Abstract

Since the conventional coherent transceiver is costly to be deployed in short-reach networks due to its complicated receiver structure, it is desired to simplify the structure itself. In this paper, we propose a simple polarization-diversity coherent receiver structure by exploiting the concept of the Stokes analyzer. Compared to the conventional architecture, the number of the photodiodes (PDs) is reduced from eight to six without relying on complicated analog circuits. In addition, splitters and combiners for dual-polarization (DP) signals can be replaced with only one polarization beam splitter or combiner (PBS/C). For evaluation of the proof-of-concept (PoC), we developed a prototype of the receiver using free-space optical components. We demonstrate the transmission of 120-Gb/s DP quadrature phase-shift keying (QPSK) and DP 8-ary quadrature-amplitude modulation (8QAM) signals over a 100-km single-mode fiber (SMF). We believe that the demonstrated architecture could potentially be integrated monolithically on silicon-photonic or InP platforms to realize compact and low-cost coherent transceivers for short-reach applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Stokes vector direct detection for short-reach optical communication

Di Che, An Li, Xi Chen, Qian Hu, Yifei Wang, and William Shieh
Opt. Lett. 39(11) 3110-3113 (2014)

Direct detection of the optical field beyond single polarization mode

Di Che, Chuanbowen Sun, and William Shieh
Opt. Express 26(3) 3368-3380 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. Ly-Gagnon, S. Tsukamoto, K. Katoh, and K. Kikuchi, “Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation,” J. Lightw. Technol. 24, 12–21 (2006).
    [Crossref]
  2. M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16, 674–676 (2004).
    [Crossref]
  3. D. Che, A. Li, X. Chen, Q. Hu, Y. Wang, and W. Shieh, “160-Gb/s Stokes vector direct detection for short reach optical communication,” in Optical Fiber Communications Conference (OFC 2014), Th5C. 7 (2014).
  4. D. Che, A. Li, X. Chen, Q. Hu, Y. Wang, and W. Shieh, “Stokes vector direct detection for linear complex optical channels,” J. Lightw. Technol. 33, 678–684 (2015).
    [Crossref]
  5. M. Y. S. Sowailem, T. M. Hoang, M. Chagnon, M. Morsy-Osman, M. Qiu, S. Paquet, C. Paquet, I. Woods, O. Liboiron-Ladouceur, and D. V. Plant, “100G and 200G single carrier transmission over 2880 and 320 km using an InP IQ modulator and Stokes vector receiver,” Opt. Express 24, 30485–30493 (2016).
    [Crossref]
  6. K. Kikuchi and S. Kawakami, “Multi-level signaling in the Stokes space and its application to large-capacity optical communications,” Opt. Express 22, 7374–7387 (2014).
    [Crossref] [PubMed]
  7. S. Benedetto, R. Gaudino, and P. Poggiolini, “Direct detection of optical digital transmission based on polarization shift keying modulation,” IEEE J. Sel. Areas Commun 13, 531–541 (1995).
    [Crossref]
  8. S. Ghosh, T. Tanemura, Y. Kawabata, K. Katoh, K. Kikuchi, and Y. Nakano, “Decoding of multilevel Stokes-vector modulated signal by polarization-analyzing circuit on InP,” J. Lightw. Technol. 36, 187–194 (2018).
    [Crossref]
  9. C. Xie, P. J. Winzer, G. Raybon, A. H. Gnauck, B. Zhu, T. Geisler, and B. Edvold, “Colorless coherent receiver using 3x3 coupler hybrids and single-ended detection,” Opt. Express 20, 1164–1171 (2012).
    [Crossref] [PubMed]
  10. S. Ishimura, T. Tanemura, and K. Nishimura, “120-Gb/s DP-QPSK transmission using polarization-diversity Stokes-analyzer-based coherent receiver,” in Optical Fiber Communications Conference (OFC 2019), Tu2F.2 (2019).
  11. D. Dai, L. Liu, S. Gao, D. X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Las. Photon. Rev. 7, 303–328 (2013).
    [Crossref]
  12. F. M. Soares, M. Baier, T. Gaertner, M. Feyer, M. Möhrle, N. Grote, and M. Schell, “High-performance InP PIC technology development based on a generic photonic integration foundry,” in Optical Fiber Communications Conference (OFC2018), M3F.3 (2018).
  13. M. Baier, F. M. Soares, T. Gaertner, A. Schoenau, M. Moehrle, and M. Schell, “New polarization multiplexed externally modulated laser PIC,” in European Conference on Optical Communication (ECOC2018), Mo4C.2 (2018).
  14. T. Suganuma, S. Ghosh, M. Kazi, R. Kobayashi, Y. Nakano, and T. Tanemura, “Monolithic InP Stokes vector receiver with multiple-quantum-well photodetectors,” J. Lightw. Technol. 36, 1268–1274 (2018).
    [Crossref]
  15. Y. Mori, C. Zhang, and K. Kikuchi, “Novel configuration of finite-impulse-response filters tolerant to carrier-phase fluctuations in digital coherent optical receivers for higher-order quadrature amplitude modulation signals,” Opt. Express 20, 26236–26251 (2012).
    [Crossref] [PubMed]
  16. M. S. Faruk and K. Kikuchi, “Compensation for in-phase/quadrature imbalance in coherent-receiver front end for optical quadrature amplitude modulation,” IEEE Photon. J. 5, 7800110 (2013).
    [Crossref]

2018 (2)

S. Ghosh, T. Tanemura, Y. Kawabata, K. Katoh, K. Kikuchi, and Y. Nakano, “Decoding of multilevel Stokes-vector modulated signal by polarization-analyzing circuit on InP,” J. Lightw. Technol. 36, 187–194 (2018).
[Crossref]

T. Suganuma, S. Ghosh, M. Kazi, R. Kobayashi, Y. Nakano, and T. Tanemura, “Monolithic InP Stokes vector receiver with multiple-quantum-well photodetectors,” J. Lightw. Technol. 36, 1268–1274 (2018).
[Crossref]

2016 (1)

M. Y. S. Sowailem, T. M. Hoang, M. Chagnon, M. Morsy-Osman, M. Qiu, S. Paquet, C. Paquet, I. Woods, O. Liboiron-Ladouceur, and D. V. Plant, “100G and 200G single carrier transmission over 2880 and 320 km using an InP IQ modulator and Stokes vector receiver,” Opt. Express 24, 30485–30493 (2016).
[Crossref]

2015 (1)

D. Che, A. Li, X. Chen, Q. Hu, Y. Wang, and W. Shieh, “Stokes vector direct detection for linear complex optical channels,” J. Lightw. Technol. 33, 678–684 (2015).
[Crossref]

2014 (1)

K. Kikuchi and S. Kawakami, “Multi-level signaling in the Stokes space and its application to large-capacity optical communications,” Opt. Express 22, 7374–7387 (2014).
[Crossref] [PubMed]

2013 (2)

D. Dai, L. Liu, S. Gao, D. X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Las. Photon. Rev. 7, 303–328 (2013).
[Crossref]

M. S. Faruk and K. Kikuchi, “Compensation for in-phase/quadrature imbalance in coherent-receiver front end for optical quadrature amplitude modulation,” IEEE Photon. J. 5, 7800110 (2013).
[Crossref]

2012 (2)

Y. Mori, C. Zhang, and K. Kikuchi, “Novel configuration of finite-impulse-response filters tolerant to carrier-phase fluctuations in digital coherent optical receivers for higher-order quadrature amplitude modulation signals,” Opt. Express 20, 26236–26251 (2012).
[Crossref] [PubMed]

C. Xie, P. J. Winzer, G. Raybon, A. H. Gnauck, B. Zhu, T. Geisler, and B. Edvold, “Colorless coherent receiver using 3x3 coupler hybrids and single-ended detection,” Opt. Express 20, 1164–1171 (2012).
[Crossref] [PubMed]

2006 (1)

D. Ly-Gagnon, S. Tsukamoto, K. Katoh, and K. Kikuchi, “Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation,” J. Lightw. Technol. 24, 12–21 (2006).
[Crossref]

2004 (1)

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16, 674–676 (2004).
[Crossref]

1995 (1)

S. Benedetto, R. Gaudino, and P. Poggiolini, “Direct detection of optical digital transmission based on polarization shift keying modulation,” IEEE J. Sel. Areas Commun 13, 531–541 (1995).
[Crossref]

Baier, M.

F. M. Soares, M. Baier, T. Gaertner, M. Feyer, M. Möhrle, N. Grote, and M. Schell, “High-performance InP PIC technology development based on a generic photonic integration foundry,” in Optical Fiber Communications Conference (OFC2018), M3F.3 (2018).

M. Baier, F. M. Soares, T. Gaertner, A. Schoenau, M. Moehrle, and M. Schell, “New polarization multiplexed externally modulated laser PIC,” in European Conference on Optical Communication (ECOC2018), Mo4C.2 (2018).

Benedetto, S.

S. Benedetto, R. Gaudino, and P. Poggiolini, “Direct detection of optical digital transmission based on polarization shift keying modulation,” IEEE J. Sel. Areas Commun 13, 531–541 (1995).
[Crossref]

Chagnon, M.

M. Y. S. Sowailem, T. M. Hoang, M. Chagnon, M. Morsy-Osman, M. Qiu, S. Paquet, C. Paquet, I. Woods, O. Liboiron-Ladouceur, and D. V. Plant, “100G and 200G single carrier transmission over 2880 and 320 km using an InP IQ modulator and Stokes vector receiver,” Opt. Express 24, 30485–30493 (2016).
[Crossref]

Che, D.

D. Che, A. Li, X. Chen, Q. Hu, Y. Wang, and W. Shieh, “Stokes vector direct detection for linear complex optical channels,” J. Lightw. Technol. 33, 678–684 (2015).
[Crossref]

D. Che, A. Li, X. Chen, Q. Hu, Y. Wang, and W. Shieh, “160-Gb/s Stokes vector direct detection for short reach optical communication,” in Optical Fiber Communications Conference (OFC 2014), Th5C. 7 (2014).

Chen, X.

D. Che, A. Li, X. Chen, Q. Hu, Y. Wang, and W. Shieh, “Stokes vector direct detection for linear complex optical channels,” J. Lightw. Technol. 33, 678–684 (2015).
[Crossref]

D. Che, A. Li, X. Chen, Q. Hu, Y. Wang, and W. Shieh, “160-Gb/s Stokes vector direct detection for short reach optical communication,” in Optical Fiber Communications Conference (OFC 2014), Th5C. 7 (2014).

Dai, D.

D. Dai, L. Liu, S. Gao, D. X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Las. Photon. Rev. 7, 303–328 (2013).
[Crossref]

Edvold, B.

C. Xie, P. J. Winzer, G. Raybon, A. H. Gnauck, B. Zhu, T. Geisler, and B. Edvold, “Colorless coherent receiver using 3x3 coupler hybrids and single-ended detection,” Opt. Express 20, 1164–1171 (2012).
[Crossref] [PubMed]

Faruk, M. S.

M. S. Faruk and K. Kikuchi, “Compensation for in-phase/quadrature imbalance in coherent-receiver front end for optical quadrature amplitude modulation,” IEEE Photon. J. 5, 7800110 (2013).
[Crossref]

Feyer, M.

F. M. Soares, M. Baier, T. Gaertner, M. Feyer, M. Möhrle, N. Grote, and M. Schell, “High-performance InP PIC technology development based on a generic photonic integration foundry,” in Optical Fiber Communications Conference (OFC2018), M3F.3 (2018).

Gaertner, T.

F. M. Soares, M. Baier, T. Gaertner, M. Feyer, M. Möhrle, N. Grote, and M. Schell, “High-performance InP PIC technology development based on a generic photonic integration foundry,” in Optical Fiber Communications Conference (OFC2018), M3F.3 (2018).

M. Baier, F. M. Soares, T. Gaertner, A. Schoenau, M. Moehrle, and M. Schell, “New polarization multiplexed externally modulated laser PIC,” in European Conference on Optical Communication (ECOC2018), Mo4C.2 (2018).

Gao, S.

D. Dai, L. Liu, S. Gao, D. X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Las. Photon. Rev. 7, 303–328 (2013).
[Crossref]

Gaudino, R.

S. Benedetto, R. Gaudino, and P. Poggiolini, “Direct detection of optical digital transmission based on polarization shift keying modulation,” IEEE J. Sel. Areas Commun 13, 531–541 (1995).
[Crossref]

Geisler, T.

C. Xie, P. J. Winzer, G. Raybon, A. H. Gnauck, B. Zhu, T. Geisler, and B. Edvold, “Colorless coherent receiver using 3x3 coupler hybrids and single-ended detection,” Opt. Express 20, 1164–1171 (2012).
[Crossref] [PubMed]

Ghosh, S.

T. Suganuma, S. Ghosh, M. Kazi, R. Kobayashi, Y. Nakano, and T. Tanemura, “Monolithic InP Stokes vector receiver with multiple-quantum-well photodetectors,” J. Lightw. Technol. 36, 1268–1274 (2018).
[Crossref]

S. Ghosh, T. Tanemura, Y. Kawabata, K. Katoh, K. Kikuchi, and Y. Nakano, “Decoding of multilevel Stokes-vector modulated signal by polarization-analyzing circuit on InP,” J. Lightw. Technol. 36, 187–194 (2018).
[Crossref]

Gnauck, A. H.

C. Xie, P. J. Winzer, G. Raybon, A. H. Gnauck, B. Zhu, T. Geisler, and B. Edvold, “Colorless coherent receiver using 3x3 coupler hybrids and single-ended detection,” Opt. Express 20, 1164–1171 (2012).
[Crossref] [PubMed]

Grote, N.

F. M. Soares, M. Baier, T. Gaertner, M. Feyer, M. Möhrle, N. Grote, and M. Schell, “High-performance InP PIC technology development based on a generic photonic integration foundry,” in Optical Fiber Communications Conference (OFC2018), M3F.3 (2018).

He, S.

D. Dai, L. Liu, S. Gao, D. X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Las. Photon. Rev. 7, 303–328 (2013).
[Crossref]

Hoang, T. M.

M. Y. S. Sowailem, T. M. Hoang, M. Chagnon, M. Morsy-Osman, M. Qiu, S. Paquet, C. Paquet, I. Woods, O. Liboiron-Ladouceur, and D. V. Plant, “100G and 200G single carrier transmission over 2880 and 320 km using an InP IQ modulator and Stokes vector receiver,” Opt. Express 24, 30485–30493 (2016).
[Crossref]

Hu, Q.

D. Che, A. Li, X. Chen, Q. Hu, Y. Wang, and W. Shieh, “Stokes vector direct detection for linear complex optical channels,” J. Lightw. Technol. 33, 678–684 (2015).
[Crossref]

D. Che, A. Li, X. Chen, Q. Hu, Y. Wang, and W. Shieh, “160-Gb/s Stokes vector direct detection for short reach optical communication,” in Optical Fiber Communications Conference (OFC 2014), Th5C. 7 (2014).

Ishimura, S.

S. Ishimura, T. Tanemura, and K. Nishimura, “120-Gb/s DP-QPSK transmission using polarization-diversity Stokes-analyzer-based coherent receiver,” in Optical Fiber Communications Conference (OFC 2019), Tu2F.2 (2019).

Katoh, K.

S. Ghosh, T. Tanemura, Y. Kawabata, K. Katoh, K. Kikuchi, and Y. Nakano, “Decoding of multilevel Stokes-vector modulated signal by polarization-analyzing circuit on InP,” J. Lightw. Technol. 36, 187–194 (2018).
[Crossref]

D. Ly-Gagnon, S. Tsukamoto, K. Katoh, and K. Kikuchi, “Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation,” J. Lightw. Technol. 24, 12–21 (2006).
[Crossref]

Kawabata, Y.

S. Ghosh, T. Tanemura, Y. Kawabata, K. Katoh, K. Kikuchi, and Y. Nakano, “Decoding of multilevel Stokes-vector modulated signal by polarization-analyzing circuit on InP,” J. Lightw. Technol. 36, 187–194 (2018).
[Crossref]

Kawakami, S.

K. Kikuchi and S. Kawakami, “Multi-level signaling in the Stokes space and its application to large-capacity optical communications,” Opt. Express 22, 7374–7387 (2014).
[Crossref] [PubMed]

Kazi, M.

T. Suganuma, S. Ghosh, M. Kazi, R. Kobayashi, Y. Nakano, and T. Tanemura, “Monolithic InP Stokes vector receiver with multiple-quantum-well photodetectors,” J. Lightw. Technol. 36, 1268–1274 (2018).
[Crossref]

Kikuchi, K.

S. Ghosh, T. Tanemura, Y. Kawabata, K. Katoh, K. Kikuchi, and Y. Nakano, “Decoding of multilevel Stokes-vector modulated signal by polarization-analyzing circuit on InP,” J. Lightw. Technol. 36, 187–194 (2018).
[Crossref]

K. Kikuchi and S. Kawakami, “Multi-level signaling in the Stokes space and its application to large-capacity optical communications,” Opt. Express 22, 7374–7387 (2014).
[Crossref] [PubMed]

M. S. Faruk and K. Kikuchi, “Compensation for in-phase/quadrature imbalance in coherent-receiver front end for optical quadrature amplitude modulation,” IEEE Photon. J. 5, 7800110 (2013).
[Crossref]

Y. Mori, C. Zhang, and K. Kikuchi, “Novel configuration of finite-impulse-response filters tolerant to carrier-phase fluctuations in digital coherent optical receivers for higher-order quadrature amplitude modulation signals,” Opt. Express 20, 26236–26251 (2012).
[Crossref] [PubMed]

D. Ly-Gagnon, S. Tsukamoto, K. Katoh, and K. Kikuchi, “Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation,” J. Lightw. Technol. 24, 12–21 (2006).
[Crossref]

Kobayashi, R.

T. Suganuma, S. Ghosh, M. Kazi, R. Kobayashi, Y. Nakano, and T. Tanemura, “Monolithic InP Stokes vector receiver with multiple-quantum-well photodetectors,” J. Lightw. Technol. 36, 1268–1274 (2018).
[Crossref]

Li, A.

D. Che, A. Li, X. Chen, Q. Hu, Y. Wang, and W. Shieh, “Stokes vector direct detection for linear complex optical channels,” J. Lightw. Technol. 33, 678–684 (2015).
[Crossref]

D. Che, A. Li, X. Chen, Q. Hu, Y. Wang, and W. Shieh, “160-Gb/s Stokes vector direct detection for short reach optical communication,” in Optical Fiber Communications Conference (OFC 2014), Th5C. 7 (2014).

Liboiron-Ladouceur, O.

M. Y. S. Sowailem, T. M. Hoang, M. Chagnon, M. Morsy-Osman, M. Qiu, S. Paquet, C. Paquet, I. Woods, O. Liboiron-Ladouceur, and D. V. Plant, “100G and 200G single carrier transmission over 2880 and 320 km using an InP IQ modulator and Stokes vector receiver,” Opt. Express 24, 30485–30493 (2016).
[Crossref]

Liu, L.

D. Dai, L. Liu, S. Gao, D. X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Las. Photon. Rev. 7, 303–328 (2013).
[Crossref]

Ly-Gagnon, D.

D. Ly-Gagnon, S. Tsukamoto, K. Katoh, and K. Kikuchi, “Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation,” J. Lightw. Technol. 24, 12–21 (2006).
[Crossref]

Moehrle, M.

M. Baier, F. M. Soares, T. Gaertner, A. Schoenau, M. Moehrle, and M. Schell, “New polarization multiplexed externally modulated laser PIC,” in European Conference on Optical Communication (ECOC2018), Mo4C.2 (2018).

Möhrle, M.

F. M. Soares, M. Baier, T. Gaertner, M. Feyer, M. Möhrle, N. Grote, and M. Schell, “High-performance InP PIC technology development based on a generic photonic integration foundry,” in Optical Fiber Communications Conference (OFC2018), M3F.3 (2018).

Mori, Y.

Y. Mori, C. Zhang, and K. Kikuchi, “Novel configuration of finite-impulse-response filters tolerant to carrier-phase fluctuations in digital coherent optical receivers for higher-order quadrature amplitude modulation signals,” Opt. Express 20, 26236–26251 (2012).
[Crossref] [PubMed]

Morsy-Osman, M.

M. Y. S. Sowailem, T. M. Hoang, M. Chagnon, M. Morsy-Osman, M. Qiu, S. Paquet, C. Paquet, I. Woods, O. Liboiron-Ladouceur, and D. V. Plant, “100G and 200G single carrier transmission over 2880 and 320 km using an InP IQ modulator and Stokes vector receiver,” Opt. Express 24, 30485–30493 (2016).
[Crossref]

Nakano, Y.

S. Ghosh, T. Tanemura, Y. Kawabata, K. Katoh, K. Kikuchi, and Y. Nakano, “Decoding of multilevel Stokes-vector modulated signal by polarization-analyzing circuit on InP,” J. Lightw. Technol. 36, 187–194 (2018).
[Crossref]

T. Suganuma, S. Ghosh, M. Kazi, R. Kobayashi, Y. Nakano, and T. Tanemura, “Monolithic InP Stokes vector receiver with multiple-quantum-well photodetectors,” J. Lightw. Technol. 36, 1268–1274 (2018).
[Crossref]

Nishimura, K.

S. Ishimura, T. Tanemura, and K. Nishimura, “120-Gb/s DP-QPSK transmission using polarization-diversity Stokes-analyzer-based coherent receiver,” in Optical Fiber Communications Conference (OFC 2019), Tu2F.2 (2019).

Paquet, C.

M. Y. S. Sowailem, T. M. Hoang, M. Chagnon, M. Morsy-Osman, M. Qiu, S. Paquet, C. Paquet, I. Woods, O. Liboiron-Ladouceur, and D. V. Plant, “100G and 200G single carrier transmission over 2880 and 320 km using an InP IQ modulator and Stokes vector receiver,” Opt. Express 24, 30485–30493 (2016).
[Crossref]

Paquet, S.

M. Y. S. Sowailem, T. M. Hoang, M. Chagnon, M. Morsy-Osman, M. Qiu, S. Paquet, C. Paquet, I. Woods, O. Liboiron-Ladouceur, and D. V. Plant, “100G and 200G single carrier transmission over 2880 and 320 km using an InP IQ modulator and Stokes vector receiver,” Opt. Express 24, 30485–30493 (2016).
[Crossref]

Plant, D. V.

M. Y. S. Sowailem, T. M. Hoang, M. Chagnon, M. Morsy-Osman, M. Qiu, S. Paquet, C. Paquet, I. Woods, O. Liboiron-Ladouceur, and D. V. Plant, “100G and 200G single carrier transmission over 2880 and 320 km using an InP IQ modulator and Stokes vector receiver,” Opt. Express 24, 30485–30493 (2016).
[Crossref]

Poggiolini, P.

S. Benedetto, R. Gaudino, and P. Poggiolini, “Direct detection of optical digital transmission based on polarization shift keying modulation,” IEEE J. Sel. Areas Commun 13, 531–541 (1995).
[Crossref]

Qiu, M.

M. Y. S. Sowailem, T. M. Hoang, M. Chagnon, M. Morsy-Osman, M. Qiu, S. Paquet, C. Paquet, I. Woods, O. Liboiron-Ladouceur, and D. V. Plant, “100G and 200G single carrier transmission over 2880 and 320 km using an InP IQ modulator and Stokes vector receiver,” Opt. Express 24, 30485–30493 (2016).
[Crossref]

Raybon, G.

C. Xie, P. J. Winzer, G. Raybon, A. H. Gnauck, B. Zhu, T. Geisler, and B. Edvold, “Colorless coherent receiver using 3x3 coupler hybrids and single-ended detection,” Opt. Express 20, 1164–1171 (2012).
[Crossref] [PubMed]

Schell, M.

M. Baier, F. M. Soares, T. Gaertner, A. Schoenau, M. Moehrle, and M. Schell, “New polarization multiplexed externally modulated laser PIC,” in European Conference on Optical Communication (ECOC2018), Mo4C.2 (2018).

F. M. Soares, M. Baier, T. Gaertner, M. Feyer, M. Möhrle, N. Grote, and M. Schell, “High-performance InP PIC technology development based on a generic photonic integration foundry,” in Optical Fiber Communications Conference (OFC2018), M3F.3 (2018).

Schoenau, A.

M. Baier, F. M. Soares, T. Gaertner, A. Schoenau, M. Moehrle, and M. Schell, “New polarization multiplexed externally modulated laser PIC,” in European Conference on Optical Communication (ECOC2018), Mo4C.2 (2018).

Shieh, W.

D. Che, A. Li, X. Chen, Q. Hu, Y. Wang, and W. Shieh, “Stokes vector direct detection for linear complex optical channels,” J. Lightw. Technol. 33, 678–684 (2015).
[Crossref]

D. Che, A. Li, X. Chen, Q. Hu, Y. Wang, and W. Shieh, “160-Gb/s Stokes vector direct detection for short reach optical communication,” in Optical Fiber Communications Conference (OFC 2014), Th5C. 7 (2014).

Soares, F. M.

M. Baier, F. M. Soares, T. Gaertner, A. Schoenau, M. Moehrle, and M. Schell, “New polarization multiplexed externally modulated laser PIC,” in European Conference on Optical Communication (ECOC2018), Mo4C.2 (2018).

F. M. Soares, M. Baier, T. Gaertner, M. Feyer, M. Möhrle, N. Grote, and M. Schell, “High-performance InP PIC technology development based on a generic photonic integration foundry,” in Optical Fiber Communications Conference (OFC2018), M3F.3 (2018).

Sowailem, M. Y. S.

M. Y. S. Sowailem, T. M. Hoang, M. Chagnon, M. Morsy-Osman, M. Qiu, S. Paquet, C. Paquet, I. Woods, O. Liboiron-Ladouceur, and D. V. Plant, “100G and 200G single carrier transmission over 2880 and 320 km using an InP IQ modulator and Stokes vector receiver,” Opt. Express 24, 30485–30493 (2016).
[Crossref]

Suganuma, T.

T. Suganuma, S. Ghosh, M. Kazi, R. Kobayashi, Y. Nakano, and T. Tanemura, “Monolithic InP Stokes vector receiver with multiple-quantum-well photodetectors,” J. Lightw. Technol. 36, 1268–1274 (2018).
[Crossref]

Tanemura, T.

T. Suganuma, S. Ghosh, M. Kazi, R. Kobayashi, Y. Nakano, and T. Tanemura, “Monolithic InP Stokes vector receiver with multiple-quantum-well photodetectors,” J. Lightw. Technol. 36, 1268–1274 (2018).
[Crossref]

S. Ghosh, T. Tanemura, Y. Kawabata, K. Katoh, K. Kikuchi, and Y. Nakano, “Decoding of multilevel Stokes-vector modulated signal by polarization-analyzing circuit on InP,” J. Lightw. Technol. 36, 187–194 (2018).
[Crossref]

S. Ishimura, T. Tanemura, and K. Nishimura, “120-Gb/s DP-QPSK transmission using polarization-diversity Stokes-analyzer-based coherent receiver,” in Optical Fiber Communications Conference (OFC 2019), Tu2F.2 (2019).

Taylor, M. G.

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16, 674–676 (2004).
[Crossref]

Tsukamoto, S.

D. Ly-Gagnon, S. Tsukamoto, K. Katoh, and K. Kikuchi, “Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation,” J. Lightw. Technol. 24, 12–21 (2006).
[Crossref]

Wang, Y.

D. Che, A. Li, X. Chen, Q. Hu, Y. Wang, and W. Shieh, “Stokes vector direct detection for linear complex optical channels,” J. Lightw. Technol. 33, 678–684 (2015).
[Crossref]

D. Che, A. Li, X. Chen, Q. Hu, Y. Wang, and W. Shieh, “160-Gb/s Stokes vector direct detection for short reach optical communication,” in Optical Fiber Communications Conference (OFC 2014), Th5C. 7 (2014).

Winzer, P. J.

C. Xie, P. J. Winzer, G. Raybon, A. H. Gnauck, B. Zhu, T. Geisler, and B. Edvold, “Colorless coherent receiver using 3x3 coupler hybrids and single-ended detection,” Opt. Express 20, 1164–1171 (2012).
[Crossref] [PubMed]

Woods, I.

M. Y. S. Sowailem, T. M. Hoang, M. Chagnon, M. Morsy-Osman, M. Qiu, S. Paquet, C. Paquet, I. Woods, O. Liboiron-Ladouceur, and D. V. Plant, “100G and 200G single carrier transmission over 2880 and 320 km using an InP IQ modulator and Stokes vector receiver,” Opt. Express 24, 30485–30493 (2016).
[Crossref]

Xie, C.

C. Xie, P. J. Winzer, G. Raybon, A. H. Gnauck, B. Zhu, T. Geisler, and B. Edvold, “Colorless coherent receiver using 3x3 coupler hybrids and single-ended detection,” Opt. Express 20, 1164–1171 (2012).
[Crossref] [PubMed]

Xu, D. X.

D. Dai, L. Liu, S. Gao, D. X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Las. Photon. Rev. 7, 303–328 (2013).
[Crossref]

Zhang, C.

Y. Mori, C. Zhang, and K. Kikuchi, “Novel configuration of finite-impulse-response filters tolerant to carrier-phase fluctuations in digital coherent optical receivers for higher-order quadrature amplitude modulation signals,” Opt. Express 20, 26236–26251 (2012).
[Crossref] [PubMed]

Zhu, B.

C. Xie, P. J. Winzer, G. Raybon, A. H. Gnauck, B. Zhu, T. Geisler, and B. Edvold, “Colorless coherent receiver using 3x3 coupler hybrids and single-ended detection,” Opt. Express 20, 1164–1171 (2012).
[Crossref] [PubMed]

IEEE J. Sel. Areas Commun (1)

S. Benedetto, R. Gaudino, and P. Poggiolini, “Direct detection of optical digital transmission based on polarization shift keying modulation,” IEEE J. Sel. Areas Commun 13, 531–541 (1995).
[Crossref]

IEEE Photon. J. (1)

M. S. Faruk and K. Kikuchi, “Compensation for in-phase/quadrature imbalance in coherent-receiver front end for optical quadrature amplitude modulation,” IEEE Photon. J. 5, 7800110 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (1)

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16, 674–676 (2004).
[Crossref]

J. Lightw. Technol. (4)

D. Che, A. Li, X. Chen, Q. Hu, Y. Wang, and W. Shieh, “Stokes vector direct detection for linear complex optical channels,” J. Lightw. Technol. 33, 678–684 (2015).
[Crossref]

S. Ghosh, T. Tanemura, Y. Kawabata, K. Katoh, K. Kikuchi, and Y. Nakano, “Decoding of multilevel Stokes-vector modulated signal by polarization-analyzing circuit on InP,” J. Lightw. Technol. 36, 187–194 (2018).
[Crossref]

D. Ly-Gagnon, S. Tsukamoto, K. Katoh, and K. Kikuchi, “Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation,” J. Lightw. Technol. 24, 12–21 (2006).
[Crossref]

T. Suganuma, S. Ghosh, M. Kazi, R. Kobayashi, Y. Nakano, and T. Tanemura, “Monolithic InP Stokes vector receiver with multiple-quantum-well photodetectors,” J. Lightw. Technol. 36, 1268–1274 (2018).
[Crossref]

Las. Photon. Rev. (1)

D. Dai, L. Liu, S. Gao, D. X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Las. Photon. Rev. 7, 303–328 (2013).
[Crossref]

Opt. Express (4)

Y. Mori, C. Zhang, and K. Kikuchi, “Novel configuration of finite-impulse-response filters tolerant to carrier-phase fluctuations in digital coherent optical receivers for higher-order quadrature amplitude modulation signals,” Opt. Express 20, 26236–26251 (2012).
[Crossref] [PubMed]

C. Xie, P. J. Winzer, G. Raybon, A. H. Gnauck, B. Zhu, T. Geisler, and B. Edvold, “Colorless coherent receiver using 3x3 coupler hybrids and single-ended detection,” Opt. Express 20, 1164–1171 (2012).
[Crossref] [PubMed]

M. Y. S. Sowailem, T. M. Hoang, M. Chagnon, M. Morsy-Osman, M. Qiu, S. Paquet, C. Paquet, I. Woods, O. Liboiron-Ladouceur, and D. V. Plant, “100G and 200G single carrier transmission over 2880 and 320 km using an InP IQ modulator and Stokes vector receiver,” Opt. Express 24, 30485–30493 (2016).
[Crossref]

K. Kikuchi and S. Kawakami, “Multi-level signaling in the Stokes space and its application to large-capacity optical communications,” Opt. Express 22, 7374–7387 (2014).
[Crossref] [PubMed]

Other (4)

D. Che, A. Li, X. Chen, Q. Hu, Y. Wang, and W. Shieh, “160-Gb/s Stokes vector direct detection for short reach optical communication,” in Optical Fiber Communications Conference (OFC 2014), Th5C. 7 (2014).

S. Ishimura, T. Tanemura, and K. Nishimura, “120-Gb/s DP-QPSK transmission using polarization-diversity Stokes-analyzer-based coherent receiver,” in Optical Fiber Communications Conference (OFC 2019), Tu2F.2 (2019).

F. M. Soares, M. Baier, T. Gaertner, M. Feyer, M. Möhrle, N. Grote, and M. Schell, “High-performance InP PIC technology development based on a generic photonic integration foundry,” in Optical Fiber Communications Conference (OFC2018), M3F.3 (2018).

M. Baier, F. M. Soares, T. Gaertner, A. Schoenau, M. Moehrle, and M. Schell, “New polarization multiplexed externally modulated laser PIC,” in European Conference on Optical Communication (ECOC2018), Mo4C.2 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Receiver structures of (a) the Stokes analyzer; (b) the Stokes analyzer with LO provided at the receiver side; (c) the Stokes-analyzer-based coherent receiver; (d) the polarization-diversity Stoke-analyzer-based coherent receiver.
Fig. 2
Fig. 2 Prototype of the polarization-diversity Stokes-analyzer-based coherent receiver. (a) Optical circuit in the receiver. (b) External appearance of the prototype.
Fig. 3
Fig. 3 Experimental setup of the transmission experiment.
Fig. 4
Fig. 4 Results of the transmission experiment. Measured BERs as a function of OSNR in the case of (a) 30-Gbaud DP-QPSK and (b) 20-Gbaud DP-8QAM. Constellation diagrams (c) for the 30-Gbaud DP-QPSK (OSNR = 21 dB) and (d) for the 20-Gbaud DP-8QAM (OSNR = 25 dB).

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

S 1 = I x 1 2 S 0 = 1 2 ( | E x | 2 | E y | 2 ) ,
S 2 = I 45 1 2 S 0 = Re [ E x E y * ] ,
S 3 = I R 1 2 S 0 = Im [ E x E y * ] ,
E ( i ) = 1 2 ( 1 1 1 1 ) 1 3 ( E x , sig E y , LO ) = 1 2 3 ( E x , sig + E y , LO E x , sig + E y , LO ) .
I ( i ) | E ( i ) | 2 = 1 6 [ | E x , s i g | 2 + 2 Re [ E x , s i g E y , L O * ] + | E y , L O | 2 ] .
I ( ii ) | E ( ii ) | 2 = 1 3 [ | E x , s i g | 2 + | E y , L O | 2 ] ,
E ( iii ) = 1 2 ( 1 1 1 1 ) ( 1 0 0 i ) 1 3 ( E x , sig E y , LO ) = 1 2 3 ( E x , sig + iE y , LO E x , sig + iE y , LO ) .
I ( iii ) | E ( iii ) | 2 = 1 6 [ | E x , s i g | 2 + 2 Im [ E x , s i g E y , L O * ] + | E y , L O | 2 ] .
I ( ii )   ' 1 6 [ | E x , s i g | 2 + | E y , L O | 2 ] ,
I I , X = I ( i ) I ( ii )   ' Re [ E x , s i g E y , L O * ] .
I Q , X = I ( iii ) I ( ii )   ' Im [ E x , s i g E y , L O * ] .
I I , Y Re [ E y , s i g E x , L O * ] ,
I Q , Y Im [ E y , s i g E x , L O * ] .

Metrics