Abstract

The authors report on a high-performance metal-semiconductor-metal (MSM) photodetector fabricated on the Cd0.96Zn0.04Te single crystal with the photoresponse from visible to near infrared region. Benefitting from the high-quality single crystallization, an ultra-low dark current of ~10−10 A was obtained at a high applied voltage of 10 V, leading to a photo-to-dark-current ratio of more than 103 at 700 nm light illumination. The highest responsivity is estimated to be 1.43 A/W with a specific detectivity of 3.31 × 1012 Jones at 10 V at a relatively lower injection power density. The discrimination ratio between the near infrared region of 800 nm and 900 nm is almost 102, which is high enough for the accurate spectra selectivity. The MSM photodetector also exhibits a fast response speed of ~800 μs and extremely low persistent photoconductivity (PPC), while the PPC is inhibited at high temperatures.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-performance visible blind ultraviolet photodetector based on KTaO3 single crystal

Jing-ting Yang, Chen Ge, Kui-juan Jin, Hui-bin Lu, and Guo-zhen Yang
Appl. Opt. 55(9) 2259-2262 (2016)

Pulsed laser deposition of gallium oxide films for high performance solar-blind photodetectors

Fei-Peng Yu, Sin-Liang Ou, and Dong-Sing Wuu
Opt. Mater. Express 5(5) 1240-1249 (2015)

Photonic crystal cavity-assisted upconversion infrared photodetector

Xuetao Gan, Xinwen Yao, Ren-Jye Shiue, Fariba Hatami, and Dirk Englund
Opt. Express 23(10) 12998-13004 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. D. Sordo, L. Abbene, E. Caroli, A. M. Mancini, A. Zappettini, and P. Ubertini, “Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications,” Sensors (Basel) 9(5), 3491–3526 (2009).
    [Crossref] [PubMed]
  2. H. Park, G. Yang, S. Chun, D. Kim, and J. Kim, “CdTe microwire-based ultraviolet photodetectors aligned by a non-uniform electric field,” Appl. Phys. Lett. 103(5), 051906 (2013).
    [Crossref]
  3. G. Yang, D. Kim, and J. Kim, “Self-aligned growth of CdTe photodetectors using a graphene seed layer,” Opt. Express 23(19), A1081–A1086 (2015).
    [Crossref] [PubMed]
  4. M. Liao, L. Sang, T. Teraji, M. Imura, J. Alvarez, and Y. Koide, “Comprehensive investigation of single crystal diamond deep-ultraviolet detectors,” Jpn. J. Appl. Phys. 51(9R), 090115 (2012).
    [Crossref]
  5. G. Yang, D. Kim, and J. Kim, “Photosensitive cadmium telluride thin-film field-effect transistors,” Opt. Express 24(4), 3607–3612 (2016).
    [Crossref] [PubMed]
  6. R. S. Aga, D. Jowhar, M. Ewan, A. Steigerwald, A. Ueda, Z. Pan, W. E. Collins, and R. Mu, “Photoconductivity of CdTe nanocrystal films in a simple multilayer device structure,” ‎,” J. Phys. Condens. Matter 20(38), 385206 (2008).
    [Crossref]
  7. H. L. Malm and M. Martini, “Polarization phenomena in CdTe nuclear radiation detectors,” IEEE Trans. Nucl. Sci. 21(1), 322–330 (1974).
    [Crossref]
  8. M. Niraula, A. Nakamura, T. Aoki, Y. Tomita, and Y. Hatanaka, “Stability issues of high-energy resolution diode type CdTe nuclear radiation detectors in a long-term operation,” Nucl. Instrum. Methods Phys. Res. A 491(1-2), 168–175 (2002).
    [Crossref]
  9. T. Takahashi and S. Watanabe, “Recent progress in CdTe and CdZnTe detectors,” IEEE Trans. Nucl. Sci. 48(4), 950–959 (2001).
    [Crossref]
  10. J. Min, X. Liang, J. Chen, D. Wang, H. Li, and J. Zhang, “Investigation of Te inclusions in CdZnTe crystalline material using Raman spectroscopy and IR techniques,” Vacuum 86(7), 1003–1006 (2012).
    [Crossref]
  11. See https://www.thorlabs.us/newgrouppage9.cfm?objectgroup_id=285 for specs for commercial devices, such as the products shown on this website.
  12. S. P. Tobin, J. P. Tower, P. W. Norton, D. Chandler-Horowitz, P. M. Amirtharaj, V. C. Lopes, W. M. Duncan, A. J. Syllaios, C. K. Ard, N. C. Giles, J. Lee, R. Balasubramanian, A. B. Bollong, T. W. Steiner, M. L. W. Thewalt, D. K. Bowen, and B. K. Tar, “A comparison of techniques for nondestructive composition measurements in CdZnTe substrates,” J. Electron. Mater. 24(5), 697–705 (1995).
    [Crossref]
  13. X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm,” Science 325(5948), 1665–1667 (2009).
    [Crossref] [PubMed]
  14. H. Wei, Y. Fang, Y. Yuan, L. Shen, and J. Huang, “Trap engineering of CdTe nanoparticle for high gain, fast response, and low noise P3HT:CdTe nanocomposite photodetectors,” Adv. Mater. 27(34), 4975–4981 (2015).
    [Crossref] [PubMed]
  15. Y. Wang, X. Huang, D. Wu, R. Zhuo, E. Wu, C. Jia, Z. Shi, T. Xu, Y. Tian, and X. Li, “A room-temperature near-infrared photodetector based on a MoS2/CdTe p-n heterojunction with a broadband response up to 1700 nm‎,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(18), 4861–4865 (2018).
    [Crossref]
  16. M. Shaygan, K. Davami, N. Kheirabi, C. K. Baek, G. Cuniberti, M. Meyyappan, and J. S. Lee, “Single-crystalline CdTe nanowire field effect transistors as nanowire-based photodetector,” Phys. Chem. Chem. Phys. 16(41), 22687–22693 (2014).
    [Crossref] [PubMed]
  17. W. Wang, H. Xu, J. Cai, J. Zhu, C. Ni, F. Hong, Z. Fang, F. Xu, S. Cui, R. Xu, L. Wang, F. Xu, and J. Huang, “Visible blind ultraviolet photodetector based on CH3NH3PbCl3 thin film,” Opt. Express 24(8), 8411–8419 (2016).
    [Crossref] [PubMed]
  18. L. Li, P. S. Lee, C. Yan, T. Zhai, X. Fang, M. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In2Ge2O7 nanobelts,” Adv. Mater. 22(45), 5145–5149 (2010).
  19. J. Liu, P. Fei, J. Song, X. Wang, C. Lao, R. Tummala, and Z. L. Wang, “Carrier density and Schottky barrier on the performance of DC nanogenerator,” Nano Lett. 8(1), 328–332 (2008).
    [Crossref] [PubMed]
  20. L. Sang, M. Liao, Y. Koide, and M. Sumiya, “High-performance metal-semiconductor-metal InGaN photodetectors using CaF2 as the insulator,” Appl. Phys. Lett. 98(10), 103502 (2011).
    [Crossref]
  21. Z. He, C. M. Campbell, M. B. Lassise, Z. Lin, J. J. Becker, Y. Zhao, M. Boccard, Z. Holman, and Y. Zhang, “CdTe nBn photodetectors with ZnTe barrier layer grown on InSb substrates,” Appl. Phys. Lett. 109(12), 121112 (2016).
    [Crossref]
  22. V. Dědič, J. Franc, H. Elhadidy, R. Grill, E. Belas, P. Moravec, J. Zázvorka, and P. Höschl, “Study of deep levels in high resistivity CdZnTe by discharge current measurement,” ‎,” J. Instrum. 8(01), C01008 (2013).
    [Crossref]
  23. I. K. Sou, Z. H. Ma, Z. Q. Zhang, and G. K. L. Wong, “Temperature dependence of the responsivity of II–VI ultraviolet photodiodes,” Appl. Phys. Lett. 76(9), 1098–1100 (2000).
    [Crossref]
  24. X. Li, J. E. Carey, J. W. Sickler, M. U. Pralle, C. Palsule, and C. J. Vineis, “Silicon photodiodes with high photoconductive gain at room temperature,” Opt. Express 20(5), 5518–5523 (2012).
    [Crossref] [PubMed]

2018 (1)

Y. Wang, X. Huang, D. Wu, R. Zhuo, E. Wu, C. Jia, Z. Shi, T. Xu, Y. Tian, and X. Li, “A room-temperature near-infrared photodetector based on a MoS2/CdTe p-n heterojunction with a broadband response up to 1700 nm‎,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(18), 4861–4865 (2018).
[Crossref]

2016 (3)

W. Wang, H. Xu, J. Cai, J. Zhu, C. Ni, F. Hong, Z. Fang, F. Xu, S. Cui, R. Xu, L. Wang, F. Xu, and J. Huang, “Visible blind ultraviolet photodetector based on CH3NH3PbCl3 thin film,” Opt. Express 24(8), 8411–8419 (2016).
[Crossref] [PubMed]

G. Yang, D. Kim, and J. Kim, “Photosensitive cadmium telluride thin-film field-effect transistors,” Opt. Express 24(4), 3607–3612 (2016).
[Crossref] [PubMed]

Z. He, C. M. Campbell, M. B. Lassise, Z. Lin, J. J. Becker, Y. Zhao, M. Boccard, Z. Holman, and Y. Zhang, “CdTe nBn photodetectors with ZnTe barrier layer grown on InSb substrates,” Appl. Phys. Lett. 109(12), 121112 (2016).
[Crossref]

2015 (2)

G. Yang, D. Kim, and J. Kim, “Self-aligned growth of CdTe photodetectors using a graphene seed layer,” Opt. Express 23(19), A1081–A1086 (2015).
[Crossref] [PubMed]

H. Wei, Y. Fang, Y. Yuan, L. Shen, and J. Huang, “Trap engineering of CdTe nanoparticle for high gain, fast response, and low noise P3HT:CdTe nanocomposite photodetectors,” Adv. Mater. 27(34), 4975–4981 (2015).
[Crossref] [PubMed]

2014 (1)

M. Shaygan, K. Davami, N. Kheirabi, C. K. Baek, G. Cuniberti, M. Meyyappan, and J. S. Lee, “Single-crystalline CdTe nanowire field effect transistors as nanowire-based photodetector,” Phys. Chem. Chem. Phys. 16(41), 22687–22693 (2014).
[Crossref] [PubMed]

2013 (2)

H. Park, G. Yang, S. Chun, D. Kim, and J. Kim, “CdTe microwire-based ultraviolet photodetectors aligned by a non-uniform electric field,” Appl. Phys. Lett. 103(5), 051906 (2013).
[Crossref]

V. Dědič, J. Franc, H. Elhadidy, R. Grill, E. Belas, P. Moravec, J. Zázvorka, and P. Höschl, “Study of deep levels in high resistivity CdZnTe by discharge current measurement,” ‎,” J. Instrum. 8(01), C01008 (2013).
[Crossref]

2012 (3)

X. Li, J. E. Carey, J. W. Sickler, M. U. Pralle, C. Palsule, and C. J. Vineis, “Silicon photodiodes with high photoconductive gain at room temperature,” Opt. Express 20(5), 5518–5523 (2012).
[Crossref] [PubMed]

M. Liao, L. Sang, T. Teraji, M. Imura, J. Alvarez, and Y. Koide, “Comprehensive investigation of single crystal diamond deep-ultraviolet detectors,” Jpn. J. Appl. Phys. 51(9R), 090115 (2012).
[Crossref]

J. Min, X. Liang, J. Chen, D. Wang, H. Li, and J. Zhang, “Investigation of Te inclusions in CdZnTe crystalline material using Raman spectroscopy and IR techniques,” Vacuum 86(7), 1003–1006 (2012).
[Crossref]

2011 (1)

L. Sang, M. Liao, Y. Koide, and M. Sumiya, “High-performance metal-semiconductor-metal InGaN photodetectors using CaF2 as the insulator,” Appl. Phys. Lett. 98(10), 103502 (2011).
[Crossref]

2010 (1)

L. Li, P. S. Lee, C. Yan, T. Zhai, X. Fang, M. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In2Ge2O7 nanobelts,” Adv. Mater. 22(45), 5145–5149 (2010).

2009 (2)

X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm,” Science 325(5948), 1665–1667 (2009).
[Crossref] [PubMed]

S. D. Sordo, L. Abbene, E. Caroli, A. M. Mancini, A. Zappettini, and P. Ubertini, “Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications,” Sensors (Basel) 9(5), 3491–3526 (2009).
[Crossref] [PubMed]

2008 (2)

R. S. Aga, D. Jowhar, M. Ewan, A. Steigerwald, A. Ueda, Z. Pan, W. E. Collins, and R. Mu, “Photoconductivity of CdTe nanocrystal films in a simple multilayer device structure,” ‎,” J. Phys. Condens. Matter 20(38), 385206 (2008).
[Crossref]

J. Liu, P. Fei, J. Song, X. Wang, C. Lao, R. Tummala, and Z. L. Wang, “Carrier density and Schottky barrier on the performance of DC nanogenerator,” Nano Lett. 8(1), 328–332 (2008).
[Crossref] [PubMed]

2002 (1)

M. Niraula, A. Nakamura, T. Aoki, Y. Tomita, and Y. Hatanaka, “Stability issues of high-energy resolution diode type CdTe nuclear radiation detectors in a long-term operation,” Nucl. Instrum. Methods Phys. Res. A 491(1-2), 168–175 (2002).
[Crossref]

2001 (1)

T. Takahashi and S. Watanabe, “Recent progress in CdTe and CdZnTe detectors,” IEEE Trans. Nucl. Sci. 48(4), 950–959 (2001).
[Crossref]

2000 (1)

I. K. Sou, Z. H. Ma, Z. Q. Zhang, and G. K. L. Wong, “Temperature dependence of the responsivity of II–VI ultraviolet photodiodes,” Appl. Phys. Lett. 76(9), 1098–1100 (2000).
[Crossref]

1995 (1)

S. P. Tobin, J. P. Tower, P. W. Norton, D. Chandler-Horowitz, P. M. Amirtharaj, V. C. Lopes, W. M. Duncan, A. J. Syllaios, C. K. Ard, N. C. Giles, J. Lee, R. Balasubramanian, A. B. Bollong, T. W. Steiner, M. L. W. Thewalt, D. K. Bowen, and B. K. Tar, “A comparison of techniques for nondestructive composition measurements in CdZnTe substrates,” J. Electron. Mater. 24(5), 697–705 (1995).
[Crossref]

1974 (1)

H. L. Malm and M. Martini, “Polarization phenomena in CdTe nuclear radiation detectors,” IEEE Trans. Nucl. Sci. 21(1), 322–330 (1974).
[Crossref]

Abbene, L.

S. D. Sordo, L. Abbene, E. Caroli, A. M. Mancini, A. Zappettini, and P. Ubertini, “Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications,” Sensors (Basel) 9(5), 3491–3526 (2009).
[Crossref] [PubMed]

Aga, R. S.

R. S. Aga, D. Jowhar, M. Ewan, A. Steigerwald, A. Ueda, Z. Pan, W. E. Collins, and R. Mu, “Photoconductivity of CdTe nanocrystal films in a simple multilayer device structure,” ‎,” J. Phys. Condens. Matter 20(38), 385206 (2008).
[Crossref]

Alvarez, J.

M. Liao, L. Sang, T. Teraji, M. Imura, J. Alvarez, and Y. Koide, “Comprehensive investigation of single crystal diamond deep-ultraviolet detectors,” Jpn. J. Appl. Phys. 51(9R), 090115 (2012).
[Crossref]

Amirtharaj, P. M.

S. P. Tobin, J. P. Tower, P. W. Norton, D. Chandler-Horowitz, P. M. Amirtharaj, V. C. Lopes, W. M. Duncan, A. J. Syllaios, C. K. Ard, N. C. Giles, J. Lee, R. Balasubramanian, A. B. Bollong, T. W. Steiner, M. L. W. Thewalt, D. K. Bowen, and B. K. Tar, “A comparison of techniques for nondestructive composition measurements in CdZnTe substrates,” J. Electron. Mater. 24(5), 697–705 (1995).
[Crossref]

Aoki, T.

M. Niraula, A. Nakamura, T. Aoki, Y. Tomita, and Y. Hatanaka, “Stability issues of high-energy resolution diode type CdTe nuclear radiation detectors in a long-term operation,” Nucl. Instrum. Methods Phys. Res. A 491(1-2), 168–175 (2002).
[Crossref]

Ard, C. K.

S. P. Tobin, J. P. Tower, P. W. Norton, D. Chandler-Horowitz, P. M. Amirtharaj, V. C. Lopes, W. M. Duncan, A. J. Syllaios, C. K. Ard, N. C. Giles, J. Lee, R. Balasubramanian, A. B. Bollong, T. W. Steiner, M. L. W. Thewalt, D. K. Bowen, and B. K. Tar, “A comparison of techniques for nondestructive composition measurements in CdZnTe substrates,” J. Electron. Mater. 24(5), 697–705 (1995).
[Crossref]

Baek, C. K.

M. Shaygan, K. Davami, N. Kheirabi, C. K. Baek, G. Cuniberti, M. Meyyappan, and J. S. Lee, “Single-crystalline CdTe nanowire field effect transistors as nanowire-based photodetector,” Phys. Chem. Chem. Phys. 16(41), 22687–22693 (2014).
[Crossref] [PubMed]

Balasubramanian, R.

S. P. Tobin, J. P. Tower, P. W. Norton, D. Chandler-Horowitz, P. M. Amirtharaj, V. C. Lopes, W. M. Duncan, A. J. Syllaios, C. K. Ard, N. C. Giles, J. Lee, R. Balasubramanian, A. B. Bollong, T. W. Steiner, M. L. W. Thewalt, D. K. Bowen, and B. K. Tar, “A comparison of techniques for nondestructive composition measurements in CdZnTe substrates,” J. Electron. Mater. 24(5), 697–705 (1995).
[Crossref]

Bando, Y.

L. Li, P. S. Lee, C. Yan, T. Zhai, X. Fang, M. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In2Ge2O7 nanobelts,” Adv. Mater. 22(45), 5145–5149 (2010).

Becker, J. J.

Z. He, C. M. Campbell, M. B. Lassise, Z. Lin, J. J. Becker, Y. Zhao, M. Boccard, Z. Holman, and Y. Zhang, “CdTe nBn photodetectors with ZnTe barrier layer grown on InSb substrates,” Appl. Phys. Lett. 109(12), 121112 (2016).
[Crossref]

Belas, E.

V. Dědič, J. Franc, H. Elhadidy, R. Grill, E. Belas, P. Moravec, J. Zázvorka, and P. Höschl, “Study of deep levels in high resistivity CdZnTe by discharge current measurement,” ‎,” J. Instrum. 8(01), C01008 (2013).
[Crossref]

Boccard, M.

Z. He, C. M. Campbell, M. B. Lassise, Z. Lin, J. J. Becker, Y. Zhao, M. Boccard, Z. Holman, and Y. Zhang, “CdTe nBn photodetectors with ZnTe barrier layer grown on InSb substrates,” Appl. Phys. Lett. 109(12), 121112 (2016).
[Crossref]

Bollong, A. B.

S. P. Tobin, J. P. Tower, P. W. Norton, D. Chandler-Horowitz, P. M. Amirtharaj, V. C. Lopes, W. M. Duncan, A. J. Syllaios, C. K. Ard, N. C. Giles, J. Lee, R. Balasubramanian, A. B. Bollong, T. W. Steiner, M. L. W. Thewalt, D. K. Bowen, and B. K. Tar, “A comparison of techniques for nondestructive composition measurements in CdZnTe substrates,” J. Electron. Mater. 24(5), 697–705 (1995).
[Crossref]

Bowen, D. K.

S. P. Tobin, J. P. Tower, P. W. Norton, D. Chandler-Horowitz, P. M. Amirtharaj, V. C. Lopes, W. M. Duncan, A. J. Syllaios, C. K. Ard, N. C. Giles, J. Lee, R. Balasubramanian, A. B. Bollong, T. W. Steiner, M. L. W. Thewalt, D. K. Bowen, and B. K. Tar, “A comparison of techniques for nondestructive composition measurements in CdZnTe substrates,” J. Electron. Mater. 24(5), 697–705 (1995).
[Crossref]

Cai, J.

W. Wang, H. Xu, J. Cai, J. Zhu, C. Ni, F. Hong, Z. Fang, F. Xu, S. Cui, R. Xu, L. Wang, F. Xu, and J. Huang, “Visible blind ultraviolet photodetector based on CH3NH3PbCl3 thin film,” Opt. Express 24(8), 8411–8419 (2016).
[Crossref] [PubMed]

Cai, W.

X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm,” Science 325(5948), 1665–1667 (2009).
[Crossref] [PubMed]

Campbell, C. M.

Z. He, C. M. Campbell, M. B. Lassise, Z. Lin, J. J. Becker, Y. Zhao, M. Boccard, Z. Holman, and Y. Zhang, “CdTe nBn photodetectors with ZnTe barrier layer grown on InSb substrates,” Appl. Phys. Lett. 109(12), 121112 (2016).
[Crossref]

Cao, Y.

X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm,” Science 325(5948), 1665–1667 (2009).
[Crossref] [PubMed]

Carey, J. E.

X. Li, J. E. Carey, J. W. Sickler, M. U. Pralle, C. Palsule, and C. J. Vineis, “Silicon photodiodes with high photoconductive gain at room temperature,” Opt. Express 20(5), 5518–5523 (2012).
[Crossref] [PubMed]

Caroli, E.

S. D. Sordo, L. Abbene, E. Caroli, A. M. Mancini, A. Zappettini, and P. Ubertini, “Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications,” Sensors (Basel) 9(5), 3491–3526 (2009).
[Crossref] [PubMed]

Chandler-Horowitz, D.

S. P. Tobin, J. P. Tower, P. W. Norton, D. Chandler-Horowitz, P. M. Amirtharaj, V. C. Lopes, W. M. Duncan, A. J. Syllaios, C. K. Ard, N. C. Giles, J. Lee, R. Balasubramanian, A. B. Bollong, T. W. Steiner, M. L. W. Thewalt, D. K. Bowen, and B. K. Tar, “A comparison of techniques for nondestructive composition measurements in CdZnTe substrates,” J. Electron. Mater. 24(5), 697–705 (1995).
[Crossref]

Chen, J.

J. Min, X. Liang, J. Chen, D. Wang, H. Li, and J. Zhang, “Investigation of Te inclusions in CdZnTe crystalline material using Raman spectroscopy and IR techniques,” Vacuum 86(7), 1003–1006 (2012).
[Crossref]

Chun, S.

H. Park, G. Yang, S. Chun, D. Kim, and J. Kim, “CdTe microwire-based ultraviolet photodetectors aligned by a non-uniform electric field,” Appl. Phys. Lett. 103(5), 051906 (2013).
[Crossref]

Collins, W. E.

R. S. Aga, D. Jowhar, M. Ewan, A. Steigerwald, A. Ueda, Z. Pan, W. E. Collins, and R. Mu, “Photoconductivity of CdTe nanocrystal films in a simple multilayer device structure,” ‎,” J. Phys. Condens. Matter 20(38), 385206 (2008).
[Crossref]

Cui, S.

W. Wang, H. Xu, J. Cai, J. Zhu, C. Ni, F. Hong, Z. Fang, F. Xu, S. Cui, R. Xu, L. Wang, F. Xu, and J. Huang, “Visible blind ultraviolet photodetector based on CH3NH3PbCl3 thin film,” Opt. Express 24(8), 8411–8419 (2016).
[Crossref] [PubMed]

Cuniberti, G.

M. Shaygan, K. Davami, N. Kheirabi, C. K. Baek, G. Cuniberti, M. Meyyappan, and J. S. Lee, “Single-crystalline CdTe nanowire field effect transistors as nanowire-based photodetector,” Phys. Chem. Chem. Phys. 16(41), 22687–22693 (2014).
[Crossref] [PubMed]

Davami, K.

M. Shaygan, K. Davami, N. Kheirabi, C. K. Baek, G. Cuniberti, M. Meyyappan, and J. S. Lee, “Single-crystalline CdTe nanowire field effect transistors as nanowire-based photodetector,” Phys. Chem. Chem. Phys. 16(41), 22687–22693 (2014).
[Crossref] [PubMed]

Dedic, V.

V. Dědič, J. Franc, H. Elhadidy, R. Grill, E. Belas, P. Moravec, J. Zázvorka, and P. Höschl, “Study of deep levels in high resistivity CdZnTe by discharge current measurement,” ‎,” J. Instrum. 8(01), C01008 (2013).
[Crossref]

Duncan, W. M.

S. P. Tobin, J. P. Tower, P. W. Norton, D. Chandler-Horowitz, P. M. Amirtharaj, V. C. Lopes, W. M. Duncan, A. J. Syllaios, C. K. Ard, N. C. Giles, J. Lee, R. Balasubramanian, A. B. Bollong, T. W. Steiner, M. L. W. Thewalt, D. K. Bowen, and B. K. Tar, “A comparison of techniques for nondestructive composition measurements in CdZnTe substrates,” J. Electron. Mater. 24(5), 697–705 (1995).
[Crossref]

Elhadidy, H.

V. Dědič, J. Franc, H. Elhadidy, R. Grill, E. Belas, P. Moravec, J. Zázvorka, and P. Höschl, “Study of deep levels in high resistivity CdZnTe by discharge current measurement,” ‎,” J. Instrum. 8(01), C01008 (2013).
[Crossref]

Ewan, M.

R. S. Aga, D. Jowhar, M. Ewan, A. Steigerwald, A. Ueda, Z. Pan, W. E. Collins, and R. Mu, “Photoconductivity of CdTe nanocrystal films in a simple multilayer device structure,” ‎,” J. Phys. Condens. Matter 20(38), 385206 (2008).
[Crossref]

Fang, X.

L. Li, P. S. Lee, C. Yan, T. Zhai, X. Fang, M. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In2Ge2O7 nanobelts,” Adv. Mater. 22(45), 5145–5149 (2010).

Fang, Y.

H. Wei, Y. Fang, Y. Yuan, L. Shen, and J. Huang, “Trap engineering of CdTe nanoparticle for high gain, fast response, and low noise P3HT:CdTe nanocomposite photodetectors,” Adv. Mater. 27(34), 4975–4981 (2015).
[Crossref] [PubMed]

Fang, Z.

W. Wang, H. Xu, J. Cai, J. Zhu, C. Ni, F. Hong, Z. Fang, F. Xu, S. Cui, R. Xu, L. Wang, F. Xu, and J. Huang, “Visible blind ultraviolet photodetector based on CH3NH3PbCl3 thin film,” Opt. Express 24(8), 8411–8419 (2016).
[Crossref] [PubMed]

Fei, P.

J. Liu, P. Fei, J. Song, X. Wang, C. Lao, R. Tummala, and Z. L. Wang, “Carrier density and Schottky barrier on the performance of DC nanogenerator,” Nano Lett. 8(1), 328–332 (2008).
[Crossref] [PubMed]

Franc, J.

V. Dědič, J. Franc, H. Elhadidy, R. Grill, E. Belas, P. Moravec, J. Zázvorka, and P. Höschl, “Study of deep levels in high resistivity CdZnTe by discharge current measurement,” ‎,” J. Instrum. 8(01), C01008 (2013).
[Crossref]

Giles, N. C.

S. P. Tobin, J. P. Tower, P. W. Norton, D. Chandler-Horowitz, P. M. Amirtharaj, V. C. Lopes, W. M. Duncan, A. J. Syllaios, C. K. Ard, N. C. Giles, J. Lee, R. Balasubramanian, A. B. Bollong, T. W. Steiner, M. L. W. Thewalt, D. K. Bowen, and B. K. Tar, “A comparison of techniques for nondestructive composition measurements in CdZnTe substrates,” J. Electron. Mater. 24(5), 697–705 (1995).
[Crossref]

Golberg, D.

L. Li, P. S. Lee, C. Yan, T. Zhai, X. Fang, M. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In2Ge2O7 nanobelts,” Adv. Mater. 22(45), 5145–5149 (2010).

Gong, X.

X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm,” Science 325(5948), 1665–1667 (2009).
[Crossref] [PubMed]

Grill, R.

V. Dědič, J. Franc, H. Elhadidy, R. Grill, E. Belas, P. Moravec, J. Zázvorka, and P. Höschl, “Study of deep levels in high resistivity CdZnTe by discharge current measurement,” ‎,” J. Instrum. 8(01), C01008 (2013).
[Crossref]

Hatanaka, Y.

M. Niraula, A. Nakamura, T. Aoki, Y. Tomita, and Y. Hatanaka, “Stability issues of high-energy resolution diode type CdTe nuclear radiation detectors in a long-term operation,” Nucl. Instrum. Methods Phys. Res. A 491(1-2), 168–175 (2002).
[Crossref]

He, Z.

Z. He, C. M. Campbell, M. B. Lassise, Z. Lin, J. J. Becker, Y. Zhao, M. Boccard, Z. Holman, and Y. Zhang, “CdTe nBn photodetectors with ZnTe barrier layer grown on InSb substrates,” Appl. Phys. Lett. 109(12), 121112 (2016).
[Crossref]

Heeger, A. J.

X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm,” Science 325(5948), 1665–1667 (2009).
[Crossref] [PubMed]

Holman, Z.

Z. He, C. M. Campbell, M. B. Lassise, Z. Lin, J. J. Becker, Y. Zhao, M. Boccard, Z. Holman, and Y. Zhang, “CdTe nBn photodetectors with ZnTe barrier layer grown on InSb substrates,” Appl. Phys. Lett. 109(12), 121112 (2016).
[Crossref]

Hong, F.

W. Wang, H. Xu, J. Cai, J. Zhu, C. Ni, F. Hong, Z. Fang, F. Xu, S. Cui, R. Xu, L. Wang, F. Xu, and J. Huang, “Visible blind ultraviolet photodetector based on CH3NH3PbCl3 thin film,” Opt. Express 24(8), 8411–8419 (2016).
[Crossref] [PubMed]

Höschl, P.

V. Dědič, J. Franc, H. Elhadidy, R. Grill, E. Belas, P. Moravec, J. Zázvorka, and P. Höschl, “Study of deep levels in high resistivity CdZnTe by discharge current measurement,” ‎,” J. Instrum. 8(01), C01008 (2013).
[Crossref]

Huang, J.

W. Wang, H. Xu, J. Cai, J. Zhu, C. Ni, F. Hong, Z. Fang, F. Xu, S. Cui, R. Xu, L. Wang, F. Xu, and J. Huang, “Visible blind ultraviolet photodetector based on CH3NH3PbCl3 thin film,” Opt. Express 24(8), 8411–8419 (2016).
[Crossref] [PubMed]

H. Wei, Y. Fang, Y. Yuan, L. Shen, and J. Huang, “Trap engineering of CdTe nanoparticle for high gain, fast response, and low noise P3HT:CdTe nanocomposite photodetectors,” Adv. Mater. 27(34), 4975–4981 (2015).
[Crossref] [PubMed]

Huang, X.

Y. Wang, X. Huang, D. Wu, R. Zhuo, E. Wu, C. Jia, Z. Shi, T. Xu, Y. Tian, and X. Li, “A room-temperature near-infrared photodetector based on a MoS2/CdTe p-n heterojunction with a broadband response up to 1700 nm‎,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(18), 4861–4865 (2018).
[Crossref]

Imura, M.

M. Liao, L. Sang, T. Teraji, M. Imura, J. Alvarez, and Y. Koide, “Comprehensive investigation of single crystal diamond deep-ultraviolet detectors,” Jpn. J. Appl. Phys. 51(9R), 090115 (2012).
[Crossref]

Jia, C.

Y. Wang, X. Huang, D. Wu, R. Zhuo, E. Wu, C. Jia, Z. Shi, T. Xu, Y. Tian, and X. Li, “A room-temperature near-infrared photodetector based on a MoS2/CdTe p-n heterojunction with a broadband response up to 1700 nm‎,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(18), 4861–4865 (2018).
[Crossref]

Jowhar, D.

R. S. Aga, D. Jowhar, M. Ewan, A. Steigerwald, A. Ueda, Z. Pan, W. E. Collins, and R. Mu, “Photoconductivity of CdTe nanocrystal films in a simple multilayer device structure,” ‎,” J. Phys. Condens. Matter 20(38), 385206 (2008).
[Crossref]

Kheirabi, N.

M. Shaygan, K. Davami, N. Kheirabi, C. K. Baek, G. Cuniberti, M. Meyyappan, and J. S. Lee, “Single-crystalline CdTe nanowire field effect transistors as nanowire-based photodetector,” Phys. Chem. Chem. Phys. 16(41), 22687–22693 (2014).
[Crossref] [PubMed]

Kim, D.

G. Yang, D. Kim, and J. Kim, “Photosensitive cadmium telluride thin-film field-effect transistors,” Opt. Express 24(4), 3607–3612 (2016).
[Crossref] [PubMed]

G. Yang, D. Kim, and J. Kim, “Self-aligned growth of CdTe photodetectors using a graphene seed layer,” Opt. Express 23(19), A1081–A1086 (2015).
[Crossref] [PubMed]

H. Park, G. Yang, S. Chun, D. Kim, and J. Kim, “CdTe microwire-based ultraviolet photodetectors aligned by a non-uniform electric field,” Appl. Phys. Lett. 103(5), 051906 (2013).
[Crossref]

Kim, J.

G. Yang, D. Kim, and J. Kim, “Photosensitive cadmium telluride thin-film field-effect transistors,” Opt. Express 24(4), 3607–3612 (2016).
[Crossref] [PubMed]

G. Yang, D. Kim, and J. Kim, “Self-aligned growth of CdTe photodetectors using a graphene seed layer,” Opt. Express 23(19), A1081–A1086 (2015).
[Crossref] [PubMed]

H. Park, G. Yang, S. Chun, D. Kim, and J. Kim, “CdTe microwire-based ultraviolet photodetectors aligned by a non-uniform electric field,” Appl. Phys. Lett. 103(5), 051906 (2013).
[Crossref]

Koide, Y.

M. Liao, L. Sang, T. Teraji, M. Imura, J. Alvarez, and Y. Koide, “Comprehensive investigation of single crystal diamond deep-ultraviolet detectors,” Jpn. J. Appl. Phys. 51(9R), 090115 (2012).
[Crossref]

L. Sang, M. Liao, Y. Koide, and M. Sumiya, “High-performance metal-semiconductor-metal InGaN photodetectors using CaF2 as the insulator,” Appl. Phys. Lett. 98(10), 103502 (2011).
[Crossref]

L. Li, P. S. Lee, C. Yan, T. Zhai, X. Fang, M. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In2Ge2O7 nanobelts,” Adv. Mater. 22(45), 5145–5149 (2010).

Lao, C.

J. Liu, P. Fei, J. Song, X. Wang, C. Lao, R. Tummala, and Z. L. Wang, “Carrier density and Schottky barrier on the performance of DC nanogenerator,” Nano Lett. 8(1), 328–332 (2008).
[Crossref] [PubMed]

Lassise, M. B.

Z. He, C. M. Campbell, M. B. Lassise, Z. Lin, J. J. Becker, Y. Zhao, M. Boccard, Z. Holman, and Y. Zhang, “CdTe nBn photodetectors with ZnTe barrier layer grown on InSb substrates,” Appl. Phys. Lett. 109(12), 121112 (2016).
[Crossref]

Lee, J.

S. P. Tobin, J. P. Tower, P. W. Norton, D. Chandler-Horowitz, P. M. Amirtharaj, V. C. Lopes, W. M. Duncan, A. J. Syllaios, C. K. Ard, N. C. Giles, J. Lee, R. Balasubramanian, A. B. Bollong, T. W. Steiner, M. L. W. Thewalt, D. K. Bowen, and B. K. Tar, “A comparison of techniques for nondestructive composition measurements in CdZnTe substrates,” J. Electron. Mater. 24(5), 697–705 (1995).
[Crossref]

Lee, J. S.

M. Shaygan, K. Davami, N. Kheirabi, C. K. Baek, G. Cuniberti, M. Meyyappan, and J. S. Lee, “Single-crystalline CdTe nanowire field effect transistors as nanowire-based photodetector,” Phys. Chem. Chem. Phys. 16(41), 22687–22693 (2014).
[Crossref] [PubMed]

Lee, P. S.

L. Li, P. S. Lee, C. Yan, T. Zhai, X. Fang, M. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In2Ge2O7 nanobelts,” Adv. Mater. 22(45), 5145–5149 (2010).

Li, H.

J. Min, X. Liang, J. Chen, D. Wang, H. Li, and J. Zhang, “Investigation of Te inclusions in CdZnTe crystalline material using Raman spectroscopy and IR techniques,” Vacuum 86(7), 1003–1006 (2012).
[Crossref]

Li, L.

L. Li, P. S. Lee, C. Yan, T. Zhai, X. Fang, M. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In2Ge2O7 nanobelts,” Adv. Mater. 22(45), 5145–5149 (2010).

Li, X.

Y. Wang, X. Huang, D. Wu, R. Zhuo, E. Wu, C. Jia, Z. Shi, T. Xu, Y. Tian, and X. Li, “A room-temperature near-infrared photodetector based on a MoS2/CdTe p-n heterojunction with a broadband response up to 1700 nm‎,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(18), 4861–4865 (2018).
[Crossref]

X. Li, J. E. Carey, J. W. Sickler, M. U. Pralle, C. Palsule, and C. J. Vineis, “Silicon photodiodes with high photoconductive gain at room temperature,” Opt. Express 20(5), 5518–5523 (2012).
[Crossref] [PubMed]

Liang, X.

J. Min, X. Liang, J. Chen, D. Wang, H. Li, and J. Zhang, “Investigation of Te inclusions in CdZnTe crystalline material using Raman spectroscopy and IR techniques,” Vacuum 86(7), 1003–1006 (2012).
[Crossref]

Liao, M.

M. Liao, L. Sang, T. Teraji, M. Imura, J. Alvarez, and Y. Koide, “Comprehensive investigation of single crystal diamond deep-ultraviolet detectors,” Jpn. J. Appl. Phys. 51(9R), 090115 (2012).
[Crossref]

L. Sang, M. Liao, Y. Koide, and M. Sumiya, “High-performance metal-semiconductor-metal InGaN photodetectors using CaF2 as the insulator,” Appl. Phys. Lett. 98(10), 103502 (2011).
[Crossref]

L. Li, P. S. Lee, C. Yan, T. Zhai, X. Fang, M. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In2Ge2O7 nanobelts,” Adv. Mater. 22(45), 5145–5149 (2010).

Lin, Z.

Z. He, C. M. Campbell, M. B. Lassise, Z. Lin, J. J. Becker, Y. Zhao, M. Boccard, Z. Holman, and Y. Zhang, “CdTe nBn photodetectors with ZnTe barrier layer grown on InSb substrates,” Appl. Phys. Lett. 109(12), 121112 (2016).
[Crossref]

Liu, J.

J. Liu, P. Fei, J. Song, X. Wang, C. Lao, R. Tummala, and Z. L. Wang, “Carrier density and Schottky barrier on the performance of DC nanogenerator,” Nano Lett. 8(1), 328–332 (2008).
[Crossref] [PubMed]

Lopes, V. C.

S. P. Tobin, J. P. Tower, P. W. Norton, D. Chandler-Horowitz, P. M. Amirtharaj, V. C. Lopes, W. M. Duncan, A. J. Syllaios, C. K. Ard, N. C. Giles, J. Lee, R. Balasubramanian, A. B. Bollong, T. W. Steiner, M. L. W. Thewalt, D. K. Bowen, and B. K. Tar, “A comparison of techniques for nondestructive composition measurements in CdZnTe substrates,” J. Electron. Mater. 24(5), 697–705 (1995).
[Crossref]

Ma, Z. H.

I. K. Sou, Z. H. Ma, Z. Q. Zhang, and G. K. L. Wong, “Temperature dependence of the responsivity of II–VI ultraviolet photodiodes,” Appl. Phys. Lett. 76(9), 1098–1100 (2000).
[Crossref]

Malm, H. L.

H. L. Malm and M. Martini, “Polarization phenomena in CdTe nuclear radiation detectors,” IEEE Trans. Nucl. Sci. 21(1), 322–330 (1974).
[Crossref]

Mancini, A. M.

S. D. Sordo, L. Abbene, E. Caroli, A. M. Mancini, A. Zappettini, and P. Ubertini, “Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications,” Sensors (Basel) 9(5), 3491–3526 (2009).
[Crossref] [PubMed]

Martini, M.

H. L. Malm and M. Martini, “Polarization phenomena in CdTe nuclear radiation detectors,” IEEE Trans. Nucl. Sci. 21(1), 322–330 (1974).
[Crossref]

Meyyappan, M.

M. Shaygan, K. Davami, N. Kheirabi, C. K. Baek, G. Cuniberti, M. Meyyappan, and J. S. Lee, “Single-crystalline CdTe nanowire field effect transistors as nanowire-based photodetector,” Phys. Chem. Chem. Phys. 16(41), 22687–22693 (2014).
[Crossref] [PubMed]

Min, J.

J. Min, X. Liang, J. Chen, D. Wang, H. Li, and J. Zhang, “Investigation of Te inclusions in CdZnTe crystalline material using Raman spectroscopy and IR techniques,” Vacuum 86(7), 1003–1006 (2012).
[Crossref]

Moon, J. S.

X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm,” Science 325(5948), 1665–1667 (2009).
[Crossref] [PubMed]

Moravec, P.

V. Dědič, J. Franc, H. Elhadidy, R. Grill, E. Belas, P. Moravec, J. Zázvorka, and P. Höschl, “Study of deep levels in high resistivity CdZnTe by discharge current measurement,” ‎,” J. Instrum. 8(01), C01008 (2013).
[Crossref]

Mu, R.

R. S. Aga, D. Jowhar, M. Ewan, A. Steigerwald, A. Ueda, Z. Pan, W. E. Collins, and R. Mu, “Photoconductivity of CdTe nanocrystal films in a simple multilayer device structure,” ‎,” J. Phys. Condens. Matter 20(38), 385206 (2008).
[Crossref]

Nakamura, A.

M. Niraula, A. Nakamura, T. Aoki, Y. Tomita, and Y. Hatanaka, “Stability issues of high-energy resolution diode type CdTe nuclear radiation detectors in a long-term operation,” Nucl. Instrum. Methods Phys. Res. A 491(1-2), 168–175 (2002).
[Crossref]

Ni, C.

W. Wang, H. Xu, J. Cai, J. Zhu, C. Ni, F. Hong, Z. Fang, F. Xu, S. Cui, R. Xu, L. Wang, F. Xu, and J. Huang, “Visible blind ultraviolet photodetector based on CH3NH3PbCl3 thin film,” Opt. Express 24(8), 8411–8419 (2016).
[Crossref] [PubMed]

Nilsson, B.

X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm,” Science 325(5948), 1665–1667 (2009).
[Crossref] [PubMed]

Niraula, M.

M. Niraula, A. Nakamura, T. Aoki, Y. Tomita, and Y. Hatanaka, “Stability issues of high-energy resolution diode type CdTe nuclear radiation detectors in a long-term operation,” Nucl. Instrum. Methods Phys. Res. A 491(1-2), 168–175 (2002).
[Crossref]

Norton, P. W.

S. P. Tobin, J. P. Tower, P. W. Norton, D. Chandler-Horowitz, P. M. Amirtharaj, V. C. Lopes, W. M. Duncan, A. J. Syllaios, C. K. Ard, N. C. Giles, J. Lee, R. Balasubramanian, A. B. Bollong, T. W. Steiner, M. L. W. Thewalt, D. K. Bowen, and B. K. Tar, “A comparison of techniques for nondestructive composition measurements in CdZnTe substrates,” J. Electron. Mater. 24(5), 697–705 (1995).
[Crossref]

Palsule, C.

X. Li, J. E. Carey, J. W. Sickler, M. U. Pralle, C. Palsule, and C. J. Vineis, “Silicon photodiodes with high photoconductive gain at room temperature,” Opt. Express 20(5), 5518–5523 (2012).
[Crossref] [PubMed]

Pan, Z.

R. S. Aga, D. Jowhar, M. Ewan, A. Steigerwald, A. Ueda, Z. Pan, W. E. Collins, and R. Mu, “Photoconductivity of CdTe nanocrystal films in a simple multilayer device structure,” ‎,” J. Phys. Condens. Matter 20(38), 385206 (2008).
[Crossref]

Park, H.

H. Park, G. Yang, S. Chun, D. Kim, and J. Kim, “CdTe microwire-based ultraviolet photodetectors aligned by a non-uniform electric field,” Appl. Phys. Lett. 103(5), 051906 (2013).
[Crossref]

Pralle, M. U.

X. Li, J. E. Carey, J. W. Sickler, M. U. Pralle, C. Palsule, and C. J. Vineis, “Silicon photodiodes with high photoconductive gain at room temperature,” Opt. Express 20(5), 5518–5523 (2012).
[Crossref] [PubMed]

Sang, L.

M. Liao, L. Sang, T. Teraji, M. Imura, J. Alvarez, and Y. Koide, “Comprehensive investigation of single crystal diamond deep-ultraviolet detectors,” Jpn. J. Appl. Phys. 51(9R), 090115 (2012).
[Crossref]

L. Sang, M. Liao, Y. Koide, and M. Sumiya, “High-performance metal-semiconductor-metal InGaN photodetectors using CaF2 as the insulator,” Appl. Phys. Lett. 98(10), 103502 (2011).
[Crossref]

Shaygan, M.

M. Shaygan, K. Davami, N. Kheirabi, C. K. Baek, G. Cuniberti, M. Meyyappan, and J. S. Lee, “Single-crystalline CdTe nanowire field effect transistors as nanowire-based photodetector,” Phys. Chem. Chem. Phys. 16(41), 22687–22693 (2014).
[Crossref] [PubMed]

Shen, L.

H. Wei, Y. Fang, Y. Yuan, L. Shen, and J. Huang, “Trap engineering of CdTe nanoparticle for high gain, fast response, and low noise P3HT:CdTe nanocomposite photodetectors,” Adv. Mater. 27(34), 4975–4981 (2015).
[Crossref] [PubMed]

Shi, Z.

Y. Wang, X. Huang, D. Wu, R. Zhuo, E. Wu, C. Jia, Z. Shi, T. Xu, Y. Tian, and X. Li, “A room-temperature near-infrared photodetector based on a MoS2/CdTe p-n heterojunction with a broadband response up to 1700 nm‎,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(18), 4861–4865 (2018).
[Crossref]

Shieh, C. L.

X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm,” Science 325(5948), 1665–1667 (2009).
[Crossref] [PubMed]

Sickler, J. W.

X. Li, J. E. Carey, J. W. Sickler, M. U. Pralle, C. Palsule, and C. J. Vineis, “Silicon photodiodes with high photoconductive gain at room temperature,” Opt. Express 20(5), 5518–5523 (2012).
[Crossref] [PubMed]

Song, J.

J. Liu, P. Fei, J. Song, X. Wang, C. Lao, R. Tummala, and Z. L. Wang, “Carrier density and Schottky barrier on the performance of DC nanogenerator,” Nano Lett. 8(1), 328–332 (2008).
[Crossref] [PubMed]

Sordo, S. D.

S. D. Sordo, L. Abbene, E. Caroli, A. M. Mancini, A. Zappettini, and P. Ubertini, “Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications,” Sensors (Basel) 9(5), 3491–3526 (2009).
[Crossref] [PubMed]

Sou, I. K.

I. K. Sou, Z. H. Ma, Z. Q. Zhang, and G. K. L. Wong, “Temperature dependence of the responsivity of II–VI ultraviolet photodiodes,” Appl. Phys. Lett. 76(9), 1098–1100 (2000).
[Crossref]

Steigerwald, A.

R. S. Aga, D. Jowhar, M. Ewan, A. Steigerwald, A. Ueda, Z. Pan, W. E. Collins, and R. Mu, “Photoconductivity of CdTe nanocrystal films in a simple multilayer device structure,” ‎,” J. Phys. Condens. Matter 20(38), 385206 (2008).
[Crossref]

Steiner, T. W.

S. P. Tobin, J. P. Tower, P. W. Norton, D. Chandler-Horowitz, P. M. Amirtharaj, V. C. Lopes, W. M. Duncan, A. J. Syllaios, C. K. Ard, N. C. Giles, J. Lee, R. Balasubramanian, A. B. Bollong, T. W. Steiner, M. L. W. Thewalt, D. K. Bowen, and B. K. Tar, “A comparison of techniques for nondestructive composition measurements in CdZnTe substrates,” J. Electron. Mater. 24(5), 697–705 (1995).
[Crossref]

Sumiya, M.

L. Sang, M. Liao, Y. Koide, and M. Sumiya, “High-performance metal-semiconductor-metal InGaN photodetectors using CaF2 as the insulator,” Appl. Phys. Lett. 98(10), 103502 (2011).
[Crossref]

Syllaios, A. J.

S. P. Tobin, J. P. Tower, P. W. Norton, D. Chandler-Horowitz, P. M. Amirtharaj, V. C. Lopes, W. M. Duncan, A. J. Syllaios, C. K. Ard, N. C. Giles, J. Lee, R. Balasubramanian, A. B. Bollong, T. W. Steiner, M. L. W. Thewalt, D. K. Bowen, and B. K. Tar, “A comparison of techniques for nondestructive composition measurements in CdZnTe substrates,” J. Electron. Mater. 24(5), 697–705 (1995).
[Crossref]

Takahashi, T.

T. Takahashi and S. Watanabe, “Recent progress in CdTe and CdZnTe detectors,” IEEE Trans. Nucl. Sci. 48(4), 950–959 (2001).
[Crossref]

Tar, B. K.

S. P. Tobin, J. P. Tower, P. W. Norton, D. Chandler-Horowitz, P. M. Amirtharaj, V. C. Lopes, W. M. Duncan, A. J. Syllaios, C. K. Ard, N. C. Giles, J. Lee, R. Balasubramanian, A. B. Bollong, T. W. Steiner, M. L. W. Thewalt, D. K. Bowen, and B. K. Tar, “A comparison of techniques for nondestructive composition measurements in CdZnTe substrates,” J. Electron. Mater. 24(5), 697–705 (1995).
[Crossref]

Teraji, T.

M. Liao, L. Sang, T. Teraji, M. Imura, J. Alvarez, and Y. Koide, “Comprehensive investigation of single crystal diamond deep-ultraviolet detectors,” Jpn. J. Appl. Phys. 51(9R), 090115 (2012).
[Crossref]

Thewalt, M. L. W.

S. P. Tobin, J. P. Tower, P. W. Norton, D. Chandler-Horowitz, P. M. Amirtharaj, V. C. Lopes, W. M. Duncan, A. J. Syllaios, C. K. Ard, N. C. Giles, J. Lee, R. Balasubramanian, A. B. Bollong, T. W. Steiner, M. L. W. Thewalt, D. K. Bowen, and B. K. Tar, “A comparison of techniques for nondestructive composition measurements in CdZnTe substrates,” J. Electron. Mater. 24(5), 697–705 (1995).
[Crossref]

Tian, Y.

Y. Wang, X. Huang, D. Wu, R. Zhuo, E. Wu, C. Jia, Z. Shi, T. Xu, Y. Tian, and X. Li, “A room-temperature near-infrared photodetector based on a MoS2/CdTe p-n heterojunction with a broadband response up to 1700 nm‎,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(18), 4861–4865 (2018).
[Crossref]

Tobin, S. P.

S. P. Tobin, J. P. Tower, P. W. Norton, D. Chandler-Horowitz, P. M. Amirtharaj, V. C. Lopes, W. M. Duncan, A. J. Syllaios, C. K. Ard, N. C. Giles, J. Lee, R. Balasubramanian, A. B. Bollong, T. W. Steiner, M. L. W. Thewalt, D. K. Bowen, and B. K. Tar, “A comparison of techniques for nondestructive composition measurements in CdZnTe substrates,” J. Electron. Mater. 24(5), 697–705 (1995).
[Crossref]

Tomita, Y.

M. Niraula, A. Nakamura, T. Aoki, Y. Tomita, and Y. Hatanaka, “Stability issues of high-energy resolution diode type CdTe nuclear radiation detectors in a long-term operation,” Nucl. Instrum. Methods Phys. Res. A 491(1-2), 168–175 (2002).
[Crossref]

Tong, M.

X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm,” Science 325(5948), 1665–1667 (2009).
[Crossref] [PubMed]

Tower, J. P.

S. P. Tobin, J. P. Tower, P. W. Norton, D. Chandler-Horowitz, P. M. Amirtharaj, V. C. Lopes, W. M. Duncan, A. J. Syllaios, C. K. Ard, N. C. Giles, J. Lee, R. Balasubramanian, A. B. Bollong, T. W. Steiner, M. L. W. Thewalt, D. K. Bowen, and B. K. Tar, “A comparison of techniques for nondestructive composition measurements in CdZnTe substrates,” J. Electron. Mater. 24(5), 697–705 (1995).
[Crossref]

Tummala, R.

J. Liu, P. Fei, J. Song, X. Wang, C. Lao, R. Tummala, and Z. L. Wang, “Carrier density and Schottky barrier on the performance of DC nanogenerator,” Nano Lett. 8(1), 328–332 (2008).
[Crossref] [PubMed]

Ubertini, P.

S. D. Sordo, L. Abbene, E. Caroli, A. M. Mancini, A. Zappettini, and P. Ubertini, “Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications,” Sensors (Basel) 9(5), 3491–3526 (2009).
[Crossref] [PubMed]

Ueda, A.

R. S. Aga, D. Jowhar, M. Ewan, A. Steigerwald, A. Ueda, Z. Pan, W. E. Collins, and R. Mu, “Photoconductivity of CdTe nanocrystal films in a simple multilayer device structure,” ‎,” J. Phys. Condens. Matter 20(38), 385206 (2008).
[Crossref]

Vineis, C. J.

X. Li, J. E. Carey, J. W. Sickler, M. U. Pralle, C. Palsule, and C. J. Vineis, “Silicon photodiodes with high photoconductive gain at room temperature,” Opt. Express 20(5), 5518–5523 (2012).
[Crossref] [PubMed]

Wang, D.

J. Min, X. Liang, J. Chen, D. Wang, H. Li, and J. Zhang, “Investigation of Te inclusions in CdZnTe crystalline material using Raman spectroscopy and IR techniques,” Vacuum 86(7), 1003–1006 (2012).
[Crossref]

Wang, L.

W. Wang, H. Xu, J. Cai, J. Zhu, C. Ni, F. Hong, Z. Fang, F. Xu, S. Cui, R. Xu, L. Wang, F. Xu, and J. Huang, “Visible blind ultraviolet photodetector based on CH3NH3PbCl3 thin film,” Opt. Express 24(8), 8411–8419 (2016).
[Crossref] [PubMed]

Wang, W.

W. Wang, H. Xu, J. Cai, J. Zhu, C. Ni, F. Hong, Z. Fang, F. Xu, S. Cui, R. Xu, L. Wang, F. Xu, and J. Huang, “Visible blind ultraviolet photodetector based on CH3NH3PbCl3 thin film,” Opt. Express 24(8), 8411–8419 (2016).
[Crossref] [PubMed]

Wang, X.

J. Liu, P. Fei, J. Song, X. Wang, C. Lao, R. Tummala, and Z. L. Wang, “Carrier density and Schottky barrier on the performance of DC nanogenerator,” Nano Lett. 8(1), 328–332 (2008).
[Crossref] [PubMed]

Wang, Y.

Y. Wang, X. Huang, D. Wu, R. Zhuo, E. Wu, C. Jia, Z. Shi, T. Xu, Y. Tian, and X. Li, “A room-temperature near-infrared photodetector based on a MoS2/CdTe p-n heterojunction with a broadband response up to 1700 nm‎,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(18), 4861–4865 (2018).
[Crossref]

Wang, Z. L.

J. Liu, P. Fei, J. Song, X. Wang, C. Lao, R. Tummala, and Z. L. Wang, “Carrier density and Schottky barrier on the performance of DC nanogenerator,” Nano Lett. 8(1), 328–332 (2008).
[Crossref] [PubMed]

Watanabe, S.

T. Takahashi and S. Watanabe, “Recent progress in CdTe and CdZnTe detectors,” IEEE Trans. Nucl. Sci. 48(4), 950–959 (2001).
[Crossref]

Wei, H.

H. Wei, Y. Fang, Y. Yuan, L. Shen, and J. Huang, “Trap engineering of CdTe nanoparticle for high gain, fast response, and low noise P3HT:CdTe nanocomposite photodetectors,” Adv. Mater. 27(34), 4975–4981 (2015).
[Crossref] [PubMed]

Wong, G. K. L.

I. K. Sou, Z. H. Ma, Z. Q. Zhang, and G. K. L. Wong, “Temperature dependence of the responsivity of II–VI ultraviolet photodiodes,” Appl. Phys. Lett. 76(9), 1098–1100 (2000).
[Crossref]

Wu, D.

Y. Wang, X. Huang, D. Wu, R. Zhuo, E. Wu, C. Jia, Z. Shi, T. Xu, Y. Tian, and X. Li, “A room-temperature near-infrared photodetector based on a MoS2/CdTe p-n heterojunction with a broadband response up to 1700 nm‎,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(18), 4861–4865 (2018).
[Crossref]

Wu, E.

Y. Wang, X. Huang, D. Wu, R. Zhuo, E. Wu, C. Jia, Z. Shi, T. Xu, Y. Tian, and X. Li, “A room-temperature near-infrared photodetector based on a MoS2/CdTe p-n heterojunction with a broadband response up to 1700 nm‎,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(18), 4861–4865 (2018).
[Crossref]

Xia, Y.

X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm,” Science 325(5948), 1665–1667 (2009).
[Crossref] [PubMed]

Xu, F.

W. Wang, H. Xu, J. Cai, J. Zhu, C. Ni, F. Hong, Z. Fang, F. Xu, S. Cui, R. Xu, L. Wang, F. Xu, and J. Huang, “Visible blind ultraviolet photodetector based on CH3NH3PbCl3 thin film,” Opt. Express 24(8), 8411–8419 (2016).
[Crossref] [PubMed]

W. Wang, H. Xu, J. Cai, J. Zhu, C. Ni, F. Hong, Z. Fang, F. Xu, S. Cui, R. Xu, L. Wang, F. Xu, and J. Huang, “Visible blind ultraviolet photodetector based on CH3NH3PbCl3 thin film,” Opt. Express 24(8), 8411–8419 (2016).
[Crossref] [PubMed]

Xu, H.

W. Wang, H. Xu, J. Cai, J. Zhu, C. Ni, F. Hong, Z. Fang, F. Xu, S. Cui, R. Xu, L. Wang, F. Xu, and J. Huang, “Visible blind ultraviolet photodetector based on CH3NH3PbCl3 thin film,” Opt. Express 24(8), 8411–8419 (2016).
[Crossref] [PubMed]

Xu, R.

W. Wang, H. Xu, J. Cai, J. Zhu, C. Ni, F. Hong, Z. Fang, F. Xu, S. Cui, R. Xu, L. Wang, F. Xu, and J. Huang, “Visible blind ultraviolet photodetector based on CH3NH3PbCl3 thin film,” Opt. Express 24(8), 8411–8419 (2016).
[Crossref] [PubMed]

Xu, T.

Y. Wang, X. Huang, D. Wu, R. Zhuo, E. Wu, C. Jia, Z. Shi, T. Xu, Y. Tian, and X. Li, “A room-temperature near-infrared photodetector based on a MoS2/CdTe p-n heterojunction with a broadband response up to 1700 nm‎,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(18), 4861–4865 (2018).
[Crossref]

Yan, C.

L. Li, P. S. Lee, C. Yan, T. Zhai, X. Fang, M. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In2Ge2O7 nanobelts,” Adv. Mater. 22(45), 5145–5149 (2010).

Yang, G.

G. Yang, D. Kim, and J. Kim, “Photosensitive cadmium telluride thin-film field-effect transistors,” Opt. Express 24(4), 3607–3612 (2016).
[Crossref] [PubMed]

G. Yang, D. Kim, and J. Kim, “Self-aligned growth of CdTe photodetectors using a graphene seed layer,” Opt. Express 23(19), A1081–A1086 (2015).
[Crossref] [PubMed]

H. Park, G. Yang, S. Chun, D. Kim, and J. Kim, “CdTe microwire-based ultraviolet photodetectors aligned by a non-uniform electric field,” Appl. Phys. Lett. 103(5), 051906 (2013).
[Crossref]

Yu, G.

X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm,” Science 325(5948), 1665–1667 (2009).
[Crossref] [PubMed]

Yuan, Y.

H. Wei, Y. Fang, Y. Yuan, L. Shen, and J. Huang, “Trap engineering of CdTe nanoparticle for high gain, fast response, and low noise P3HT:CdTe nanocomposite photodetectors,” Adv. Mater. 27(34), 4975–4981 (2015).
[Crossref] [PubMed]

Zappettini, A.

S. D. Sordo, L. Abbene, E. Caroli, A. M. Mancini, A. Zappettini, and P. Ubertini, “Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications,” Sensors (Basel) 9(5), 3491–3526 (2009).
[Crossref] [PubMed]

Zázvorka, J.

V. Dědič, J. Franc, H. Elhadidy, R. Grill, E. Belas, P. Moravec, J. Zázvorka, and P. Höschl, “Study of deep levels in high resistivity CdZnTe by discharge current measurement,” ‎,” J. Instrum. 8(01), C01008 (2013).
[Crossref]

Zhai, T.

L. Li, P. S. Lee, C. Yan, T. Zhai, X. Fang, M. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In2Ge2O7 nanobelts,” Adv. Mater. 22(45), 5145–5149 (2010).

Zhang, J.

J. Min, X. Liang, J. Chen, D. Wang, H. Li, and J. Zhang, “Investigation of Te inclusions in CdZnTe crystalline material using Raman spectroscopy and IR techniques,” Vacuum 86(7), 1003–1006 (2012).
[Crossref]

Zhang, Y.

Z. He, C. M. Campbell, M. B. Lassise, Z. Lin, J. J. Becker, Y. Zhao, M. Boccard, Z. Holman, and Y. Zhang, “CdTe nBn photodetectors with ZnTe barrier layer grown on InSb substrates,” Appl. Phys. Lett. 109(12), 121112 (2016).
[Crossref]

Zhang, Z. Q.

I. K. Sou, Z. H. Ma, Z. Q. Zhang, and G. K. L. Wong, “Temperature dependence of the responsivity of II–VI ultraviolet photodiodes,” Appl. Phys. Lett. 76(9), 1098–1100 (2000).
[Crossref]

Zhao, Y.

Z. He, C. M. Campbell, M. B. Lassise, Z. Lin, J. J. Becker, Y. Zhao, M. Boccard, Z. Holman, and Y. Zhang, “CdTe nBn photodetectors with ZnTe barrier layer grown on InSb substrates,” Appl. Phys. Lett. 109(12), 121112 (2016).
[Crossref]

Zhu, J.

W. Wang, H. Xu, J. Cai, J. Zhu, C. Ni, F. Hong, Z. Fang, F. Xu, S. Cui, R. Xu, L. Wang, F. Xu, and J. Huang, “Visible blind ultraviolet photodetector based on CH3NH3PbCl3 thin film,” Opt. Express 24(8), 8411–8419 (2016).
[Crossref] [PubMed]

Zhuo, R.

Y. Wang, X. Huang, D. Wu, R. Zhuo, E. Wu, C. Jia, Z. Shi, T. Xu, Y. Tian, and X. Li, “A room-temperature near-infrared photodetector based on a MoS2/CdTe p-n heterojunction with a broadband response up to 1700 nm‎,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(18), 4861–4865 (2018).
[Crossref]

Adv. Mater. (2)

H. Wei, Y. Fang, Y. Yuan, L. Shen, and J. Huang, “Trap engineering of CdTe nanoparticle for high gain, fast response, and low noise P3HT:CdTe nanocomposite photodetectors,” Adv. Mater. 27(34), 4975–4981 (2015).
[Crossref] [PubMed]

L. Li, P. S. Lee, C. Yan, T. Zhai, X. Fang, M. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In2Ge2O7 nanobelts,” Adv. Mater. 22(45), 5145–5149 (2010).

Appl. Phys. Lett. (4)

H. Park, G. Yang, S. Chun, D. Kim, and J. Kim, “CdTe microwire-based ultraviolet photodetectors aligned by a non-uniform electric field,” Appl. Phys. Lett. 103(5), 051906 (2013).
[Crossref]

L. Sang, M. Liao, Y. Koide, and M. Sumiya, “High-performance metal-semiconductor-metal InGaN photodetectors using CaF2 as the insulator,” Appl. Phys. Lett. 98(10), 103502 (2011).
[Crossref]

Z. He, C. M. Campbell, M. B. Lassise, Z. Lin, J. J. Becker, Y. Zhao, M. Boccard, Z. Holman, and Y. Zhang, “CdTe nBn photodetectors with ZnTe barrier layer grown on InSb substrates,” Appl. Phys. Lett. 109(12), 121112 (2016).
[Crossref]

I. K. Sou, Z. H. Ma, Z. Q. Zhang, and G. K. L. Wong, “Temperature dependence of the responsivity of II–VI ultraviolet photodiodes,” Appl. Phys. Lett. 76(9), 1098–1100 (2000).
[Crossref]

IEEE Trans. Nucl. Sci. (2)

H. L. Malm and M. Martini, “Polarization phenomena in CdTe nuclear radiation detectors,” IEEE Trans. Nucl. Sci. 21(1), 322–330 (1974).
[Crossref]

T. Takahashi and S. Watanabe, “Recent progress in CdTe and CdZnTe detectors,” IEEE Trans. Nucl. Sci. 48(4), 950–959 (2001).
[Crossref]

J. Electron. Mater. (1)

S. P. Tobin, J. P. Tower, P. W. Norton, D. Chandler-Horowitz, P. M. Amirtharaj, V. C. Lopes, W. M. Duncan, A. J. Syllaios, C. K. Ard, N. C. Giles, J. Lee, R. Balasubramanian, A. B. Bollong, T. W. Steiner, M. L. W. Thewalt, D. K. Bowen, and B. K. Tar, “A comparison of techniques for nondestructive composition measurements in CdZnTe substrates,” J. Electron. Mater. 24(5), 697–705 (1995).
[Crossref]

J. Instrum. (1)

V. Dědič, J. Franc, H. Elhadidy, R. Grill, E. Belas, P. Moravec, J. Zázvorka, and P. Höschl, “Study of deep levels in high resistivity CdZnTe by discharge current measurement,” ‎,” J. Instrum. 8(01), C01008 (2013).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

Y. Wang, X. Huang, D. Wu, R. Zhuo, E. Wu, C. Jia, Z. Shi, T. Xu, Y. Tian, and X. Li, “A room-temperature near-infrared photodetector based on a MoS2/CdTe p-n heterojunction with a broadband response up to 1700 nm‎,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(18), 4861–4865 (2018).
[Crossref]

J. Phys. Condens. Matter (1)

R. S. Aga, D. Jowhar, M. Ewan, A. Steigerwald, A. Ueda, Z. Pan, W. E. Collins, and R. Mu, “Photoconductivity of CdTe nanocrystal films in a simple multilayer device structure,” ‎,” J. Phys. Condens. Matter 20(38), 385206 (2008).
[Crossref]

Jpn. J. Appl. Phys. (1)

M. Liao, L. Sang, T. Teraji, M. Imura, J. Alvarez, and Y. Koide, “Comprehensive investigation of single crystal diamond deep-ultraviolet detectors,” Jpn. J. Appl. Phys. 51(9R), 090115 (2012).
[Crossref]

Nano Lett. (1)

J. Liu, P. Fei, J. Song, X. Wang, C. Lao, R. Tummala, and Z. L. Wang, “Carrier density and Schottky barrier on the performance of DC nanogenerator,” Nano Lett. 8(1), 328–332 (2008).
[Crossref] [PubMed]

Nucl. Instrum. Methods Phys. Res. A (1)

M. Niraula, A. Nakamura, T. Aoki, Y. Tomita, and Y. Hatanaka, “Stability issues of high-energy resolution diode type CdTe nuclear radiation detectors in a long-term operation,” Nucl. Instrum. Methods Phys. Res. A 491(1-2), 168–175 (2002).
[Crossref]

Opt. Express (4)

G. Yang, D. Kim, and J. Kim, “Photosensitive cadmium telluride thin-film field-effect transistors,” Opt. Express 24(4), 3607–3612 (2016).
[Crossref] [PubMed]

G. Yang, D. Kim, and J. Kim, “Self-aligned growth of CdTe photodetectors using a graphene seed layer,” Opt. Express 23(19), A1081–A1086 (2015).
[Crossref] [PubMed]

X. Li, J. E. Carey, J. W. Sickler, M. U. Pralle, C. Palsule, and C. J. Vineis, “Silicon photodiodes with high photoconductive gain at room temperature,” Opt. Express 20(5), 5518–5523 (2012).
[Crossref] [PubMed]

W. Wang, H. Xu, J. Cai, J. Zhu, C. Ni, F. Hong, Z. Fang, F. Xu, S. Cui, R. Xu, L. Wang, F. Xu, and J. Huang, “Visible blind ultraviolet photodetector based on CH3NH3PbCl3 thin film,” Opt. Express 24(8), 8411–8419 (2016).
[Crossref] [PubMed]

Phys. Chem. Chem. Phys. (1)

M. Shaygan, K. Davami, N. Kheirabi, C. K. Baek, G. Cuniberti, M. Meyyappan, and J. S. Lee, “Single-crystalline CdTe nanowire field effect transistors as nanowire-based photodetector,” Phys. Chem. Chem. Phys. 16(41), 22687–22693 (2014).
[Crossref] [PubMed]

Science (1)

X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm,” Science 325(5948), 1665–1667 (2009).
[Crossref] [PubMed]

Sensors (Basel) (1)

S. D. Sordo, L. Abbene, E. Caroli, A. M. Mancini, A. Zappettini, and P. Ubertini, “Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications,” Sensors (Basel) 9(5), 3491–3526 (2009).
[Crossref] [PubMed]

Vacuum (1)

J. Min, X. Liang, J. Chen, D. Wang, H. Li, and J. Zhang, “Investigation of Te inclusions in CdZnTe crystalline material using Raman spectroscopy and IR techniques,” Vacuum 86(7), 1003–1006 (2012).
[Crossref]

Other (1)

See https://www.thorlabs.us/newgrouppage9.cfm?objectgroup_id=285 for specs for commercial devices, such as the products shown on this website.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) the typical XRD pattern in the 2θ range from 20° to 80° for the CdZnTe crystal. (b) the typical X-ray rocking curve for CdZnTe {111} crystallographic plane. (c) the Raman spectrum of the CdZnTe crystal and (d) the typical IR microscope image of CdZnTe crystal.
Fig. 2
Fig. 2 (a) photo-current (700 nm with an intensity of 0.87 mW/cm2) and dark current dependence on the bias voltage, the inset displays the dark current under negative and positive voltage. (b) spectral photoresponsivity/specific detectivity of fabricated Cd0.96Zn0.04Te photodetector.
Fig. 3
Fig. 3 (a) Log-log plot for the light intensity and photocurrent with different bias voltage and the fitted curve according to the power law. (b) light intensity dependent photo-responsivity and the correspondingly fitted curve.
Fig. 4
Fig. 4 (a) Time response of Cd0.96Zn0.04Te photodetector upon 700 nm light illumination measured by a mechanical chopping method, and (b) transient response time measurement at a bias voltage of 0.2 V with a chopping frequency of 100 Hz.
Fig. 5
Fig. 5 (a) Arrhenius plot of the dark current as a function of temperature at 0.2 V and 10 V. (b) High temperature dependent net photocurrent and the corresponding responsivity at bias voltage of 0.2 V under 700 nm illumination (0.87 mW/cm2).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

D * = R / ( 2 q J d ) 1 / 2
I = A P θ
I d a r k exp ( E A / k T )

Metrics