, and C. Umeton, “In situ polarized micro-Raman investigation of periodic structures realized in liquid-crystalline composite materials,” Opt. Express 19(11), 10494–10500 (2011).
[Crossref] [PubMed]

R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V. Sukhov, “Development of a new kind of switchable holographic grating made of liquid-crystal films separated by slices of polymeric material,” Opt. Lett. 29(11), 1261–1263 (2004).
[Crossref] [PubMed]

Dhara, S.

M. Mur, J. A. Sofi, I. Kvasić, A. Mertelj, D. Lisjak, V. Niranjan, I. Muševič, and S. Dhara, “Magnetic-field tuning of whispering gallery mode lasing from ferromagnetic nematic liquid crystal microdroplets,” Opt. Express 25(2), 1073–1083 (2017).
[Crossref] [PubMed]

Drevenšek -Olenik, I.

I. Drevenšek -Olenik, M. Fally, and M. A. Ellabban, “Optical anisotropy of holographic polymer-dispersed liquid crystal transmission gratings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(2), 021707 (2006).
[Crossref] [PubMed]

I. Drevenšek -Olenik, M. Copic, M. E. Sousa, and G. P. Crawford, “Optical retardation of in-plane switched polymer dispersed liquid crystals,” J. Appl. Phys. 100(3), 033515 (2006).
[Crossref]

Drevensek-Olenik, I.

Z. Ji, X. Zhang, B. Shi, W. Li, W. Luo, I. Drevensek-Olenik, Q. Wu, and J. Xu, “Compartmentalized liquid crystal alignment induced by sparse polymer ribbons with surface relief gratings,” Opt. Lett. 41(2), 336–339 (2016).
[Crossref] [PubMed]

W. Li, W. Cui, W. Zhang, A. Kastelic, I. Drevensek-Olenik, and X. Zhang, “Characterisation of POLICRYPS structures assembled through a two-step process,” Liq. Cryst. 41(9), 1315–1322 (2014).
[Crossref]

M. Fally, M. Ellabban, and I. Drevensek-Olenik, “Out-of-phase mixed holographic gratings: a quantative analysis,” Opt. Express 16(9), 6528–6536 (2008).
[Crossref] [PubMed]

M. Jazbinšek, I. Drevensek-Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90(8), 3831–3837 (2001).
[Crossref]

Drevenšek-Olenik, I.

M. Ličen, I. Drevenšek-Olenik, L. Čoga, S. Gyergyek, S. Kralj, M. Fally, C. Pruner, P. Geltenbort, U. Gasser, G. Nagy, and J. Klepp, “Neutron diffraction from superparamagnetic colloidal crystals,” J. Phys. Chem. Solids 110, 234–240 (2017).
[Crossref]

Drofenik, M.

A. Mertelj, D. Lisjak, M. Drofenik, and M. Copič, “Ferromagnetism in suspensions of magnetic platelets in liquid crystal,” Nature 504(7479), 237–241 (2013).
[Crossref] [PubMed]

Eakin, J. N.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Éber, N.

T. Tóth-Katona, P. Salamon, N. Éber, N. Tomašovičová, Z. Mitróová, and P. Kopčanský, “High concentration ferronematics in low magnetic fields,” J. Magn. Mater. 372, 117–121 (2014).
[Crossref]

Ellabban, M.

M. Fally, M. Ellabban, and I. Drevensek-Olenik, “Out-of-phase mixed holographic gratings: a quantative analysis,” Opt. Express 16(9), 6528–6536 (2008).
[Crossref] [PubMed]

Ellabban, M. A.

I. Drevenšek -Olenik, M. Fally, and M. A. Ellabban, “Optical anisotropy of holographic polymer-dispersed liquid crystal transmission gratings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(2), 021707 (2006).
[Crossref] [PubMed]

El-Sayed, M. A.

T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
[Crossref] [PubMed]

Escuti, M. J.

R. K. Komanduri and M. J. Escuti, “High efficiency reflective liquid crystal polarization gratings,” Appl. Phys. Lett. 95(9), 091106 (2009).
[Crossref]

Evans, D. R.

V. Yu. Reshetnyak, V. I. Zadorozhnii, I. P. Pinkevych, T. J. Bunning, and D. R. Evans, “Surface plasmon absorption in MoS2 and graphene-MoS2 micro-gratings and the impact of a liquid crystal substrate,” AIP Adv. 8(4), 045024 (2018).
[Crossref]

Fally, M.

M. Ličen, I. Drevenšek-Olenik, L. Čoga, S. Gyergyek, S. Kralj, M. Fally, C. Pruner, P. Geltenbort, U. Gasser, G. Nagy, and J. Klepp, “Neutron diffraction from superparamagnetic colloidal crystals,” J. Phys. Chem. Solids 110, 234–240 (2017).
[Crossref]

M. Fally, M. Ellabban, and I. Drevensek-Olenik, “Out-of-phase mixed holographic gratings: a quantative analysis,” Opt. Express 16(9), 6528–6536 (2008).
[Crossref] [PubMed]

I. Drevenšek -Olenik, M. Fally, and M. A. Ellabban, “Optical anisotropy of holographic polymer-dispersed liquid crystal transmission gratings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(2), 021707 (2006).
[Crossref] [PubMed]

Fan, F.

L. Yang, F. Fan, M. Chen, X. Zhang, J. Bai, and S. Chang, “Magnetically induced birefringence of randomly aligned liquid crystals in the terahertz regime under weak magnetic field,” Opt. Mater. Express 6(9), 2803–2811 (2016).
[Crossref]

F. Fan, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Switchable liquid crystal grating with sub millisecond response,” Appl. Phys. Lett. 100(11), 111105 (2012).
[Crossref]

Fan, Y.-X.

L. Zhang, Y.-X. Fan, H. Liu, X. Han, W.-Q. Lu, and Z.-Y. Tao, “A magnetically tunable non-Bragg defect mode in a corrugated waveguide filled with liquid crystals,” Phys. Lett. A 382(14), 1000–1005 (2018).
[Crossref]

L. Zhang, Y.-X. Fan, H. Liu, L.-L. Xu, J.-L. Xue, and Z.-Y. Tao, “Hypersensitive and tunable terahertz wave switch based on non-Bragg structure filled with liquid crystal,” J. Lit. Technol. 35(14), 3092–3098 (2017).
[Crossref]

Fasanella, A.

M. Castriota, A. Fasanella, E. Cazzanelli, L. De Sio, R. Caputo, and C. Umeton, “In situ polarized micro-Raman investigation of periodic structures realized in liquid-crystalline composite materials,” Opt. Express 19(11), 10494–10500 (2011).
[Crossref] [PubMed]

Feng, Z.

Z. Feng and K. Ishikawa, “High-performance switchable grating based on pre-transitional effect of antiferroelectric liquid crystals,” Opt. Express 26(24), 31976–31982 (2018).
[Crossref] [PubMed]

Fernández, R.

R. Fernández, S. Gallego, A. Márquez, J. Francés, F. J. Martínez, I. Pascual, and A. Beléndez, “Analysis of holographic polymer-dispersed liquid crystals (HPDLCs) for tunable low frequency diffractive optical elements recording,” Opt. Mater. 76, 295–301 (2018).
[Crossref]

Flanders, D. C.

D. C. Flanders, D. C. Shaver, and H. I. Smith, “Alignment of liquid-crystals using submicrometer periodicity gratings,” Appl. Phys. Lett. 32(10), 597–598 (1978).
[Crossref]

Fontecchio, A. K.

M. Jazbinšek, I. Drevensek-Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90(8), 3831–3837 (2001).
[Crossref]

Francés, J.

R. Fernández, S. Gallego, A. Márquez, J. Francés, F. J. Martínez, I. Pascual, and A. Beléndez, “Analysis of holographic polymer-dispersed liquid crystals (HPDLCs) for tunable low frequency diffractive optical elements recording,” Opt. Mater. 76, 295–301 (2018).
[Crossref]

Gallego, S.

R. Fernández, S. Gallego, A. Márquez, J. Francés, F. J. Martínez, I. Pascual, and A. Beléndez, “Analysis of holographic polymer-dispersed liquid crystals (HPDLCs) for tunable low frequency diffractive optical elements recording,” Opt. Mater. 76, 295–301 (2018).
[Crossref]

Gamzaeva, S. A.

M. F. Prodanov, O. G. Buluy, E. V. Popova, S. A. Gamzaeva, Y. O. Reznikov, and V. V. Vashchenko, “Magnetic actuation of a thermodynamically stable colloid of ferromagnetic nanoparticles in a liquid crystal,” Soft Matter 12(31), 6601–6609 (2016).
[Crossref] [PubMed]

Gardiner, D. J.

S. M. Morris, D. J. Gardiner, F. Castles, P. J. W. Hands, T. D. Wilkinson, and H. J. Coles, “Fast-switching phase gratings using in-plane addressed short-pitch polymer stabilized chiral nematic liquid crystals,” Appl. Phys. Lett. 99(25), 253502 (2011).
[Crossref]

Gasser, U.

M. Ličen, I. Drevenšek-Olenik, L. Čoga, S. Gyergyek, S. Kralj, M. Fally, C. Pruner, P. Geltenbort, U. Gasser, G. Nagy, and J. Klepp, “Neutron diffraction from superparamagnetic colloidal crystals,” J. Phys. Chem. Solids 110, 234–240 (2017).
[Crossref]

Gauza, S.

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” IEEE J. Display Technol. 1(1), 51–61 (2005).
[Crossref]

Gaylord, T. K.

T. K. Gaylord and M. G. Moharam, “Thin and thick gratings: terminology clarification,” Appl. Opt. 20(19), 3271–3273 (1981).
[Crossref] [PubMed]

Gdovinová, V.

N. Tomašovičová, S. Burylov, V. Gdovinová, A. Tarasov, J. Kovac, N. Burylova, A. Voroshilov, P. Kopčanský, and J. Jadżyn, “Magnetic Freedericksz transition in a ferronematic liquid crystal doped with spindle magnetic particles,” J. Mol. Liq. 267, 390–397 (2018).
[Crossref]

Geltenbort, P.

M. Ličen, I. Drevenšek-Olenik, L. Čoga, S. Gyergyek, S. Kralj, M. Fally, C. Pruner, P. Geltenbort, U. Gasser, G. Nagy, and J. Klepp, “Neutron diffraction from superparamagnetic colloidal crystals,” J. Phys. Chem. Solids 110, 234–240 (2017).
[Crossref]

Glushchenko, A.

O. Buluy, E. Ouskova, Y. Reznikov, A. Glushchenko, J. West, and V. Reshetnyak, “Magnetically induced alignment of FNS,” J. Magn. Mater. 252, 159–161 (2002).
[Crossref]

Gupta, V. K.

V. K. Gupta and N. L. Abbot, “Design of surfaces for patterned alignment of liquid crystals on planar curved substrates,” Science 276(5318), 1533–1536 (1997).
[Crossref]

Gyergyek, S.

M. Ličen, I. Drevenšek-Olenik, L. Čoga, S. Gyergyek, S. Kralj, M. Fally, C. Pruner, P. Geltenbort, U. Gasser, G. Nagy, and J. Klepp, “Neutron diffraction from superparamagnetic colloidal crystals,” J. Phys. Chem. Solids 110, 234–240 (2017).
[Crossref]

Han, X.

L. Zhang, Y.-X. Fan, H. Liu, X. Han, W.-Q. Lu, and Z.-Y. Tao, “A magnetically tunable non-Bragg defect mode in a corrugated waveguide filled with liquid crystals,” Phys. Lett. A 382(14), 1000–1005 (2018).
[Crossref]

Hands, P. J. W.

S. M. Morris, D. J. Gardiner, F. Castles, P. J. W. Hands, T. D. Wilkinson, and H. J. Coles, “Fast-switching phase gratings using in-plane addressed short-pitch polymer stabilized chiral nematic liquid crystals,” Appl. Phys. Lett. 99(25), 253502 (2011).
[Crossref]

Hisaki, T.

K. Kato, T. Hisaki, and D. Munekazu, “In-Plane Operation of Alignment-Controlled Holographic Polymer-Dispersed Liquid Crystal,” Jpn. J. Appl. Phys. 38(3A), 1466–1469 (1999).
[Crossref]

Honma, M.

M. Honma and T. Nose, “Polarization-independent liquid crystal grating fabricated by microrubbing process,” Jpn. J. Appl. Phys. 42(11), 6992–6997 (2003).
[Crossref]

Hsieh, C.-F.

C.-J. Lin, Y.-T. Li, C.-F. Hsieh, R.-P. Pan, and C.-L. Pan, “Manipulating terahertz wave by a magnetically tunable liquid crystal phase grating,” Opt. Express 16(5), 2995–3001 (2008).
[Crossref] [PubMed]

C.-Y. Chen, C.-F. Hsieh, Y.-F. Lin, R.-P. Pan, and C.-L. Pan, “Magnetically tunable room-temperature 2 π liquid crystal terahertz phase shifter,” Opt. Express 12(12), 2625–2630 (2004).
[Crossref] [PubMed]

Huang, C. Y.

C. H. Lin, R. H. Chiang, S. H. Liu, C. T. Kuo, and C. Y. Huang, “Rotatable diffractive gratings based on hybrid-aligned cholesteric liquid crystals,” Opt. Express 20(24), 26837–26844 (2012).
[Crossref] [PubMed]

Ishikawa, K.

Z. Feng and K. Ishikawa, “High-performance switchable grating based on pre-transitional effect of antiferroelectric liquid crystals,” Opt. Express 26(24), 31976–31982 (2018).
[Crossref] [PubMed]

Jadzyn, J.

N. Tomašovičová, S. Burylov, V. Gdovinová, A. Tarasov, J. Kovac, N. Burylova, A. Voroshilov, P. Kopčanský, and J. Jadżyn, “Magnetic Freedericksz transition in a ferronematic liquid crystal doped with spindle magnetic particles,” J. Mol. Liq. 267, 390–397 (2018).
[Crossref]

P. Kopčanský, I. Potočová, M. Koneracká, M. Timko, J. Jadzyn, G. Czechowski, and A. M. G. Jansen, “The structural instabilities of ferronematic based on liquid crystal with low negative magnetic susceptibility,” Phys. Status Solidi, B Basic Res. 236(2), 450–453 (2003).
[Crossref]

Jansen, A. M. G.

P. Kopčanský, I. Potočová, M. Koneracká, M. Timko, J. Jadzyn, G. Czechowski, and A. M. G. Jansen, “The structural instabilities of ferronematic based on liquid crystal with low negative magnetic susceptibility,” Phys. Status Solidi, B Basic Res. 236(2), 450–453 (2003).
[Crossref]

Jau, H.

H. Jau, Y. Li, C. Li, C. Chen, C. Wang, H. K. Bisoyi, T. Lin, T. J. Bunning, and Q. Li, “Light‐Driven Wide‐Range Nonmechanical Beam Steering and Spectrum Scanning Based on a Self‐Organized Liquid Crystal Grating Enabled by a Chiral Molecular Switch,” Adv. Opt. Mater. 3(2), 166–170 (2015).
[Crossref]

Jazbinšek, M.

M. Jazbinšek, I. Drevensek-Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90(8), 3831–3837 (2001).
[Crossref]

Ji, Z.

Z. Ji, X. Zhang, B. Shi, W. Li, W. Luo, I. Drevensek-Olenik, Q. Wu, and J. Xu, “Compartmentalized liquid crystal alignment induced by sparse polymer ribbons with surface relief gratings,” Opt. Lett. 41(2), 336–339 (2016).
[Crossref] [PubMed]

Johnson, D. L.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electrooptically controlled liquid-crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[Crossref]

Kaczmarek, M.

N. Podoliak, O. Buchnev, D. V. Bavykin, A. N. Kulak, M. Kaczmarek, and T. J. Sluckin, “Magnetite nanorod thermotropic liquid crystal colloids: synthesis, optics and theory,” J. Colloid Interface Sci. 386(1), 158–166 (2012).
[Crossref] [PubMed]

N. Podoliak, O. Buchnev, O. Buluy, G. D’Alessandro, M. Kaczmarek, Y. Reznikov, and T. J. Sluckin, “Macroscopic optical effects in low concentration ferronematics,” Soft Matter 7(10), 4742–4749 (2011).
[Crossref]

Kastelic, A.

W. Li, W. Cui, W. Zhang, A. Kastelic, I. Drevensek-Olenik, and X. Zhang, “Characterisation of POLICRYPS structures assembled through a two-step process,” Liq. Cryst. 41(9), 1315–1322 (2014).
[Crossref]

Kato, K.

K. Kato, T. Hisaki, and D. Munekazu, “In-Plane Operation of Alignment-Controlled Holographic Polymer-Dispersed Liquid Crystal,” Jpn. J. Appl. Phys. 38(3A), 1466–1469 (1999).
[Crossref]

Kellnerova, V.

M. Koneracká, V. Kellnerova, P. Kopčanský, and T. Kuczynski, “Study of magnetic Fredericksz transition in ferronematic,” J. Magn. Mater. 140, 1455–1456 (1995).
[Crossref]

Kerszulis, J.

T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
[Crossref] [PubMed]

Kim, H. Y.

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

Klepp, J.

M. Ličen, I. Drevenšek-Olenik, L. Čoga, S. Gyergyek, S. Kralj, M. Fally, C. Pruner, P. Geltenbort, U. Gasser, G. Nagy, and J. Klepp, “Neutron diffraction from superparamagnetic colloidal crystals,” J. Phys. Chem. Solids 110, 234–240 (2017).
[Crossref]

Komanduri, R. K.

R. K. Komanduri and M. J. Escuti, “High efficiency reflective liquid crystal polarization gratings,” Appl. Phys. Lett. 95(9), 091106 (2009).
[Crossref]

Koneracká, M.

P. Kopčanský, I. Potočová, M. Koneracká, M. Timko, J. Jadzyn, G. Czechowski, and A. M. G. Jansen, “The structural instabilities of ferronematic based on liquid crystal with low negative magnetic susceptibility,” Phys. Status Solidi, B Basic Res. 236(2), 450–453 (2003).
[Crossref]

M. Koneracká, V. Kellnerova, P. Kopčanský, and T. Kuczynski, “Study of magnetic Fredericksz transition in ferronematic,” J. Magn. Mater. 140, 1455–1456 (1995).
[Crossref]

König, T. A. F.

T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
[Crossref] [PubMed]

Kopcanský, P.

N. Tomašovičová, S. Burylov, V. Gdovinová, A. Tarasov, J. Kovac, N. Burylova, A. Voroshilov, P. Kopčanský, and J. Jadżyn, “Magnetic Freedericksz transition in a ferronematic liquid crystal doped with spindle magnetic particles,” J. Mol. Liq. 267, 390–397 (2018).
[Crossref]

T. Tóth-Katona, P. Salamon, N. Éber, N. Tomašovičová, Z. Mitróová, and P. Kopčanský, “High concentration ferronematics in low magnetic fields,” J. Magn. Mater. 372, 117–121 (2014).
[Crossref]

P. Kopčanský, I. Potočová, M. Koneracká, M. Timko, J. Jadzyn, G. Czechowski, and A. M. G. Jansen, “The structural instabilities of ferronematic based on liquid crystal with low negative magnetic susceptibility,” Phys. Status Solidi, B Basic Res. 236(2), 450–453 (2003).
[Crossref]

M. Koneracká, V. Kellnerova, P. Kopčanský, and T. Kuczynski, “Study of magnetic Fredericksz transition in ferronematic,” J. Magn. Mater. 140, 1455–1456 (1995).
[Crossref]

Kovac, J.

N. Tomašovičová, S. Burylov, V. Gdovinová, A. Tarasov, J. Kovac, N. Burylova, A. Voroshilov, P. Kopčanský, and J. Jadżyn, “Magnetic Freedericksz transition in a ferronematic liquid crystal doped with spindle magnetic particles,” J. Mol. Liq. 267, 390–397 (2018).
[Crossref]

Kralj, S.

M. Ličen, I. Drevenšek-Olenik, L. Čoga, S. Gyergyek, S. Kralj, M. Fally, C. Pruner, P. Geltenbort, U. Gasser, G. Nagy, and J. Klepp, “Neutron diffraction from superparamagnetic colloidal crystals,” J. Phys. Chem. Solids 110, 234–240 (2017).
[Crossref]

Kuczynski, T.

M. Koneracká, V. Kellnerova, P. Kopčanský, and T. Kuczynski, “Study of magnetic Fredericksz transition in ferronematic,” J. Magn. Mater. 140, 1455–1456 (1995).
[Crossref]

Kulak, A. N.

N. Podoliak, O. Buchnev, D. V. Bavykin, A. N. Kulak, M. Kaczmarek, and T. J. Sluckin, “Magnetite nanorod thermotropic liquid crystal colloids: synthesis, optics and theory,” J. Colloid Interface Sci. 386(1), 158–166 (2012).
[Crossref] [PubMed]

Kuo, C. T.

C. H. Lin, R. H. Chiang, S. H. Liu, C. T. Kuo, and C. Y. Huang, “Rotatable diffractive gratings based on hybrid-aligned cholesteric liquid crystals,” Opt. Express 20(24), 26837–26844 (2012).
[Crossref] [PubMed]

Kvasic, I.

M. Mur, J. A. Sofi, I. Kvasić, A. Mertelj, D. Lisjak, V. Niranjan, I. Muševič, and S. Dhara, “Magnetic-field tuning of whispering gallery mode lasing from ferromagnetic nematic liquid crystal microdroplets,” Opt. Express 25(2), 1073–1083 (2017).
[Crossref] [PubMed]

Kwok, H. S.

J. Sun, A. K. Srivastava, L. Wang, V. G. Chigrinov, and H. S. Kwok, “Optically tunable and rewritable diffraction grating with photoaligned liquid crystals,” Opt. Lett. 38(13), 2342–2344 (2013).
[Crossref] [PubMed]

F. Fan, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Switchable liquid crystal grating with sub millisecond response,” Appl. Phys. Lett. 100(11), 111105 (2012).
[Crossref]

La Deda, M.

L. De Sio, L. Ricciardi, S. Serak, M. La Deda, N. Tabiryan, and C. Umeton, “Photo-sensitive liquid crystals for optically controlled diffraction gratings,” J. Mater. Chem. 22(14), 6669–6673 (2012).
[Crossref]

Ledin, P. A.

T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
[Crossref] [PubMed]

Lee, S. H.

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

Lee, S. L.

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

Li, C.

H. Jau, Y. Li, C. Li, C. Chen, C. Wang, H. K. Bisoyi, T. Lin, T. J. Bunning, and Q. Li, “Light‐Driven Wide‐Range Nonmechanical Beam Steering and Spectrum Scanning Based on a Self‐Organized Liquid Crystal Grating Enabled by a Chiral Molecular Switch,” Adv. Opt. Mater. 3(2), 166–170 (2015).
[Crossref]

Li, J.

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” IEEE J. Display Technol. 1(1), 51–61 (2005).
[Crossref]

Li, Q.

H. Jau, Y. Li, C. Li, C. Chen, C. Wang, H. K. Bisoyi, T. Lin, T. J. Bunning, and Q. Li, “Light‐Driven Wide‐Range Nonmechanical Beam Steering and Spectrum Scanning Based on a Self‐Organized Liquid Crystal Grating Enabled by a Chiral Molecular Switch,” Adv. Opt. Mater. 3(2), 166–170 (2015).
[Crossref]

Li, W.

Z. Ji, X. Zhang, B. Shi, W. Li, W. Luo, I. Drevensek-Olenik, Q. Wu, and J. Xu, “Compartmentalized liquid crystal alignment induced by sparse polymer ribbons with surface relief gratings,” Opt. Lett. 41(2), 336–339 (2016).
[Crossref] [PubMed]

W. Li, W. Cui, W. Zhang, A. Kastelic, I. Drevensek-Olenik, and X. Zhang, “Characterisation of POLICRYPS structures assembled through a two-step process,” Liq. Cryst. 41(9), 1315–1322 (2014).
[Crossref]

Li, Y.

H. Jau, Y. Li, C. Li, C. Chen, C. Wang, H. K. Bisoyi, T. Lin, T. J. Bunning, and Q. Li, “Light‐Driven Wide‐Range Nonmechanical Beam Steering and Spectrum Scanning Based on a Self‐Organized Liquid Crystal Grating Enabled by a Chiral Molecular Switch,” Adv. Opt. Mater. 3(2), 166–170 (2015).
[Crossref]

Li, Y.-T.

C.-J. Lin, Y.-T. Li, C.-F. Hsieh, R.-P. Pan, and C.-L. Pan, “Manipulating terahertz wave by a magnetically tunable liquid crystal phase grating,” Opt. Express 16(5), 2995–3001 (2008).
[Crossref] [PubMed]

Licen, M.

M. Ličen, I. Drevenšek-Olenik, L. Čoga, S. Gyergyek, S. Kralj, M. Fally, C. Pruner, P. Geltenbort, U. Gasser, G. Nagy, and J. Klepp, “Neutron diffraction from superparamagnetic colloidal crystals,” J. Phys. Chem. Solids 110, 234–240 (2017).
[Crossref]

Lin, C. H.

C. H. Lin, R. H. Chiang, S. H. Liu, C. T. Kuo, and C. Y. Huang, “Rotatable diffractive gratings based on hybrid-aligned cholesteric liquid crystals,” Opt. Express 20(24), 26837–26844 (2012).
[Crossref] [PubMed]

Lin, C.-J.

C.-J. Lin, Y.-T. Li, C.-F. Hsieh, R.-P. Pan, and C.-L. Pan, “Manipulating terahertz wave by a magnetically tunable liquid crystal phase grating,” Opt. Express 16(5), 2995–3001 (2008).
[Crossref] [PubMed]

Lin, T.

H. Jau, Y. Li, C. Li, C. Chen, C. Wang, H. K. Bisoyi, T. Lin, T. J. Bunning, and Q. Li, “Light‐Driven Wide‐Range Nonmechanical Beam Steering and Spectrum Scanning Based on a Self‐Organized Liquid Crystal Grating Enabled by a Chiral Molecular Switch,” Adv. Opt. Mater. 3(2), 166–170 (2015).
[Crossref]

Lin, Y.-F.

C.-Y. Chen, C.-F. Hsieh, Y.-F. Lin, R.-P. Pan, and C.-L. Pan, “Magnetically tunable room-temperature 2 π liquid crystal terahertz phase shifter,” Opt. Express 12(12), 2625–2630 (2004).
[Crossref] [PubMed]

Lisjak, D.

N. Sebastián, N. Osterman, D. Lisjak, M. Čopič, and A. Mertelj, “Director reorientation dynamics of ferromagnetic nematic liquid crystals,” Soft Matter 14(35), 7180–7189 (2018).
[Crossref] [PubMed]

P. Medle Rupnik, D. Lisjak, M. Čopič, S. Čopar, and A. Mertelj, “Field-controlled structures in ferromagnetic cholesteric liquid crystals,” Sci. Adv. 3(10), e1701336 (2017).
[Crossref] [PubMed]

A. Mertelj and D. Lisjak, “Ferromagnetic nematic liquid crystals,” Liq. Cryst. Rev. 5(1), 1–33 (2017).
[Crossref]

M. Mur, J. A. Sofi, I. Kvasić, A. Mertelj, D. Lisjak, V. Niranjan, I. Muševič, and S. Dhara, “Magnetic-field tuning of whispering gallery mode lasing from ferromagnetic nematic liquid crystal microdroplets,” Opt. Express 25(2), 1073–1083 (2017).
[Crossref] [PubMed]

A. Mertelj, D. Lisjak, M. Drofenik, and M. Copič, “Ferromagnetism in suspensions of magnetic platelets in liquid crystal,” Nature 504(7479), 237–241 (2013).
[Crossref] [PubMed]

Liu, H.

L. Zhang, Y.-X. Fan, H. Liu, X. Han, W.-Q. Lu, and Z.-Y. Tao, “A magnetically tunable non-Bragg defect mode in a corrugated waveguide filled with liquid crystals,” Phys. Lett. A 382(14), 1000–1005 (2018).
[Crossref]

L. Zhang, Y.-X. Fan, H. Liu, L.-L. Xu, J.-L. Xue, and Z.-Y. Tao, “Hypersensitive and tunable terahertz wave switch based on non-Bragg structure filled with liquid crystal,” J. Lit. Technol. 35(14), 3092–3098 (2017).
[Crossref]

Liu, Q.

Q. Liu, P. J. Ackerman, T. C. Lubensky, and I. I. Smalyukh, “Biaxial ferromagnetic liquid crystal colloids,” Proc. Natl. Acad. Sci. U.S.A. 113(38), 10479–10484 (2016).
[Crossref] [PubMed]

Liu, S. H.

C. H. Lin, R. H. Chiang, S. H. Liu, C. T. Kuo, and C. Y. Huang, “Rotatable diffractive gratings based on hybrid-aligned cholesteric liquid crystals,” Opt. Express 20(24), 26837–26844 (2012).
[Crossref] [PubMed]

Lu, R.

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” IEEE J. Display Technol. 1(1), 51–61 (2005).
[Crossref]

Lu, W.-Q.

L. Zhang, Y.-X. Fan, H. Liu, X. Han, W.-Q. Lu, and Z.-Y. Tao, “A magnetically tunable non-Bragg defect mode in a corrugated waveguide filled with liquid crystals,” Phys. Lett. A 382(14), 1000–1005 (2018).
[Crossref]

Lubensky, T. C.

Q. Liu, P. J. Ackerman, T. C. Lubensky, and I. I. Smalyukh, “Biaxial ferromagnetic liquid crystal colloids,” Proc. Natl. Acad. Sci. U.S.A. 113(38), 10479–10484 (2016).
[Crossref] [PubMed]

Luo, W.

Z. Ji, X. Zhang, B. Shi, W. Li, W. Luo, I. Drevensek-Olenik, Q. Wu, and J. Xu, “Compartmentalized liquid crystal alignment induced by sparse polymer ribbons with surface relief gratings,” Opt. Lett. 41(2), 336–339 (2016).
[Crossref] [PubMed]

Mahmoud, M. A.

T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
[Crossref] [PubMed]

Márquez, A.

R. Fernández, S. Gallego, A. Márquez, J. Francés, F. J. Martínez, I. Pascual, and A. Beléndez, “Analysis of holographic polymer-dispersed liquid crystals (HPDLCs) for tunable low frequency diffractive optical elements recording,” Opt. Mater. 76, 295–301 (2018).
[Crossref]

Martínez, F. J.

R. Fernández, S. Gallego, A. Márquez, J. Francés, F. J. Martínez, I. Pascual, and A. Beléndez, “Analysis of holographic polymer-dispersed liquid crystals (HPDLCs) for tunable low frequency diffractive optical elements recording,” Opt. Mater. 76, 295–301 (2018).
[Crossref]

Medle Rupnik, P.

P. Medle Rupnik, D. Lisjak, M. Čopič, S. Čopar, and A. Mertelj, “Field-controlled structures in ferromagnetic cholesteric liquid crystals,” Sci. Adv. 3(10), e1701336 (2017).
[Crossref] [PubMed]

Mertelj, A.

N. Sebastián, N. Osterman, D. Lisjak, M. Čopič, and A. Mertelj, “Director reorientation dynamics of ferromagnetic nematic liquid crystals,” Soft Matter 14(35), 7180–7189 (2018).
[Crossref] [PubMed]

P. Medle Rupnik, D. Lisjak, M. Čopič, S. Čopar, and A. Mertelj, “Field-controlled structures in ferromagnetic cholesteric liquid crystals,” Sci. Adv. 3(10), e1701336 (2017).
[Crossref] [PubMed]

A. Mertelj and D. Lisjak, “Ferromagnetic nematic liquid crystals,” Liq. Cryst. Rev. 5(1), 1–33 (2017).
[Crossref]

M. Mur, J. A. Sofi, I. Kvasić, A. Mertelj, D. Lisjak, V. Niranjan, I. Muševič, and S. Dhara, “Magnetic-field tuning of whispering gallery mode lasing from ferromagnetic nematic liquid crystal microdroplets,” Opt. Express 25(2), 1073–1083 (2017).
[Crossref] [PubMed]

A. Mertelj, D. Lisjak, M. Drofenik, and M. Copič, “Ferromagnetism in suspensions of magnetic platelets in liquid crystal,” Nature 504(7479), 237–241 (2013).
[Crossref] [PubMed]

Mitróová, Z.

T. Tóth-Katona, P. Salamon, N. Éber, N. Tomašovičová, Z. Mitróová, and P. Kopčanský, “High concentration ferronematics in low magnetic fields,” J. Magn. Mater. 372, 117–121 (2014).
[Crossref]

Moharam, M. G.

T. K. Gaylord and M. G. Moharam, “Thin and thick gratings: terminology clarification,” Appl. Opt. 20(19), 3271–3273 (1981).
[Crossref] [PubMed]

Morris, S. M.

S. M. Morris, D. J. Gardiner, F. Castles, P. J. W. Hands, T. D. Wilkinson, and H. J. Coles, “Fast-switching phase gratings using in-plane addressed short-pitch polymer stabilized chiral nematic liquid crystals,” Appl. Phys. Lett. 99(25), 253502 (2011).
[Crossref]

Munekazu, D.

K. Kato, T. Hisaki, and D. Munekazu, “In-Plane Operation of Alignment-Controlled Holographic Polymer-Dispersed Liquid Crystal,” Jpn. J. Appl. Phys. 38(3A), 1466–1469 (1999).
[Crossref]

Mur, M.

M. Mur, J. A. Sofi, I. Kvasić, A. Mertelj, D. Lisjak, V. Niranjan, I. Muševič, and S. Dhara, “Magnetic-field tuning of whispering gallery mode lasing from ferromagnetic nematic liquid crystal microdroplets,” Opt. Express 25(2), 1073–1083 (2017).
[Crossref] [PubMed]

Muševic, I.

M. Mur, J. A. Sofi, I. Kvasić, A. Mertelj, D. Lisjak, V. Niranjan, I. Muševič, and S. Dhara, “Magnetic-field tuning of whispering gallery mode lasing from ferromagnetic nematic liquid crystal microdroplets,” Opt. Express 25(2), 1073–1083 (2017).
[Crossref] [PubMed]

Nagy, G.

M. Ličen, I. Drevenšek-Olenik, L. Čoga, S. Gyergyek, S. Kralj, M. Fally, C. Pruner, P. Geltenbort, U. Gasser, G. Nagy, and J. Klepp, “Neutron diffraction from superparamagnetic colloidal crystals,” J. Phys. Chem. Solids 110, 234–240 (2017).
[Crossref]

Natarajan, L. V.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable Holographic Polymer-Dispersed Liquid Crystal Reflection Gratings Based on Thiol-Ene Photopolymerization,” Chem. Mater. 15(12), 2477–2484 (2003).
[Crossref]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic Polymer-Dispersed Liquid Crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[Crossref]

Niranjan, V.

M. Mur, J. A. Sofi, I. Kvasić, A. Mertelj, D. Lisjak, V. Niranjan, I. Muševič, and S. Dhara, “Magnetic-field tuning of whispering gallery mode lasing from ferromagnetic nematic liquid crystal microdroplets,” Opt. Express 25(2), 1073–1083 (2017).
[Crossref] [PubMed]

Nose, T.

M. Honma and T. Nose, “Polarization-independent liquid crystal grating fabricated by microrubbing process,” Jpn. J. Appl. Phys. 42(11), 6992–6997 (2003).
[Crossref]

Osterman, N.

N. Sebastián, N. Osterman, D. Lisjak, M. Čopič, and A. Mertelj, “Director reorientation dynamics of ferromagnetic nematic liquid crystals,” Soft Matter 14(35), 7180–7189 (2018).
[Crossref] [PubMed]

Ouskova, E.

O. Buluy, E. Ouskova, Y. Reznikov, A. Glushchenko, J. West, and V. Reshetnyak, “Magnetically induced alignment of FNS,” J. Magn. Mater. 252, 159–161 (2002).
[Crossref]

Pagliusi, P.

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Electrically tunable two-dimensional liquid crystals gratings induced by polarization holography,” Opt. Express 15(9), 5872–5878 (2007).
[Crossref] [PubMed]

Pan, C.-L.

C.-J. Lin, Y.-T. Li, C.-F. Hsieh, R.-P. Pan, and C.-L. Pan, “Manipulating terahertz wave by a magnetically tunable liquid crystal phase grating,” Opt. Express 16(5), 2995–3001 (2008).
[Crossref] [PubMed]

C.-Y. Chen, C.-F. Hsieh, Y.-F. Lin, R.-P. Pan, and C.-L. Pan, “Magnetically tunable room-temperature 2 π liquid crystal terahertz phase shifter,” Opt. Express 12(12), 2625–2630 (2004).
[Crossref] [PubMed]

C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83(22), 4497–4499 (2003).
[Crossref]

Pan, R.-P.

C.-J. Lin, Y.-T. Li, C.-F. Hsieh, R.-P. Pan, and C.-L. Pan, “Manipulating terahertz wave by a magnetically tunable liquid crystal phase grating,” Opt. Express 16(5), 2995–3001 (2008).
[Crossref] [PubMed]

C.-Y. Chen, C.-F. Hsieh, Y.-F. Lin, R.-P. Pan, and C.-L. Pan, “Magnetically tunable room-temperature 2 π liquid crystal terahertz phase shifter,” Opt. Express 12(12), 2625–2630 (2004).
[Crossref] [PubMed]

C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83(22), 4497–4499 (2003).
[Crossref]

Pascual, I.

R. Fernández, S. Gallego, A. Márquez, J. Francés, F. J. Martínez, I. Pascual, and A. Beléndez, “Analysis of holographic polymer-dispersed liquid crystals (HPDLCs) for tunable low frequency diffractive optical elements recording,” Opt. Mater. 76, 295–301 (2018).
[Crossref]

Pelcovits, R. A.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Pinkevich, I. P.

V. I. Zadorozhnii, I. P. Pinkevich, V. Y. Reshetnyak, S. V. Burylov, and T. J. Sluckin, “Adsorption phenomena and macroscopic properties of ferronematics caused by orientational interactions,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 409(1), 285–292 (2004).
[Crossref]

Pinkevych, I. P.

V. Yu. Reshetnyak, V. I. Zadorozhnii, I. P. Pinkevych, T. J. Bunning, and D. R. Evans, “Surface plasmon absorption in MoS2 and graphene-MoS2 micro-gratings and the impact of a liquid crystal substrate,” AIP Adv. 8(4), 045024 (2018).
[Crossref]

Pleiner, H.

T. Potisk, H. Pleiner, D. Svenšek, and H. R. Brand, “Effects of flow on the dynamics of a ferromagnetic nematic liquid crystal,” Phys. Rev. E 97(4), 042705 (2018).
[Crossref] [PubMed]

Podoliak, N.

N. Podoliak, O. Buchnev, D. V. Bavykin, A. N. Kulak, M. Kaczmarek, and T. J. Sluckin, “Magnetite nanorod thermotropic liquid crystal colloids: synthesis, optics and theory,” J. Colloid Interface Sci. 386(1), 158–166 (2012).
[Crossref] [PubMed]

N. Podoliak, O. Buchnev, O. Buluy, G. D’Alessandro, M. Kaczmarek, Y. Reznikov, and T. J. Sluckin, “Macroscopic optical effects in low concentration ferronematics,” Soft Matter 7(10), 4742–4749 (2011).
[Crossref]

Popova, E. V.

M. F. Prodanov, O. G. Buluy, E. V. Popova, S. A. Gamzaeva, Y. O. Reznikov, and V. V. Vashchenko, “Magnetic actuation of a thermodynamically stable colloid of ferromagnetic nanoparticles in a liquid crystal,” Soft Matter 12(31), 6601–6609 (2016).
[Crossref] [PubMed]

Potisk, T.

T. Potisk, H. Pleiner, D. Svenšek, and H. R. Brand, “Effects of flow on the dynamics of a ferromagnetic nematic liquid crystal,” Phys. Rev. E 97(4), 042705 (2018).
[Crossref] [PubMed]

Potocová, I.

P. Kopčanský, I. Potočová, M. Koneracká, M. Timko, J. Jadzyn, G. Czechowski, and A. M. G. Jansen, “The structural instabilities of ferronematic based on liquid crystal with low negative magnetic susceptibility,” Phys. Status Solidi, B Basic Res. 236(2), 450–453 (2003).
[Crossref]

Prodanov, M. F.

M. F. Prodanov, O. G. Buluy, E. V. Popova, S. A. Gamzaeva, Y. O. Reznikov, and V. V. Vashchenko, “Magnetic actuation of a thermodynamically stable colloid of ferromagnetic nanoparticles in a liquid crystal,” Soft Matter 12(31), 6601–6609 (2016).
[Crossref] [PubMed]

Provenzano, C.

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Electrically tunable two-dimensional liquid crystals gratings induced by polarization holography,” Opt. Express 15(9), 5872–5878 (2007).
[Crossref] [PubMed]

Pruner, C.

M. Ličen, I. Drevenšek-Olenik, L. Čoga, S. Gyergyek, S. Kralj, M. Fally, C. Pruner, P. Geltenbort, U. Gasser, G. Nagy, and J. Klepp, “Neutron diffraction from superparamagnetic colloidal crystals,” J. Phys. Chem. Solids 110, 234–240 (2017).
[Crossref]

Radcliffe, M. D.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Raikher, Y. L.

Y. L. Raikher and V. I. Stepanov, “Transient field-induced birefringence in a ferronematic,” J. Magn. Mater. 201(1–3), 182–185 (1999).
[Crossref]

Reshetnyak, V.

O. Buluy, E. Ouskova, Y. Reznikov, A. Glushchenko, J. West, and V. Reshetnyak, “Magnetically induced alignment of FNS,” J. Magn. Mater. 252, 159–161 (2002).
[Crossref]

Reshetnyak, V. Y.

V. I. Zadorozhnii, I. P. Pinkevich, V. Y. Reshetnyak, S. V. Burylov, and T. J. Sluckin, “Adsorption phenomena and macroscopic properties of ferronematics caused by orientational interactions,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 409(1), 285–292 (2004).
[Crossref]

Reshetnyak, V. Yu.

V. Yu. Reshetnyak, V. I. Zadorozhnii, I. P. Pinkevych, T. J. Bunning, and D. R. Evans, “Surface plasmon absorption in MoS2 and graphene-MoS2 micro-gratings and the impact of a liquid crystal substrate,” AIP Adv. 8(4), 045024 (2018).
[Crossref]

Reynolds, J. R.

T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
[Crossref] [PubMed]

Reznikov, Y.

N. Podoliak, O. Buchnev, O. Buluy, G. D’Alessandro, M. Kaczmarek, Y. Reznikov, and T. J. Sluckin, “Macroscopic optical effects in low concentration ferronematics,” Soft Matter 7(10), 4742–4749 (2011).
[Crossref]

O. Buluy, E. Ouskova, Y. Reznikov, A. Glushchenko, J. West, and V. Reshetnyak, “Magnetically induced alignment of FNS,” J. Magn. Mater. 252, 159–161 (2002).
[Crossref]

Reznikov, Y. O.

M. F. Prodanov, O. G. Buluy, E. V. Popova, S. A. Gamzaeva, Y. O. Reznikov, and V. V. Vashchenko, “Magnetic actuation of a thermodynamically stable colloid of ferromagnetic nanoparticles in a liquid crystal,” Soft Matter 12(31), 6601–6609 (2016).
[Crossref] [PubMed]

Ricciardi, L.

L. De Sio, L. Ricciardi, S. Serak, M. La Deda, N. Tabiryan, and C. Umeton, “Photo-sensitive liquid crystals for optically controlled diffraction gratings,” J. Mater. Chem. 22(14), 6669–6673 (2012).
[Crossref]

Rosato, A.

A. E. Costa Pereira and A. Rosato, “Transmission of Nematic Liquid Crystals in Electric Fields,” Revista Brasileira de Fisica. 5(2), 237–241 (1975).

Rubin, M.

M. Rubin, “Optical properties of soda lime silica glasses,” Sol. Energy Mater. 12(4), 275–288 (1985).
[Crossref]

Salamon, P.

T. Tóth-Katona, P. Salamon, N. Éber, N. Tomašovičová, Z. Mitróová, and P. Kopčanský, “High concentration ferronematics in low magnetic fields,” J. Magn. Mater. 372, 117–121 (2014).
[Crossref]

Sebastián, N.

N. Sebastián, N. Osterman, D. Lisjak, M. Čopič, and A. Mertelj, “Director reorientation dynamics of ferromagnetic nematic liquid crystals,” Soft Matter 14(35), 7180–7189 (2018).
[Crossref] [PubMed]

Serak, S.

L. De Sio, L. Ricciardi, S. Serak, M. La Deda, N. Tabiryan, and C. Umeton, “Photo-sensitive liquid crystals for optically controlled diffraction gratings,” J. Mater. Chem. 22(14), 6669–6673 (2012).
[Crossref]

Shaver, D. C.

D. C. Flanders, D. C. Shaver, and H. I. Smith, “Alignment of liquid-crystals using submicrometer periodicity gratings,” Appl. Phys. Lett. 32(10), 597–598 (1978).
[Crossref]

Shepherd, C. K.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable Holographic Polymer-Dispersed Liquid Crystal Reflection Gratings Based on Thiol-Ene Photopolymerization,” Chem. Mater. 15(12), 2477–2484 (2003).
[Crossref]

Shi, B.

Z. Ji, X. Zhang, B. Shi, W. Li, W. Luo, I. Drevensek-Olenik, Q. Wu, and J. Xu, “Compartmentalized liquid crystal alignment induced by sparse polymer ribbons with surface relief gratings,” Opt. Lett. 41(2), 336–339 (2016).
[Crossref] [PubMed]

Sluckin, T. J.

N. Podoliak, O. Buchnev, D. V. Bavykin, A. N. Kulak, M. Kaczmarek, and T. J. Sluckin, “Magnetite nanorod thermotropic liquid crystal colloids: synthesis, optics and theory,” J. Colloid Interface Sci. 386(1), 158–166 (2012).
[Crossref] [PubMed]

N. Podoliak, O. Buchnev, O. Buluy, G. D’Alessandro, M. Kaczmarek, Y. Reznikov, and T. J. Sluckin, “Macroscopic optical effects in low concentration ferronematics,” Soft Matter 7(10), 4742–4749 (2011).
[Crossref]

V. I. Zadorozhnii, I. P. Pinkevich, V. Y. Reshetnyak, S. V. Burylov, and T. J. Sluckin, “Adsorption phenomena and macroscopic properties of ferronematics caused by orientational interactions,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 409(1), 285–292 (2004).
[Crossref]

Smalyukh, I. I.

Q. Liu, P. J. Ackerman, T. C. Lubensky, and I. I. Smalyukh, “Biaxial ferromagnetic liquid crystal colloids,” Proc. Natl. Acad. Sci. U.S.A. 113(38), 10479–10484 (2016).
[Crossref] [PubMed]

Smith, H. I.

D. C. Flanders, D. C. Shaver, and H. I. Smith, “Alignment of liquid-crystals using submicrometer periodicity gratings,” Appl. Phys. Lett. 32(10), 597–598 (1978).
[Crossref]

Sofi, J. A.

M. Mur, J. A. Sofi, I. Kvasić, A. Mertelj, D. Lisjak, V. Niranjan, I. Muševič, and S. Dhara, “Magnetic-field tuning of whispering gallery mode lasing from ferromagnetic nematic liquid crystal microdroplets,” Opt. Express 25(2), 1073–1083 (2017).
[Crossref] [PubMed]

Sousa, M. E.

I. Drevenšek -Olenik, M. Copic, M. E. Sousa, and G. P. Crawford, “Optical retardation of in-plane switched polymer dispersed liquid crystals,” J. Appl. Phys. 100(3), 033515 (2006).
[Crossref]

Srivastava, A. K.

J. Sun, A. K. Srivastava, L. Wang, V. G. Chigrinov, and H. S. Kwok, “Optically tunable and rewritable diffraction grating with photoaligned liquid crystals,” Opt. Lett. 38(13), 2342–2344 (2013).
[Crossref] [PubMed]

F. Fan, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Switchable liquid crystal grating with sub millisecond response,” Appl. Phys. Lett. 100(11), 111105 (2012).
[Crossref]

Stepanov, V. I.

Y. L. Raikher and V. I. Stepanov, “Transient field-induced birefringence in a ferronematic,” J. Magn. Mater. 201(1–3), 182–185 (1999).
[Crossref]

Sukhov, A. V.

R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V. Sukhov, “Development of a new kind of switchable holographic grating made of liquid-crystal films separated by slices of polymeric material,” Opt. Lett. 29(11), 1261–1263 (2004).
[Crossref] [PubMed]

Sun, J.

J. Sun, A. K. Srivastava, L. Wang, V. G. Chigrinov, and H. S. Kwok, “Optically tunable and rewritable diffraction grating with photoaligned liquid crystals,” Opt. Lett. 38(13), 2342–2344 (2013).
[Crossref] [PubMed]

Sutherland, R. L.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable Holographic Polymer-Dispersed Liquid Crystal Reflection Gratings Based on Thiol-Ene Photopolymerization,” Chem. Mater. 15(12), 2477–2484 (2003).
[Crossref]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic Polymer-Dispersed Liquid Crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[Crossref]

Svenšek, D.

T. Potisk, H. Pleiner, D. Svenšek, and H. R. Brand, “Effects of flow on the dynamics of a ferromagnetic nematic liquid crystal,” Phys. Rev. E 97(4), 042705 (2018).
[Crossref] [PubMed]

Tabiryan, N.

L. De Sio, L. Ricciardi, S. Serak, M. La Deda, N. Tabiryan, and C. Umeton, “Photo-sensitive liquid crystals for optically controlled diffraction gratings,” J. Mater. Chem. 22(14), 6669–6673 (2012).
[Crossref]

Tan, G.

D. Xu, G. Tan, and S. T. Wu, “Large-angle and high-efficiency tunable phase grating using fringe field switching liquid crystal,” Opt. Express 23(9), 12274–12285 (2015).
[Crossref] [PubMed]

Tao, Z.-Y.

L. Zhang, Y.-X. Fan, H. Liu, X. Han, W.-Q. Lu, and Z.-Y. Tao, “A magnetically tunable non-Bragg defect mode in a corrugated waveguide filled with liquid crystals,” Phys. Lett. A 382(14), 1000–1005 (2018).
[Crossref]

L. Zhang, Y.-X. Fan, H. Liu, L.-L. Xu, J.-L. Xue, and Z.-Y. Tao, “Hypersensitive and tunable terahertz wave switch based on non-Bragg structure filled with liquid crystal,” J. Lit. Technol. 35(14), 3092–3098 (2017).
[Crossref]

Tarasov, A.

N. Tomašovičová, S. Burylov, V. Gdovinová, A. Tarasov, J. Kovac, N. Burylova, A. Voroshilov, P. Kopčanský, and J. Jadżyn, “Magnetic Freedericksz transition in a ferronematic liquid crystal doped with spindle magnetic particles,” J. Mol. Liq. 267, 390–397 (2018).
[Crossref]

Timko, M.

P. Kopčanský, I. Potočová, M. Koneracká, M. Timko, J. Jadzyn, G. Czechowski, and A. M. G. Jansen, “The structural instabilities of ferronematic based on liquid crystal with low negative magnetic susceptibility,” Phys. Status Solidi, B Basic Res. 236(2), 450–453 (2003).
[Crossref]

Titus, C. M.

C. M. Titus and P. J. Bos, “Efficient, polarization-independent, reflective liquid crystal phase grating,” Appl. Phys. Lett. 71(16), 2239–2241 (1997).
[Crossref]

Tomašovicová, N.

N. Tomašovičová, S. Burylov, V. Gdovinová, A. Tarasov, J. Kovac, N. Burylova, A. Voroshilov, P. Kopčanský, and J. Jadżyn, “Magnetic Freedericksz transition in a ferronematic liquid crystal doped with spindle magnetic particles,” J. Mol. Liq. 267, 390–397 (2018).
[Crossref]

T. Tóth-Katona, P. Salamon, N. Éber, N. Tomašovičová, Z. Mitróová, and P. Kopčanský, “High concentration ferronematics in low magnetic fields,” J. Magn. Mater. 372, 117–121 (2014).
[Crossref]

Tomlin, D.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable Holographic Polymer-Dispersed Liquid Crystal Reflection Gratings Based on Thiol-Ene Photopolymerization,” Chem. Mater. 15(12), 2477–2484 (2003).
[Crossref]

Tondiglia, V. P.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable Holographic Polymer-Dispersed Liquid Crystal Reflection Gratings Based on Thiol-Ene Photopolymerization,” Chem. Mater. 15(12), 2477–2484 (2003).
[Crossref]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic Polymer-Dispersed Liquid Crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[Crossref]

Tóth-Katona, T.

T. Tóth-Katona, P. Salamon, N. Éber, N. Tomašovičová, Z. Mitróová, and P. Kopčanský, “High concentration ferronematics in low magnetic fields,” J. Magn. Mater. 372, 117–121 (2014).
[Crossref]

Tsai, T.-R.

C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83(22), 4497–4499 (2003).
[Crossref]

Tsukruk, V. V.

T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
[Crossref] [PubMed]

Umeton, C.

L. De Sio, L. Ricciardi, S. Serak, M. La Deda, N. Tabiryan, and C. Umeton, “Photo-sensitive liquid crystals for optically controlled diffraction gratings,” J. Mater. Chem. 22(14), 6669–6673 (2012).
[Crossref]

M. Castriota, A. Fasanella, E. Cazzanelli, L. De Sio, R. Caputo, and C. Umeton, “In situ polarized micro-Raman investigation of periodic structures realized in liquid-crystalline composite materials,” Opt. Express 19(11), 10494–10500 (2011).
[Crossref] [PubMed]

R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V. Sukhov, “Development of a new kind of switchable holographic grating made of liquid-crystal films separated by slices of polymeric material,” Opt. Lett. 29(11), 1261–1263 (2004).
[Crossref] [PubMed]

Vashchenko, V. V.

M. F. Prodanov, O. G. Buluy, E. V. Popova, S. A. Gamzaeva, Y. O. Reznikov, and V. V. Vashchenko, “Magnetic actuation of a thermodynamically stable colloid of ferromagnetic nanoparticles in a liquid crystal,” Soft Matter 12(31), 6601–6609 (2016).
[Crossref] [PubMed]

Veltri, A.

R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V. Sukhov, “Development of a new kind of switchable holographic grating made of liquid-crystal films separated by slices of polymeric material,” Opt. Lett. 29(11), 1261–1263 (2004).
[Crossref] [PubMed]

Vithana, H.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electrooptically controlled liquid-crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[Crossref]

Voroshilov, A.

N. Tomašovičová, S. Burylov, V. Gdovinová, A. Tarasov, J. Kovac, N. Burylova, A. Voroshilov, P. Kopčanský, and J. Jadżyn, “Magnetic Freedericksz transition in a ferronematic liquid crystal doped with spindle magnetic particles,” J. Mol. Liq. 267, 390–397 (2018).
[Crossref]

Wang, C.

H. Jau, Y. Li, C. Li, C. Chen, C. Wang, H. K. Bisoyi, T. Lin, T. J. Bunning, and Q. Li, “Light‐Driven Wide‐Range Nonmechanical Beam Steering and Spectrum Scanning Based on a Self‐Organized Liquid Crystal Grating Enabled by a Chiral Molecular Switch,” Adv. Opt. Mater. 3(2), 166–170 (2015).
[Crossref]

Wang, L.

J. Sun, A. K. Srivastava, L. Wang, V. G. Chigrinov, and H. S. Kwok, “Optically tunable and rewritable diffraction grating with photoaligned liquid crystals,” Opt. Lett. 38(13), 2342–2344 (2013).
[Crossref] [PubMed]

Wen, C.-H.

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” IEEE J. Display Technol. 1(1), 51–61 (2005).
[Crossref]

West, J.

O. Buluy, E. Ouskova, Y. Reznikov, A. Glushchenko, J. West, and V. Reshetnyak, “Magnetically induced alignment of FNS,” J. Magn. Mater. 252, 159–161 (2002).
[Crossref]

Wilkinson, T. D.

S. M. Morris, D. J. Gardiner, F. Castles, P. J. W. Hands, T. D. Wilkinson, and H. J. Coles, “Fast-switching phase gratings using in-plane addressed short-pitch polymer stabilized chiral nematic liquid crystals,” Appl. Phys. Lett. 99(25), 253502 (2011).
[Crossref]

Wu, Q.

Z. Ji, X. Zhang, B. Shi, W. Li, W. Luo, I. Drevensek-Olenik, Q. Wu, and J. Xu, “Compartmentalized liquid crystal alignment induced by sparse polymer ribbons with surface relief gratings,” Opt. Lett. 41(2), 336–339 (2016).
[Crossref] [PubMed]

Wu, S. T.

D. Xu, G. Tan, and S. T. Wu, “Large-angle and high-efficiency tunable phase grating using fringe field switching liquid crystal,” Opt. Express 23(9), 12274–12285 (2015).
[Crossref] [PubMed]

Wu, S.-T.

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” IEEE J. Display Technol. 1(1), 51–61 (2005).
[Crossref]

Xu, D.

D. Xu, G. Tan, and S. T. Wu, “Large-angle and high-efficiency tunable phase grating using fringe field switching liquid crystal,” Opt. Express 23(9), 12274–12285 (2015).
[Crossref] [PubMed]

Xu, J.

Z. Ji, X. Zhang, B. Shi, W. Li, W. Luo, I. Drevensek-Olenik, Q. Wu, and J. Xu, “Compartmentalized liquid crystal alignment induced by sparse polymer ribbons with surface relief gratings,” Opt. Lett. 41(2), 336–339 (2016).
[Crossref] [PubMed]

Xu, L.-L.

L. Zhang, Y.-X. Fan, H. Liu, L.-L. Xu, J.-L. Xue, and Z.-Y. Tao, “Hypersensitive and tunable terahertz wave switch based on non-Bragg structure filled with liquid crystal,” J. Lit. Technol. 35(14), 3092–3098 (2017).
[Crossref]

Xue, J.-L.

L. Zhang, Y.-X. Fan, H. Liu, L.-L. Xu, J.-L. Xue, and Z.-Y. Tao, “Hypersensitive and tunable terahertz wave switch based on non-Bragg structure filled with liquid crystal,” J. Lit. Technol. 35(14), 3092–3098 (2017).
[Crossref]

Yang, L.

L. Yang, F. Fan, M. Chen, X. Zhang, J. Bai, and S. Chang, “Magnetically induced birefringence of randomly aligned liquid crystals in the terahertz regime under weak magnetic field,” Opt. Mater. Express 6(9), 2803–2811 (2016).
[Crossref]

Zadorozhnii, V. I.

V. Yu. Reshetnyak, V. I. Zadorozhnii, I. P. Pinkevych, T. J. Bunning, and D. R. Evans, “Surface plasmon absorption in MoS2 and graphene-MoS2 micro-gratings and the impact of a liquid crystal substrate,” AIP Adv. 8(4), 045024 (2018).
[Crossref]

V. I. Zadorozhnii, I. P. Pinkevich, V. Y. Reshetnyak, S. V. Burylov, and T. J. Sluckin, “Adsorption phenomena and macroscopic properties of ferronematics caused by orientational interactions,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 409(1), 285–292 (2004).
[Crossref]

Zgonik, M.

M. Jazbinšek, I. Drevensek-Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90(8), 3831–3837 (2001).
[Crossref]

Zhang, L.

L. Zhang, Y.-X. Fan, H. Liu, X. Han, W.-Q. Lu, and Z.-Y. Tao, “A magnetically tunable non-Bragg defect mode in a corrugated waveguide filled with liquid crystals,” Phys. Lett. A 382(14), 1000–1005 (2018).
[Crossref]

L. Zhang, Y.-X. Fan, H. Liu, L.-L. Xu, J.-L. Xue, and Z.-Y. Tao, “Hypersensitive and tunable terahertz wave switch based on non-Bragg structure filled with liquid crystal,” J. Lit. Technol. 35(14), 3092–3098 (2017).
[Crossref]

Zhang, W.

W. Li, W. Cui, W. Zhang, A. Kastelic, I. Drevensek-Olenik, and X. Zhang, “Characterisation of POLICRYPS structures assembled through a two-step process,” Liq. Cryst. 41(9), 1315–1322 (2014).
[Crossref]

Zhang, X.

Z. Ji, X. Zhang, B. Shi, W. Li, W. Luo, I. Drevensek-Olenik, Q. Wu, and J. Xu, “Compartmentalized liquid crystal alignment induced by sparse polymer ribbons with surface relief gratings,” Opt. Lett. 41(2), 336–339 (2016).
[Crossref] [PubMed]

L. Yang, F. Fan, M. Chen, X. Zhang, J. Bai, and S. Chang, “Magnetically induced birefringence of randomly aligned liquid crystals in the terahertz regime under weak magnetic field,” Opt. Mater. Express 6(9), 2803–2811 (2016).
[Crossref]

W. Li, W. Cui, W. Zhang, A. Kastelic, I. Drevensek-Olenik, and X. Zhang, “Characterisation of POLICRYPS structures assembled through a two-step process,” Liq. Cryst. 41(9), 1315–1322 (2014).
[Crossref]

ACS Nano (1)

T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

H. Jau, Y. Li, C. Li, C. Chen, C. Wang, H. K. Bisoyi, T. Lin, T. J. Bunning, and Q. Li, “Light‐Driven Wide‐Range Nonmechanical Beam Steering and Spectrum Scanning Based on a Self‐Organized Liquid Crystal Grating Enabled by a Chiral Molecular Switch,” Adv. Opt. Mater. 3(2), 166–170 (2015).
[Crossref]

AIP Adv. (1)

V. Yu. Reshetnyak, V. I. Zadorozhnii, I. P. Pinkevych, T. J. Bunning, and D. R. Evans, “Surface plasmon absorption in MoS2 and graphene-MoS2 micro-gratings and the impact of a liquid crystal substrate,” AIP Adv. 8(4), 045024 (2018).
[Crossref]

Annu. Rev. Mater. Sci. (1)

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic Polymer-Dispersed Liquid Crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[Crossref]

Appl. Opt. (1)

T. K. Gaylord and M. G. Moharam, “Thin and thick gratings: terminology clarification,” Appl. Opt. 20(19), 3271–3273 (1981).
[Crossref] [PubMed]

Appl. Phys. Lett. (9)

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

C. C. Bowley and G. P. Crawford, “Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials,” Appl. Phys. Lett. 76(16), 2235–2237 (2000).
[Crossref]

C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83(22), 4497–4499 (2003).
[Crossref]

S. M. Morris, D. J. Gardiner, F. Castles, P. J. W. Hands, T. D. Wilkinson, and H. J. Coles, “Fast-switching phase gratings using in-plane addressed short-pitch polymer stabilized chiral nematic liquid crystals,” Appl. Phys. Lett. 99(25), 253502 (2011).
[Crossref]

F. Fan, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Switchable liquid crystal grating with sub millisecond response,” Appl. Phys. Lett. 100(11), 111105 (2012).
[Crossref]

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electrooptically controlled liquid-crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[Crossref]

D. C. Flanders, D. C. Shaver, and H. I. Smith, “Alignment of liquid-crystals using submicrometer periodicity gratings,” Appl. Phys. Lett. 32(10), 597–598 (1978).
[Crossref]

C. M. Titus and P. J. Bos, “Efficient, polarization-independent, reflective liquid crystal phase grating,” Appl. Phys. Lett. 71(16), 2239–2241 (1997).
[Crossref]

R. K. Komanduri and M. J. Escuti, “High efficiency reflective liquid crystal polarization gratings,” Appl. Phys. Lett. 95(9), 091106 (2009).
[Crossref]

Chem. Mater. (1)

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable Holographic Polymer-Dispersed Liquid Crystal Reflection Gratings Based on Thiol-Ene Photopolymerization,” Chem. Mater. 15(12), 2477–2484 (2003).
[Crossref]

IEEE J. Display Technol. (1)

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” IEEE J. Display Technol. 1(1), 51–61 (2005).
[Crossref]

J. Appl. Phys. (3)

M. Jazbinšek, I. Drevensek-Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90(8), 3831–3837 (2001).
[Crossref]

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

I. Drevenšek -Olenik, M. Copic, M. E. Sousa, and G. P. Crawford, “Optical retardation of in-plane switched polymer dispersed liquid crystals,” J. Appl. Phys. 100(3), 033515 (2006).
[Crossref]

J. Colloid Interface Sci. (1)

N. Podoliak, O. Buchnev, D. V. Bavykin, A. N. Kulak, M. Kaczmarek, and T. J. Sluckin, “Magnetite nanorod thermotropic liquid crystal colloids: synthesis, optics and theory,” J. Colloid Interface Sci. 386(1), 158–166 (2012).
[Crossref] [PubMed]

J. Lit. Technol. (1)

L. Zhang, Y.-X. Fan, H. Liu, L.-L. Xu, J.-L. Xue, and Z.-Y. Tao, “Hypersensitive and tunable terahertz wave switch based on non-Bragg structure filled with liquid crystal,” J. Lit. Technol. 35(14), 3092–3098 (2017).
[Crossref]

J. Magn. Mater. (4)

M. Koneracká, V. Kellnerova, P. Kopčanský, and T. Kuczynski, “Study of magnetic Fredericksz transition in ferronematic,” J. Magn. Mater. 140, 1455–1456 (1995).
[Crossref]

Y. L. Raikher and V. I. Stepanov, “Transient field-induced birefringence in a ferronematic,” J. Magn. Mater. 201(1–3), 182–185 (1999).
[Crossref]

T. Tóth-Katona, P. Salamon, N. Éber, N. Tomašovičová, Z. Mitróová, and P. Kopčanský, “High concentration ferronematics in low magnetic fields,” J. Magn. Mater. 372, 117–121 (2014).
[Crossref]

O. Buluy, E. Ouskova, Y. Reznikov, A. Glushchenko, J. West, and V. Reshetnyak, “Magnetically induced alignment of FNS,” J. Magn. Mater. 252, 159–161 (2002).
[Crossref]

J. Mater. Chem. (1)

L. De Sio, L. Ricciardi, S. Serak, M. La Deda, N. Tabiryan, and C. Umeton, “Photo-sensitive liquid crystals for optically controlled diffraction gratings,” J. Mater. Chem. 22(14), 6669–6673 (2012).
[Crossref]

J. Mol. Liq. (1)

N. Tomašovičová, S. Burylov, V. Gdovinová, A. Tarasov, J. Kovac, N. Burylova, A. Voroshilov, P. Kopčanský, and J. Jadżyn, “Magnetic Freedericksz transition in a ferronematic liquid crystal doped with spindle magnetic particles,” J. Mol. Liq. 267, 390–397 (2018).
[Crossref]

J. Phys. (Paris) (1)

F. Brochard and P. G. De Gennes, “Theory of magnetic suspensions in liquid crystals,” J. Phys. (Paris) 31(7), 691–708 (1970).
[Crossref]

J. Phys. Chem. Solids (1)

M. Ličen, I. Drevenšek-Olenik, L. Čoga, S. Gyergyek, S. Kralj, M. Fally, C. Pruner, P. Geltenbort, U. Gasser, G. Nagy, and J. Klepp, “Neutron diffraction from superparamagnetic colloidal crystals,” J. Phys. Chem. Solids 110, 234–240 (2017).
[Crossref]

Jpn. J. Appl. Phys. (2)

K. Kato, T. Hisaki, and D. Munekazu, “In-Plane Operation of Alignment-Controlled Holographic Polymer-Dispersed Liquid Crystal,” Jpn. J. Appl. Phys. 38(3A), 1466–1469 (1999).
[Crossref]

M. Honma and T. Nose, “Polarization-independent liquid crystal grating fabricated by microrubbing process,” Jpn. J. Appl. Phys. 42(11), 6992–6997 (2003).
[Crossref]

Liq. Cryst. (1)

W. Li, W. Cui, W. Zhang, A. Kastelic, I. Drevensek-Olenik, and X. Zhang, “Characterisation of POLICRYPS structures assembled through a two-step process,” Liq. Cryst. 41(9), 1315–1322 (2014).
[Crossref]

Liq. Cryst. Rev. (1)

A. Mertelj and D. Lisjak, “Ferromagnetic nematic liquid crystals,” Liq. Cryst. Rev. 5(1), 1–33 (2017).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (2)

V. I. Zadorozhnii, I. P. Pinkevich, V. Y. Reshetnyak, S. V. Burylov, and T. J. Sluckin, “Adsorption phenomena and macroscopic properties of ferronematics caused by orientational interactions,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 409(1), 285–292 (2004).
[Crossref]

D. W. Berreman, “Alignment of liquid crystals by grooved surfaces,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 23(3–4), 215–231 (1973).
[Crossref]

Nature (1)

A. Mertelj, D. Lisjak, M. Drofenik, and M. Copič, “Ferromagnetism in suspensions of magnetic platelets in liquid crystal,” Nature 504(7479), 237–241 (2013).
[Crossref] [PubMed]

Opt. Express (9)

M. Fally, M. Ellabban, and I. Drevensek-Olenik, “Out-of-phase mixed holographic gratings: a quantative analysis,” Opt. Express 16(9), 6528–6536 (2008).
[Crossref] [PubMed]

C. H. Lin, R. H. Chiang, S. H. Liu, C. T. Kuo, and C. Y. Huang, “Rotatable diffractive gratings based on hybrid-aligned cholesteric liquid crystals,” Opt. Express 20(24), 26837–26844 (2012).
[Crossref] [PubMed]

M. Mur, J. A. Sofi, I. Kvasić, A. Mertelj, D. Lisjak, V. Niranjan, I. Muševič, and S. Dhara, “Magnetic-field tuning of whispering gallery mode lasing from ferromagnetic nematic liquid crystal microdroplets,” Opt. Express 25(2), 1073–1083 (2017).
[Crossref] [PubMed]

M. Castriota, A. Fasanella, E. Cazzanelli, L. De Sio, R. Caputo, and C. Umeton, “In situ polarized micro-Raman investigation of periodic structures realized in liquid-crystalline composite materials,” Opt. Express 19(11), 10494–10500 (2011).
[Crossref] [PubMed]

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Electrically tunable two-dimensional liquid crystals gratings induced by polarization holography,” Opt. Express 15(9), 5872–5878 (2007).
[Crossref] [PubMed]

D. Xu, G. Tan, and S. T. Wu, “Large-angle and high-efficiency tunable phase grating using fringe field switching liquid crystal,” Opt. Express 23(9), 12274–12285 (2015).
[Crossref] [PubMed]

Z. Feng and K. Ishikawa, “High-performance switchable grating based on pre-transitional effect of antiferroelectric liquid crystals,” Opt. Express 26(24), 31976–31982 (2018).
[Crossref] [PubMed]

C.-Y. Chen, C.-F. Hsieh, Y.-F. Lin, R.-P. Pan, and C.-L. Pan, “Magnetically tunable room-temperature 2 π liquid crystal terahertz phase shifter,” Opt. Express 12(12), 2625–2630 (2004).
[Crossref] [PubMed]

C.-J. Lin, Y.-T. Li, C.-F. Hsieh, R.-P. Pan, and C.-L. Pan, “Manipulating terahertz wave by a magnetically tunable liquid crystal phase grating,” Opt. Express 16(5), 2995–3001 (2008).
[Crossref] [PubMed]

Opt. Lett. (3)

R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V. Sukhov, “Development of a new kind of switchable holographic grating made of liquid-crystal films separated by slices of polymeric material,” Opt. Lett. 29(11), 1261–1263 (2004).
[Crossref] [PubMed]

J. Sun, A. K. Srivastava, L. Wang, V. G. Chigrinov, and H. S. Kwok, “Optically tunable and rewritable diffraction grating with photoaligned liquid crystals,” Opt. Lett. 38(13), 2342–2344 (2013).
[Crossref] [PubMed]

Z. Ji, X. Zhang, B. Shi, W. Li, W. Luo, I. Drevensek-Olenik, Q. Wu, and J. Xu, “Compartmentalized liquid crystal alignment induced by sparse polymer ribbons with surface relief gratings,” Opt. Lett. 41(2), 336–339 (2016).
[Crossref] [PubMed]

Opt. Mater. (1)

R. Fernández, S. Gallego, A. Márquez, J. Francés, F. J. Martínez, I. Pascual, and A. Beléndez, “Analysis of holographic polymer-dispersed liquid crystals (HPDLCs) for tunable low frequency diffractive optical elements recording,” Opt. Mater. 76, 295–301 (2018).
[Crossref]

Opt. Mater. Express (1)

L. Yang, F. Fan, M. Chen, X. Zhang, J. Bai, and S. Chang, “Magnetically induced birefringence of randomly aligned liquid crystals in the terahertz regime under weak magnetic field,” Opt. Mater. Express 6(9), 2803–2811 (2016).
[Crossref]

Phys. Lett. A (1)

L. Zhang, Y.-X. Fan, H. Liu, X. Han, W.-Q. Lu, and Z.-Y. Tao, “A magnetically tunable non-Bragg defect mode in a corrugated waveguide filled with liquid crystals,” Phys. Lett. A 382(14), 1000–1005 (2018).
[Crossref]

Phys. Rev. E (1)

T. Potisk, H. Pleiner, D. Svenšek, and H. R. Brand, “Effects of flow on the dynamics of a ferromagnetic nematic liquid crystal,” Phys. Rev. E 97(4), 042705 (2018).
[Crossref] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

I. Drevenšek -Olenik, M. Fally, and M. A. Ellabban, “Optical anisotropy of holographic polymer-dispersed liquid crystal transmission gratings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(2), 021707 (2006).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

S. H. Chen and N. M. Amer, “Observation of macroscopic collective behavior and new texture in magnetically doped liquid crystals,” Phys. Rev. Lett. 51(25), 2298–2301 (1983).
[Crossref]

Phys. Status Solidi, B Basic Res. (1)

P. Kopčanský, I. Potočová, M. Koneracká, M. Timko, J. Jadzyn, G. Czechowski, and A. M. G. Jansen, “The structural instabilities of ferronematic based on liquid crystal with low negative magnetic susceptibility,” Phys. Status Solidi, B Basic Res. 236(2), 450–453 (2003).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

Q. Liu, P. J. Ackerman, T. C. Lubensky, and I. I. Smalyukh, “Biaxial ferromagnetic liquid crystal colloids,” Proc. Natl. Acad. Sci. U.S.A. 113(38), 10479–10484 (2016).
[Crossref] [PubMed]

Revista Brasileira de Fisica. (1)

A. E. Costa Pereira and A. Rosato, “Transmission of Nematic Liquid Crystals in Electric Fields,” Revista Brasileira de Fisica. 5(2), 237–241 (1975).

Sci. Adv. (1)

P. Medle Rupnik, D. Lisjak, M. Čopič, S. Čopar, and A. Mertelj, “Field-controlled structures in ferromagnetic cholesteric liquid crystals,” Sci. Adv. 3(10), e1701336 (2017).
[Crossref] [PubMed]

Science (1)

V. K. Gupta and N. L. Abbot, “Design of surfaces for patterned alignment of liquid crystals on planar curved substrates,” Science 276(5318), 1533–1536 (1997).
[Crossref]

Soft Matter (3)

N. Sebastián, N. Osterman, D. Lisjak, M. Čopič, and A. Mertelj, “Director reorientation dynamics of ferromagnetic nematic liquid crystals,” Soft Matter 14(35), 7180–7189 (2018).
[Crossref] [PubMed]

M. F. Prodanov, O. G. Buluy, E. V. Popova, S. A. Gamzaeva, Y. O. Reznikov, and V. V. Vashchenko, “Magnetic actuation of a thermodynamically stable colloid of ferromagnetic nanoparticles in a liquid crystal,” Soft Matter 12(31), 6601–6609 (2016).
[Crossref] [PubMed]

N. Podoliak, O. Buchnev, O. Buluy, G. D’Alessandro, M. Kaczmarek, Y. Reznikov, and T. J. Sluckin, “Macroscopic optical effects in low concentration ferronematics,” Soft Matter 7(10), 4742–4749 (2011).
[Crossref]

Sol. Energy Mater. (1)

M. Rubin, “Optical properties of soda lime silica glasses,” Sol. Energy Mater. 12(4), 275–288 (1985).
[Crossref]

Other (8)

O. Prakash Parida and N. Bhat, “Characterization of optical properties of SU-8 and fabrication of optical components,” ICOP Int. Conf. on Opt. and Photon. (CSIO) (2009).

P. Nayek and G. Li, “Superior electro-optic response in multiferroic bismuth ferrite nanoparticle doped nematic liquid crystal device,” Sci. Rep. 5, 10845–1-9 (2015).
[Crossref]

https://simulation.cloud/electromagnetics, (FlexCompute Inc. 2017).

Y. Reznikov, A. Glushchenko, and Y. Garbovskiy, “Ferromagnetic and ferroelectric nanoparticles in liquid crystals”, in Liquid crystals with nano and microparticles ed. J. P. Lagerwall and G. Scalia, (World Scientific, 2017.

V. A. Soifer, Diffractive optics and nanophotonics, (CRC, 2017).

Y. G. Soskind, Field guide to diffractive optics, (SPIE, 2011).

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed., (Oxford University, 1993).

Z. Ji, X. Zhang, Y. Zhang, Z. Wang, I. Drevensek-Olenik, R. Rupp, W. Li, Q. Wu, and J. Xu, “Electrically tunable generation of vectorial vortex beams with micro-patterned liquid crystal structures,” Chin. Opt. Lett. 15(7), 070501- (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Schematic drawing of the polymeric grating structure fabricated by a TPP-based direct laser writing technique. (b) Polarization optical microscopy (POM) image of the grating structure with Λ = 20 μm that is filled with a ferromagnetic LC material. Arrow-ended lines in the top left corner indicate the orientations of the polarizer (P) and the analyzer (A). (c) Position of the sample between the two poles of electromagnet core.
Fig. 2
Fig. 2 Polarization optical microscopy (POM) image of a ferromagnetic LC-filled grating structure with a grating period of Λ = 5 μm (a) at zero magnetic field and (b) at a magnetic field of B = 57 mT. The field was oriented at 45° deg with respect to the grating planes. Arrow-ended white lines denote the orientations of the polarizer (P) and the analyzer (A). Yellow arrows indicate the coordinate axes used in the theoretical description. The insets in the lower left corners indicate orientation of the LC molecules. Red squares denote the region of interest (ROI) that was selected for analysis of the average grayscale level of the image. (c) Average grayscale level in the selected ROI as a function of the magnetic field B. Full circles: values obtained for increasing field, open circles: values obtained for decreasing field. Practically no hysteresis is observed.
Fig. 3
Fig. 3 Schematic drawing of the diffraction experiment. A linearly polarized laser beam with either s or p polarization direction enters the sample at normal incidence with respect to the grating plane. The intensities of the 0th, + 1st and + 2nd diffraction orders are measured. In the top right corner, the far field diffraction patterns at B = 0 are shown for s and for p polarized light, respectively.
Fig. 4
Fig. 4 Diffraction efficiencies of different diffraction orders as a function of an applied magnetic field (a) for an s-polarized beam and (b) for a p-polarized beam.
Fig. 5
Fig. 5 Time dependence of diffraction efficiencies of different diffraction orders after switching on and switching off a magnetic field of 35 mT (a) for an s-polarized beam and (b) for a p-polarized beam.
Fig. 6
Fig. 6 Calculated diffraction efficiencies of the 0th and the 1st diffraction orders as a function of the rotation angle β obtained from Eq. (4). (a) Results obtained for an s-polarized beam and (b) for a p-polarized beam. The definition of β is shown Fig. 3. The value β = 0 corresponds to n pointing along the grating planes, i.e. along the y axis.
Fig. 7
Fig. 7 Schematic drawing of the unit cell used for the RCWA simulations with the S4 solver.
Fig. 8
Fig. 8 Diffraction efficiencies of the 0th, the 1st and the 2nd diffraction orders as a function of rotation angle β obtained by numerical calculation of the electromagnetic field propagation in a one-dimensional grating structure composed of the unit cells shown in Fig. 7. (a) Results obtained for an s-polarized beam and (b) for a p-polarized beam. The definition of β is shown Fig. 3. The value β = 0 corresponds to n pointing along the grating planes, i.e. along the y axis.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

η i = I i I 2 + I 1 + I 0 + I + 1 + I + 2 ,
T = [ sin ( 2 α ) sin ( Δ Φ / 2 ) ] 2 ,
Δ Φ = 2 π D ( n e n o ) / λ ,
η i s = η i s 0 cos 2 β + η i p 0 sin 2 β , , η i p = η i p 0 cos 2 β + η i s 0 sin 2 β ,

Metrics