Abstract

In this paper, we experimentally demonstrate the performance of a non-orthogonal multi-band super-Nyquist carrier-less amplitude and phase (m-SCAP) modulation for visible light communications (VLC). We break the orthogonality between sub-bands in the frequency domain by compressing the spectrum, purposely overlapping them, and introducing inter-band interference (IBI). We demonstrate that our proposed system can tolerate IBI, and hence spectral efficiency can be increased without introducing additional complexity to the receiver. We show that m-SCAP can tolerate up to 30% and 20% compression for 4- and 16-level quadrature amplitude modulation, respectively, thus leading to an improvement in spectral efficiencies up to 40% and 25%, respectively, at the cost of bit error rate performance, which however remains below the 7% forward error correction limit. Moreover, the experimental results are supported by numerical simulations.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Spectrally efficient multi-band visible light communication system based on Nyquist PAM-8 modulation

Nan Chi, Mengjie Zhang, Jianyang Shi, and Yiheng Zhao
Photon. Res. 5(6) 588-597 (2017)

Adaptively loaded SP-offset-QAM OFDM for IM/DD communication systems

Jian Zhao and Chun-Kit Chan
Opt. Express 25(18) 21603-21618 (2017)

Experimental demonstration of a 10  Gb/s non-orthogonal multi-dimensional CAP-PON system based on the ISI and CCI cancellation algorithm

Lu Shi, Di Li, Jiale He, Lei Deng, Mengfan Cheng, Ming Tang, Songnian Fu, Minming Zhang, Perry Ping Shum, and Deming Liu
Opt. Lett. 41(17) 3988-3991 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Cisco, “Cisco visual networking index: Global mobile data traffic forecast update, 2013–2018,” (2014).
  2. Y. G. Wang, X. X. Huang, L. Tao, J. Y. Shi, and N. Chi, “4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization,” Opt. Express 23, 13626–13633 (2015).
    [Crossref] [PubMed]
  3. Y. G. Wang, L. Tao, X. X. Huang, J. Y. Shi, and N. Chi, “8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photonics J. 7, 1–7 (2015).
    [Crossref]
  4. F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, H. T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photonics J. 5, 7901507 (2013).
    [Crossref]
  5. M. I. Olmedo, T. J. Zuo, J. B. Jensen, Q. W. Zhong, X. G. Xu, S. Popov, and I. T. Monroy, “Multiband carrierless amplitude phase modulation for high capacity optical data links,” J. Light. Technol. 32, 798–804 (2014).
    [Crossref]
  6. P. A. Haigh, A. Burton, K. Werfli, H. L. Minh, E. Bentley, P. Chvojka, W. O. Popoola, I. Papakonstantinou, and S. Zvanovec, “A multi-CAP visible-light communications system with 4.85-b/s/Hz spectral efficiency,” IEEE J. on Sel. Areas Commun. 33, 1771–1779 (2015).
    [Crossref]
  7. P. A. Haigh, Z. Ghassemlooy, S. Rajbhandari, I. Papakonstantinou, and W. Popoola, “Visible light communications: 170 Mb/s using an artificial neural network equalizer in a low bandwidth white light configuration,” J. Light. Technol. 32, 1807–1813 (2014).
    [Crossref]
  8. Z. Ghassemlooy, L. Alves, M. Khalighi, and S. Zvanovec, Visible Light Communications: Theory and Applications(Taylor & Francis Incorporated, 2017).
    [Crossref]
  9. P. Chvojka, S. Zvanovec, K. Werfli, P. A. Haigh, and Z. Ghassemlooy, “Variable m-CAP for bandlimited visible light communications,” in IEEE International Conference on Communications Workshops, ICC Workshops 2017, (IEEE, 2017), pp. 1–5.
  10. S. Liang, L. Qiao, X. Lu, and N. Chi, “Enhanced performance of a multiband super-Nyquist CAP-16 VLC system employing a joint MIMO equalizer,” Opt Express 26, 15718–15725 (2018).
    [Crossref] [PubMed]
  11. K. Werfli, P. A. Haigh, Z. Ghassemlooy, N. B. Hassan, and S. Zvanovec, “A new concept of multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications,” in 2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), (IEEE, 2016), pp. 1–5.
  12. M. M. Merah, H. Guan, and L. Chassagne, “Performance optimization in multi-user multiband carrierless amplitude and phase modulation for visible light communication,” in 2018 Global LIFI Congress (GLC), (IEEE, 2018), pp. 1–4.
  13. Y. Wang, L. Tao, Y. Wang, and N. Chi, “High speed wdm VLC system based on multi-band CAP-64 with weighted pre-equalization and modified CMMA based post-equalization,” IEEE Commun. Lett. 18, 1719–1722 (2014).
    [Crossref]
  14. K. O. Akande and W. O. Popoola, “Subband index carrierless amplitude and phase modulation for optical communications,” J. Light. Technol. 36, 4190–4197 (2018).
    [Crossref]
  15. N. Chi, M. J. Zhang, J. Y. Shi, and Y. H. Zhao, “Spectrally efficient multi-band visible light communication system based on nyquist PAM-8 modulation,” Photonics Res. 5, 588–597 (2017).
    [Crossref]
  16. I. Kanaras, A. Chorti, M. R. Rodrigues, and I. Darwazeh, “Spectrally efficient FDM signals: Bandwidth gain at the expense of receiver complexity,” in IEEE International Conference on Communications, (IEEE, 2009).
  17. M. Rodrigues and I. Darwazeh, “A spectrally efficient frequency division multiplexing based communications system,” in Proceedings of the 8th International OFDM-Workshop, (IEEE, 2003), pp. 70–74.
  18. J. B. Anderson, F. Rusek, and V. Owall, “Faster-than-nyquist signaling,” Proc. IEEE 101, 1817–1830 (2013).
    [Crossref]
  19. I. Darwazeh, T. Y. Xu, T. Gui, Y. Bao, and Z. H. Li, “Optical SEFDM system; bandwidth saving using non-orthogonal sub-carriers,” IEEE Photonics Technol. Lett. 26, 352–355 (2014).
    [Crossref]
  20. D. Nopchinda, T. Y. Xu, R. Maher, B. C. Thomsen, and I. Darwazeh, “Dual polarization coherent optical spectrally efficient frequency division multiplexing,” IEEE Photonics Technol. Lett. 28, 83–86 (2016).
    [Crossref]
  21. T. Y. Xu, S. Mikroulis, J. E. Mitchell, and I. Darwazeh, “Bandwidth compressed waveform for 60-GHz millimeter-wave radio over fiber experiment,” J. Light. Technol. 34, 3458–3465 (2016).
    [Crossref]
  22. I. Darwazeh, H. Ghannam, and T. Xu, “The first 15 years of SEFDM: A brief survey,” in 11th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), (IEEE, 2018), pp. 1–5.
  23. P. A. Haigh, P. Chvojka, Z. Ghassemlooy, S. Zvanovec, and I. Darwazeh, “Non-orthogonal multi-band CAP for highly spectrally efficient VLC systems,” in 11th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), (IEEE, 2018), pp. 1–6.
  24. J. J. Yu, J. W. Zhang, Z. Dong, Z. S. Jia, H. C. Chien, Y. Cai, X. Xiao, and X. Y. Li, “Transmission of 8×480-gb/s super-nyquist-filtering 9-qam-like signal at 100 ghz-grid over 5000-km smf-28 and twenty-five 100 ghz-grid roadms,” Opt. Express 21, 15686–15691 (2013).
    [Crossref] [PubMed]
  25. M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of communication systems: modeling, methodology and techniques(Springer Science & Business Media, 2006).
  26. J. Wei, C. Sanchez, P. A. Haigh, and E. Giacoumidis, “Complexity comparison of multi-band CAP and DMT for practical high speed data center interconnects,” in Asia Communications and Photonics Conference, (Optical Society of America, 2017), p. M2G. 4.

2018 (2)

S. Liang, L. Qiao, X. Lu, and N. Chi, “Enhanced performance of a multiband super-Nyquist CAP-16 VLC system employing a joint MIMO equalizer,” Opt Express 26, 15718–15725 (2018).
[Crossref] [PubMed]

K. O. Akande and W. O. Popoola, “Subband index carrierless amplitude and phase modulation for optical communications,” J. Light. Technol. 36, 4190–4197 (2018).
[Crossref]

2017 (1)

N. Chi, M. J. Zhang, J. Y. Shi, and Y. H. Zhao, “Spectrally efficient multi-band visible light communication system based on nyquist PAM-8 modulation,” Photonics Res. 5, 588–597 (2017).
[Crossref]

2016 (2)

D. Nopchinda, T. Y. Xu, R. Maher, B. C. Thomsen, and I. Darwazeh, “Dual polarization coherent optical spectrally efficient frequency division multiplexing,” IEEE Photonics Technol. Lett. 28, 83–86 (2016).
[Crossref]

T. Y. Xu, S. Mikroulis, J. E. Mitchell, and I. Darwazeh, “Bandwidth compressed waveform for 60-GHz millimeter-wave radio over fiber experiment,” J. Light. Technol. 34, 3458–3465 (2016).
[Crossref]

2015 (3)

Y. G. Wang, X. X. Huang, L. Tao, J. Y. Shi, and N. Chi, “4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization,” Opt. Express 23, 13626–13633 (2015).
[Crossref] [PubMed]

Y. G. Wang, L. Tao, X. X. Huang, J. Y. Shi, and N. Chi, “8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photonics J. 7, 1–7 (2015).
[Crossref]

P. A. Haigh, A. Burton, K. Werfli, H. L. Minh, E. Bentley, P. Chvojka, W. O. Popoola, I. Papakonstantinou, and S. Zvanovec, “A multi-CAP visible-light communications system with 4.85-b/s/Hz spectral efficiency,” IEEE J. on Sel. Areas Commun. 33, 1771–1779 (2015).
[Crossref]

2014 (4)

P. A. Haigh, Z. Ghassemlooy, S. Rajbhandari, I. Papakonstantinou, and W. Popoola, “Visible light communications: 170 Mb/s using an artificial neural network equalizer in a low bandwidth white light configuration,” J. Light. Technol. 32, 1807–1813 (2014).
[Crossref]

Y. Wang, L. Tao, Y. Wang, and N. Chi, “High speed wdm VLC system based on multi-band CAP-64 with weighted pre-equalization and modified CMMA based post-equalization,” IEEE Commun. Lett. 18, 1719–1722 (2014).
[Crossref]

M. I. Olmedo, T. J. Zuo, J. B. Jensen, Q. W. Zhong, X. G. Xu, S. Popov, and I. T. Monroy, “Multiband carrierless amplitude phase modulation for high capacity optical data links,” J. Light. Technol. 32, 798–804 (2014).
[Crossref]

I. Darwazeh, T. Y. Xu, T. Gui, Y. Bao, and Z. H. Li, “Optical SEFDM system; bandwidth saving using non-orthogonal sub-carriers,” IEEE Photonics Technol. Lett. 26, 352–355 (2014).
[Crossref]

2013 (3)

J. J. Yu, J. W. Zhang, Z. Dong, Z. S. Jia, H. C. Chien, Y. Cai, X. Xiao, and X. Y. Li, “Transmission of 8×480-gb/s super-nyquist-filtering 9-qam-like signal at 100 ghz-grid over 5000-km smf-28 and twenty-five 100 ghz-grid roadms,” Opt. Express 21, 15686–15691 (2013).
[Crossref] [PubMed]

J. B. Anderson, F. Rusek, and V. Owall, “Faster-than-nyquist signaling,” Proc. IEEE 101, 1817–1830 (2013).
[Crossref]

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, H. T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photonics J. 5, 7901507 (2013).
[Crossref]

Akande, K. O.

K. O. Akande and W. O. Popoola, “Subband index carrierless amplitude and phase modulation for optical communications,” J. Light. Technol. 36, 4190–4197 (2018).
[Crossref]

Alves, L.

Z. Ghassemlooy, L. Alves, M. Khalighi, and S. Zvanovec, Visible Light Communications: Theory and Applications(Taylor & Francis Incorporated, 2017).
[Crossref]

Anderson, J. B.

J. B. Anderson, F. Rusek, and V. Owall, “Faster-than-nyquist signaling,” Proc. IEEE 101, 1817–1830 (2013).
[Crossref]

Balaban, P.

M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of communication systems: modeling, methodology and techniques(Springer Science & Business Media, 2006).

Bao, Y.

I. Darwazeh, T. Y. Xu, T. Gui, Y. Bao, and Z. H. Li, “Optical SEFDM system; bandwidth saving using non-orthogonal sub-carriers,” IEEE Photonics Technol. Lett. 26, 352–355 (2014).
[Crossref]

Bentley, E.

P. A. Haigh, A. Burton, K. Werfli, H. L. Minh, E. Bentley, P. Chvojka, W. O. Popoola, I. Papakonstantinou, and S. Zvanovec, “A multi-CAP visible-light communications system with 4.85-b/s/Hz spectral efficiency,” IEEE J. on Sel. Areas Commun. 33, 1771–1779 (2015).
[Crossref]

Burton, A.

P. A. Haigh, A. Burton, K. Werfli, H. L. Minh, E. Bentley, P. Chvojka, W. O. Popoola, I. Papakonstantinou, and S. Zvanovec, “A multi-CAP visible-light communications system with 4.85-b/s/Hz spectral efficiency,” IEEE J. on Sel. Areas Commun. 33, 1771–1779 (2015).
[Crossref]

Cai, Y.

J. J. Yu, J. W. Zhang, Z. Dong, Z. S. Jia, H. C. Chien, Y. Cai, X. Xiao, and X. Y. Li, “Transmission of 8×480-gb/s super-nyquist-filtering 9-qam-like signal at 100 ghz-grid over 5000-km smf-28 and twenty-five 100 ghz-grid roadms,” Opt. Express 21, 15686–15691 (2013).
[Crossref] [PubMed]

Chassagne, L.

M. M. Merah, H. Guan, and L. Chassagne, “Performance optimization in multi-user multiband carrierless amplitude and phase modulation for visible light communication,” in 2018 Global LIFI Congress (GLC), (IEEE, 2018), pp. 1–4.

Chen, C. W.

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, H. T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photonics J. 5, 7901507 (2013).
[Crossref]

Chen, Z. Y.

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, H. T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photonics J. 5, 7901507 (2013).
[Crossref]

Chi, N.

S. Liang, L. Qiao, X. Lu, and N. Chi, “Enhanced performance of a multiband super-Nyquist CAP-16 VLC system employing a joint MIMO equalizer,” Opt Express 26, 15718–15725 (2018).
[Crossref] [PubMed]

N. Chi, M. J. Zhang, J. Y. Shi, and Y. H. Zhao, “Spectrally efficient multi-band visible light communication system based on nyquist PAM-8 modulation,” Photonics Res. 5, 588–597 (2017).
[Crossref]

Y. G. Wang, L. Tao, X. X. Huang, J. Y. Shi, and N. Chi, “8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photonics J. 7, 1–7 (2015).
[Crossref]

Y. G. Wang, X. X. Huang, L. Tao, J. Y. Shi, and N. Chi, “4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization,” Opt. Express 23, 13626–13633 (2015).
[Crossref] [PubMed]

Y. Wang, L. Tao, Y. Wang, and N. Chi, “High speed wdm VLC system based on multi-band CAP-64 with weighted pre-equalization and modified CMMA based post-equalization,” IEEE Commun. Lett. 18, 1719–1722 (2014).
[Crossref]

Chi, S.

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, H. T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photonics J. 5, 7901507 (2013).
[Crossref]

Chien, H. C.

J. J. Yu, J. W. Zhang, Z. Dong, Z. S. Jia, H. C. Chien, Y. Cai, X. Xiao, and X. Y. Li, “Transmission of 8×480-gb/s super-nyquist-filtering 9-qam-like signal at 100 ghz-grid over 5000-km smf-28 and twenty-five 100 ghz-grid roadms,” Opt. Express 21, 15686–15691 (2013).
[Crossref] [PubMed]

Chorti, A.

I. Kanaras, A. Chorti, M. R. Rodrigues, and I. Darwazeh, “Spectrally efficient FDM signals: Bandwidth gain at the expense of receiver complexity,” in IEEE International Conference on Communications, (IEEE, 2009).

Chvojka, P.

P. A. Haigh, A. Burton, K. Werfli, H. L. Minh, E. Bentley, P. Chvojka, W. O. Popoola, I. Papakonstantinou, and S. Zvanovec, “A multi-CAP visible-light communications system with 4.85-b/s/Hz spectral efficiency,” IEEE J. on Sel. Areas Commun. 33, 1771–1779 (2015).
[Crossref]

P. Chvojka, S. Zvanovec, K. Werfli, P. A. Haigh, and Z. Ghassemlooy, “Variable m-CAP for bandlimited visible light communications,” in IEEE International Conference on Communications Workshops, ICC Workshops 2017, (IEEE, 2017), pp. 1–5.

P. A. Haigh, P. Chvojka, Z. Ghassemlooy, S. Zvanovec, and I. Darwazeh, “Non-orthogonal multi-band CAP for highly spectrally efficient VLC systems,” in 11th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), (IEEE, 2018), pp. 1–6.

Darwazeh, I.

D. Nopchinda, T. Y. Xu, R. Maher, B. C. Thomsen, and I. Darwazeh, “Dual polarization coherent optical spectrally efficient frequency division multiplexing,” IEEE Photonics Technol. Lett. 28, 83–86 (2016).
[Crossref]

T. Y. Xu, S. Mikroulis, J. E. Mitchell, and I. Darwazeh, “Bandwidth compressed waveform for 60-GHz millimeter-wave radio over fiber experiment,” J. Light. Technol. 34, 3458–3465 (2016).
[Crossref]

I. Darwazeh, T. Y. Xu, T. Gui, Y. Bao, and Z. H. Li, “Optical SEFDM system; bandwidth saving using non-orthogonal sub-carriers,” IEEE Photonics Technol. Lett. 26, 352–355 (2014).
[Crossref]

I. Kanaras, A. Chorti, M. R. Rodrigues, and I. Darwazeh, “Spectrally efficient FDM signals: Bandwidth gain at the expense of receiver complexity,” in IEEE International Conference on Communications, (IEEE, 2009).

M. Rodrigues and I. Darwazeh, “A spectrally efficient frequency division multiplexing based communications system,” in Proceedings of the 8th International OFDM-Workshop, (IEEE, 2003), pp. 70–74.

I. Darwazeh, H. Ghannam, and T. Xu, “The first 15 years of SEFDM: A brief survey,” in 11th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), (IEEE, 2018), pp. 1–5.

P. A. Haigh, P. Chvojka, Z. Ghassemlooy, S. Zvanovec, and I. Darwazeh, “Non-orthogonal multi-band CAP for highly spectrally efficient VLC systems,” in 11th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), (IEEE, 2018), pp. 1–6.

Dong, Z.

J. J. Yu, J. W. Zhang, Z. Dong, Z. S. Jia, H. C. Chien, Y. Cai, X. Xiao, and X. Y. Li, “Transmission of 8×480-gb/s super-nyquist-filtering 9-qam-like signal at 100 ghz-grid over 5000-km smf-28 and twenty-five 100 ghz-grid roadms,” Opt. Express 21, 15686–15691 (2013).
[Crossref] [PubMed]

Ghannam, H.

I. Darwazeh, H. Ghannam, and T. Xu, “The first 15 years of SEFDM: A brief survey,” in 11th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), (IEEE, 2018), pp. 1–5.

Ghassemlooy, Z.

P. A. Haigh, Z. Ghassemlooy, S. Rajbhandari, I. Papakonstantinou, and W. Popoola, “Visible light communications: 170 Mb/s using an artificial neural network equalizer in a low bandwidth white light configuration,” J. Light. Technol. 32, 1807–1813 (2014).
[Crossref]

Z. Ghassemlooy, L. Alves, M. Khalighi, and S. Zvanovec, Visible Light Communications: Theory and Applications(Taylor & Francis Incorporated, 2017).
[Crossref]

P. Chvojka, S. Zvanovec, K. Werfli, P. A. Haigh, and Z. Ghassemlooy, “Variable m-CAP for bandlimited visible light communications,” in IEEE International Conference on Communications Workshops, ICC Workshops 2017, (IEEE, 2017), pp. 1–5.

K. Werfli, P. A. Haigh, Z. Ghassemlooy, N. B. Hassan, and S. Zvanovec, “A new concept of multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications,” in 2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), (IEEE, 2016), pp. 1–5.

P. A. Haigh, P. Chvojka, Z. Ghassemlooy, S. Zvanovec, and I. Darwazeh, “Non-orthogonal multi-band CAP for highly spectrally efficient VLC systems,” in 11th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), (IEEE, 2018), pp. 1–6.

Giacoumidis, E.

J. Wei, C. Sanchez, P. A. Haigh, and E. Giacoumidis, “Complexity comparison of multi-band CAP and DMT for practical high speed data center interconnects,” in Asia Communications and Photonics Conference, (Optical Society of America, 2017), p. M2G. 4.

Guan, H.

M. M. Merah, H. Guan, and L. Chassagne, “Performance optimization in multi-user multiband carrierless amplitude and phase modulation for visible light communication,” in 2018 Global LIFI Congress (GLC), (IEEE, 2018), pp. 1–4.

Gui, T.

I. Darwazeh, T. Y. Xu, T. Gui, Y. Bao, and Z. H. Li, “Optical SEFDM system; bandwidth saving using non-orthogonal sub-carriers,” IEEE Photonics Technol. Lett. 26, 352–355 (2014).
[Crossref]

Haigh, P. A.

P. A. Haigh, A. Burton, K. Werfli, H. L. Minh, E. Bentley, P. Chvojka, W. O. Popoola, I. Papakonstantinou, and S. Zvanovec, “A multi-CAP visible-light communications system with 4.85-b/s/Hz spectral efficiency,” IEEE J. on Sel. Areas Commun. 33, 1771–1779 (2015).
[Crossref]

P. A. Haigh, Z. Ghassemlooy, S. Rajbhandari, I. Papakonstantinou, and W. Popoola, “Visible light communications: 170 Mb/s using an artificial neural network equalizer in a low bandwidth white light configuration,” J. Light. Technol. 32, 1807–1813 (2014).
[Crossref]

P. Chvojka, S. Zvanovec, K. Werfli, P. A. Haigh, and Z. Ghassemlooy, “Variable m-CAP for bandlimited visible light communications,” in IEEE International Conference on Communications Workshops, ICC Workshops 2017, (IEEE, 2017), pp. 1–5.

K. Werfli, P. A. Haigh, Z. Ghassemlooy, N. B. Hassan, and S. Zvanovec, “A new concept of multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications,” in 2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), (IEEE, 2016), pp. 1–5.

P. A. Haigh, P. Chvojka, Z. Ghassemlooy, S. Zvanovec, and I. Darwazeh, “Non-orthogonal multi-band CAP for highly spectrally efficient VLC systems,” in 11th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), (IEEE, 2018), pp. 1–6.

J. Wei, C. Sanchez, P. A. Haigh, and E. Giacoumidis, “Complexity comparison of multi-band CAP and DMT for practical high speed data center interconnects,” in Asia Communications and Photonics Conference, (Optical Society of America, 2017), p. M2G. 4.

Hassan, N. B.

K. Werfli, P. A. Haigh, Z. Ghassemlooy, N. B. Hassan, and S. Zvanovec, “A new concept of multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications,” in 2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), (IEEE, 2016), pp. 1–5.

Huang, H. T.

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, H. T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photonics J. 5, 7901507 (2013).
[Crossref]

Huang, X. X.

Y. G. Wang, L. Tao, X. X. Huang, J. Y. Shi, and N. Chi, “8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photonics J. 7, 1–7 (2015).
[Crossref]

Y. G. Wang, X. X. Huang, L. Tao, J. Y. Shi, and N. Chi, “4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization,” Opt. Express 23, 13626–13633 (2015).
[Crossref] [PubMed]

Jensen, J. B.

M. I. Olmedo, T. J. Zuo, J. B. Jensen, Q. W. Zhong, X. G. Xu, S. Popov, and I. T. Monroy, “Multiband carrierless amplitude phase modulation for high capacity optical data links,” J. Light. Technol. 32, 798–804 (2014).
[Crossref]

Jeruchim, M. C.

M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of communication systems: modeling, methodology and techniques(Springer Science & Business Media, 2006).

Jia, Z. S.

J. J. Yu, J. W. Zhang, Z. Dong, Z. S. Jia, H. C. Chien, Y. Cai, X. Xiao, and X. Y. Li, “Transmission of 8×480-gb/s super-nyquist-filtering 9-qam-like signal at 100 ghz-grid over 5000-km smf-28 and twenty-five 100 ghz-grid roadms,” Opt. Express 21, 15686–15691 (2013).
[Crossref] [PubMed]

Kanaras, I.

I. Kanaras, A. Chorti, M. R. Rodrigues, and I. Darwazeh, “Spectrally efficient FDM signals: Bandwidth gain at the expense of receiver complexity,” in IEEE International Conference on Communications, (IEEE, 2009).

Khalighi, M.

Z. Ghassemlooy, L. Alves, M. Khalighi, and S. Zvanovec, Visible Light Communications: Theory and Applications(Taylor & Francis Incorporated, 2017).
[Crossref]

Li, X. Y.

J. J. Yu, J. W. Zhang, Z. Dong, Z. S. Jia, H. C. Chien, Y. Cai, X. Xiao, and X. Y. Li, “Transmission of 8×480-gb/s super-nyquist-filtering 9-qam-like signal at 100 ghz-grid over 5000-km smf-28 and twenty-five 100 ghz-grid roadms,” Opt. Express 21, 15686–15691 (2013).
[Crossref] [PubMed]

Li, Z. H.

I. Darwazeh, T. Y. Xu, T. Gui, Y. Bao, and Z. H. Li, “Optical SEFDM system; bandwidth saving using non-orthogonal sub-carriers,” IEEE Photonics Technol. Lett. 26, 352–355 (2014).
[Crossref]

Liang, S.

S. Liang, L. Qiao, X. Lu, and N. Chi, “Enhanced performance of a multiband super-Nyquist CAP-16 VLC system employing a joint MIMO equalizer,” Opt Express 26, 15718–15725 (2018).
[Crossref] [PubMed]

Lin, C. T.

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, H. T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photonics J. 5, 7901507 (2013).
[Crossref]

Lu, X.

S. Liang, L. Qiao, X. Lu, and N. Chi, “Enhanced performance of a multiband super-Nyquist CAP-16 VLC system employing a joint MIMO equalizer,” Opt Express 26, 15718–15725 (2018).
[Crossref] [PubMed]

Maher, R.

D. Nopchinda, T. Y. Xu, R. Maher, B. C. Thomsen, and I. Darwazeh, “Dual polarization coherent optical spectrally efficient frequency division multiplexing,” IEEE Photonics Technol. Lett. 28, 83–86 (2016).
[Crossref]

Merah, M. M.

M. M. Merah, H. Guan, and L. Chassagne, “Performance optimization in multi-user multiband carrierless amplitude and phase modulation for visible light communication,” in 2018 Global LIFI Congress (GLC), (IEEE, 2018), pp. 1–4.

Mikroulis, S.

T. Y. Xu, S. Mikroulis, J. E. Mitchell, and I. Darwazeh, “Bandwidth compressed waveform for 60-GHz millimeter-wave radio over fiber experiment,” J. Light. Technol. 34, 3458–3465 (2016).
[Crossref]

Minh, H. L.

P. A. Haigh, A. Burton, K. Werfli, H. L. Minh, E. Bentley, P. Chvojka, W. O. Popoola, I. Papakonstantinou, and S. Zvanovec, “A multi-CAP visible-light communications system with 4.85-b/s/Hz spectral efficiency,” IEEE J. on Sel. Areas Commun. 33, 1771–1779 (2015).
[Crossref]

Mitchell, J. E.

T. Y. Xu, S. Mikroulis, J. E. Mitchell, and I. Darwazeh, “Bandwidth compressed waveform for 60-GHz millimeter-wave radio over fiber experiment,” J. Light. Technol. 34, 3458–3465 (2016).
[Crossref]

Monroy, I. T.

M. I. Olmedo, T. J. Zuo, J. B. Jensen, Q. W. Zhong, X. G. Xu, S. Popov, and I. T. Monroy, “Multiband carrierless amplitude phase modulation for high capacity optical data links,” J. Light. Technol. 32, 798–804 (2014).
[Crossref]

Nopchinda, D.

D. Nopchinda, T. Y. Xu, R. Maher, B. C. Thomsen, and I. Darwazeh, “Dual polarization coherent optical spectrally efficient frequency division multiplexing,” IEEE Photonics Technol. Lett. 28, 83–86 (2016).
[Crossref]

Olmedo, M. I.

M. I. Olmedo, T. J. Zuo, J. B. Jensen, Q. W. Zhong, X. G. Xu, S. Popov, and I. T. Monroy, “Multiband carrierless amplitude phase modulation for high capacity optical data links,” J. Light. Technol. 32, 798–804 (2014).
[Crossref]

Owall, V.

J. B. Anderson, F. Rusek, and V. Owall, “Faster-than-nyquist signaling,” Proc. IEEE 101, 1817–1830 (2013).
[Crossref]

Papakonstantinou, I.

P. A. Haigh, A. Burton, K. Werfli, H. L. Minh, E. Bentley, P. Chvojka, W. O. Popoola, I. Papakonstantinou, and S. Zvanovec, “A multi-CAP visible-light communications system with 4.85-b/s/Hz spectral efficiency,” IEEE J. on Sel. Areas Commun. 33, 1771–1779 (2015).
[Crossref]

P. A. Haigh, Z. Ghassemlooy, S. Rajbhandari, I. Papakonstantinou, and W. Popoola, “Visible light communications: 170 Mb/s using an artificial neural network equalizer in a low bandwidth white light configuration,” J. Light. Technol. 32, 1807–1813 (2014).
[Crossref]

Popoola, W.

P. A. Haigh, Z. Ghassemlooy, S. Rajbhandari, I. Papakonstantinou, and W. Popoola, “Visible light communications: 170 Mb/s using an artificial neural network equalizer in a low bandwidth white light configuration,” J. Light. Technol. 32, 1807–1813 (2014).
[Crossref]

Popoola, W. O.

K. O. Akande and W. O. Popoola, “Subband index carrierless amplitude and phase modulation for optical communications,” J. Light. Technol. 36, 4190–4197 (2018).
[Crossref]

P. A. Haigh, A. Burton, K. Werfli, H. L. Minh, E. Bentley, P. Chvojka, W. O. Popoola, I. Papakonstantinou, and S. Zvanovec, “A multi-CAP visible-light communications system with 4.85-b/s/Hz spectral efficiency,” IEEE J. on Sel. Areas Commun. 33, 1771–1779 (2015).
[Crossref]

Popov, S.

M. I. Olmedo, T. J. Zuo, J. B. Jensen, Q. W. Zhong, X. G. Xu, S. Popov, and I. T. Monroy, “Multiband carrierless amplitude phase modulation for high capacity optical data links,” J. Light. Technol. 32, 798–804 (2014).
[Crossref]

Qiao, L.

S. Liang, L. Qiao, X. Lu, and N. Chi, “Enhanced performance of a multiband super-Nyquist CAP-16 VLC system employing a joint MIMO equalizer,” Opt Express 26, 15718–15725 (2018).
[Crossref] [PubMed]

Rajbhandari, S.

P. A. Haigh, Z. Ghassemlooy, S. Rajbhandari, I. Papakonstantinou, and W. Popoola, “Visible light communications: 170 Mb/s using an artificial neural network equalizer in a low bandwidth white light configuration,” J. Light. Technol. 32, 1807–1813 (2014).
[Crossref]

Rodrigues, M.

M. Rodrigues and I. Darwazeh, “A spectrally efficient frequency division multiplexing based communications system,” in Proceedings of the 8th International OFDM-Workshop, (IEEE, 2003), pp. 70–74.

Rodrigues, M. R.

I. Kanaras, A. Chorti, M. R. Rodrigues, and I. Darwazeh, “Spectrally efficient FDM signals: Bandwidth gain at the expense of receiver complexity,” in IEEE International Conference on Communications, (IEEE, 2009).

Rusek, F.

J. B. Anderson, F. Rusek, and V. Owall, “Faster-than-nyquist signaling,” Proc. IEEE 101, 1817–1830 (2013).
[Crossref]

Sanchez, C.

J. Wei, C. Sanchez, P. A. Haigh, and E. Giacoumidis, “Complexity comparison of multi-band CAP and DMT for practical high speed data center interconnects,” in Asia Communications and Photonics Conference, (Optical Society of America, 2017), p. M2G. 4.

Shanmugan, K. S.

M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of communication systems: modeling, methodology and techniques(Springer Science & Business Media, 2006).

Shi, J. Y.

N. Chi, M. J. Zhang, J. Y. Shi, and Y. H. Zhao, “Spectrally efficient multi-band visible light communication system based on nyquist PAM-8 modulation,” Photonics Res. 5, 588–597 (2017).
[Crossref]

Y. G. Wang, X. X. Huang, L. Tao, J. Y. Shi, and N. Chi, “4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization,” Opt. Express 23, 13626–13633 (2015).
[Crossref] [PubMed]

Y. G. Wang, L. Tao, X. X. Huang, J. Y. Shi, and N. Chi, “8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photonics J. 7, 1–7 (2015).
[Crossref]

Tao, L.

Y. G. Wang, X. X. Huang, L. Tao, J. Y. Shi, and N. Chi, “4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization,” Opt. Express 23, 13626–13633 (2015).
[Crossref] [PubMed]

Y. G. Wang, L. Tao, X. X. Huang, J. Y. Shi, and N. Chi, “8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photonics J. 7, 1–7 (2015).
[Crossref]

Y. Wang, L. Tao, Y. Wang, and N. Chi, “High speed wdm VLC system based on multi-band CAP-64 with weighted pre-equalization and modified CMMA based post-equalization,” IEEE Commun. Lett. 18, 1719–1722 (2014).
[Crossref]

Thomsen, B. C.

D. Nopchinda, T. Y. Xu, R. Maher, B. C. Thomsen, and I. Darwazeh, “Dual polarization coherent optical spectrally efficient frequency division multiplexing,” IEEE Photonics Technol. Lett. 28, 83–86 (2016).
[Crossref]

Wang, Y.

Y. Wang, L. Tao, Y. Wang, and N. Chi, “High speed wdm VLC system based on multi-band CAP-64 with weighted pre-equalization and modified CMMA based post-equalization,” IEEE Commun. Lett. 18, 1719–1722 (2014).
[Crossref]

Y. Wang, L. Tao, Y. Wang, and N. Chi, “High speed wdm VLC system based on multi-band CAP-64 with weighted pre-equalization and modified CMMA based post-equalization,” IEEE Commun. Lett. 18, 1719–1722 (2014).
[Crossref]

Wang, Y. G.

Y. G. Wang, X. X. Huang, L. Tao, J. Y. Shi, and N. Chi, “4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization,” Opt. Express 23, 13626–13633 (2015).
[Crossref] [PubMed]

Y. G. Wang, L. Tao, X. X. Huang, J. Y. Shi, and N. Chi, “8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photonics J. 7, 1–7 (2015).
[Crossref]

Wei, C. C.

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, H. T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photonics J. 5, 7901507 (2013).
[Crossref]

Wei, J.

J. Wei, C. Sanchez, P. A. Haigh, and E. Giacoumidis, “Complexity comparison of multi-band CAP and DMT for practical high speed data center interconnects,” in Asia Communications and Photonics Conference, (Optical Society of America, 2017), p. M2G. 4.

Werfli, K.

P. A. Haigh, A. Burton, K. Werfli, H. L. Minh, E. Bentley, P. Chvojka, W. O. Popoola, I. Papakonstantinou, and S. Zvanovec, “A multi-CAP visible-light communications system with 4.85-b/s/Hz spectral efficiency,” IEEE J. on Sel. Areas Commun. 33, 1771–1779 (2015).
[Crossref]

P. Chvojka, S. Zvanovec, K. Werfli, P. A. Haigh, and Z. Ghassemlooy, “Variable m-CAP for bandlimited visible light communications,” in IEEE International Conference on Communications Workshops, ICC Workshops 2017, (IEEE, 2017), pp. 1–5.

K. Werfli, P. A. Haigh, Z. Ghassemlooy, N. B. Hassan, and S. Zvanovec, “A new concept of multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications,” in 2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), (IEEE, 2016), pp. 1–5.

Wu, F. M.

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, H. T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photonics J. 5, 7901507 (2013).
[Crossref]

Xiao, X.

J. J. Yu, J. W. Zhang, Z. Dong, Z. S. Jia, H. C. Chien, Y. Cai, X. Xiao, and X. Y. Li, “Transmission of 8×480-gb/s super-nyquist-filtering 9-qam-like signal at 100 ghz-grid over 5000-km smf-28 and twenty-five 100 ghz-grid roadms,” Opt. Express 21, 15686–15691 (2013).
[Crossref] [PubMed]

Xu, T.

I. Darwazeh, H. Ghannam, and T. Xu, “The first 15 years of SEFDM: A brief survey,” in 11th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), (IEEE, 2018), pp. 1–5.

Xu, T. Y.

T. Y. Xu, S. Mikroulis, J. E. Mitchell, and I. Darwazeh, “Bandwidth compressed waveform for 60-GHz millimeter-wave radio over fiber experiment,” J. Light. Technol. 34, 3458–3465 (2016).
[Crossref]

D. Nopchinda, T. Y. Xu, R. Maher, B. C. Thomsen, and I. Darwazeh, “Dual polarization coherent optical spectrally efficient frequency division multiplexing,” IEEE Photonics Technol. Lett. 28, 83–86 (2016).
[Crossref]

I. Darwazeh, T. Y. Xu, T. Gui, Y. Bao, and Z. H. Li, “Optical SEFDM system; bandwidth saving using non-orthogonal sub-carriers,” IEEE Photonics Technol. Lett. 26, 352–355 (2014).
[Crossref]

Xu, X. G.

M. I. Olmedo, T. J. Zuo, J. B. Jensen, Q. W. Zhong, X. G. Xu, S. Popov, and I. T. Monroy, “Multiband carrierless amplitude phase modulation for high capacity optical data links,” J. Light. Technol. 32, 798–804 (2014).
[Crossref]

Yu, J. J.

J. J. Yu, J. W. Zhang, Z. Dong, Z. S. Jia, H. C. Chien, Y. Cai, X. Xiao, and X. Y. Li, “Transmission of 8×480-gb/s super-nyquist-filtering 9-qam-like signal at 100 ghz-grid over 5000-km smf-28 and twenty-five 100 ghz-grid roadms,” Opt. Express 21, 15686–15691 (2013).
[Crossref] [PubMed]

Zhang, J. W.

J. J. Yu, J. W. Zhang, Z. Dong, Z. S. Jia, H. C. Chien, Y. Cai, X. Xiao, and X. Y. Li, “Transmission of 8×480-gb/s super-nyquist-filtering 9-qam-like signal at 100 ghz-grid over 5000-km smf-28 and twenty-five 100 ghz-grid roadms,” Opt. Express 21, 15686–15691 (2013).
[Crossref] [PubMed]

Zhang, M. J.

N. Chi, M. J. Zhang, J. Y. Shi, and Y. H. Zhao, “Spectrally efficient multi-band visible light communication system based on nyquist PAM-8 modulation,” Photonics Res. 5, 588–597 (2017).
[Crossref]

Zhao, Y. H.

N. Chi, M. J. Zhang, J. Y. Shi, and Y. H. Zhao, “Spectrally efficient multi-band visible light communication system based on nyquist PAM-8 modulation,” Photonics Res. 5, 588–597 (2017).
[Crossref]

Zhong, Q. W.

M. I. Olmedo, T. J. Zuo, J. B. Jensen, Q. W. Zhong, X. G. Xu, S. Popov, and I. T. Monroy, “Multiband carrierless amplitude phase modulation for high capacity optical data links,” J. Light. Technol. 32, 798–804 (2014).
[Crossref]

Zuo, T. J.

M. I. Olmedo, T. J. Zuo, J. B. Jensen, Q. W. Zhong, X. G. Xu, S. Popov, and I. T. Monroy, “Multiband carrierless amplitude phase modulation for high capacity optical data links,” J. Light. Technol. 32, 798–804 (2014).
[Crossref]

Zvanovec, S.

P. A. Haigh, A. Burton, K. Werfli, H. L. Minh, E. Bentley, P. Chvojka, W. O. Popoola, I. Papakonstantinou, and S. Zvanovec, “A multi-CAP visible-light communications system with 4.85-b/s/Hz spectral efficiency,” IEEE J. on Sel. Areas Commun. 33, 1771–1779 (2015).
[Crossref]

K. Werfli, P. A. Haigh, Z. Ghassemlooy, N. B. Hassan, and S. Zvanovec, “A new concept of multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications,” in 2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), (IEEE, 2016), pp. 1–5.

Z. Ghassemlooy, L. Alves, M. Khalighi, and S. Zvanovec, Visible Light Communications: Theory and Applications(Taylor & Francis Incorporated, 2017).
[Crossref]

P. Chvojka, S. Zvanovec, K. Werfli, P. A. Haigh, and Z. Ghassemlooy, “Variable m-CAP for bandlimited visible light communications,” in IEEE International Conference on Communications Workshops, ICC Workshops 2017, (IEEE, 2017), pp. 1–5.

P. A. Haigh, P. Chvojka, Z. Ghassemlooy, S. Zvanovec, and I. Darwazeh, “Non-orthogonal multi-band CAP for highly spectrally efficient VLC systems,” in 11th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), (IEEE, 2018), pp. 1–6.

IEEE Commun. Lett. (1)

Y. Wang, L. Tao, Y. Wang, and N. Chi, “High speed wdm VLC system based on multi-band CAP-64 with weighted pre-equalization and modified CMMA based post-equalization,” IEEE Commun. Lett. 18, 1719–1722 (2014).
[Crossref]

IEEE J. on Sel. Areas Commun. (1)

P. A. Haigh, A. Burton, K. Werfli, H. L. Minh, E. Bentley, P. Chvojka, W. O. Popoola, I. Papakonstantinou, and S. Zvanovec, “A multi-CAP visible-light communications system with 4.85-b/s/Hz spectral efficiency,” IEEE J. on Sel. Areas Commun. 33, 1771–1779 (2015).
[Crossref]

IEEE Photonics J. (2)

Y. G. Wang, L. Tao, X. X. Huang, J. Y. Shi, and N. Chi, “8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photonics J. 7, 1–7 (2015).
[Crossref]

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, H. T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photonics J. 5, 7901507 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (2)

I. Darwazeh, T. Y. Xu, T. Gui, Y. Bao, and Z. H. Li, “Optical SEFDM system; bandwidth saving using non-orthogonal sub-carriers,” IEEE Photonics Technol. Lett. 26, 352–355 (2014).
[Crossref]

D. Nopchinda, T. Y. Xu, R. Maher, B. C. Thomsen, and I. Darwazeh, “Dual polarization coherent optical spectrally efficient frequency division multiplexing,” IEEE Photonics Technol. Lett. 28, 83–86 (2016).
[Crossref]

J. Light. Technol. (4)

T. Y. Xu, S. Mikroulis, J. E. Mitchell, and I. Darwazeh, “Bandwidth compressed waveform for 60-GHz millimeter-wave radio over fiber experiment,” J. Light. Technol. 34, 3458–3465 (2016).
[Crossref]

K. O. Akande and W. O. Popoola, “Subband index carrierless amplitude and phase modulation for optical communications,” J. Light. Technol. 36, 4190–4197 (2018).
[Crossref]

M. I. Olmedo, T. J. Zuo, J. B. Jensen, Q. W. Zhong, X. G. Xu, S. Popov, and I. T. Monroy, “Multiband carrierless amplitude phase modulation for high capacity optical data links,” J. Light. Technol. 32, 798–804 (2014).
[Crossref]

P. A. Haigh, Z. Ghassemlooy, S. Rajbhandari, I. Papakonstantinou, and W. Popoola, “Visible light communications: 170 Mb/s using an artificial neural network equalizer in a low bandwidth white light configuration,” J. Light. Technol. 32, 1807–1813 (2014).
[Crossref]

Opt Express (1)

S. Liang, L. Qiao, X. Lu, and N. Chi, “Enhanced performance of a multiband super-Nyquist CAP-16 VLC system employing a joint MIMO equalizer,” Opt Express 26, 15718–15725 (2018).
[Crossref] [PubMed]

Opt. Express (2)

J. J. Yu, J. W. Zhang, Z. Dong, Z. S. Jia, H. C. Chien, Y. Cai, X. Xiao, and X. Y. Li, “Transmission of 8×480-gb/s super-nyquist-filtering 9-qam-like signal at 100 ghz-grid over 5000-km smf-28 and twenty-five 100 ghz-grid roadms,” Opt. Express 21, 15686–15691 (2013).
[Crossref] [PubMed]

Y. G. Wang, X. X. Huang, L. Tao, J. Y. Shi, and N. Chi, “4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization,” Opt. Express 23, 13626–13633 (2015).
[Crossref] [PubMed]

Photonics Res. (1)

N. Chi, M. J. Zhang, J. Y. Shi, and Y. H. Zhao, “Spectrally efficient multi-band visible light communication system based on nyquist PAM-8 modulation,” Photonics Res. 5, 588–597 (2017).
[Crossref]

Proc. IEEE (1)

J. B. Anderson, F. Rusek, and V. Owall, “Faster-than-nyquist signaling,” Proc. IEEE 101, 1817–1830 (2013).
[Crossref]

Other (11)

M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of communication systems: modeling, methodology and techniques(Springer Science & Business Media, 2006).

J. Wei, C. Sanchez, P. A. Haigh, and E. Giacoumidis, “Complexity comparison of multi-band CAP and DMT for practical high speed data center interconnects,” in Asia Communications and Photonics Conference, (Optical Society of America, 2017), p. M2G. 4.

K. Werfli, P. A. Haigh, Z. Ghassemlooy, N. B. Hassan, and S. Zvanovec, “A new concept of multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications,” in 2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), (IEEE, 2016), pp. 1–5.

M. M. Merah, H. Guan, and L. Chassagne, “Performance optimization in multi-user multiband carrierless amplitude and phase modulation for visible light communication,” in 2018 Global LIFI Congress (GLC), (IEEE, 2018), pp. 1–4.

I. Kanaras, A. Chorti, M. R. Rodrigues, and I. Darwazeh, “Spectrally efficient FDM signals: Bandwidth gain at the expense of receiver complexity,” in IEEE International Conference on Communications, (IEEE, 2009).

M. Rodrigues and I. Darwazeh, “A spectrally efficient frequency division multiplexing based communications system,” in Proceedings of the 8th International OFDM-Workshop, (IEEE, 2003), pp. 70–74.

I. Darwazeh, H. Ghannam, and T. Xu, “The first 15 years of SEFDM: A brief survey,” in 11th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), (IEEE, 2018), pp. 1–5.

P. A. Haigh, P. Chvojka, Z. Ghassemlooy, S. Zvanovec, and I. Darwazeh, “Non-orthogonal multi-band CAP for highly spectrally efficient VLC systems,” in 11th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), (IEEE, 2018), pp. 1–6.

Cisco, “Cisco visual networking index: Global mobile data traffic forecast update, 2013–2018,” (2014).

Z. Ghassemlooy, L. Alves, M. Khalighi, and S. Zvanovec, Visible Light Communications: Theory and Applications(Taylor & Francis Incorporated, 2017).
[Crossref]

P. Chvojka, S. Zvanovec, K. Werfli, P. A. Haigh, and Z. Ghassemlooy, “Variable m-CAP for bandlimited visible light communications,” in IEEE International Conference on Communications Workshops, ICC Workshops 2017, (IEEE, 2017), pp. 1–5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 The schematic block diagram of the m-SCAP system under test.
Fig. 2
Fig. 2 Conventional 2-CAP for: (a) β = 0.1, and (b) β = 0.5; the proposed m-SCAP scheme for: (c) m = 2, β = 0.1, α = 0.2, (d) m = 2, β = 0.5, α = 0.2, (e) m = 10, β = 0.1, α = 0.2, and (f) m = 10, β = 0.5, α = 0.2.
Fig. 3
Fig. 3 Measured (solid lines) and simulated (dashed lines) total BER of m-SCAP as a function of m and β for Figs. 3(a)–(c) k = 2 and Figs. 3(d)–(f) k = 4.
Fig. 4
Fig. 4 Electrical spectra and constellations for the highest spectral efficiency systems for (a) k = 2, m = 4, β = 0.1, α = 0.1 and (b) k = 4, m = 4, β = 0.3, α = 0.1.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

p n ( t ) = [ sin  ( π t T s [ 1 β ] ) + 4 β t T s cos  ( π t T s [ 1 + β ] ) π t T s [ 1 ( 4 β t T s ) 2 ] ] cos  ( 2 π f c , n t T s )
p ¯ n ( t ) = [ sin  ( π t T s [ 1 β ] ) + 4 β t T s cos  ( π t T s [ 1 + β ] ) π t T s [ 1 ( 4 β t T s ) 2 ] ] sin  ( 2 π f c , n t T s )
f c , n = B C A P 2 m n [ B C A P m + B C A P ( α 1 ) ] m 1
s ( t ) = n = 1 m [ a n I ( t ) p n ( t ) a n Q p ¯ n ( t ) ]
η s e = k ( 1 + β ) ( 1 α )

Metrics