Abstract

We report a non-interferometric single-exposure technique for fabricating Pancharatnam-Berry (PB) devices with arbitrary wavefronts, via photo-patterning an azo-dye doped LC with a two-dimensional linear polarization field, whose local polarization direction can be controlled by a spatial light modulator (SLM) on the pixel level. Upon one exposure, different local LC orientations are generated simultaneously. The non-interferometric approach is insensitive to environmental disturbance, and moreover, the dynamic phase mask on the SLM can be conveniently reconfigured by a computer. Our fabricated PB gratings, q-plates and hologram exhibit good optical performances. Such a simple yet reconfigurable fabrication method enables new PB devices to be developed, and it would open a new gateway towards widespread applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Digital polarization holography advancing geometrical phase optics

Luciano De Sio, David E. Roberts, Zhi Liao, Sarik Nersisyan, Olena Uskova, Lloyd Wickboldt, Nelson Tabiryan, Diane M. Steeves, and Brian R. Kimball
Opt. Express 24(16) 18297-18306 (2016)

Complex liquid crystal alignments accomplished by Talbot self-imaging

Xi-kui Hu, Bing-yan Wei, Xiao-wen Lin, Wei Hu, Ge Zhu, Vladimir Chigrinov, and Yan-qing Lu
Opt. Express 21(6) 7608-7613 (2013)

Diffractive waveplate arrays [Invited]

Svetlana V. Serak, David E. Roberts, Jeoung-Yeon Hwang, Sarik R. Nersisyan, Nelson V. Tabiryan, Timothy J. Bunning, Diane M. Steeves, and Brian R. Kimball
J. Opt. Soc. Am. B 34(5) B56-B63 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Anandan, “The geometric phase,” Nature 360(6402), 307–313 (1992).
    [Crossref]
  2. S. Pancharatnam, “Generalized theory of interference, and its applications,” Proc. Ind. Acad. Sci. A 44(6), 398–417 (1956).
    [Crossref]
  3. M. V. Berry, “Quantum phase factors accompanying adiabatic changes,” Proc. R. Soc. Lond. A Math. Phys. Sci. 392 (1802), 45–57 (1984).
    [Crossref]
  4. G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
    [Crossref] [PubMed]
  5. U. Levy, C. H. Tsai, H. C. Kim, and Y. Fainman, “Design, fabrication and characterization of subwavelength computer-generated holograms for spot array generation,” Opt. Express 12(22), 5345–5355 (2004).
    [Crossref] [PubMed]
  6. C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33(20), 2287–2289 (2008).
    [Crossref] [PubMed]
  7. R. K. Komanduri and M. J. Escuti, “High efficiency reflective liquid crystal polarization gratings,” Appl. Phys. Lett. 95(9), 091106 (2009).
    [Crossref]
  8. J. Kim, C. Oh, S. Serati, and M. J. Escuti, “Wide-angle, nonmechanical beam steering with high throughput utilizing polarization gratings,” Appl. Opt. 50(17), 2636–2639 (2011).
    [Crossref] [PubMed]
  9. T. Zhan, Y.-H. Lee, and S.-T. Wu, “High-resolution additive light field near-eye display by switchable Pancharatnam-Berry phase lenses,” Opt. Express 26(4), 4863–4872 (2018).
    [Crossref] [PubMed]
  10. B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26(10), 1590–1595 (2014).
    [Crossref] [PubMed]
  11. B. Wei, S. Liu, P. Chen, S. Qi, Y. Zhang, W. Hu, Y. Lu, and J. Zhao, “Vortex Airy beams directly generated via liquid crystal q-Airy-plates,” Appl. Phys. Lett. 112(12), 121101 (2018).
    [Crossref]
  12. M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photonics Rev. 7(6), 839–854 (2013).
    [Crossref]
  13. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [Crossref] [PubMed]
  14. J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5(11), 943–945 (2008).
    [Crossref] [PubMed]
  15. V. Presnyakov, K. Asatryan, T. Galstian, and V. Chigrinov, “Optical polarization grating induced liquid crystal micro-structure using azo-dye command layer,” Opt. Express 14(22), 10558–10564 (2006).
    [Crossref] [PubMed]
  16. Y. Li, J. Kim, and M. J. Escuti, “Orbital angular momentum generation and mode transformation with high efficiency using forked polarization gratings,” Appl. Opt. 51(34), 8236–8245 (2012).
    [Crossref] [PubMed]
  17. J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2(11), 958–964 (2015).
    [Crossref]
  18. W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
    [Crossref]
  19. L. C. Lin, H. C. Jau, T. H. Lin, and A. Y. Fuh, “Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal,” Opt. Express 15(6), 2900–2906 (2007).
    [Crossref] [PubMed]
  20. Y. Guo, M. Jiang, C. Peng, K. Sun, O. Yaroshchuk, O. Lavrentovich, and Q.-H. Wei, “High-resolution and high-throughput plasmonic photopatterning of complex molecular orientations in liquid crystals,” Adv. Mater. 28(12), 2353–2358 (2016).
    [Crossref] [PubMed]
  21. C. Culbreath, N. Glazar, and H. Yokoyama, “Note: Automated maskless micro-multidomain photoalignment,” Rev. Sci. Instrum. 82(12), 126107 (2011).
    [Crossref] [PubMed]
  22. H. Wu, W. Hu, H. C. Hu, X. W. Lin, G. Zhu, J. W. Choi, V. Chigrinov, and Y. Q. Lu, “Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system,” Opt. Express 20(15), 16684–16689 (2012).
    [Crossref]
  23. C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuators A Phys. 121(1), 113–120 (2005).
    [Crossref]
  24. M. E. McConney, A. Martinez, V. P. Tondiglia, K. M. Lee, D. Langley, I. I. Smalyukh, and T. J. White, “Topography from topology: photoinduced surface features generated in liquid crystal polymer networks,” Adv. Mater. 25(41), 5880–5885 (2013).
    [Crossref] [PubMed]
  25. M. N. Miskiewicz and M. J. Escuti, “Direct-writing of complex liquid crystal patterns,” Opt. Express 22(10), 12691–12706 (2014).
    [Crossref] [PubMed]
  26. M. N. Miskiewicz and M. J. Escuti, “Optimization of direct-write polarization gratings,” Opt. Eng. 54(2), 025101 (2015).
    [Crossref]
  27. L. De Sio, D. E. Roberts, Z. Liao, S. Nersisyan, O. Uskova, L. Wickboldt, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Digital polarization holography advancing geometrical phase optics,” Opt. Express 24(16), 18297–18306 (2016).
    [Crossref] [PubMed]
  28. D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, 2006), page 76.
  29. Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
    [Crossref]
  30. L. Nikolova and P. S. Ramanujam, Polarization Holography (Cambridge University, 2009).
  31. L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wavefront shaping in the visible domain: switchable helical modes generation,” Appl. Phys. Lett. 88(22), 221102 (2006).
    [Crossref]
  32. S. T. Wu, “Nematic liquid crystal modulator with response time less than 100 µs at room temperature,” Appl. Phys. Lett. 57(10), 986–988 (1990).
    [Crossref]
  33. W. Ji, C. H. Lee, P. Chen, W. Hu, Y. Ming, L. Zhang, T. H. Lin, V. Chigrinov, and Y. Q. Lu, “Meta-q-plate for complex beam shaping,” Sci. Rep. 6(1), 25528 (2016).
    [Crossref] [PubMed]
  34. X. Xiang, M. N. Miskiewicz, and M. J. Escuti, “Distortion-free broadband holograms: a novel class of elements utilizing the wavelength independent geometric phase,” Proc. SPIE 9386, 938609 (2015).
    [Crossref]
  35. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35(2), 227–246 (1972).

2018 (2)

T. Zhan, Y.-H. Lee, and S.-T. Wu, “High-resolution additive light field near-eye display by switchable Pancharatnam-Berry phase lenses,” Opt. Express 26(4), 4863–4872 (2018).
[Crossref] [PubMed]

B. Wei, S. Liu, P. Chen, S. Qi, Y. Zhang, W. Hu, Y. Lu, and J. Zhao, “Vortex Airy beams directly generated via liquid crystal q-Airy-plates,” Appl. Phys. Lett. 112(12), 121101 (2018).
[Crossref]

2017 (1)

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

2016 (3)

W. Ji, C. H. Lee, P. Chen, W. Hu, Y. Ming, L. Zhang, T. H. Lin, V. Chigrinov, and Y. Q. Lu, “Meta-q-plate for complex beam shaping,” Sci. Rep. 6(1), 25528 (2016).
[Crossref] [PubMed]

L. De Sio, D. E. Roberts, Z. Liao, S. Nersisyan, O. Uskova, L. Wickboldt, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Digital polarization holography advancing geometrical phase optics,” Opt. Express 24(16), 18297–18306 (2016).
[Crossref] [PubMed]

Y. Guo, M. Jiang, C. Peng, K. Sun, O. Yaroshchuk, O. Lavrentovich, and Q.-H. Wei, “High-resolution and high-throughput plasmonic photopatterning of complex molecular orientations in liquid crystals,” Adv. Mater. 28(12), 2353–2358 (2016).
[Crossref] [PubMed]

2015 (4)

M. N. Miskiewicz and M. J. Escuti, “Optimization of direct-write polarization gratings,” Opt. Eng. 54(2), 025101 (2015).
[Crossref]

X. Xiang, M. N. Miskiewicz, and M. J. Escuti, “Distortion-free broadband holograms: a novel class of elements utilizing the wavelength independent geometric phase,” Proc. SPIE 9386, 938609 (2015).
[Crossref]

J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2(11), 958–964 (2015).
[Crossref]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

2014 (2)

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26(10), 1590–1595 (2014).
[Crossref] [PubMed]

M. N. Miskiewicz and M. J. Escuti, “Direct-writing of complex liquid crystal patterns,” Opt. Express 22(10), 12691–12706 (2014).
[Crossref] [PubMed]

2013 (2)

M. E. McConney, A. Martinez, V. P. Tondiglia, K. M. Lee, D. Langley, I. I. Smalyukh, and T. J. White, “Topography from topology: photoinduced surface features generated in liquid crystal polymer networks,” Adv. Mater. 25(41), 5880–5885 (2013).
[Crossref] [PubMed]

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photonics Rev. 7(6), 839–854 (2013).
[Crossref]

2012 (3)

W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[Crossref]

Y. Li, J. Kim, and M. J. Escuti, “Orbital angular momentum generation and mode transformation with high efficiency using forked polarization gratings,” Appl. Opt. 51(34), 8236–8245 (2012).
[Crossref] [PubMed]

H. Wu, W. Hu, H. C. Hu, X. W. Lin, G. Zhu, J. W. Choi, V. Chigrinov, and Y. Q. Lu, “Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system,” Opt. Express 20(15), 16684–16689 (2012).
[Crossref]

2011 (2)

C. Culbreath, N. Glazar, and H. Yokoyama, “Note: Automated maskless micro-multidomain photoalignment,” Rev. Sci. Instrum. 82(12), 126107 (2011).
[Crossref] [PubMed]

J. Kim, C. Oh, S. Serati, and M. J. Escuti, “Wide-angle, nonmechanical beam steering with high throughput utilizing polarization gratings,” Appl. Opt. 50(17), 2636–2639 (2011).
[Crossref] [PubMed]

2009 (1)

R. K. Komanduri and M. J. Escuti, “High efficiency reflective liquid crystal polarization gratings,” Appl. Phys. Lett. 95(9), 091106 (2009).
[Crossref]

2008 (2)

C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33(20), 2287–2289 (2008).
[Crossref] [PubMed]

J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5(11), 943–945 (2008).
[Crossref] [PubMed]

2007 (1)

L. C. Lin, H. C. Jau, T. H. Lin, and A. Y. Fuh, “Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal,” Opt. Express 15(6), 2900–2906 (2007).
[Crossref] [PubMed]

2006 (2)

V. Presnyakov, K. Asatryan, T. Galstian, and V. Chigrinov, “Optical polarization grating induced liquid crystal micro-structure using azo-dye command layer,” Opt. Express 14(22), 10558–10564 (2006).
[Crossref] [PubMed]

L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wavefront shaping in the visible domain: switchable helical modes generation,” Appl. Phys. Lett. 88(22), 221102 (2006).
[Crossref]

2005 (1)

C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuators A Phys. 121(1), 113–120 (2005).
[Crossref]

2004 (1)

U. Levy, C. H. Tsai, H. C. Kim, and Y. Fainman, “Design, fabrication and characterization of subwavelength computer-generated holograms for spot array generation,” Opt. Express 12(22), 5345–5355 (2004).
[Crossref] [PubMed]

1994 (1)

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
[Crossref] [PubMed]

1992 (1)

J. Anandan, “The geometric phase,” Nature 360(6402), 307–313 (1992).
[Crossref]

1990 (1)

S. T. Wu, “Nematic liquid crystal modulator with response time less than 100 µs at room temperature,” Appl. Phys. Lett. 57(10), 986–988 (1990).
[Crossref]

1984 (1)

M. V. Berry, “Quantum phase factors accompanying adiabatic changes,” Proc. R. Soc. Lond. A Math. Phys. Sci. 392 (1802), 45–57 (1984).
[Crossref]

1972 (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35(2), 227–246 (1972).

1956 (1)

S. Pancharatnam, “Generalized theory of interference, and its applications,” Proc. Ind. Acad. Sci. A 44(6), 398–417 (1956).
[Crossref]

Alpmann, C.

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photonics Rev. 7(6), 839–854 (2013).
[Crossref]

Anandan, J.

J. Anandan, “The geometric phase,” Nature 360(6402), 307–313 (1992).
[Crossref]

Asatryan, K.

V. Presnyakov, K. Asatryan, T. Galstian, and V. Chigrinov, “Optical polarization grating induced liquid crystal micro-structure using azo-dye command layer,” Opt. Express 14(22), 10558–10564 (2006).
[Crossref] [PubMed]

Berry, M. V.

M. V. Berry, “Quantum phase factors accompanying adiabatic changes,” Proc. R. Soc. Lond. A Math. Phys. Sci. 392 (1802), 45–57 (1984).
[Crossref]

Bock, H.

J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5(11), 943–945 (2008).
[Crossref] [PubMed]

Bossi, M.

J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5(11), 943–945 (2008).
[Crossref] [PubMed]

Chen, P.

B. Wei, S. Liu, P. Chen, S. Qi, Y. Zhang, W. Hu, Y. Lu, and J. Zhao, “Vortex Airy beams directly generated via liquid crystal q-Airy-plates,” Appl. Phys. Lett. 112(12), 121101 (2018).
[Crossref]

W. Ji, C. H. Lee, P. Chen, W. Hu, Y. Ming, L. Zhang, T. H. Lin, V. Chigrinov, and Y. Q. Lu, “Meta-q-plate for complex beam shaping,” Sci. Rep. 6(1), 25528 (2016).
[Crossref] [PubMed]

Chigrinov, V.

W. Ji, C. H. Lee, P. Chen, W. Hu, Y. Ming, L. Zhang, T. H. Lin, V. Chigrinov, and Y. Q. Lu, “Meta-q-plate for complex beam shaping,” Sci. Rep. 6(1), 25528 (2016).
[Crossref] [PubMed]

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26(10), 1590–1595 (2014).
[Crossref] [PubMed]

W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[Crossref]

H. Wu, W. Hu, H. C. Hu, X. W. Lin, G. Zhu, J. W. Choi, V. Chigrinov, and Y. Q. Lu, “Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system,” Opt. Express 20(15), 16684–16689 (2012).
[Crossref]

V. Presnyakov, K. Asatryan, T. Galstian, and V. Chigrinov, “Optical polarization grating induced liquid crystal micro-structure using azo-dye command layer,” Opt. Express 14(22), 10558–10564 (2006).
[Crossref] [PubMed]

Choi, J. W.

H. Wu, W. Hu, H. C. Hu, X. W. Lin, G. Zhu, J. W. Choi, V. Chigrinov, and Y. Q. Lu, “Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system,” Opt. Express 20(15), 16684–16689 (2012).
[Crossref]

Culbreath, C.

C. Culbreath, N. Glazar, and H. Yokoyama, “Note: Automated maskless micro-multidomain photoalignment,” Rev. Sci. Instrum. 82(12), 126107 (2011).
[Crossref] [PubMed]

De Sio, L.

L. De Sio, D. E. Roberts, Z. Liao, S. Nersisyan, O. Uskova, L. Wickboldt, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Digital polarization holography advancing geometrical phase optics,” Opt. Express 24(16), 18297–18306 (2016).
[Crossref] [PubMed]

Denz, C.

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photonics Rev. 7(6), 839–854 (2013).
[Crossref]

Eggeling, C.

J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5(11), 943–945 (2008).
[Crossref] [PubMed]

Escuti, M. J.

J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2(11), 958–964 (2015).
[Crossref]

M. N. Miskiewicz and M. J. Escuti, “Optimization of direct-write polarization gratings,” Opt. Eng. 54(2), 025101 (2015).
[Crossref]

X. Xiang, M. N. Miskiewicz, and M. J. Escuti, “Distortion-free broadband holograms: a novel class of elements utilizing the wavelength independent geometric phase,” Proc. SPIE 9386, 938609 (2015).
[Crossref]

M. N. Miskiewicz and M. J. Escuti, “Direct-writing of complex liquid crystal patterns,” Opt. Express 22(10), 12691–12706 (2014).
[Crossref] [PubMed]

Y. Li, J. Kim, and M. J. Escuti, “Orbital angular momentum generation and mode transformation with high efficiency using forked polarization gratings,” Appl. Opt. 51(34), 8236–8245 (2012).
[Crossref] [PubMed]

J. Kim, C. Oh, S. Serati, and M. J. Escuti, “Wide-angle, nonmechanical beam steering with high throughput utilizing polarization gratings,” Appl. Opt. 50(17), 2636–2639 (2011).
[Crossref] [PubMed]

R. K. Komanduri and M. J. Escuti, “High efficiency reflective liquid crystal polarization gratings,” Appl. Phys. Lett. 95(9), 091106 (2009).
[Crossref]

C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33(20), 2287–2289 (2008).
[Crossref] [PubMed]

Esseling, M.

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photonics Rev. 7(6), 839–854 (2013).
[Crossref]

Fainman, Y.

U. Levy, C. H. Tsai, H. C. Kim, and Y. Fainman, “Design, fabrication and characterization of subwavelength computer-generated holograms for spot array generation,” Opt. Express 12(22), 5345–5355 (2004).
[Crossref] [PubMed]

Fang, N.

C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuators A Phys. 121(1), 113–120 (2005).
[Crossref]

Fölling, J.

J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5(11), 943–945 (2008).
[Crossref] [PubMed]

Fuh, A. Y.

L. C. Lin, H. C. Jau, T. H. Lin, and A. Y. Fuh, “Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal,” Opt. Express 15(6), 2900–2906 (2007).
[Crossref] [PubMed]

Galstian, T.

V. Presnyakov, K. Asatryan, T. Galstian, and V. Chigrinov, “Optical polarization grating induced liquid crystal micro-structure using azo-dye command layer,” Opt. Express 14(22), 10558–10564 (2006).
[Crossref] [PubMed]

Gauza, S.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35(2), 227–246 (1972).

Glazar, N.

C. Culbreath, N. Glazar, and H. Yokoyama, “Note: Automated maskless micro-multidomain photoalignment,” Rev. Sci. Instrum. 82(12), 126107 (2011).
[Crossref] [PubMed]

Gou, F.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Guo, Y.

Y. Guo, M. Jiang, C. Peng, K. Sun, O. Yaroshchuk, O. Lavrentovich, and Q.-H. Wei, “High-resolution and high-throughput plasmonic photopatterning of complex molecular orientations in liquid crystals,” Adv. Mater. 28(12), 2353–2358 (2016).
[Crossref] [PubMed]

Hein, B.

J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5(11), 943–945 (2008).
[Crossref] [PubMed]

Hell, S. W.

J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5(11), 943–945 (2008).
[Crossref] [PubMed]

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
[Crossref] [PubMed]

Hu, H. C.

H. Wu, W. Hu, H. C. Hu, X. W. Lin, G. Zhu, J. W. Choi, V. Chigrinov, and Y. Q. Lu, “Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system,” Opt. Express 20(15), 16684–16689 (2012).
[Crossref]

Hu, W.

B. Wei, S. Liu, P. Chen, S. Qi, Y. Zhang, W. Hu, Y. Lu, and J. Zhao, “Vortex Airy beams directly generated via liquid crystal q-Airy-plates,” Appl. Phys. Lett. 112(12), 121101 (2018).
[Crossref]

W. Ji, C. H. Lee, P. Chen, W. Hu, Y. Ming, L. Zhang, T. H. Lin, V. Chigrinov, and Y. Q. Lu, “Meta-q-plate for complex beam shaping,” Sci. Rep. 6(1), 25528 (2016).
[Crossref] [PubMed]

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26(10), 1590–1595 (2014).
[Crossref] [PubMed]

W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[Crossref]

H. Wu, W. Hu, H. C. Hu, X. W. Lin, G. Zhu, J. W. Choi, V. Chigrinov, and Y. Q. Lu, “Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system,” Opt. Express 20(15), 16684–16689 (2012).
[Crossref]

Jakobs, S.

J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5(11), 943–945 (2008).
[Crossref] [PubMed]

Jau, H. C.

L. C. Lin, H. C. Jau, T. H. Lin, and A. Y. Fuh, “Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal,” Opt. Express 15(6), 2900–2906 (2007).
[Crossref] [PubMed]

Ji, W.

W. Ji, C. H. Lee, P. Chen, W. Hu, Y. Ming, L. Zhang, T. H. Lin, V. Chigrinov, and Y. Q. Lu, “Meta-q-plate for complex beam shaping,” Sci. Rep. 6(1), 25528 (2016).
[Crossref] [PubMed]

Jiang, M.

Y. Guo, M. Jiang, C. Peng, K. Sun, O. Yaroshchuk, O. Lavrentovich, and Q.-H. Wei, “High-resolution and high-throughput plasmonic photopatterning of complex molecular orientations in liquid crystals,” Adv. Mater. 28(12), 2353–2358 (2016).
[Crossref] [PubMed]

Kenney, M.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Kim, H. C.

U. Levy, C. H. Tsai, H. C. Kim, and Y. Fainman, “Design, fabrication and characterization of subwavelength computer-generated holograms for spot array generation,” Opt. Express 12(22), 5345–5355 (2004).
[Crossref] [PubMed]

Kim, J.

J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2(11), 958–964 (2015).
[Crossref]

Y. Li, J. Kim, and M. J. Escuti, “Orbital angular momentum generation and mode transformation with high efficiency using forked polarization gratings,” Appl. Opt. 51(34), 8236–8245 (2012).
[Crossref] [PubMed]

J. Kim, C. Oh, S. Serati, and M. J. Escuti, “Wide-angle, nonmechanical beam steering with high throughput utilizing polarization gratings,” Appl. Opt. 50(17), 2636–2639 (2011).
[Crossref] [PubMed]

Kimball, B. R.

L. De Sio, D. E. Roberts, Z. Liao, S. Nersisyan, O. Uskova, L. Wickboldt, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Digital polarization holography advancing geometrical phase optics,” Opt. Express 24(16), 18297–18306 (2016).
[Crossref] [PubMed]

Komanduri, R. K.

R. K. Komanduri and M. J. Escuti, “High efficiency reflective liquid crystal polarization gratings,” Appl. Phys. Lett. 95(9), 091106 (2009).
[Crossref]

Kudenov, M. W.

J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2(11), 958–964 (2015).
[Crossref]

Kumar Srivastava, A.

W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[Crossref]

Langley, D.

M. E. McConney, A. Martinez, V. P. Tondiglia, K. M. Lee, D. Langley, I. I. Smalyukh, and T. J. White, “Topography from topology: photoinduced surface features generated in liquid crystal polymer networks,” Adv. Mater. 25(41), 5880–5885 (2013).
[Crossref] [PubMed]

Lavrentovich, O.

Y. Guo, M. Jiang, C. Peng, K. Sun, O. Yaroshchuk, O. Lavrentovich, and Q.-H. Wei, “High-resolution and high-throughput plasmonic photopatterning of complex molecular orientations in liquid crystals,” Adv. Mater. 28(12), 2353–2358 (2016).
[Crossref] [PubMed]

Lee, C. H.

W. Ji, C. H. Lee, P. Chen, W. Hu, Y. Ming, L. Zhang, T. H. Lin, V. Chigrinov, and Y. Q. Lu, “Meta-q-plate for complex beam shaping,” Sci. Rep. 6(1), 25528 (2016).
[Crossref] [PubMed]

Lee, K. M.

M. E. McConney, A. Martinez, V. P. Tondiglia, K. M. Lee, D. Langley, I. I. Smalyukh, and T. J. White, “Topography from topology: photoinduced surface features generated in liquid crystal polymer networks,” Adv. Mater. 25(41), 5880–5885 (2013).
[Crossref] [PubMed]

Lee, Y. H.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Lee, Y.-H.

T. Zhan, Y.-H. Lee, and S.-T. Wu, “High-resolution additive light field near-eye display by switchable Pancharatnam-Berry phase lenses,” Opt. Express 26(4), 4863–4872 (2018).
[Crossref] [PubMed]

Levy, U.

U. Levy, C. H. Tsai, H. C. Kim, and Y. Fainman, “Design, fabrication and characterization of subwavelength computer-generated holograms for spot array generation,” Opt. Express 12(22), 5345–5355 (2004).
[Crossref] [PubMed]

Li, G.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Li, Y.

J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2(11), 958–964 (2015).
[Crossref]

Y. Li, J. Kim, and M. J. Escuti, “Orbital angular momentum generation and mode transformation with high efficiency using forked polarization gratings,” Appl. Opt. 51(34), 8236–8245 (2012).
[Crossref] [PubMed]

Liang, X.

W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[Crossref]

Liao, Z.

L. De Sio, D. E. Roberts, Z. Liao, S. Nersisyan, O. Uskova, L. Wickboldt, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Digital polarization holography advancing geometrical phase optics,” Opt. Express 24(16), 18297–18306 (2016).
[Crossref] [PubMed]

Lin, L. C.

L. C. Lin, H. C. Jau, T. H. Lin, and A. Y. Fuh, “Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal,” Opt. Express 15(6), 2900–2906 (2007).
[Crossref] [PubMed]

Lin, T. H.

W. Ji, C. H. Lee, P. Chen, W. Hu, Y. Ming, L. Zhang, T. H. Lin, V. Chigrinov, and Y. Q. Lu, “Meta-q-plate for complex beam shaping,” Sci. Rep. 6(1), 25528 (2016).
[Crossref] [PubMed]

L. C. Lin, H. C. Jau, T. H. Lin, and A. Y. Fuh, “Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal,” Opt. Express 15(6), 2900–2906 (2007).
[Crossref] [PubMed]

Lin, X. W.

H. Wu, W. Hu, H. C. Hu, X. W. Lin, G. Zhu, J. W. Choi, V. Chigrinov, and Y. Q. Lu, “Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system,” Opt. Express 20(15), 16684–16689 (2012).
[Crossref]

Lin, X.-W.

W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[Crossref]

Liu, G.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Liu, S.

B. Wei, S. Liu, P. Chen, S. Qi, Y. Zhang, W. Hu, Y. Lu, and J. Zhao, “Vortex Airy beams directly generated via liquid crystal q-Airy-plates,” Appl. Phys. Lett. 112(12), 121101 (2018).
[Crossref]

Lu, Y.

B. Wei, S. Liu, P. Chen, S. Qi, Y. Zhang, W. Hu, Y. Lu, and J. Zhao, “Vortex Airy beams directly generated via liquid crystal q-Airy-plates,” Appl. Phys. Lett. 112(12), 121101 (2018).
[Crossref]

Lu, Y. Q.

W. Ji, C. H. Lee, P. Chen, W. Hu, Y. Ming, L. Zhang, T. H. Lin, V. Chigrinov, and Y. Q. Lu, “Meta-q-plate for complex beam shaping,” Sci. Rep. 6(1), 25528 (2016).
[Crossref] [PubMed]

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26(10), 1590–1595 (2014).
[Crossref] [PubMed]

H. Wu, W. Hu, H. C. Hu, X. W. Lin, G. Zhu, J. W. Choi, V. Chigrinov, and Y. Q. Lu, “Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system,” Opt. Express 20(15), 16684–16689 (2012).
[Crossref]

Lu, Y.-Q.

W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[Crossref]

Manzo, C.

L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wavefront shaping in the visible domain: switchable helical modes generation,” Appl. Phys. Lett. 88(22), 221102 (2006).
[Crossref]

Marrucci, L.

L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wavefront shaping in the visible domain: switchable helical modes generation,” Appl. Phys. Lett. 88(22), 221102 (2006).
[Crossref]

Martinez, A.

M. E. McConney, A. Martinez, V. P. Tondiglia, K. M. Lee, D. Langley, I. I. Smalyukh, and T. J. White, “Topography from topology: photoinduced surface features generated in liquid crystal polymer networks,” Adv. Mater. 25(41), 5880–5885 (2013).
[Crossref] [PubMed]

McConney, M. E.

M. E. McConney, A. Martinez, V. P. Tondiglia, K. M. Lee, D. Langley, I. I. Smalyukh, and T. J. White, “Topography from topology: photoinduced surface features generated in liquid crystal polymer networks,” Adv. Mater. 25(41), 5880–5885 (2013).
[Crossref] [PubMed]

Medda, R.

J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5(11), 943–945 (2008).
[Crossref] [PubMed]

Ming, Y.

W. Ji, C. H. Lee, P. Chen, W. Hu, Y. Ming, L. Zhang, T. H. Lin, V. Chigrinov, and Y. Q. Lu, “Meta-q-plate for complex beam shaping,” Sci. Rep. 6(1), 25528 (2016).
[Crossref] [PubMed]

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26(10), 1590–1595 (2014).
[Crossref] [PubMed]

Miskiewicz, M. N.

J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2(11), 958–964 (2015).
[Crossref]

M. N. Miskiewicz and M. J. Escuti, “Optimization of direct-write polarization gratings,” Opt. Eng. 54(2), 025101 (2015).
[Crossref]

X. Xiang, M. N. Miskiewicz, and M. J. Escuti, “Distortion-free broadband holograms: a novel class of elements utilizing the wavelength independent geometric phase,” Proc. SPIE 9386, 938609 (2015).
[Crossref]

M. N. Miskiewicz and M. J. Escuti, “Direct-writing of complex liquid crystal patterns,” Opt. Express 22(10), 12691–12706 (2014).
[Crossref] [PubMed]

Mühlenbernd, H.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Nersisyan, S.

L. De Sio, D. E. Roberts, Z. Liao, S. Nersisyan, O. Uskova, L. Wickboldt, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Digital polarization holography advancing geometrical phase optics,” Opt. Express 24(16), 18297–18306 (2016).
[Crossref] [PubMed]

Oh, C.

J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2(11), 958–964 (2015).
[Crossref]

J. Kim, C. Oh, S. Serati, and M. J. Escuti, “Wide-angle, nonmechanical beam steering with high throughput utilizing polarization gratings,” Appl. Opt. 50(17), 2636–2639 (2011).
[Crossref] [PubMed]

C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33(20), 2287–2289 (2008).
[Crossref] [PubMed]

Pancharatnam, S.

S. Pancharatnam, “Generalized theory of interference, and its applications,” Proc. Ind. Acad. Sci. A 44(6), 398–417 (1956).
[Crossref]

Paparo, D.

L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wavefront shaping in the visible domain: switchable helical modes generation,” Appl. Phys. Lett. 88(22), 221102 (2006).
[Crossref]

Peng, C.

Y. Guo, M. Jiang, C. Peng, K. Sun, O. Yaroshchuk, O. Lavrentovich, and Q.-H. Wei, “High-resolution and high-throughput plasmonic photopatterning of complex molecular orientations in liquid crystals,” Adv. Mater. 28(12), 2353–2358 (2016).
[Crossref] [PubMed]

Peng, F.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Presnyakov, V.

V. Presnyakov, K. Asatryan, T. Galstian, and V. Chigrinov, “Optical polarization grating induced liquid crystal micro-structure using azo-dye command layer,” Opt. Express 14(22), 10558–10564 (2006).
[Crossref] [PubMed]

Qi, S.

B. Wei, S. Liu, P. Chen, S. Qi, Y. Zhang, W. Hu, Y. Lu, and J. Zhao, “Vortex Airy beams directly generated via liquid crystal q-Airy-plates,” Appl. Phys. Lett. 112(12), 121101 (2018).
[Crossref]

Roberts, D. E.

L. De Sio, D. E. Roberts, Z. Liao, S. Nersisyan, O. Uskova, L. Wickboldt, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Digital polarization holography advancing geometrical phase optics,” Opt. Express 24(16), 18297–18306 (2016).
[Crossref] [PubMed]

Rubin, S.

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26(10), 1590–1595 (2014).
[Crossref] [PubMed]

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35(2), 227–246 (1972).

Serati, S.

J. Kim, C. Oh, S. Serati, and M. J. Escuti, “Wide-angle, nonmechanical beam steering with high throughput utilizing polarization gratings,” Appl. Opt. 50(17), 2636–2639 (2011).
[Crossref] [PubMed]

Smalyukh, I. I.

M. E. McConney, A. Martinez, V. P. Tondiglia, K. M. Lee, D. Langley, I. I. Smalyukh, and T. J. White, “Topography from topology: photoinduced surface features generated in liquid crystal polymer networks,” Adv. Mater. 25(41), 5880–5885 (2013).
[Crossref] [PubMed]

Steeves, D. M.

L. De Sio, D. E. Roberts, Z. Liao, S. Nersisyan, O. Uskova, L. Wickboldt, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Digital polarization holography advancing geometrical phase optics,” Opt. Express 24(16), 18297–18306 (2016).
[Crossref] [PubMed]

Sun, C.

C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuators A Phys. 121(1), 113–120 (2005).
[Crossref]

Sun, J.-T.

W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[Crossref]

Sun, K.

Y. Guo, M. Jiang, C. Peng, K. Sun, O. Yaroshchuk, O. Lavrentovich, and Q.-H. Wei, “High-resolution and high-throughput plasmonic photopatterning of complex molecular orientations in liquid crystals,” Adv. Mater. 28(12), 2353–2358 (2016).
[Crossref] [PubMed]

Tabiryan, N.

L. De Sio, D. E. Roberts, Z. Liao, S. Nersisyan, O. Uskova, L. Wickboldt, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Digital polarization holography advancing geometrical phase optics,” Opt. Express 24(16), 18297–18306 (2016).
[Crossref] [PubMed]

Tabiryan, N. V.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Tan, G.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Tondiglia, V. P.

M. E. McConney, A. Martinez, V. P. Tondiglia, K. M. Lee, D. Langley, I. I. Smalyukh, and T. J. White, “Topography from topology: photoinduced surface features generated in liquid crystal polymer networks,” Adv. Mater. 25(41), 5880–5885 (2013).
[Crossref] [PubMed]

Tsai, C. H.

U. Levy, C. H. Tsai, H. C. Kim, and Y. Fainman, “Design, fabrication and characterization of subwavelength computer-generated holograms for spot array generation,” Opt. Express 12(22), 5345–5355 (2004).
[Crossref] [PubMed]

Uskova, O.

L. De Sio, D. E. Roberts, Z. Liao, S. Nersisyan, O. Uskova, L. Wickboldt, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Digital polarization holography advancing geometrical phase optics,” Opt. Express 24(16), 18297–18306 (2016).
[Crossref] [PubMed]

Wang, J. G.

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26(10), 1590–1595 (2014).
[Crossref] [PubMed]

Wei, B.

B. Wei, S. Liu, P. Chen, S. Qi, Y. Zhang, W. Hu, Y. Lu, and J. Zhao, “Vortex Airy beams directly generated via liquid crystal q-Airy-plates,” Appl. Phys. Lett. 112(12), 121101 (2018).
[Crossref]

Wei, B. Y.

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26(10), 1590–1595 (2014).
[Crossref] [PubMed]

Wei, Q.-H.

Y. Guo, M. Jiang, C. Peng, K. Sun, O. Yaroshchuk, O. Lavrentovich, and Q.-H. Wei, “High-resolution and high-throughput plasmonic photopatterning of complex molecular orientations in liquid crystals,” Adv. Mater. 28(12), 2353–2358 (2016).
[Crossref] [PubMed]

Weng, Y.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

White, T. J.

M. E. McConney, A. Martinez, V. P. Tondiglia, K. M. Lee, D. Langley, I. I. Smalyukh, and T. J. White, “Topography from topology: photoinduced surface features generated in liquid crystal polymer networks,” Adv. Mater. 25(41), 5880–5885 (2013).
[Crossref] [PubMed]

Wichmann, J.

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
[Crossref] [PubMed]

Wickboldt, L.

L. De Sio, D. E. Roberts, Z. Liao, S. Nersisyan, O. Uskova, L. Wickboldt, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Digital polarization holography advancing geometrical phase optics,” Opt. Express 24(16), 18297–18306 (2016).
[Crossref] [PubMed]

Woerdemann, M.

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photonics Rev. 7(6), 839–854 (2013).
[Crossref]

Wu, D. M.

C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuators A Phys. 121(1), 113–120 (2005).
[Crossref]

Wu, H.

H. Wu, W. Hu, H. C. Hu, X. W. Lin, G. Zhu, J. W. Choi, V. Chigrinov, and Y. Q. Lu, “Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system,” Opt. Express 20(15), 16684–16689 (2012).
[Crossref]

Wu, S. T.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

S. T. Wu, “Nematic liquid crystal modulator with response time less than 100 µs at room temperature,” Appl. Phys. Lett. 57(10), 986–988 (1990).
[Crossref]

Wu, S.-T.

T. Zhan, Y.-H. Lee, and S.-T. Wu, “High-resolution additive light field near-eye display by switchable Pancharatnam-Berry phase lenses,” Opt. Express 26(4), 4863–4872 (2018).
[Crossref] [PubMed]

Wu, Z.-J.

W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[Crossref]

Wurm, C. A.

J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5(11), 943–945 (2008).
[Crossref] [PubMed]

Xiang, X.

X. Xiang, M. N. Miskiewicz, and M. J. Escuti, “Distortion-free broadband holograms: a novel class of elements utilizing the wavelength independent geometric phase,” Proc. SPIE 9386, 938609 (2015).
[Crossref]

Xu, F.

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26(10), 1590–1595 (2014).
[Crossref] [PubMed]

Yaroshchuk, O.

Y. Guo, M. Jiang, C. Peng, K. Sun, O. Yaroshchuk, O. Lavrentovich, and Q.-H. Wei, “High-resolution and high-throughput plasmonic photopatterning of complex molecular orientations in liquid crystals,” Adv. Mater. 28(12), 2353–2358 (2016).
[Crossref] [PubMed]

Yokoyama, H.

C. Culbreath, N. Glazar, and H. Yokoyama, “Note: Automated maskless micro-multidomain photoalignment,” Rev. Sci. Instrum. 82(12), 126107 (2011).
[Crossref] [PubMed]

Zentgraf, T.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Zhan, T.

T. Zhan, Y.-H. Lee, and S.-T. Wu, “High-resolution additive light field near-eye display by switchable Pancharatnam-Berry phase lenses,” Opt. Express 26(4), 4863–4872 (2018).
[Crossref] [PubMed]

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Zhang, L.

W. Ji, C. H. Lee, P. Chen, W. Hu, Y. Ming, L. Zhang, T. H. Lin, V. Chigrinov, and Y. Q. Lu, “Meta-q-plate for complex beam shaping,” Sci. Rep. 6(1), 25528 (2016).
[Crossref] [PubMed]

Zhang, S.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Zhang, X.

C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuators A Phys. 121(1), 113–120 (2005).
[Crossref]

Zhang, Y.

B. Wei, S. Liu, P. Chen, S. Qi, Y. Zhang, W. Hu, Y. Lu, and J. Zhao, “Vortex Airy beams directly generated via liquid crystal q-Airy-plates,” Appl. Phys. Lett. 112(12), 121101 (2018).
[Crossref]

Zhao, J.

B. Wei, S. Liu, P. Chen, S. Qi, Y. Zhang, W. Hu, Y. Lu, and J. Zhao, “Vortex Airy beams directly generated via liquid crystal q-Airy-plates,” Appl. Phys. Lett. 112(12), 121101 (2018).
[Crossref]

Zheng, G.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Zhu, G.

H. Wu, W. Hu, H. C. Hu, X. W. Lin, G. Zhu, J. W. Choi, V. Chigrinov, and Y. Q. Lu, “Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system,” Opt. Express 20(15), 16684–16689 (2012).
[Crossref]

W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[Crossref]

Adv. Mater. (3)

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26(10), 1590–1595 (2014).
[Crossref] [PubMed]

Y. Guo, M. Jiang, C. Peng, K. Sun, O. Yaroshchuk, O. Lavrentovich, and Q.-H. Wei, “High-resolution and high-throughput plasmonic photopatterning of complex molecular orientations in liquid crystals,” Adv. Mater. 28(12), 2353–2358 (2016).
[Crossref] [PubMed]

M. E. McConney, A. Martinez, V. P. Tondiglia, K. M. Lee, D. Langley, I. I. Smalyukh, and T. J. White, “Topography from topology: photoinduced surface features generated in liquid crystal polymer networks,” Adv. Mater. 25(41), 5880–5885 (2013).
[Crossref] [PubMed]

Appl. Opt. (2)

J. Kim, C. Oh, S. Serati, and M. J. Escuti, “Wide-angle, nonmechanical beam steering with high throughput utilizing polarization gratings,” Appl. Opt. 50(17), 2636–2639 (2011).
[Crossref] [PubMed]

Y. Li, J. Kim, and M. J. Escuti, “Orbital angular momentum generation and mode transformation with high efficiency using forked polarization gratings,” Appl. Opt. 51(34), 8236–8245 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (5)

W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[Crossref]

B. Wei, S. Liu, P. Chen, S. Qi, Y. Zhang, W. Hu, Y. Lu, and J. Zhao, “Vortex Airy beams directly generated via liquid crystal q-Airy-plates,” Appl. Phys. Lett. 112(12), 121101 (2018).
[Crossref]

L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wavefront shaping in the visible domain: switchable helical modes generation,” Appl. Phys. Lett. 88(22), 221102 (2006).
[Crossref]

S. T. Wu, “Nematic liquid crystal modulator with response time less than 100 µs at room temperature,” Appl. Phys. Lett. 57(10), 986–988 (1990).
[Crossref]

R. K. Komanduri and M. J. Escuti, “High efficiency reflective liquid crystal polarization gratings,” Appl. Phys. Lett. 95(9), 091106 (2009).
[Crossref]

Laser Photonics Rev. (1)

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photonics Rev. 7(6), 839–854 (2013).
[Crossref]

Nat. Methods (1)

J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5(11), 943–945 (2008).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Nature (1)

J. Anandan, “The geometric phase,” Nature 360(6402), 307–313 (1992).
[Crossref]

Opt. Data Process. Storage (1)

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Opt. Eng. (1)

M. N. Miskiewicz and M. J. Escuti, “Optimization of direct-write polarization gratings,” Opt. Eng. 54(2), 025101 (2015).
[Crossref]

Opt. Express (7)

L. De Sio, D. E. Roberts, Z. Liao, S. Nersisyan, O. Uskova, L. Wickboldt, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Digital polarization holography advancing geometrical phase optics,” Opt. Express 24(16), 18297–18306 (2016).
[Crossref] [PubMed]

M. N. Miskiewicz and M. J. Escuti, “Direct-writing of complex liquid crystal patterns,” Opt. Express 22(10), 12691–12706 (2014).
[Crossref] [PubMed]

H. Wu, W. Hu, H. C. Hu, X. W. Lin, G. Zhu, J. W. Choi, V. Chigrinov, and Y. Q. Lu, “Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system,” Opt. Express 20(15), 16684–16689 (2012).
[Crossref]

U. Levy, C. H. Tsai, H. C. Kim, and Y. Fainman, “Design, fabrication and characterization of subwavelength computer-generated holograms for spot array generation,” Opt. Express 12(22), 5345–5355 (2004).
[Crossref] [PubMed]

V. Presnyakov, K. Asatryan, T. Galstian, and V. Chigrinov, “Optical polarization grating induced liquid crystal micro-structure using azo-dye command layer,” Opt. Express 14(22), 10558–10564 (2006).
[Crossref] [PubMed]

T. Zhan, Y.-H. Lee, and S.-T. Wu, “High-resolution additive light field near-eye display by switchable Pancharatnam-Berry phase lenses,” Opt. Express 26(4), 4863–4872 (2018).
[Crossref] [PubMed]

L. C. Lin, H. C. Jau, T. H. Lin, and A. Y. Fuh, “Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal,” Opt. Express 15(6), 2900–2906 (2007).
[Crossref] [PubMed]

Opt. Lett. (2)

C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33(20), 2287–2289 (2008).
[Crossref] [PubMed]

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
[Crossref] [PubMed]

Optica (1)

J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2(11), 958–964 (2015).
[Crossref]

Optik (Stuttg.) (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35(2), 227–246 (1972).

Proc. Ind. Acad. Sci. A (1)

S. Pancharatnam, “Generalized theory of interference, and its applications,” Proc. Ind. Acad. Sci. A 44(6), 398–417 (1956).
[Crossref]

Proc. R. Soc. Lond. A Math. Phys. Sci. (1)

M. V. Berry, “Quantum phase factors accompanying adiabatic changes,” Proc. R. Soc. Lond. A Math. Phys. Sci. 392 (1802), 45–57 (1984).
[Crossref]

Proc. SPIE (1)

X. Xiang, M. N. Miskiewicz, and M. J. Escuti, “Distortion-free broadband holograms: a novel class of elements utilizing the wavelength independent geometric phase,” Proc. SPIE 9386, 938609 (2015).
[Crossref]

Rev. Sci. Instrum. (1)

C. Culbreath, N. Glazar, and H. Yokoyama, “Note: Automated maskless micro-multidomain photoalignment,” Rev. Sci. Instrum. 82(12), 126107 (2011).
[Crossref] [PubMed]

Sci. Rep. (1)

W. Ji, C. H. Lee, P. Chen, W. Hu, Y. Ming, L. Zhang, T. H. Lin, V. Chigrinov, and Y. Q. Lu, “Meta-q-plate for complex beam shaping,” Sci. Rep. 6(1), 25528 (2016).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuators A Phys. 121(1), 113–120 (2005).
[Crossref]

Other (2)

D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, 2006), page 76.

L. Nikolova and P. S. Ramanujam, Polarization Holography (Cambridge University, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic illustration of apparatus used to tune polarization rotation angle ϕ by phase retardation δ. (b) Half of phase retardation δ/2 and polarization rotation angle ϕ at different applied voltage for a nematic E7 LC cell with a cell gap of 6 μm at 532 nm.
Fig. 2
Fig. 2 (a) Optical setup of the proposed fabrication technique. (b) Analyzer angle versus grey-levels when minimum light intensity is achieved.
Fig. 3
Fig. 3 (a) Light pattern with different local polarization orientations, captured through a polarizer. The red arrow indicates transmission axis direction of the polarizer. Light-green arrows indicate linear polarization directions in different domains. (b) Photo of Cell 1, illuminated by a linearly-polarized white light. (c) Photo of Cell 1, under crossed polarizers, illuminated by red light. (d) Photos of Cell 2 rotated at different orientations, under linearly-polarized white illumination.
Fig. 4
Fig. 4 Diffraction patterns of a binary PB grating at (a) voltage-off and (b) voltage-on states. (c) Microscopic morphology of the binary PB grating. Diffraction patterns of the continuous PB grating at d) voltage-off and (e) voltage-on states. (f) Microscopic morphology of a continuous PB grating. (g) Voltage dependent first-order diffraction efficiency of the continuous PB grating: dots are measured data and solid line is simulation result.
Fig. 5
Fig. 5 Microscopic morphologies of the PB q-plates: (a) m = 0.5, (b) m = 1, (c) m = 1.5, and (d) m = 2. Far field light pattern captured by a CCD camera: (e) m = 0.5, (f) m = 1, (g) m = 1.5 and (h) m = 2. (i) Reconstructed image from a PB hologram.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E out =[ e π 4 j 0 0 e π 4 j ][ cos 45 o sin 45 o sin 45 o cos 45 o ][ e j δ 2 0 0 e j δ 2 ][ cos 45 o sin 45 o sin 45 o cos 45 o ][ 0 0 0 1 ][ E xin E yin ]=j e π 4 j E yin [ sin δ 2 cos δ 2 ]

Metrics