Abstract

Hybridization induced transparency (HIT) resulting from the coupling between the material absorption resonance and the artificial structure (metamaterial) resonance provides an effective means of enhancing the sensitivity in the terahertz spectroscopic technique-based sensing applications. However, the application of this method is limited by the versatility to the samples with different volumes, because the samples usually have a refractive index larger than unity and their presence with different thicknesses will lead to a shift of the structure resonance, mismatching the material absorption. In this work, we demonstrate that by using InSb coupled rod structures, whose electromagnetic response in the terahertz band can be easily controlled by using ambient parameters like the temperature or magnetic field, the HIT effect can be easily tuned so that without the needs to change the rod geometry, one can realize efficient terahertz sensing with different sample thickness.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tunable magneto-optical polarization device for terahertz waves based on InSb and its plasmonic structure

Qianyi Mu, Fei Fan, Sai Chen, Shitong Xu, Chuanzhong Xiong, Xin Zhang, Xianghui Wang, and Shengjiang Chang
Photon. Res. 7(3) 325-331 (2019)

Terahertz polarization converter and one-way transmission based on double-layer magneto-plasmonics of magnetized InSb

Fei Fan, Shi-Tong Xu, Xiang-Hui Wang, and Sheng-Jiang Chang
Opt. Express 24(23) 26431-26443 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Baxter and G. W. Guglietta, “Terahertz spectroscopy,” Anal. Chem. 83(12), 4342–4368 (2011).
    [Crossref] [PubMed]
  2. H. K. V. Latsch, F. Krausz, H. Weber, and W. T. Rhodes, Sensing with Terahertz Radiation (Springer, 2002).
  3. Y. S. Lee, Principles of Terahertz Science and Technology (Springer, 2009).
  4. R. H. Jacobsen, D. M. Mittleman, and M. C. Nuss, “Chemical recognition of gases and gas mixtures with terahertz waves,” Opt. Lett. 21(24), 2011–2013 (1996).
    [Crossref] [PubMed]
  5. X. Shi, J. Qin, and Z. Han, “Enhanced terahertz sensing with a coupled comb-shaped spoof surface plasmon waveguide,” Opt. Express 25(1), 278–283 (2017).
    [Crossref] [PubMed]
  6. X. Shi, Z. Zhao, and Z. Han, “Highly sensitive and selective gas sensing using the defect mode of a compact terahertz photonic crystal cavity,” Sens. Actuators B Chem. 274(July), 188–193 (2018).
    [Crossref]
  7. P. Weis, J. L. Garcia-Pomar, R. Beigang, and M. Rahm, “Hybridization induced transparency in composites of metamaterials and atomic media,” Opt. Express 19(23), 23573–23580 (2011).
    [Crossref] [PubMed]
  8. R. Adato, A. Artar, S. Erramilli, and H. Altug, “Engineered absorption enhancement and induced transparency in coupled molecular and plasmonic resonator systems,” Nano Lett. 13(6), 2584–2591 (2013).
    [Crossref] [PubMed]
  9. M. Wegener, J. L. García-Pomar, C. M. Soukoulis, N. Meinzer, M. Ruther, and S. Linden, “Toy model for plasmonic metamaterial resonances coupled to two-level system gain,” Opt. Express 16(24), 19785–19798 (2008).
    [Crossref] [PubMed]
  10. D. Rodrigo, O. Limaj, D. Janner, Dordaneh Etezadi, F. J. G. De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science (80-.). 349, 165–168 (2015).
  11. Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
    [Crossref] [PubMed]
  12. J. A. Sánchez-Gil and J. G. Rivas, “Thermal switching of the scattering coefficients of terahertz surface plasmon polaritons impinging on a finite array of subwavelength grooves on semiconductor surfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 73(20), 205410 (2006).
    [Crossref]
  13. S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier, and A. I. Fernández-Domínguez, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24(35), OP226–OP230 (2012).
    [Crossref] [PubMed]
  14. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
    [Crossref]
  15. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [Crossref] [PubMed]
  16. L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
    [Crossref] [PubMed]
  17. L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
    [Crossref]
  18. D. Dietze, K. Unterrainer, and J. Darmo, “Role of geometry for strong coupling in active terahertz metamaterials,” Phys. Rev. B 87(7), 075324 (2013).
    [Crossref]
  19. A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Cámara Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
    [Crossref]
  20. P. Biagioni, J. S. Huang, B. Hecht, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
    [Crossref] [PubMed]
  21. S. Chen, F. Fan, X. Wang, P. Wu, H. Zhang, and S. Chang, “Terahertz isolator based on nonreciprocal magneto-metasurface,” Opt. Express 23(2), 1015–1024 (2015).
    [Crossref] [PubMed]
  22. X. Shi and Z. Han, “Enhanced terahertz fingerprint detection with ultrahigh sensitivity using the cavity defect modes,” Sci. Rep. 7(1), 13147 (2017).
    [Crossref] [PubMed]

2018 (1)

X. Shi, Z. Zhao, and Z. Han, “Highly sensitive and selective gas sensing using the defect mode of a compact terahertz photonic crystal cavity,” Sens. Actuators B Chem. 274(July), 188–193 (2018).
[Crossref]

2017 (3)

X. Shi, J. Qin, and Z. Han, “Enhanced terahertz sensing with a coupled comb-shaped spoof surface plasmon waveguide,” Opt. Express 25(1), 278–283 (2017).
[Crossref] [PubMed]

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

X. Shi and Z. Han, “Enhanced terahertz fingerprint detection with ultrahigh sensitivity using the cavity defect modes,” Sci. Rep. 7(1), 13147 (2017).
[Crossref] [PubMed]

2016 (1)

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref] [PubMed]

2015 (1)

S. Chen, F. Fan, X. Wang, P. Wu, H. Zhang, and S. Chang, “Terahertz isolator based on nonreciprocal magneto-metasurface,” Opt. Express 23(2), 1015–1024 (2015).
[Crossref] [PubMed]

2013 (2)

D. Dietze, K. Unterrainer, and J. Darmo, “Role of geometry for strong coupling in active terahertz metamaterials,” Phys. Rev. B 87(7), 075324 (2013).
[Crossref]

R. Adato, A. Artar, S. Erramilli, and H. Altug, “Engineered absorption enhancement and induced transparency in coupled molecular and plasmonic resonator systems,” Nano Lett. 13(6), 2584–2591 (2013).
[Crossref] [PubMed]

2012 (2)

P. Biagioni, J. S. Huang, B. Hecht, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier, and A. I. Fernández-Domínguez, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24(35), OP226–OP230 (2012).
[Crossref] [PubMed]

2011 (2)

P. Weis, J. L. Garcia-Pomar, R. Beigang, and M. Rahm, “Hybridization induced transparency in composites of metamaterials and atomic media,” Opt. Express 19(23), 23573–23580 (2011).
[Crossref] [PubMed]

J. B. Baxter and G. W. Guglietta, “Terahertz spectroscopy,” Anal. Chem. 83(12), 4342–4368 (2011).
[Crossref] [PubMed]

2010 (1)

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Cámara Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]

2009 (1)

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
[Crossref]

2008 (3)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

M. Wegener, J. L. García-Pomar, C. M. Soukoulis, N. Meinzer, M. Ruther, and S. Linden, “Toy model for plasmonic metamaterial resonances coupled to two-level system gain,” Opt. Express 16(24), 19785–19798 (2008).
[Crossref] [PubMed]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
[Crossref] [PubMed]

2006 (1)

J. A. Sánchez-Gil and J. G. Rivas, “Thermal switching of the scattering coefficients of terahertz surface plasmon polaritons impinging on a finite array of subwavelength grooves on semiconductor surfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 73(20), 205410 (2006).
[Crossref]

1996 (1)

R. H. Jacobsen, D. M. Mittleman, and M. C. Nuss, “Chemical recognition of gases and gas mixtures with terahertz waves,” Opt. Lett. 21(24), 2011–2013 (1996).
[Crossref] [PubMed]

Adato, R.

R. Adato, A. Artar, S. Erramilli, and H. Altug, “Engineered absorption enhancement and induced transparency in coupled molecular and plasmonic resonator systems,” Nano Lett. 13(6), 2584–2591 (2013).
[Crossref] [PubMed]

Altug, H.

R. Adato, A. Artar, S. Erramilli, and H. Altug, “Engineered absorption enhancement and induced transparency in coupled molecular and plasmonic resonator systems,” Nano Lett. 13(6), 2584–2591 (2013).
[Crossref] [PubMed]

Ang, S. S.

S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier, and A. I. Fernández-Domínguez, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24(35), OP226–OP230 (2012).
[Crossref] [PubMed]

S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier, and A. I. Fernández-Domínguez, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24(35), OP226–OP230 (2012).
[Crossref] [PubMed]

Artar, A.

R. Adato, A. Artar, S. Erramilli, and H. Altug, “Engineered absorption enhancement and induced transparency in coupled molecular and plasmonic resonator systems,” Nano Lett. 13(6), 2584–2591 (2013).
[Crossref] [PubMed]

Baxter, J. B.

J. B. Baxter and G. W. Guglietta, “Terahertz spectroscopy,” Anal. Chem. 83(12), 4342–4368 (2011).
[Crossref] [PubMed]

Beigang, R.

P. Weis, J. L. Garcia-Pomar, R. Beigang, and M. Rahm, “Hybridization induced transparency in composites of metamaterials and atomic media,” Opt. Express 19(23), 23573–23580 (2011).
[Crossref] [PubMed]

Bharadwaj, P.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
[Crossref]

Biagioni, P.

P. Biagioni, J. S. Huang, B. Hecht, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Cámara Mayorga, I. C.

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Cámara Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]

Chang, S.

S. Chen, F. Fan, X. Wang, P. Wu, H. Zhang, and S. Chang, “Terahertz isolator based on nonreciprocal magneto-metasurface,” Opt. Express 23(2), 1015–1024 (2015).
[Crossref] [PubMed]

Chen, L.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref] [PubMed]

Chen, S.

S. Chen, F. Fan, X. Wang, P. Wu, H. Zhang, and S. Chang, “Terahertz isolator based on nonreciprocal magneto-metasurface,” Opt. Express 23(2), 1015–1024 (2015).
[Crossref] [PubMed]

Cui, T.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

Darmo, J.

D. Dietze, K. Unterrainer, and J. Darmo, “Role of geometry for strong coupling in active terahertz metamaterials,” Phys. Rev. B 87(7), 075324 (2013).
[Crossref]

Deninger, A.

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Cámara Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]

Deutsch, B.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
[Crossref]

Dietze, D.

D. Dietze, K. Unterrainer, and J. Darmo, “Role of geometry for strong coupling in active terahertz metamaterials,” Phys. Rev. B 87(7), 075324 (2013).
[Crossref]

Erramilli, S.

R. Adato, A. Artar, S. Erramilli, and H. Altug, “Engineered absorption enhancement and induced transparency in coupled molecular and plasmonic resonator systems,” Nano Lett. 13(6), 2584–2591 (2013).
[Crossref] [PubMed]

Fan, F.

S. Chen, F. Fan, X. Wang, P. Wu, H. Zhang, and S. Chang, “Terahertz isolator based on nonreciprocal magneto-metasurface,” Opt. Express 23(2), 1015–1024 (2015).
[Crossref] [PubMed]

Fan, S.

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
[Crossref] [PubMed]

Fernández-Domínguez, A. I.

S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier, and A. I. Fernández-Domínguez, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24(35), OP226–OP230 (2012).
[Crossref] [PubMed]

S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier, and A. I. Fernández-Domínguez, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24(35), OP226–OP230 (2012).
[Crossref] [PubMed]

Garcia-Pomar, J. L.

P. Weis, J. L. Garcia-Pomar, R. Beigang, and M. Rahm, “Hybridization induced transparency in composites of metamaterials and atomic media,” Opt. Express 19(23), 23573–23580 (2011).
[Crossref] [PubMed]

García-Pomar, J. L.

M. Wegener, J. L. García-Pomar, C. M. Soukoulis, N. Meinzer, M. Ruther, and S. Linden, “Toy model for plasmonic metamaterial resonances coupled to two-level system gain,” Opt. Express 16(24), 19785–19798 (2008).
[Crossref] [PubMed]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Grüninger, M.

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Cámara Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]

Guglietta, G. W.

J. B. Baxter and G. W. Guglietta, “Terahertz spectroscopy,” Anal. Chem. 83(12), 4342–4368 (2011).
[Crossref] [PubMed]

Güsten, R.

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Cámara Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]

Han, Z.

X. Shi, Z. Zhao, and Z. Han, “Highly sensitive and selective gas sensing using the defect mode of a compact terahertz photonic crystal cavity,” Sens. Actuators B Chem. 274(July), 188–193 (2018).
[Crossref]

X. Shi, J. Qin, and Z. Han, “Enhanced terahertz sensing with a coupled comb-shaped spoof surface plasmon waveguide,” Opt. Express 25(1), 278–283 (2017).
[Crossref] [PubMed]

X. Shi and Z. Han, “Enhanced terahertz fingerprint detection with ultrahigh sensitivity using the cavity defect modes,” Sci. Rep. 7(1), 13147 (2017).
[Crossref] [PubMed]

Hanham, S. M.

S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier, and A. I. Fernández-Domínguez, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24(35), OP226–OP230 (2012).
[Crossref] [PubMed]

Hecht, B.

P. Biagioni, J. S. Huang, B. Hecht, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

P. Biagioni, J. S. Huang, B. Hecht, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Hemberger, J.

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Cámara Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]

Huang, J. S.

P. Biagioni, J. S. Huang, B. Hecht, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Jacobsen, R. H.

R. H. Jacobsen, D. M. Mittleman, and M. C. Nuss, “Chemical recognition of gases and gas mixtures with terahertz waves,” Opt. Lett. 21(24), 2011–2013 (1996).
[Crossref] [PubMed]

Klein, N.

S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier, and A. I. Fernández-Domínguez, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24(35), OP226–OP230 (2012).
[Crossref] [PubMed]

S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier, and A. I. Fernández-Domínguez, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24(35), OP226–OP230 (2012).
[Crossref] [PubMed]

Lim, K. P.

S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier, and A. I. Fernández-Domínguez, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24(35), OP226–OP230 (2012).
[Crossref] [PubMed]

S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier, and A. I. Fernández-Domínguez, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24(35), OP226–OP230 (2012).
[Crossref] [PubMed]

Linden, S.

M. Wegener, J. L. García-Pomar, C. M. Soukoulis, N. Meinzer, M. Ruther, and S. Linden, “Toy model for plasmonic metamaterial resonances coupled to two-level system gain,” Opt. Express 16(24), 19785–19798 (2008).
[Crossref] [PubMed]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Maier, S. A.

S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier, and A. I. Fernández-Domínguez, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24(35), OP226–OP230 (2012).
[Crossref] [PubMed]

S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier, and A. I. Fernández-Domínguez, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24(35), OP226–OP230 (2012).
[Crossref] [PubMed]

Meinzer, N.

M. Wegener, J. L. García-Pomar, C. M. Soukoulis, N. Meinzer, M. Ruther, and S. Linden, “Toy model for plasmonic metamaterial resonances coupled to two-level system gain,” Opt. Express 16(24), 19785–19798 (2008).
[Crossref] [PubMed]

Mittleman, D. M.

R. H. Jacobsen, D. M. Mittleman, and M. C. Nuss, “Chemical recognition of gases and gas mixtures with terahertz waves,” Opt. Lett. 21(24), 2011–2013 (1996).
[Crossref] [PubMed]

Ngo, C. Y.

S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier, and A. I. Fernández-Domínguez, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24(35), OP226–OP230 (2012).
[Crossref] [PubMed]

S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier, and A. I. Fernández-Domínguez, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24(35), OP226–OP230 (2012).
[Crossref] [PubMed]

Novotny, L.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
[Crossref]

Nuss, M. C.

R. H. Jacobsen, D. M. Mittleman, and M. C. Nuss, “Chemical recognition of gases and gas mixtures with terahertz waves,” Opt. Lett. 21(24), 2011–2013 (1996).
[Crossref] [PubMed]

Pendry, J. B.

S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier, and A. I. Fernández-Domínguez, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24(35), OP226–OP230 (2012).
[Crossref] [PubMed]

S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier, and A. I. Fernández-Domínguez, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24(35), OP226–OP230 (2012).
[Crossref] [PubMed]

Qin, J.

X. Shi, J. Qin, and Z. Han, “Enhanced terahertz sensing with a coupled comb-shaped spoof surface plasmon waveguide,” Opt. Express 25(1), 278–283 (2017).
[Crossref] [PubMed]

Rahm, M.

P. Weis, J. L. Garcia-Pomar, R. Beigang, and M. Rahm, “Hybridization induced transparency in composites of metamaterials and atomic media,” Opt. Express 19(23), 23573–23580 (2011).
[Crossref] [PubMed]

Rivas, J. G.

J. A. Sánchez-Gil and J. G. Rivas, “Thermal switching of the scattering coefficients of terahertz surface plasmon polaritons impinging on a finite array of subwavelength grooves on semiconductor surfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 73(20), 205410 (2006).
[Crossref]

Roggenbuck, A.

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Cámara Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]

Ruther, M.

M. Wegener, J. L. García-Pomar, C. M. Soukoulis, N. Meinzer, M. Ruther, and S. Linden, “Toy model for plasmonic metamaterial resonances coupled to two-level system gain,” Opt. Express 16(24), 19785–19798 (2008).
[Crossref] [PubMed]

Sánchez-Gil, J. A.

J. A. Sánchez-Gil and J. G. Rivas, “Thermal switching of the scattering coefficients of terahertz surface plasmon polaritons impinging on a finite array of subwavelength grooves on semiconductor surfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 73(20), 205410 (2006).
[Crossref]

Schmitz, H.

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Cámara Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]

Shi, X.

X. Shi, Z. Zhao, and Z. Han, “Highly sensitive and selective gas sensing using the defect mode of a compact terahertz photonic crystal cavity,” Sens. Actuators B Chem. 274(July), 188–193 (2018).
[Crossref]

X. Shi, J. Qin, and Z. Han, “Enhanced terahertz sensing with a coupled comb-shaped spoof surface plasmon waveguide,” Opt. Express 25(1), 278–283 (2017).
[Crossref] [PubMed]

X. Shi and Z. Han, “Enhanced terahertz fingerprint detection with ultrahigh sensitivity using the cavity defect modes,” Sci. Rep. 7(1), 13147 (2017).
[Crossref] [PubMed]

Singh, L.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

Singh, R.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

Soukoulis, C. M.

M. Wegener, J. L. García-Pomar, C. M. Soukoulis, N. Meinzer, M. Ruther, and S. Linden, “Toy model for plasmonic metamaterial resonances coupled to two-level system gain,” Opt. Express 16(24), 19785–19798 (2008).
[Crossref] [PubMed]

Teng, J. H.

S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier, and A. I. Fernández-Domínguez, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24(35), OP226–OP230 (2012).
[Crossref] [PubMed]

S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier, and A. I. Fernández-Domínguez, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24(35), OP226–OP230 (2012).
[Crossref] [PubMed]

Unterrainer, K.

D. Dietze, K. Unterrainer, and J. Darmo, “Role of geometry for strong coupling in active terahertz metamaterials,” Phys. Rev. B 87(7), 075324 (2013).
[Crossref]

Veronis, G.

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
[Crossref] [PubMed]

Wang, X.

S. Chen, F. Fan, X. Wang, P. Wu, H. Zhang, and S. Chang, “Terahertz isolator based on nonreciprocal magneto-metasurface,” Opt. Express 23(2), 1015–1024 (2015).
[Crossref] [PubMed]

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Wang, Z.

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
[Crossref] [PubMed]

Wegener, M.

M. Wegener, J. L. García-Pomar, C. M. Soukoulis, N. Meinzer, M. Ruther, and S. Linden, “Toy model for plasmonic metamaterial resonances coupled to two-level system gain,” Opt. Express 16(24), 19785–19798 (2008).
[Crossref] [PubMed]

Wei, Y.

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref] [PubMed]

Weis, P.

P. Weis, J. L. Garcia-Pomar, R. Beigang, and M. Rahm, “Hybridization induced transparency in composites of metamaterials and atomic media,” Opt. Express 19(23), 23573–23580 (2011).
[Crossref] [PubMed]

Wu, P.

S. Chen, F. Fan, X. Wang, P. Wu, H. Zhang, and S. Chang, “Terahertz isolator based on nonreciprocal magneto-metasurface,” Opt. Express 23(2), 1015–1024 (2015).
[Crossref] [PubMed]

Xu, N.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

Yoon, S. F.

S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier, and A. I. Fernández-Domínguez, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24(35), OP226–OP230 (2012).
[Crossref] [PubMed]

S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier, and A. I. Fernández-Domínguez, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24(35), OP226–OP230 (2012).
[Crossref] [PubMed]

Yu, Z.

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
[Crossref] [PubMed]

Zang, X.

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref] [PubMed]

Zhang, H.

S. Chen, F. Fan, X. Wang, P. Wu, H. Zhang, and S. Chang, “Terahertz isolator based on nonreciprocal magneto-metasurface,” Opt. Express 23(2), 1015–1024 (2015).
[Crossref] [PubMed]

Zhang, S.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, W.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

Zhang, X.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhao, Z.

X. Shi, Z. Zhao, and Z. Han, “Highly sensitive and selective gas sensing using the defect mode of a compact terahertz photonic crystal cavity,” Sens. Actuators B Chem. 274(July), 188–193 (2018).
[Crossref]

Zhu, Y.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref] [PubMed]

Zhuang, S.

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref] [PubMed]

Adv. Mater. (1)

S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier, and A. I. Fernández-Domínguez, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24(35), OP226–OP230 (2012).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

Adv. Opt. Photonics (1)

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
[Crossref]

Anal. Chem. (1)

J. B. Baxter and G. W. Guglietta, “Terahertz spectroscopy,” Anal. Chem. 83(12), 4342–4368 (2011).
[Crossref] [PubMed]

Nano Lett. (1)

R. Adato, A. Artar, S. Erramilli, and H. Altug, “Engineered absorption enhancement and induced transparency in coupled molecular and plasmonic resonator systems,” Nano Lett. 13(6), 2584–2591 (2013).
[Crossref] [PubMed]

New J. Phys. (1)

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Cámara Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]

Opt. Express (4)

S. Chen, F. Fan, X. Wang, P. Wu, H. Zhang, and S. Chang, “Terahertz isolator based on nonreciprocal magneto-metasurface,” Opt. Express 23(2), 1015–1024 (2015).
[Crossref] [PubMed]

M. Wegener, J. L. García-Pomar, C. M. Soukoulis, N. Meinzer, M. Ruther, and S. Linden, “Toy model for plasmonic metamaterial resonances coupled to two-level system gain,” Opt. Express 16(24), 19785–19798 (2008).
[Crossref] [PubMed]

P. Weis, J. L. Garcia-Pomar, R. Beigang, and M. Rahm, “Hybridization induced transparency in composites of metamaterials and atomic media,” Opt. Express 19(23), 23573–23580 (2011).
[Crossref] [PubMed]

X. Shi, J. Qin, and Z. Han, “Enhanced terahertz sensing with a coupled comb-shaped spoof surface plasmon waveguide,” Opt. Express 25(1), 278–283 (2017).
[Crossref] [PubMed]

Opt. Lett. (1)

R. H. Jacobsen, D. M. Mittleman, and M. C. Nuss, “Chemical recognition of gases and gas mixtures with terahertz waves,” Opt. Lett. 21(24), 2011–2013 (1996).
[Crossref] [PubMed]

Phys. Rev. B (1)

D. Dietze, K. Unterrainer, and J. Darmo, “Role of geometry for strong coupling in active terahertz metamaterials,” Phys. Rev. B 87(7), 075324 (2013).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

J. A. Sánchez-Gil and J. G. Rivas, “Thermal switching of the scattering coefficients of terahertz surface plasmon polaritons impinging on a finite array of subwavelength grooves on semiconductor surfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 73(20), 205410 (2006).
[Crossref]

Phys. Rev. Lett. (2)

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

P. Biagioni, J. S. Huang, B. Hecht, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Sci. Rep. (2)

X. Shi and Z. Han, “Enhanced terahertz fingerprint detection with ultrahigh sensitivity using the cavity defect modes,” Sci. Rep. 7(1), 13147 (2017).
[Crossref] [PubMed]

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

X. Shi, Z. Zhao, and Z. Han, “Highly sensitive and selective gas sensing using the defect mode of a compact terahertz photonic crystal cavity,” Sens. Actuators B Chem. 274(July), 188–193 (2018).
[Crossref]

Other (3)

H. K. V. Latsch, F. Krausz, H. Weber, and W. T. Rhodes, Sensing with Terahertz Radiation (Springer, 2002).

Y. S. Lee, Principles of Terahertz Science and Technology (Springer, 2009).

D. Rodrigo, O. Limaj, D. Janner, Dordaneh Etezadi, F. J. G. De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science (80-.). 349, 165–168 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic of the HIT effect; (b) Top view of the layout of the coupled InSb rods.
Fig. 2
Fig. 2 (a) Calculated transmission spectrum when the length of the InSb rods are tuned so that the structure resonance matches the absorption of α-lactose at 0.53THz. Inset shows the magnitude of electric field at resonance along the substrate surface. (b) The transmission spectrum when 1μm-thick of α-lactose covers the same rod structure.
Fig. 3
Fig. 3 Transmission spectrum exhibiting the HIT effect when the temperature changes for two different α-lactose thickness, 1μm in (a) and 2 μm in (b).
Fig. 4
Fig. 4 Transmission spectrum exhibiting the HIT effect when a static magnetic field is applied along z + direction across the structure.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ε lactose = ε 1 + Δε ω p1 2 ω p1 2 ω 2 +j γ 1 ω
N=2.9× 10 11 (2400T) 0.75 (1+2.7× 10 4 T) T 1.5 e 0.1291.5× 10 4 T kT
ω p2 = N e 2 ε 0 m *
γ 2 = e μ m *
μ=7.7× 10 4 ( T 300 ) 1.66 c m 2 V 1 s 1
ε InSb = ε 2 ω p2 2 ω 2 j γ 2 ω
ε=[ ε 1 j ε 2 0 j ε 2 ε 1 0 00 ε 3 ]
ε 1 = ε 2 ω p2 2 (ω+j γ 2 ) ω[ (ω+j γ 2 ) 2 ω c 2 ] , ε 2 = ω p2 2 ω c ω[ (ω+j γ 2 ) 2 ω c 2 ]

Metrics