Abstract

An uncooled infrared focal plane array (FPA) for a multiband optical imaging system monitoring small gas leakages is low in cost but limited by its frame rate and sensitivity. We propose the concept of Archimedean spiral push-broom filtering (ASPBF), where the trajectory of an Archimedean spiral over the FPA is approximated as a straight line. The ASPBF precisely matches the electronic pulse scanning of the uncooled infrared FPA row by row to improve the frame rate. We applied differential imaging to promote gas detection sensitivity. Prototype can detect 11 ml/min of ethylene gas at ΔT = 3 °C with frame rate of 8 fps.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-speed infrared imaging by an uncooled optomechanical focal plane array

Yun Feng, Yuejin Zhao, Liquan Dong, Ming Liu, Xueyan Li, Wei Ma, Xiaomei Yu, Lingqin Kong, and Xiaohua Liu
Appl. Opt. 54(34) 10189-10195 (2015)

Single-chip, mid-infrared array for room temperature video rate imaging

Chengzhi Xie, Mohsin Aziz, Vincenzo Pusino, Ata Khalid, Matthew Steer, Iain G. Thayne, Marc Sorel, and David R. S. Cumming
Optica 4(12) 1498-1502 (2017)

All-optical background subtraction readout method for bimaterial cantilever array sensing

Cheng Gong, Yuejin Zhao, Liquan Dong, Xiaomei Yu, Ping Chen, and Weiwei Liu
Opt. Express 23(16) 20576-20581 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. R. Robinson, R. Luke-Boone, V. Aggarwal, B. Harris, E. Anderson, D. Ranum, T. J. Kulp, K. Armstrong, R. Sommers, T. G. McRae, K. Ritter, J. H. Siegell, D. Van Pelt, and M. Smylie, “Refinery evaluation of optical imaging to locate fugitive emissions,” J. Air Waste Manag. Assoc. 57(7), 803–810 (2007).
    [Crossref] [PubMed]
  2. V. Tank, H. Pfanz, and H. Kick, “New remote sensing techniques for the detection and quantification of earth surface CO2 degassing,” J. Volcanol. Geotherm. Res. 177(2), 515–524 (2008).
    [Crossref]
  3. R. D. M. Scafutto, C. R. de Souza Filho, D. N. Riley, and W. J. de Oliveira, “Evaluation of thermal infrared hyperspectral imagery for the detection of onshore methane plumes: Significance for hydrocarbon exploration and monitoring,” Int. J. Appl. Earth Obs. Geoinf. 64, 311–325 (2018).
    [Crossref]
  4. A. Safitri, X. Gao, and M. S. Mannan, “Dispersion modeling approach for quantification of methane emission rates from natural gas fugitive leaks detected by infrared imaging technique,” J. Loss Prev. Process Ind. 24(2), 138–145 (2011).
    [Crossref]
  5. A. Ibarguren, J. Molina, L. Susperregi, and I. Maurtua, “Thermal tracking in mobile robots for leak inspection activities,” Sensors (Basel) 13(10), 13560–13574 (2013).
    [Crossref] [PubMed]
  6. U. Platt, P. Lübcke, J. Kuhn, N. Bobrowski, F. Prata, M. Burton, and C. Kern, “Quantitative imaging of volcanic plumes - Results, needs, and future trends,” J. Volcanol. Geotherm. Res. 300, 7–21 (2015).
    [Crossref]
  7. M. Gåfalk, G. Olofsson, P. Crill, and D. Bastviken, “Making methane visible,” Nat. Clim. Chang. 6(4), 426–430 (2016).
    [Crossref]
  8. T. N. Lavoie, P. B. Shepson, C. A. Gore, B. H. Stirm, R. Kaeser, B. Wulle, D. Lyon, and J. Rudek, “Assessing the methane emissions from natural gas-fired power plants and oil refineries,” Environ. Sci. Technol. 51(6), 3373–3381 (2017).
    [Crossref] [PubMed]
  9. A. P. Ravikumar, J. Wang, M. McGuire, C. S. Bell, D. Zimmerle, and A. R. Brandt, “‘Good versus good enough?’ Empirical tests of methane leak detection sensitivity of a commercial infrared camera,” Environ. Sci. Technol. 52(4), 2368–2374 (2018).
    [Crossref] [PubMed]
  10. T. G. McRae and T. J. Kulp, “Backscatter absorption gas imaging: A new technique for gas visualization,” Appl. Opt. 32(21), 4037–4050 (1993).
    [Crossref] [PubMed]
  11. T. J. Kulp, P. Powers, R. Kennedy, and U. B. Goers, “Development of a pulsed backscatter-absorption gas-imaging system and its application to the visualization of natural gas leaks,” Appl. Opt. 37(18), 3912–3922 (1998).
    [Crossref] [PubMed]
  12. P. E. Powers, T. J. Kulp, and R. Kennedy, “Demonstration of differential backscatter absorption gas imaging,” Appl. Opt. 39(9), 1440–1448 (2000).
    [Crossref] [PubMed]
  13. M. Imaki and T. Kobayashi, “Infrared frequency upconverter for high-sensitivity imaging of gas plumes,” Opt. Lett. 32(13), 1923–1925 (2007).
    [Crossref] [PubMed]
  14. C. Liu, L. Xu, J. Chen, Z. Cao, Y. Lin, and W. Cai, “Development of a fan-beam TDLAS-based tomographic sensor for rapid imaging of temperature and gas concentration,” Opt. Express 23(17), 22494–22511 (2015).
    [Crossref] [PubMed]
  15. R. T. Wainner, N. F. Aubut, M. C. Laderer, and M. B. Frish, “Scanning, standoff TDLAS leak imaging and quantification,” Proc. SPIE 10210, 1021006 (2017).
    [Crossref]
  16. G. M. Gibson, B. Sun, M. P. Edgar, D. B. Phillips, N. Hempler, G. T. Maker, G. P. A. Malcolm, and M. J. Padgett, “Real-time imaging of methane gas leaks using a single-pixel camera,” Opt. Express 25(4), 2998–3005 (2017).
    [Crossref] [PubMed]
  17. M. A. Rodríguez-Conejo and J. Meléndez, “Hyperspectral quantitative imaging of gas sources in the mid-infrared,” Appl. Opt. 54(2), 141–149 (2015).
    [Crossref] [PubMed]
  18. T. Sakagami, H. Anzai, and S. Kubo, “Development of a gas leak detection method based on infrared spectrum imaging utilizing microbolometer camera,” Proc. SPIE 8013, 80130C (2011).
    [Crossref]
  19. P. W. T. Yuen and M. Richardson, “An introduction to hyperspectral imaging and its application for security, surveillance and target acquisition,” Imaging Sci. J. 58(5), 241–253 (2010).
    [Crossref]
  20. G. C. Hulley, R. M. Duren, F. M. Hopkins, S. J. Hook, N. Vance, P. Guillevic, W. R. Johnson, B. T. Eng, J. M. Mihaly, V. M. Jovanovic, S. L. Chazanoff, Z. K. Staniszewski, L. Kuai, J. Worden, C. Frankenberg, G. Rivera, A. D. Aubrey, C. E. Miller, N. K. Malakar, J. M. Sánchez Tomás, and K. T. Holmes, “High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES),” Atmos. Meas. Tech. 9(5), 2393–2408 (2016).
    [Crossref]
  21. R. Benson, R. Madding, R. Lucier, J. Lyons, and P. Czerepuszko, “Standoff passive optical leak detection of volatile organic compounds using a cooled InSb based infrared imager,” in 99th Annual Conference and Exhibition of the Air and Waste Management Association 2006 (Air and Waste Management Association, 2006), 06-A-131.
  22. J. Sandsten, H. Edner, and S. Svanberg, “Gas visualization of industrial hydrocarbon emissions,” Opt. Express 12(7), 1443–1451 (2004).
    [Crossref] [PubMed]
  23. K. Wolowelsky, A. Gil, M. Elkabets, and C. Rotschild, “Gas detection using absorption properties of liquid crystals,” Opt. Express 25(26), 32532–32539 (2017).
    [Crossref]
  24. N. Hagen, R. T. Kester, and C. Walker, “Real-time quantitative hydrocarbon gas imaging with the gas cloud imager (GCI),” Proc. SPIE 8358, 83581J (2012).
    [Crossref]
  25. M.-A. Gagnon, K.-A. Jahjah, F. Marcotte, P. Tremblay, V. Farley, and M. Chamberland, “Time-resolved thermal infrared multispectral imaging of gases and minerals,” Proc. SPIE 9263, 92630G (2014).
    [Crossref]
  26. E. Naranjo, S. Baliga, and P. Bernascolle, “IR gas imaging in an industrial setting,” Proc. SPIE 7661, 76610K (2010).
    [Crossref]
  27. J. Sandsten, P. Weibring, H. Edner, and S. Svanberg, “Real-time gas-correlation imaging employing thermal background radiation,” Opt. Express 6(4), 92–103 (2000).
    [Crossref] [PubMed]
  28. K. Wu, Y. Feng, G. Yu, L. Liu, J. Li, Y. Xiong, and F. Li, “Development of an imaging gas correlation spectrometry based mid-infrared camera for two-dimensional mapping of CO in vehicle exhausts,” Opt. Express 26(7), 8239–8251 (2018).
    [Crossref] [PubMed]
  29. J. Sandsten and M. Andersson, “Volume flow calculations on gas leaks imaged with infrared gas-correlation,” Opt. Express 20(18), 20318–20329 (2012).
    [Crossref] [PubMed]
  30. “Northwest-Infrared,” https://nwir.pnl.gov/nsd/nsd.nsf/Welcome , retrieved October 10, 2018.
  31. M. Vollmer and K. P. Möllmann, Infrared Thermal Imaging: Fundamentals, Research and Applications (John Wiley & Sons, 2017).
  32. Y. Long, L. Wang, J. Li, C. Zhang, and B. Zhang, “Detectivity of gas leakage based on electromagnetic radiation transfer,” Proc. SPIE 8013, 80130D (2011).
    [Crossref]
  33. N. Hagen, R. T. Kester, C. G. Morlier, J. A. Panek, P. Drayton, D. Fashimpaur, P. Stone, and E. Adams, “Video-rate spectral imaging of gas leaks in the longwave infrared,” Proc. SPIE 8710, 871005 (2013).
    [Crossref]

2018 (3)

R. D. M. Scafutto, C. R. de Souza Filho, D. N. Riley, and W. J. de Oliveira, “Evaluation of thermal infrared hyperspectral imagery for the detection of onshore methane plumes: Significance for hydrocarbon exploration and monitoring,” Int. J. Appl. Earth Obs. Geoinf. 64, 311–325 (2018).
[Crossref]

A. P. Ravikumar, J. Wang, M. McGuire, C. S. Bell, D. Zimmerle, and A. R. Brandt, “‘Good versus good enough?’ Empirical tests of methane leak detection sensitivity of a commercial infrared camera,” Environ. Sci. Technol. 52(4), 2368–2374 (2018).
[Crossref] [PubMed]

K. Wu, Y. Feng, G. Yu, L. Liu, J. Li, Y. Xiong, and F. Li, “Development of an imaging gas correlation spectrometry based mid-infrared camera for two-dimensional mapping of CO in vehicle exhausts,” Opt. Express 26(7), 8239–8251 (2018).
[Crossref] [PubMed]

2017 (4)

K. Wolowelsky, A. Gil, M. Elkabets, and C. Rotschild, “Gas detection using absorption properties of liquid crystals,” Opt. Express 25(26), 32532–32539 (2017).
[Crossref]

R. T. Wainner, N. F. Aubut, M. C. Laderer, and M. B. Frish, “Scanning, standoff TDLAS leak imaging and quantification,” Proc. SPIE 10210, 1021006 (2017).
[Crossref]

G. M. Gibson, B. Sun, M. P. Edgar, D. B. Phillips, N. Hempler, G. T. Maker, G. P. A. Malcolm, and M. J. Padgett, “Real-time imaging of methane gas leaks using a single-pixel camera,” Opt. Express 25(4), 2998–3005 (2017).
[Crossref] [PubMed]

T. N. Lavoie, P. B. Shepson, C. A. Gore, B. H. Stirm, R. Kaeser, B. Wulle, D. Lyon, and J. Rudek, “Assessing the methane emissions from natural gas-fired power plants and oil refineries,” Environ. Sci. Technol. 51(6), 3373–3381 (2017).
[Crossref] [PubMed]

2016 (2)

M. Gåfalk, G. Olofsson, P. Crill, and D. Bastviken, “Making methane visible,” Nat. Clim. Chang. 6(4), 426–430 (2016).
[Crossref]

G. C. Hulley, R. M. Duren, F. M. Hopkins, S. J. Hook, N. Vance, P. Guillevic, W. R. Johnson, B. T. Eng, J. M. Mihaly, V. M. Jovanovic, S. L. Chazanoff, Z. K. Staniszewski, L. Kuai, J. Worden, C. Frankenberg, G. Rivera, A. D. Aubrey, C. E. Miller, N. K. Malakar, J. M. Sánchez Tomás, and K. T. Holmes, “High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES),” Atmos. Meas. Tech. 9(5), 2393–2408 (2016).
[Crossref]

2015 (3)

C. Liu, L. Xu, J. Chen, Z. Cao, Y. Lin, and W. Cai, “Development of a fan-beam TDLAS-based tomographic sensor for rapid imaging of temperature and gas concentration,” Opt. Express 23(17), 22494–22511 (2015).
[Crossref] [PubMed]

U. Platt, P. Lübcke, J. Kuhn, N. Bobrowski, F. Prata, M. Burton, and C. Kern, “Quantitative imaging of volcanic plumes - Results, needs, and future trends,” J. Volcanol. Geotherm. Res. 300, 7–21 (2015).
[Crossref]

M. A. Rodríguez-Conejo and J. Meléndez, “Hyperspectral quantitative imaging of gas sources in the mid-infrared,” Appl. Opt. 54(2), 141–149 (2015).
[Crossref] [PubMed]

2014 (1)

M.-A. Gagnon, K.-A. Jahjah, F. Marcotte, P. Tremblay, V. Farley, and M. Chamberland, “Time-resolved thermal infrared multispectral imaging of gases and minerals,” Proc. SPIE 9263, 92630G (2014).
[Crossref]

2013 (2)

N. Hagen, R. T. Kester, C. G. Morlier, J. A. Panek, P. Drayton, D. Fashimpaur, P. Stone, and E. Adams, “Video-rate spectral imaging of gas leaks in the longwave infrared,” Proc. SPIE 8710, 871005 (2013).
[Crossref]

A. Ibarguren, J. Molina, L. Susperregi, and I. Maurtua, “Thermal tracking in mobile robots for leak inspection activities,” Sensors (Basel) 13(10), 13560–13574 (2013).
[Crossref] [PubMed]

2012 (2)

J. Sandsten and M. Andersson, “Volume flow calculations on gas leaks imaged with infrared gas-correlation,” Opt. Express 20(18), 20318–20329 (2012).
[Crossref] [PubMed]

N. Hagen, R. T. Kester, and C. Walker, “Real-time quantitative hydrocarbon gas imaging with the gas cloud imager (GCI),” Proc. SPIE 8358, 83581J (2012).
[Crossref]

2011 (3)

Y. Long, L. Wang, J. Li, C. Zhang, and B. Zhang, “Detectivity of gas leakage based on electromagnetic radiation transfer,” Proc. SPIE 8013, 80130D (2011).
[Crossref]

A. Safitri, X. Gao, and M. S. Mannan, “Dispersion modeling approach for quantification of methane emission rates from natural gas fugitive leaks detected by infrared imaging technique,” J. Loss Prev. Process Ind. 24(2), 138–145 (2011).
[Crossref]

T. Sakagami, H. Anzai, and S. Kubo, “Development of a gas leak detection method based on infrared spectrum imaging utilizing microbolometer camera,” Proc. SPIE 8013, 80130C (2011).
[Crossref]

2010 (2)

P. W. T. Yuen and M. Richardson, “An introduction to hyperspectral imaging and its application for security, surveillance and target acquisition,” Imaging Sci. J. 58(5), 241–253 (2010).
[Crossref]

E. Naranjo, S. Baliga, and P. Bernascolle, “IR gas imaging in an industrial setting,” Proc. SPIE 7661, 76610K (2010).
[Crossref]

2008 (1)

V. Tank, H. Pfanz, and H. Kick, “New remote sensing techniques for the detection and quantification of earth surface CO2 degassing,” J. Volcanol. Geotherm. Res. 177(2), 515–524 (2008).
[Crossref]

2007 (2)

D. R. Robinson, R. Luke-Boone, V. Aggarwal, B. Harris, E. Anderson, D. Ranum, T. J. Kulp, K. Armstrong, R. Sommers, T. G. McRae, K. Ritter, J. H. Siegell, D. Van Pelt, and M. Smylie, “Refinery evaluation of optical imaging to locate fugitive emissions,” J. Air Waste Manag. Assoc. 57(7), 803–810 (2007).
[Crossref] [PubMed]

M. Imaki and T. Kobayashi, “Infrared frequency upconverter for high-sensitivity imaging of gas plumes,” Opt. Lett. 32(13), 1923–1925 (2007).
[Crossref] [PubMed]

2004 (1)

J. Sandsten, H. Edner, and S. Svanberg, “Gas visualization of industrial hydrocarbon emissions,” Opt. Express 12(7), 1443–1451 (2004).
[Crossref] [PubMed]

2000 (2)

J. Sandsten, P. Weibring, H. Edner, and S. Svanberg, “Real-time gas-correlation imaging employing thermal background radiation,” Opt. Express 6(4), 92–103 (2000).
[Crossref] [PubMed]

P. E. Powers, T. J. Kulp, and R. Kennedy, “Demonstration of differential backscatter absorption gas imaging,” Appl. Opt. 39(9), 1440–1448 (2000).
[Crossref] [PubMed]

1998 (1)

T. J. Kulp, P. Powers, R. Kennedy, and U. B. Goers, “Development of a pulsed backscatter-absorption gas-imaging system and its application to the visualization of natural gas leaks,” Appl. Opt. 37(18), 3912–3922 (1998).
[Crossref] [PubMed]

1993 (1)

T. G. McRae and T. J. Kulp, “Backscatter absorption gas imaging: A new technique for gas visualization,” Appl. Opt. 32(21), 4037–4050 (1993).
[Crossref] [PubMed]

Adams, E.

N. Hagen, R. T. Kester, C. G. Morlier, J. A. Panek, P. Drayton, D. Fashimpaur, P. Stone, and E. Adams, “Video-rate spectral imaging of gas leaks in the longwave infrared,” Proc. SPIE 8710, 871005 (2013).
[Crossref]

Aggarwal, V.

D. R. Robinson, R. Luke-Boone, V. Aggarwal, B. Harris, E. Anderson, D. Ranum, T. J. Kulp, K. Armstrong, R. Sommers, T. G. McRae, K. Ritter, J. H. Siegell, D. Van Pelt, and M. Smylie, “Refinery evaluation of optical imaging to locate fugitive emissions,” J. Air Waste Manag. Assoc. 57(7), 803–810 (2007).
[Crossref] [PubMed]

Anderson, E.

D. R. Robinson, R. Luke-Boone, V. Aggarwal, B. Harris, E. Anderson, D. Ranum, T. J. Kulp, K. Armstrong, R. Sommers, T. G. McRae, K. Ritter, J. H. Siegell, D. Van Pelt, and M. Smylie, “Refinery evaluation of optical imaging to locate fugitive emissions,” J. Air Waste Manag. Assoc. 57(7), 803–810 (2007).
[Crossref] [PubMed]

Andersson, M.

J. Sandsten and M. Andersson, “Volume flow calculations on gas leaks imaged with infrared gas-correlation,” Opt. Express 20(18), 20318–20329 (2012).
[Crossref] [PubMed]

Anzai, H.

T. Sakagami, H. Anzai, and S. Kubo, “Development of a gas leak detection method based on infrared spectrum imaging utilizing microbolometer camera,” Proc. SPIE 8013, 80130C (2011).
[Crossref]

Armstrong, K.

D. R. Robinson, R. Luke-Boone, V. Aggarwal, B. Harris, E. Anderson, D. Ranum, T. J. Kulp, K. Armstrong, R. Sommers, T. G. McRae, K. Ritter, J. H. Siegell, D. Van Pelt, and M. Smylie, “Refinery evaluation of optical imaging to locate fugitive emissions,” J. Air Waste Manag. Assoc. 57(7), 803–810 (2007).
[Crossref] [PubMed]

Aubrey, A. D.

G. C. Hulley, R. M. Duren, F. M. Hopkins, S. J. Hook, N. Vance, P. Guillevic, W. R. Johnson, B. T. Eng, J. M. Mihaly, V. M. Jovanovic, S. L. Chazanoff, Z. K. Staniszewski, L. Kuai, J. Worden, C. Frankenberg, G. Rivera, A. D. Aubrey, C. E. Miller, N. K. Malakar, J. M. Sánchez Tomás, and K. T. Holmes, “High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES),” Atmos. Meas. Tech. 9(5), 2393–2408 (2016).
[Crossref]

Aubut, N. F.

R. T. Wainner, N. F. Aubut, M. C. Laderer, and M. B. Frish, “Scanning, standoff TDLAS leak imaging and quantification,” Proc. SPIE 10210, 1021006 (2017).
[Crossref]

Baliga, S.

E. Naranjo, S. Baliga, and P. Bernascolle, “IR gas imaging in an industrial setting,” Proc. SPIE 7661, 76610K (2010).
[Crossref]

Bastviken, D.

M. Gåfalk, G. Olofsson, P. Crill, and D. Bastviken, “Making methane visible,” Nat. Clim. Chang. 6(4), 426–430 (2016).
[Crossref]

Bell, C. S.

A. P. Ravikumar, J. Wang, M. McGuire, C. S. Bell, D. Zimmerle, and A. R. Brandt, “‘Good versus good enough?’ Empirical tests of methane leak detection sensitivity of a commercial infrared camera,” Environ. Sci. Technol. 52(4), 2368–2374 (2018).
[Crossref] [PubMed]

Bernascolle, P.

E. Naranjo, S. Baliga, and P. Bernascolle, “IR gas imaging in an industrial setting,” Proc. SPIE 7661, 76610K (2010).
[Crossref]

Bobrowski, N.

U. Platt, P. Lübcke, J. Kuhn, N. Bobrowski, F. Prata, M. Burton, and C. Kern, “Quantitative imaging of volcanic plumes - Results, needs, and future trends,” J. Volcanol. Geotherm. Res. 300, 7–21 (2015).
[Crossref]

Brandt, A. R.

A. P. Ravikumar, J. Wang, M. McGuire, C. S. Bell, D. Zimmerle, and A. R. Brandt, “‘Good versus good enough?’ Empirical tests of methane leak detection sensitivity of a commercial infrared camera,” Environ. Sci. Technol. 52(4), 2368–2374 (2018).
[Crossref] [PubMed]

Burton, M.

U. Platt, P. Lübcke, J. Kuhn, N. Bobrowski, F. Prata, M. Burton, and C. Kern, “Quantitative imaging of volcanic plumes - Results, needs, and future trends,” J. Volcanol. Geotherm. Res. 300, 7–21 (2015).
[Crossref]

Cai, W.

C. Liu, L. Xu, J. Chen, Z. Cao, Y. Lin, and W. Cai, “Development of a fan-beam TDLAS-based tomographic sensor for rapid imaging of temperature and gas concentration,” Opt. Express 23(17), 22494–22511 (2015).
[Crossref] [PubMed]

Cao, Z.

C. Liu, L. Xu, J. Chen, Z. Cao, Y. Lin, and W. Cai, “Development of a fan-beam TDLAS-based tomographic sensor for rapid imaging of temperature and gas concentration,” Opt. Express 23(17), 22494–22511 (2015).
[Crossref] [PubMed]

Chamberland, M.

M.-A. Gagnon, K.-A. Jahjah, F. Marcotte, P. Tremblay, V. Farley, and M. Chamberland, “Time-resolved thermal infrared multispectral imaging of gases and minerals,” Proc. SPIE 9263, 92630G (2014).
[Crossref]

Chazanoff, S. L.

G. C. Hulley, R. M. Duren, F. M. Hopkins, S. J. Hook, N. Vance, P. Guillevic, W. R. Johnson, B. T. Eng, J. M. Mihaly, V. M. Jovanovic, S. L. Chazanoff, Z. K. Staniszewski, L. Kuai, J. Worden, C. Frankenberg, G. Rivera, A. D. Aubrey, C. E. Miller, N. K. Malakar, J. M. Sánchez Tomás, and K. T. Holmes, “High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES),” Atmos. Meas. Tech. 9(5), 2393–2408 (2016).
[Crossref]

Chen, J.

C. Liu, L. Xu, J. Chen, Z. Cao, Y. Lin, and W. Cai, “Development of a fan-beam TDLAS-based tomographic sensor for rapid imaging of temperature and gas concentration,” Opt. Express 23(17), 22494–22511 (2015).
[Crossref] [PubMed]

Crill, P.

M. Gåfalk, G. Olofsson, P. Crill, and D. Bastviken, “Making methane visible,” Nat. Clim. Chang. 6(4), 426–430 (2016).
[Crossref]

de Oliveira, W. J.

R. D. M. Scafutto, C. R. de Souza Filho, D. N. Riley, and W. J. de Oliveira, “Evaluation of thermal infrared hyperspectral imagery for the detection of onshore methane plumes: Significance for hydrocarbon exploration and monitoring,” Int. J. Appl. Earth Obs. Geoinf. 64, 311–325 (2018).
[Crossref]

de Souza Filho, C. R.

R. D. M. Scafutto, C. R. de Souza Filho, D. N. Riley, and W. J. de Oliveira, “Evaluation of thermal infrared hyperspectral imagery for the detection of onshore methane plumes: Significance for hydrocarbon exploration and monitoring,” Int. J. Appl. Earth Obs. Geoinf. 64, 311–325 (2018).
[Crossref]

Drayton, P.

N. Hagen, R. T. Kester, C. G. Morlier, J. A. Panek, P. Drayton, D. Fashimpaur, P. Stone, and E. Adams, “Video-rate spectral imaging of gas leaks in the longwave infrared,” Proc. SPIE 8710, 871005 (2013).
[Crossref]

Duren, R. M.

G. C. Hulley, R. M. Duren, F. M. Hopkins, S. J. Hook, N. Vance, P. Guillevic, W. R. Johnson, B. T. Eng, J. M. Mihaly, V. M. Jovanovic, S. L. Chazanoff, Z. K. Staniszewski, L. Kuai, J. Worden, C. Frankenberg, G. Rivera, A. D. Aubrey, C. E. Miller, N. K. Malakar, J. M. Sánchez Tomás, and K. T. Holmes, “High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES),” Atmos. Meas. Tech. 9(5), 2393–2408 (2016).
[Crossref]

Edgar, M. P.

G. M. Gibson, B. Sun, M. P. Edgar, D. B. Phillips, N. Hempler, G. T. Maker, G. P. A. Malcolm, and M. J. Padgett, “Real-time imaging of methane gas leaks using a single-pixel camera,” Opt. Express 25(4), 2998–3005 (2017).
[Crossref] [PubMed]

Edner, H.

J. Sandsten, H. Edner, and S. Svanberg, “Gas visualization of industrial hydrocarbon emissions,” Opt. Express 12(7), 1443–1451 (2004).
[Crossref] [PubMed]

J. Sandsten, P. Weibring, H. Edner, and S. Svanberg, “Real-time gas-correlation imaging employing thermal background radiation,” Opt. Express 6(4), 92–103 (2000).
[Crossref] [PubMed]

Elkabets, M.

K. Wolowelsky, A. Gil, M. Elkabets, and C. Rotschild, “Gas detection using absorption properties of liquid crystals,” Opt. Express 25(26), 32532–32539 (2017).
[Crossref]

Eng, B. T.

G. C. Hulley, R. M. Duren, F. M. Hopkins, S. J. Hook, N. Vance, P. Guillevic, W. R. Johnson, B. T. Eng, J. M. Mihaly, V. M. Jovanovic, S. L. Chazanoff, Z. K. Staniszewski, L. Kuai, J. Worden, C. Frankenberg, G. Rivera, A. D. Aubrey, C. E. Miller, N. K. Malakar, J. M. Sánchez Tomás, and K. T. Holmes, “High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES),” Atmos. Meas. Tech. 9(5), 2393–2408 (2016).
[Crossref]

Farley, V.

M.-A. Gagnon, K.-A. Jahjah, F. Marcotte, P. Tremblay, V. Farley, and M. Chamberland, “Time-resolved thermal infrared multispectral imaging of gases and minerals,” Proc. SPIE 9263, 92630G (2014).
[Crossref]

Fashimpaur, D.

N. Hagen, R. T. Kester, C. G. Morlier, J. A. Panek, P. Drayton, D. Fashimpaur, P. Stone, and E. Adams, “Video-rate spectral imaging of gas leaks in the longwave infrared,” Proc. SPIE 8710, 871005 (2013).
[Crossref]

Feng, Y.

K. Wu, Y. Feng, G. Yu, L. Liu, J. Li, Y. Xiong, and F. Li, “Development of an imaging gas correlation spectrometry based mid-infrared camera for two-dimensional mapping of CO in vehicle exhausts,” Opt. Express 26(7), 8239–8251 (2018).
[Crossref] [PubMed]

Frankenberg, C.

G. C. Hulley, R. M. Duren, F. M. Hopkins, S. J. Hook, N. Vance, P. Guillevic, W. R. Johnson, B. T. Eng, J. M. Mihaly, V. M. Jovanovic, S. L. Chazanoff, Z. K. Staniszewski, L. Kuai, J. Worden, C. Frankenberg, G. Rivera, A. D. Aubrey, C. E. Miller, N. K. Malakar, J. M. Sánchez Tomás, and K. T. Holmes, “High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES),” Atmos. Meas. Tech. 9(5), 2393–2408 (2016).
[Crossref]

Frish, M. B.

R. T. Wainner, N. F. Aubut, M. C. Laderer, and M. B. Frish, “Scanning, standoff TDLAS leak imaging and quantification,” Proc. SPIE 10210, 1021006 (2017).
[Crossref]

Gåfalk, M.

M. Gåfalk, G. Olofsson, P. Crill, and D. Bastviken, “Making methane visible,” Nat. Clim. Chang. 6(4), 426–430 (2016).
[Crossref]

Gagnon, M.-A.

M.-A. Gagnon, K.-A. Jahjah, F. Marcotte, P. Tremblay, V. Farley, and M. Chamberland, “Time-resolved thermal infrared multispectral imaging of gases and minerals,” Proc. SPIE 9263, 92630G (2014).
[Crossref]

Gao, X.

A. Safitri, X. Gao, and M. S. Mannan, “Dispersion modeling approach for quantification of methane emission rates from natural gas fugitive leaks detected by infrared imaging technique,” J. Loss Prev. Process Ind. 24(2), 138–145 (2011).
[Crossref]

Gibson, G. M.

G. M. Gibson, B. Sun, M. P. Edgar, D. B. Phillips, N. Hempler, G. T. Maker, G. P. A. Malcolm, and M. J. Padgett, “Real-time imaging of methane gas leaks using a single-pixel camera,” Opt. Express 25(4), 2998–3005 (2017).
[Crossref] [PubMed]

Gil, A.

K. Wolowelsky, A. Gil, M. Elkabets, and C. Rotschild, “Gas detection using absorption properties of liquid crystals,” Opt. Express 25(26), 32532–32539 (2017).
[Crossref]

Goers, U. B.

T. J. Kulp, P. Powers, R. Kennedy, and U. B. Goers, “Development of a pulsed backscatter-absorption gas-imaging system and its application to the visualization of natural gas leaks,” Appl. Opt. 37(18), 3912–3922 (1998).
[Crossref] [PubMed]

Gore, C. A.

T. N. Lavoie, P. B. Shepson, C. A. Gore, B. H. Stirm, R. Kaeser, B. Wulle, D. Lyon, and J. Rudek, “Assessing the methane emissions from natural gas-fired power plants and oil refineries,” Environ. Sci. Technol. 51(6), 3373–3381 (2017).
[Crossref] [PubMed]

Guillevic, P.

G. C. Hulley, R. M. Duren, F. M. Hopkins, S. J. Hook, N. Vance, P. Guillevic, W. R. Johnson, B. T. Eng, J. M. Mihaly, V. M. Jovanovic, S. L. Chazanoff, Z. K. Staniszewski, L. Kuai, J. Worden, C. Frankenberg, G. Rivera, A. D. Aubrey, C. E. Miller, N. K. Malakar, J. M. Sánchez Tomás, and K. T. Holmes, “High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES),” Atmos. Meas. Tech. 9(5), 2393–2408 (2016).
[Crossref]

Hagen, N.

N. Hagen, R. T. Kester, C. G. Morlier, J. A. Panek, P. Drayton, D. Fashimpaur, P. Stone, and E. Adams, “Video-rate spectral imaging of gas leaks in the longwave infrared,” Proc. SPIE 8710, 871005 (2013).
[Crossref]

N. Hagen, R. T. Kester, and C. Walker, “Real-time quantitative hydrocarbon gas imaging with the gas cloud imager (GCI),” Proc. SPIE 8358, 83581J (2012).
[Crossref]

Harris, B.

D. R. Robinson, R. Luke-Boone, V. Aggarwal, B. Harris, E. Anderson, D. Ranum, T. J. Kulp, K. Armstrong, R. Sommers, T. G. McRae, K. Ritter, J. H. Siegell, D. Van Pelt, and M. Smylie, “Refinery evaluation of optical imaging to locate fugitive emissions,” J. Air Waste Manag. Assoc. 57(7), 803–810 (2007).
[Crossref] [PubMed]

Hempler, N.

G. M. Gibson, B. Sun, M. P. Edgar, D. B. Phillips, N. Hempler, G. T. Maker, G. P. A. Malcolm, and M. J. Padgett, “Real-time imaging of methane gas leaks using a single-pixel camera,” Opt. Express 25(4), 2998–3005 (2017).
[Crossref] [PubMed]

Holmes, K. T.

G. C. Hulley, R. M. Duren, F. M. Hopkins, S. J. Hook, N. Vance, P. Guillevic, W. R. Johnson, B. T. Eng, J. M. Mihaly, V. M. Jovanovic, S. L. Chazanoff, Z. K. Staniszewski, L. Kuai, J. Worden, C. Frankenberg, G. Rivera, A. D. Aubrey, C. E. Miller, N. K. Malakar, J. M. Sánchez Tomás, and K. T. Holmes, “High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES),” Atmos. Meas. Tech. 9(5), 2393–2408 (2016).
[Crossref]

Hook, S. J.

G. C. Hulley, R. M. Duren, F. M. Hopkins, S. J. Hook, N. Vance, P. Guillevic, W. R. Johnson, B. T. Eng, J. M. Mihaly, V. M. Jovanovic, S. L. Chazanoff, Z. K. Staniszewski, L. Kuai, J. Worden, C. Frankenberg, G. Rivera, A. D. Aubrey, C. E. Miller, N. K. Malakar, J. M. Sánchez Tomás, and K. T. Holmes, “High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES),” Atmos. Meas. Tech. 9(5), 2393–2408 (2016).
[Crossref]

Hopkins, F. M.

G. C. Hulley, R. M. Duren, F. M. Hopkins, S. J. Hook, N. Vance, P. Guillevic, W. R. Johnson, B. T. Eng, J. M. Mihaly, V. M. Jovanovic, S. L. Chazanoff, Z. K. Staniszewski, L. Kuai, J. Worden, C. Frankenberg, G. Rivera, A. D. Aubrey, C. E. Miller, N. K. Malakar, J. M. Sánchez Tomás, and K. T. Holmes, “High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES),” Atmos. Meas. Tech. 9(5), 2393–2408 (2016).
[Crossref]

Hulley, G. C.

G. C. Hulley, R. M. Duren, F. M. Hopkins, S. J. Hook, N. Vance, P. Guillevic, W. R. Johnson, B. T. Eng, J. M. Mihaly, V. M. Jovanovic, S. L. Chazanoff, Z. K. Staniszewski, L. Kuai, J. Worden, C. Frankenberg, G. Rivera, A. D. Aubrey, C. E. Miller, N. K. Malakar, J. M. Sánchez Tomás, and K. T. Holmes, “High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES),” Atmos. Meas. Tech. 9(5), 2393–2408 (2016).
[Crossref]

Ibarguren, A.

A. Ibarguren, J. Molina, L. Susperregi, and I. Maurtua, “Thermal tracking in mobile robots for leak inspection activities,” Sensors (Basel) 13(10), 13560–13574 (2013).
[Crossref] [PubMed]

Imaki, M.

M. Imaki and T. Kobayashi, “Infrared frequency upconverter for high-sensitivity imaging of gas plumes,” Opt. Lett. 32(13), 1923–1925 (2007).
[Crossref] [PubMed]

Jahjah, K.-A.

M.-A. Gagnon, K.-A. Jahjah, F. Marcotte, P. Tremblay, V. Farley, and M. Chamberland, “Time-resolved thermal infrared multispectral imaging of gases and minerals,” Proc. SPIE 9263, 92630G (2014).
[Crossref]

Johnson, W. R.

G. C. Hulley, R. M. Duren, F. M. Hopkins, S. J. Hook, N. Vance, P. Guillevic, W. R. Johnson, B. T. Eng, J. M. Mihaly, V. M. Jovanovic, S. L. Chazanoff, Z. K. Staniszewski, L. Kuai, J. Worden, C. Frankenberg, G. Rivera, A. D. Aubrey, C. E. Miller, N. K. Malakar, J. M. Sánchez Tomás, and K. T. Holmes, “High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES),” Atmos. Meas. Tech. 9(5), 2393–2408 (2016).
[Crossref]

Jovanovic, V. M.

G. C. Hulley, R. M. Duren, F. M. Hopkins, S. J. Hook, N. Vance, P. Guillevic, W. R. Johnson, B. T. Eng, J. M. Mihaly, V. M. Jovanovic, S. L. Chazanoff, Z. K. Staniszewski, L. Kuai, J. Worden, C. Frankenberg, G. Rivera, A. D. Aubrey, C. E. Miller, N. K. Malakar, J. M. Sánchez Tomás, and K. T. Holmes, “High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES),” Atmos. Meas. Tech. 9(5), 2393–2408 (2016).
[Crossref]

Kaeser, R.

T. N. Lavoie, P. B. Shepson, C. A. Gore, B. H. Stirm, R. Kaeser, B. Wulle, D. Lyon, and J. Rudek, “Assessing the methane emissions from natural gas-fired power plants and oil refineries,” Environ. Sci. Technol. 51(6), 3373–3381 (2017).
[Crossref] [PubMed]

Kennedy, R.

P. E. Powers, T. J. Kulp, and R. Kennedy, “Demonstration of differential backscatter absorption gas imaging,” Appl. Opt. 39(9), 1440–1448 (2000).
[Crossref] [PubMed]

T. J. Kulp, P. Powers, R. Kennedy, and U. B. Goers, “Development of a pulsed backscatter-absorption gas-imaging system and its application to the visualization of natural gas leaks,” Appl. Opt. 37(18), 3912–3922 (1998).
[Crossref] [PubMed]

Kern, C.

U. Platt, P. Lübcke, J. Kuhn, N. Bobrowski, F. Prata, M. Burton, and C. Kern, “Quantitative imaging of volcanic plumes - Results, needs, and future trends,” J. Volcanol. Geotherm. Res. 300, 7–21 (2015).
[Crossref]

Kester, R. T.

N. Hagen, R. T. Kester, C. G. Morlier, J. A. Panek, P. Drayton, D. Fashimpaur, P. Stone, and E. Adams, “Video-rate spectral imaging of gas leaks in the longwave infrared,” Proc. SPIE 8710, 871005 (2013).
[Crossref]

N. Hagen, R. T. Kester, and C. Walker, “Real-time quantitative hydrocarbon gas imaging with the gas cloud imager (GCI),” Proc. SPIE 8358, 83581J (2012).
[Crossref]

Kick, H.

V. Tank, H. Pfanz, and H. Kick, “New remote sensing techniques for the detection and quantification of earth surface CO2 degassing,” J. Volcanol. Geotherm. Res. 177(2), 515–524 (2008).
[Crossref]

Kobayashi, T.

M. Imaki and T. Kobayashi, “Infrared frequency upconverter for high-sensitivity imaging of gas plumes,” Opt. Lett. 32(13), 1923–1925 (2007).
[Crossref] [PubMed]

Kuai, L.

G. C. Hulley, R. M. Duren, F. M. Hopkins, S. J. Hook, N. Vance, P. Guillevic, W. R. Johnson, B. T. Eng, J. M. Mihaly, V. M. Jovanovic, S. L. Chazanoff, Z. K. Staniszewski, L. Kuai, J. Worden, C. Frankenberg, G. Rivera, A. D. Aubrey, C. E. Miller, N. K. Malakar, J. M. Sánchez Tomás, and K. T. Holmes, “High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES),” Atmos. Meas. Tech. 9(5), 2393–2408 (2016).
[Crossref]

Kubo, S.

T. Sakagami, H. Anzai, and S. Kubo, “Development of a gas leak detection method based on infrared spectrum imaging utilizing microbolometer camera,” Proc. SPIE 8013, 80130C (2011).
[Crossref]

Kuhn, J.

U. Platt, P. Lübcke, J. Kuhn, N. Bobrowski, F. Prata, M. Burton, and C. Kern, “Quantitative imaging of volcanic plumes - Results, needs, and future trends,” J. Volcanol. Geotherm. Res. 300, 7–21 (2015).
[Crossref]

Kulp, T. J.

D. R. Robinson, R. Luke-Boone, V. Aggarwal, B. Harris, E. Anderson, D. Ranum, T. J. Kulp, K. Armstrong, R. Sommers, T. G. McRae, K. Ritter, J. H. Siegell, D. Van Pelt, and M. Smylie, “Refinery evaluation of optical imaging to locate fugitive emissions,” J. Air Waste Manag. Assoc. 57(7), 803–810 (2007).
[Crossref] [PubMed]

P. E. Powers, T. J. Kulp, and R. Kennedy, “Demonstration of differential backscatter absorption gas imaging,” Appl. Opt. 39(9), 1440–1448 (2000).
[Crossref] [PubMed]

T. J. Kulp, P. Powers, R. Kennedy, and U. B. Goers, “Development of a pulsed backscatter-absorption gas-imaging system and its application to the visualization of natural gas leaks,” Appl. Opt. 37(18), 3912–3922 (1998).
[Crossref] [PubMed]

T. G. McRae and T. J. Kulp, “Backscatter absorption gas imaging: A new technique for gas visualization,” Appl. Opt. 32(21), 4037–4050 (1993).
[Crossref] [PubMed]

Laderer, M. C.

R. T. Wainner, N. F. Aubut, M. C. Laderer, and M. B. Frish, “Scanning, standoff TDLAS leak imaging and quantification,” Proc. SPIE 10210, 1021006 (2017).
[Crossref]

Lavoie, T. N.

T. N. Lavoie, P. B. Shepson, C. A. Gore, B. H. Stirm, R. Kaeser, B. Wulle, D. Lyon, and J. Rudek, “Assessing the methane emissions from natural gas-fired power plants and oil refineries,” Environ. Sci. Technol. 51(6), 3373–3381 (2017).
[Crossref] [PubMed]

Li, F.

K. Wu, Y. Feng, G. Yu, L. Liu, J. Li, Y. Xiong, and F. Li, “Development of an imaging gas correlation spectrometry based mid-infrared camera for two-dimensional mapping of CO in vehicle exhausts,” Opt. Express 26(7), 8239–8251 (2018).
[Crossref] [PubMed]

Li, J.

K. Wu, Y. Feng, G. Yu, L. Liu, J. Li, Y. Xiong, and F. Li, “Development of an imaging gas correlation spectrometry based mid-infrared camera for two-dimensional mapping of CO in vehicle exhausts,” Opt. Express 26(7), 8239–8251 (2018).
[Crossref] [PubMed]

Y. Long, L. Wang, J. Li, C. Zhang, and B. Zhang, “Detectivity of gas leakage based on electromagnetic radiation transfer,” Proc. SPIE 8013, 80130D (2011).
[Crossref]

Lin, Y.

C. Liu, L. Xu, J. Chen, Z. Cao, Y. Lin, and W. Cai, “Development of a fan-beam TDLAS-based tomographic sensor for rapid imaging of temperature and gas concentration,” Opt. Express 23(17), 22494–22511 (2015).
[Crossref] [PubMed]

Liu, C.

C. Liu, L. Xu, J. Chen, Z. Cao, Y. Lin, and W. Cai, “Development of a fan-beam TDLAS-based tomographic sensor for rapid imaging of temperature and gas concentration,” Opt. Express 23(17), 22494–22511 (2015).
[Crossref] [PubMed]

Liu, L.

K. Wu, Y. Feng, G. Yu, L. Liu, J. Li, Y. Xiong, and F. Li, “Development of an imaging gas correlation spectrometry based mid-infrared camera for two-dimensional mapping of CO in vehicle exhausts,” Opt. Express 26(7), 8239–8251 (2018).
[Crossref] [PubMed]

Long, Y.

Y. Long, L. Wang, J. Li, C. Zhang, and B. Zhang, “Detectivity of gas leakage based on electromagnetic radiation transfer,” Proc. SPIE 8013, 80130D (2011).
[Crossref]

Lübcke, P.

U. Platt, P. Lübcke, J. Kuhn, N. Bobrowski, F. Prata, M. Burton, and C. Kern, “Quantitative imaging of volcanic plumes - Results, needs, and future trends,” J. Volcanol. Geotherm. Res. 300, 7–21 (2015).
[Crossref]

Luke-Boone, R.

D. R. Robinson, R. Luke-Boone, V. Aggarwal, B. Harris, E. Anderson, D. Ranum, T. J. Kulp, K. Armstrong, R. Sommers, T. G. McRae, K. Ritter, J. H. Siegell, D. Van Pelt, and M. Smylie, “Refinery evaluation of optical imaging to locate fugitive emissions,” J. Air Waste Manag. Assoc. 57(7), 803–810 (2007).
[Crossref] [PubMed]

Lyon, D.

T. N. Lavoie, P. B. Shepson, C. A. Gore, B. H. Stirm, R. Kaeser, B. Wulle, D. Lyon, and J. Rudek, “Assessing the methane emissions from natural gas-fired power plants and oil refineries,” Environ. Sci. Technol. 51(6), 3373–3381 (2017).
[Crossref] [PubMed]

Maker, G. T.

G. M. Gibson, B. Sun, M. P. Edgar, D. B. Phillips, N. Hempler, G. T. Maker, G. P. A. Malcolm, and M. J. Padgett, “Real-time imaging of methane gas leaks using a single-pixel camera,” Opt. Express 25(4), 2998–3005 (2017).
[Crossref] [PubMed]

Malakar, N. K.

G. C. Hulley, R. M. Duren, F. M. Hopkins, S. J. Hook, N. Vance, P. Guillevic, W. R. Johnson, B. T. Eng, J. M. Mihaly, V. M. Jovanovic, S. L. Chazanoff, Z. K. Staniszewski, L. Kuai, J. Worden, C. Frankenberg, G. Rivera, A. D. Aubrey, C. E. Miller, N. K. Malakar, J. M. Sánchez Tomás, and K. T. Holmes, “High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES),” Atmos. Meas. Tech. 9(5), 2393–2408 (2016).
[Crossref]

Malcolm, G. P. A.

G. M. Gibson, B. Sun, M. P. Edgar, D. B. Phillips, N. Hempler, G. T. Maker, G. P. A. Malcolm, and M. J. Padgett, “Real-time imaging of methane gas leaks using a single-pixel camera,” Opt. Express 25(4), 2998–3005 (2017).
[Crossref] [PubMed]

Mannan, M. S.

A. Safitri, X. Gao, and M. S. Mannan, “Dispersion modeling approach for quantification of methane emission rates from natural gas fugitive leaks detected by infrared imaging technique,” J. Loss Prev. Process Ind. 24(2), 138–145 (2011).
[Crossref]

Marcotte, F.

M.-A. Gagnon, K.-A. Jahjah, F. Marcotte, P. Tremblay, V. Farley, and M. Chamberland, “Time-resolved thermal infrared multispectral imaging of gases and minerals,” Proc. SPIE 9263, 92630G (2014).
[Crossref]

Maurtua, I.

A. Ibarguren, J. Molina, L. Susperregi, and I. Maurtua, “Thermal tracking in mobile robots for leak inspection activities,” Sensors (Basel) 13(10), 13560–13574 (2013).
[Crossref] [PubMed]

McGuire, M.

A. P. Ravikumar, J. Wang, M. McGuire, C. S. Bell, D. Zimmerle, and A. R. Brandt, “‘Good versus good enough?’ Empirical tests of methane leak detection sensitivity of a commercial infrared camera,” Environ. Sci. Technol. 52(4), 2368–2374 (2018).
[Crossref] [PubMed]

McRae, T. G.

D. R. Robinson, R. Luke-Boone, V. Aggarwal, B. Harris, E. Anderson, D. Ranum, T. J. Kulp, K. Armstrong, R. Sommers, T. G. McRae, K. Ritter, J. H. Siegell, D. Van Pelt, and M. Smylie, “Refinery evaluation of optical imaging to locate fugitive emissions,” J. Air Waste Manag. Assoc. 57(7), 803–810 (2007).
[Crossref] [PubMed]

T. G. McRae and T. J. Kulp, “Backscatter absorption gas imaging: A new technique for gas visualization,” Appl. Opt. 32(21), 4037–4050 (1993).
[Crossref] [PubMed]

Meléndez, J.

M. A. Rodríguez-Conejo and J. Meléndez, “Hyperspectral quantitative imaging of gas sources in the mid-infrared,” Appl. Opt. 54(2), 141–149 (2015).
[Crossref] [PubMed]

Mihaly, J. M.

G. C. Hulley, R. M. Duren, F. M. Hopkins, S. J. Hook, N. Vance, P. Guillevic, W. R. Johnson, B. T. Eng, J. M. Mihaly, V. M. Jovanovic, S. L. Chazanoff, Z. K. Staniszewski, L. Kuai, J. Worden, C. Frankenberg, G. Rivera, A. D. Aubrey, C. E. Miller, N. K. Malakar, J. M. Sánchez Tomás, and K. T. Holmes, “High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES),” Atmos. Meas. Tech. 9(5), 2393–2408 (2016).
[Crossref]

Miller, C. E.

G. C. Hulley, R. M. Duren, F. M. Hopkins, S. J. Hook, N. Vance, P. Guillevic, W. R. Johnson, B. T. Eng, J. M. Mihaly, V. M. Jovanovic, S. L. Chazanoff, Z. K. Staniszewski, L. Kuai, J. Worden, C. Frankenberg, G. Rivera, A. D. Aubrey, C. E. Miller, N. K. Malakar, J. M. Sánchez Tomás, and K. T. Holmes, “High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES),” Atmos. Meas. Tech. 9(5), 2393–2408 (2016).
[Crossref]

Molina, J.

A. Ibarguren, J. Molina, L. Susperregi, and I. Maurtua, “Thermal tracking in mobile robots for leak inspection activities,” Sensors (Basel) 13(10), 13560–13574 (2013).
[Crossref] [PubMed]

Morlier, C. G.

N. Hagen, R. T. Kester, C. G. Morlier, J. A. Panek, P. Drayton, D. Fashimpaur, P. Stone, and E. Adams, “Video-rate spectral imaging of gas leaks in the longwave infrared,” Proc. SPIE 8710, 871005 (2013).
[Crossref]

Naranjo, E.

E. Naranjo, S. Baliga, and P. Bernascolle, “IR gas imaging in an industrial setting,” Proc. SPIE 7661, 76610K (2010).
[Crossref]

Olofsson, G.

M. Gåfalk, G. Olofsson, P. Crill, and D. Bastviken, “Making methane visible,” Nat. Clim. Chang. 6(4), 426–430 (2016).
[Crossref]

Padgett, M. J.

G. M. Gibson, B. Sun, M. P. Edgar, D. B. Phillips, N. Hempler, G. T. Maker, G. P. A. Malcolm, and M. J. Padgett, “Real-time imaging of methane gas leaks using a single-pixel camera,” Opt. Express 25(4), 2998–3005 (2017).
[Crossref] [PubMed]

Panek, J. A.

N. Hagen, R. T. Kester, C. G. Morlier, J. A. Panek, P. Drayton, D. Fashimpaur, P. Stone, and E. Adams, “Video-rate spectral imaging of gas leaks in the longwave infrared,” Proc. SPIE 8710, 871005 (2013).
[Crossref]

Pfanz, H.

V. Tank, H. Pfanz, and H. Kick, “New remote sensing techniques for the detection and quantification of earth surface CO2 degassing,” J. Volcanol. Geotherm. Res. 177(2), 515–524 (2008).
[Crossref]

Phillips, D. B.

G. M. Gibson, B. Sun, M. P. Edgar, D. B. Phillips, N. Hempler, G. T. Maker, G. P. A. Malcolm, and M. J. Padgett, “Real-time imaging of methane gas leaks using a single-pixel camera,” Opt. Express 25(4), 2998–3005 (2017).
[Crossref] [PubMed]

Platt, U.

U. Platt, P. Lübcke, J. Kuhn, N. Bobrowski, F. Prata, M. Burton, and C. Kern, “Quantitative imaging of volcanic plumes - Results, needs, and future trends,” J. Volcanol. Geotherm. Res. 300, 7–21 (2015).
[Crossref]

Powers, P.

T. J. Kulp, P. Powers, R. Kennedy, and U. B. Goers, “Development of a pulsed backscatter-absorption gas-imaging system and its application to the visualization of natural gas leaks,” Appl. Opt. 37(18), 3912–3922 (1998).
[Crossref] [PubMed]

Powers, P. E.

P. E. Powers, T. J. Kulp, and R. Kennedy, “Demonstration of differential backscatter absorption gas imaging,” Appl. Opt. 39(9), 1440–1448 (2000).
[Crossref] [PubMed]

Prata, F.

U. Platt, P. Lübcke, J. Kuhn, N. Bobrowski, F. Prata, M. Burton, and C. Kern, “Quantitative imaging of volcanic plumes - Results, needs, and future trends,” J. Volcanol. Geotherm. Res. 300, 7–21 (2015).
[Crossref]

Ranum, D.

D. R. Robinson, R. Luke-Boone, V. Aggarwal, B. Harris, E. Anderson, D. Ranum, T. J. Kulp, K. Armstrong, R. Sommers, T. G. McRae, K. Ritter, J. H. Siegell, D. Van Pelt, and M. Smylie, “Refinery evaluation of optical imaging to locate fugitive emissions,” J. Air Waste Manag. Assoc. 57(7), 803–810 (2007).
[Crossref] [PubMed]

Ravikumar, A. P.

A. P. Ravikumar, J. Wang, M. McGuire, C. S. Bell, D. Zimmerle, and A. R. Brandt, “‘Good versus good enough?’ Empirical tests of methane leak detection sensitivity of a commercial infrared camera,” Environ. Sci. Technol. 52(4), 2368–2374 (2018).
[Crossref] [PubMed]

Richardson, M.

P. W. T. Yuen and M. Richardson, “An introduction to hyperspectral imaging and its application for security, surveillance and target acquisition,” Imaging Sci. J. 58(5), 241–253 (2010).
[Crossref]

Riley, D. N.

R. D. M. Scafutto, C. R. de Souza Filho, D. N. Riley, and W. J. de Oliveira, “Evaluation of thermal infrared hyperspectral imagery for the detection of onshore methane plumes: Significance for hydrocarbon exploration and monitoring,” Int. J. Appl. Earth Obs. Geoinf. 64, 311–325 (2018).
[Crossref]

Ritter, K.

D. R. Robinson, R. Luke-Boone, V. Aggarwal, B. Harris, E. Anderson, D. Ranum, T. J. Kulp, K. Armstrong, R. Sommers, T. G. McRae, K. Ritter, J. H. Siegell, D. Van Pelt, and M. Smylie, “Refinery evaluation of optical imaging to locate fugitive emissions,” J. Air Waste Manag. Assoc. 57(7), 803–810 (2007).
[Crossref] [PubMed]

Rivera, G.

G. C. Hulley, R. M. Duren, F. M. Hopkins, S. J. Hook, N. Vance, P. Guillevic, W. R. Johnson, B. T. Eng, J. M. Mihaly, V. M. Jovanovic, S. L. Chazanoff, Z. K. Staniszewski, L. Kuai, J. Worden, C. Frankenberg, G. Rivera, A. D. Aubrey, C. E. Miller, N. K. Malakar, J. M. Sánchez Tomás, and K. T. Holmes, “High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES),” Atmos. Meas. Tech. 9(5), 2393–2408 (2016).
[Crossref]

Robinson, D. R.

D. R. Robinson, R. Luke-Boone, V. Aggarwal, B. Harris, E. Anderson, D. Ranum, T. J. Kulp, K. Armstrong, R. Sommers, T. G. McRae, K. Ritter, J. H. Siegell, D. Van Pelt, and M. Smylie, “Refinery evaluation of optical imaging to locate fugitive emissions,” J. Air Waste Manag. Assoc. 57(7), 803–810 (2007).
[Crossref] [PubMed]

Rodríguez-Conejo, M. A.

M. A. Rodríguez-Conejo and J. Meléndez, “Hyperspectral quantitative imaging of gas sources in the mid-infrared,” Appl. Opt. 54(2), 141–149 (2015).
[Crossref] [PubMed]

Rotschild, C.

K. Wolowelsky, A. Gil, M. Elkabets, and C. Rotschild, “Gas detection using absorption properties of liquid crystals,” Opt. Express 25(26), 32532–32539 (2017).
[Crossref]

Rudek, J.

T. N. Lavoie, P. B. Shepson, C. A. Gore, B. H. Stirm, R. Kaeser, B. Wulle, D. Lyon, and J. Rudek, “Assessing the methane emissions from natural gas-fired power plants and oil refineries,” Environ. Sci. Technol. 51(6), 3373–3381 (2017).
[Crossref] [PubMed]

Safitri, A.

A. Safitri, X. Gao, and M. S. Mannan, “Dispersion modeling approach for quantification of methane emission rates from natural gas fugitive leaks detected by infrared imaging technique,” J. Loss Prev. Process Ind. 24(2), 138–145 (2011).
[Crossref]

Sakagami, T.

T. Sakagami, H. Anzai, and S. Kubo, “Development of a gas leak detection method based on infrared spectrum imaging utilizing microbolometer camera,” Proc. SPIE 8013, 80130C (2011).
[Crossref]

Sánchez Tomás, J. M.

G. C. Hulley, R. M. Duren, F. M. Hopkins, S. J. Hook, N. Vance, P. Guillevic, W. R. Johnson, B. T. Eng, J. M. Mihaly, V. M. Jovanovic, S. L. Chazanoff, Z. K. Staniszewski, L. Kuai, J. Worden, C. Frankenberg, G. Rivera, A. D. Aubrey, C. E. Miller, N. K. Malakar, J. M. Sánchez Tomás, and K. T. Holmes, “High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES),” Atmos. Meas. Tech. 9(5), 2393–2408 (2016).
[Crossref]

Sandsten, J.

J. Sandsten and M. Andersson, “Volume flow calculations on gas leaks imaged with infrared gas-correlation,” Opt. Express 20(18), 20318–20329 (2012).
[Crossref] [PubMed]

J. Sandsten, H. Edner, and S. Svanberg, “Gas visualization of industrial hydrocarbon emissions,” Opt. Express 12(7), 1443–1451 (2004).
[Crossref] [PubMed]

J. Sandsten, P. Weibring, H. Edner, and S. Svanberg, “Real-time gas-correlation imaging employing thermal background radiation,” Opt. Express 6(4), 92–103 (2000).
[Crossref] [PubMed]

Scafutto, R. D. M.

R. D. M. Scafutto, C. R. de Souza Filho, D. N. Riley, and W. J. de Oliveira, “Evaluation of thermal infrared hyperspectral imagery for the detection of onshore methane plumes: Significance for hydrocarbon exploration and monitoring,” Int. J. Appl. Earth Obs. Geoinf. 64, 311–325 (2018).
[Crossref]

Shepson, P. B.

T. N. Lavoie, P. B. Shepson, C. A. Gore, B. H. Stirm, R. Kaeser, B. Wulle, D. Lyon, and J. Rudek, “Assessing the methane emissions from natural gas-fired power plants and oil refineries,” Environ. Sci. Technol. 51(6), 3373–3381 (2017).
[Crossref] [PubMed]

Siegell, J. H.

D. R. Robinson, R. Luke-Boone, V. Aggarwal, B. Harris, E. Anderson, D. Ranum, T. J. Kulp, K. Armstrong, R. Sommers, T. G. McRae, K. Ritter, J. H. Siegell, D. Van Pelt, and M. Smylie, “Refinery evaluation of optical imaging to locate fugitive emissions,” J. Air Waste Manag. Assoc. 57(7), 803–810 (2007).
[Crossref] [PubMed]

Smylie, M.

D. R. Robinson, R. Luke-Boone, V. Aggarwal, B. Harris, E. Anderson, D. Ranum, T. J. Kulp, K. Armstrong, R. Sommers, T. G. McRae, K. Ritter, J. H. Siegell, D. Van Pelt, and M. Smylie, “Refinery evaluation of optical imaging to locate fugitive emissions,” J. Air Waste Manag. Assoc. 57(7), 803–810 (2007).
[Crossref] [PubMed]

Sommers, R.

D. R. Robinson, R. Luke-Boone, V. Aggarwal, B. Harris, E. Anderson, D. Ranum, T. J. Kulp, K. Armstrong, R. Sommers, T. G. McRae, K. Ritter, J. H. Siegell, D. Van Pelt, and M. Smylie, “Refinery evaluation of optical imaging to locate fugitive emissions,” J. Air Waste Manag. Assoc. 57(7), 803–810 (2007).
[Crossref] [PubMed]

Staniszewski, Z. K.

G. C. Hulley, R. M. Duren, F. M. Hopkins, S. J. Hook, N. Vance, P. Guillevic, W. R. Johnson, B. T. Eng, J. M. Mihaly, V. M. Jovanovic, S. L. Chazanoff, Z. K. Staniszewski, L. Kuai, J. Worden, C. Frankenberg, G. Rivera, A. D. Aubrey, C. E. Miller, N. K. Malakar, J. M. Sánchez Tomás, and K. T. Holmes, “High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES),” Atmos. Meas. Tech. 9(5), 2393–2408 (2016).
[Crossref]

Stirm, B. H.

T. N. Lavoie, P. B. Shepson, C. A. Gore, B. H. Stirm, R. Kaeser, B. Wulle, D. Lyon, and J. Rudek, “Assessing the methane emissions from natural gas-fired power plants and oil refineries,” Environ. Sci. Technol. 51(6), 3373–3381 (2017).
[Crossref] [PubMed]

Stone, P.

N. Hagen, R. T. Kester, C. G. Morlier, J. A. Panek, P. Drayton, D. Fashimpaur, P. Stone, and E. Adams, “Video-rate spectral imaging of gas leaks in the longwave infrared,” Proc. SPIE 8710, 871005 (2013).
[Crossref]

Sun, B.

G. M. Gibson, B. Sun, M. P. Edgar, D. B. Phillips, N. Hempler, G. T. Maker, G. P. A. Malcolm, and M. J. Padgett, “Real-time imaging of methane gas leaks using a single-pixel camera,” Opt. Express 25(4), 2998–3005 (2017).
[Crossref] [PubMed]

Susperregi, L.

A. Ibarguren, J. Molina, L. Susperregi, and I. Maurtua, “Thermal tracking in mobile robots for leak inspection activities,” Sensors (Basel) 13(10), 13560–13574 (2013).
[Crossref] [PubMed]

Svanberg, S.

J. Sandsten, H. Edner, and S. Svanberg, “Gas visualization of industrial hydrocarbon emissions,” Opt. Express 12(7), 1443–1451 (2004).
[Crossref] [PubMed]

J. Sandsten, P. Weibring, H. Edner, and S. Svanberg, “Real-time gas-correlation imaging employing thermal background radiation,” Opt. Express 6(4), 92–103 (2000).
[Crossref] [PubMed]

Tank, V.

V. Tank, H. Pfanz, and H. Kick, “New remote sensing techniques for the detection and quantification of earth surface CO2 degassing,” J. Volcanol. Geotherm. Res. 177(2), 515–524 (2008).
[Crossref]

Tremblay, P.

M.-A. Gagnon, K.-A. Jahjah, F. Marcotte, P. Tremblay, V. Farley, and M. Chamberland, “Time-resolved thermal infrared multispectral imaging of gases and minerals,” Proc. SPIE 9263, 92630G (2014).
[Crossref]

Van Pelt, D.

D. R. Robinson, R. Luke-Boone, V. Aggarwal, B. Harris, E. Anderson, D. Ranum, T. J. Kulp, K. Armstrong, R. Sommers, T. G. McRae, K. Ritter, J. H. Siegell, D. Van Pelt, and M. Smylie, “Refinery evaluation of optical imaging to locate fugitive emissions,” J. Air Waste Manag. Assoc. 57(7), 803–810 (2007).
[Crossref] [PubMed]

Vance, N.

G. C. Hulley, R. M. Duren, F. M. Hopkins, S. J. Hook, N. Vance, P. Guillevic, W. R. Johnson, B. T. Eng, J. M. Mihaly, V. M. Jovanovic, S. L. Chazanoff, Z. K. Staniszewski, L. Kuai, J. Worden, C. Frankenberg, G. Rivera, A. D. Aubrey, C. E. Miller, N. K. Malakar, J. M. Sánchez Tomás, and K. T. Holmes, “High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES),” Atmos. Meas. Tech. 9(5), 2393–2408 (2016).
[Crossref]

Wainner, R. T.

R. T. Wainner, N. F. Aubut, M. C. Laderer, and M. B. Frish, “Scanning, standoff TDLAS leak imaging and quantification,” Proc. SPIE 10210, 1021006 (2017).
[Crossref]

Walker, C.

N. Hagen, R. T. Kester, and C. Walker, “Real-time quantitative hydrocarbon gas imaging with the gas cloud imager (GCI),” Proc. SPIE 8358, 83581J (2012).
[Crossref]

Wang, J.

A. P. Ravikumar, J. Wang, M. McGuire, C. S. Bell, D. Zimmerle, and A. R. Brandt, “‘Good versus good enough?’ Empirical tests of methane leak detection sensitivity of a commercial infrared camera,” Environ. Sci. Technol. 52(4), 2368–2374 (2018).
[Crossref] [PubMed]

Wang, L.

Y. Long, L. Wang, J. Li, C. Zhang, and B. Zhang, “Detectivity of gas leakage based on electromagnetic radiation transfer,” Proc. SPIE 8013, 80130D (2011).
[Crossref]

Weibring, P.

J. Sandsten, P. Weibring, H. Edner, and S. Svanberg, “Real-time gas-correlation imaging employing thermal background radiation,” Opt. Express 6(4), 92–103 (2000).
[Crossref] [PubMed]

Wolowelsky, K.

K. Wolowelsky, A. Gil, M. Elkabets, and C. Rotschild, “Gas detection using absorption properties of liquid crystals,” Opt. Express 25(26), 32532–32539 (2017).
[Crossref]

Worden, J.

G. C. Hulley, R. M. Duren, F. M. Hopkins, S. J. Hook, N. Vance, P. Guillevic, W. R. Johnson, B. T. Eng, J. M. Mihaly, V. M. Jovanovic, S. L. Chazanoff, Z. K. Staniszewski, L. Kuai, J. Worden, C. Frankenberg, G. Rivera, A. D. Aubrey, C. E. Miller, N. K. Malakar, J. M. Sánchez Tomás, and K. T. Holmes, “High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES),” Atmos. Meas. Tech. 9(5), 2393–2408 (2016).
[Crossref]

Wu, K.

K. Wu, Y. Feng, G. Yu, L. Liu, J. Li, Y. Xiong, and F. Li, “Development of an imaging gas correlation spectrometry based mid-infrared camera for two-dimensional mapping of CO in vehicle exhausts,” Opt. Express 26(7), 8239–8251 (2018).
[Crossref] [PubMed]

Wulle, B.

T. N. Lavoie, P. B. Shepson, C. A. Gore, B. H. Stirm, R. Kaeser, B. Wulle, D. Lyon, and J. Rudek, “Assessing the methane emissions from natural gas-fired power plants and oil refineries,” Environ. Sci. Technol. 51(6), 3373–3381 (2017).
[Crossref] [PubMed]

Xiong, Y.

K. Wu, Y. Feng, G. Yu, L. Liu, J. Li, Y. Xiong, and F. Li, “Development of an imaging gas correlation spectrometry based mid-infrared camera for two-dimensional mapping of CO in vehicle exhausts,” Opt. Express 26(7), 8239–8251 (2018).
[Crossref] [PubMed]

Xu, L.

C. Liu, L. Xu, J. Chen, Z. Cao, Y. Lin, and W. Cai, “Development of a fan-beam TDLAS-based tomographic sensor for rapid imaging of temperature and gas concentration,” Opt. Express 23(17), 22494–22511 (2015).
[Crossref] [PubMed]

Yu, G.

K. Wu, Y. Feng, G. Yu, L. Liu, J. Li, Y. Xiong, and F. Li, “Development of an imaging gas correlation spectrometry based mid-infrared camera for two-dimensional mapping of CO in vehicle exhausts,” Opt. Express 26(7), 8239–8251 (2018).
[Crossref] [PubMed]

Yuen, P. W. T.

P. W. T. Yuen and M. Richardson, “An introduction to hyperspectral imaging and its application for security, surveillance and target acquisition,” Imaging Sci. J. 58(5), 241–253 (2010).
[Crossref]

Zhang, B.

Y. Long, L. Wang, J. Li, C. Zhang, and B. Zhang, “Detectivity of gas leakage based on electromagnetic radiation transfer,” Proc. SPIE 8013, 80130D (2011).
[Crossref]

Zhang, C.

Y. Long, L. Wang, J. Li, C. Zhang, and B. Zhang, “Detectivity of gas leakage based on electromagnetic radiation transfer,” Proc. SPIE 8013, 80130D (2011).
[Crossref]

Zimmerle, D.

A. P. Ravikumar, J. Wang, M. McGuire, C. S. Bell, D. Zimmerle, and A. R. Brandt, “‘Good versus good enough?’ Empirical tests of methane leak detection sensitivity of a commercial infrared camera,” Environ. Sci. Technol. 52(4), 2368–2374 (2018).
[Crossref] [PubMed]

Appl. Opt. (4)

T. G. McRae and T. J. Kulp, “Backscatter absorption gas imaging: A new technique for gas visualization,” Appl. Opt. 32(21), 4037–4050 (1993).
[Crossref] [PubMed]

T. J. Kulp, P. Powers, R. Kennedy, and U. B. Goers, “Development of a pulsed backscatter-absorption gas-imaging system and its application to the visualization of natural gas leaks,” Appl. Opt. 37(18), 3912–3922 (1998).
[Crossref] [PubMed]

P. E. Powers, T. J. Kulp, and R. Kennedy, “Demonstration of differential backscatter absorption gas imaging,” Appl. Opt. 39(9), 1440–1448 (2000).
[Crossref] [PubMed]

M. A. Rodríguez-Conejo and J. Meléndez, “Hyperspectral quantitative imaging of gas sources in the mid-infrared,” Appl. Opt. 54(2), 141–149 (2015).
[Crossref] [PubMed]

Atmos. Meas. Tech. (1)

G. C. Hulley, R. M. Duren, F. M. Hopkins, S. J. Hook, N. Vance, P. Guillevic, W. R. Johnson, B. T. Eng, J. M. Mihaly, V. M. Jovanovic, S. L. Chazanoff, Z. K. Staniszewski, L. Kuai, J. Worden, C. Frankenberg, G. Rivera, A. D. Aubrey, C. E. Miller, N. K. Malakar, J. M. Sánchez Tomás, and K. T. Holmes, “High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES),” Atmos. Meas. Tech. 9(5), 2393–2408 (2016).
[Crossref]

Environ. Sci. Technol. (2)

T. N. Lavoie, P. B. Shepson, C. A. Gore, B. H. Stirm, R. Kaeser, B. Wulle, D. Lyon, and J. Rudek, “Assessing the methane emissions from natural gas-fired power plants and oil refineries,” Environ. Sci. Technol. 51(6), 3373–3381 (2017).
[Crossref] [PubMed]

A. P. Ravikumar, J. Wang, M. McGuire, C. S. Bell, D. Zimmerle, and A. R. Brandt, “‘Good versus good enough?’ Empirical tests of methane leak detection sensitivity of a commercial infrared camera,” Environ. Sci. Technol. 52(4), 2368–2374 (2018).
[Crossref] [PubMed]

Imaging Sci. J. (1)

P. W. T. Yuen and M. Richardson, “An introduction to hyperspectral imaging and its application for security, surveillance and target acquisition,” Imaging Sci. J. 58(5), 241–253 (2010).
[Crossref]

Int. J. Appl. Earth Obs. Geoinf. (1)

R. D. M. Scafutto, C. R. de Souza Filho, D. N. Riley, and W. J. de Oliveira, “Evaluation of thermal infrared hyperspectral imagery for the detection of onshore methane plumes: Significance for hydrocarbon exploration and monitoring,” Int. J. Appl. Earth Obs. Geoinf. 64, 311–325 (2018).
[Crossref]

J. Air Waste Manag. Assoc. (1)

D. R. Robinson, R. Luke-Boone, V. Aggarwal, B. Harris, E. Anderson, D. Ranum, T. J. Kulp, K. Armstrong, R. Sommers, T. G. McRae, K. Ritter, J. H. Siegell, D. Van Pelt, and M. Smylie, “Refinery evaluation of optical imaging to locate fugitive emissions,” J. Air Waste Manag. Assoc. 57(7), 803–810 (2007).
[Crossref] [PubMed]

J. Loss Prev. Process Ind. (1)

A. Safitri, X. Gao, and M. S. Mannan, “Dispersion modeling approach for quantification of methane emission rates from natural gas fugitive leaks detected by infrared imaging technique,” J. Loss Prev. Process Ind. 24(2), 138–145 (2011).
[Crossref]

J. Volcanol. Geotherm. Res. (2)

V. Tank, H. Pfanz, and H. Kick, “New remote sensing techniques for the detection and quantification of earth surface CO2 degassing,” J. Volcanol. Geotherm. Res. 177(2), 515–524 (2008).
[Crossref]

U. Platt, P. Lübcke, J. Kuhn, N. Bobrowski, F. Prata, M. Burton, and C. Kern, “Quantitative imaging of volcanic plumes - Results, needs, and future trends,” J. Volcanol. Geotherm. Res. 300, 7–21 (2015).
[Crossref]

Nat. Clim. Chang. (1)

M. Gåfalk, G. Olofsson, P. Crill, and D. Bastviken, “Making methane visible,” Nat. Clim. Chang. 6(4), 426–430 (2016).
[Crossref]

Opt. Express (7)

C. Liu, L. Xu, J. Chen, Z. Cao, Y. Lin, and W. Cai, “Development of a fan-beam TDLAS-based tomographic sensor for rapid imaging of temperature and gas concentration,” Opt. Express 23(17), 22494–22511 (2015).
[Crossref] [PubMed]

G. M. Gibson, B. Sun, M. P. Edgar, D. B. Phillips, N. Hempler, G. T. Maker, G. P. A. Malcolm, and M. J. Padgett, “Real-time imaging of methane gas leaks using a single-pixel camera,” Opt. Express 25(4), 2998–3005 (2017).
[Crossref] [PubMed]

J. Sandsten, H. Edner, and S. Svanberg, “Gas visualization of industrial hydrocarbon emissions,” Opt. Express 12(7), 1443–1451 (2004).
[Crossref] [PubMed]

K. Wolowelsky, A. Gil, M. Elkabets, and C. Rotschild, “Gas detection using absorption properties of liquid crystals,” Opt. Express 25(26), 32532–32539 (2017).
[Crossref]

J. Sandsten, P. Weibring, H. Edner, and S. Svanberg, “Real-time gas-correlation imaging employing thermal background radiation,” Opt. Express 6(4), 92–103 (2000).
[Crossref] [PubMed]

K. Wu, Y. Feng, G. Yu, L. Liu, J. Li, Y. Xiong, and F. Li, “Development of an imaging gas correlation spectrometry based mid-infrared camera for two-dimensional mapping of CO in vehicle exhausts,” Opt. Express 26(7), 8239–8251 (2018).
[Crossref] [PubMed]

J. Sandsten and M. Andersson, “Volume flow calculations on gas leaks imaged with infrared gas-correlation,” Opt. Express 20(18), 20318–20329 (2012).
[Crossref] [PubMed]

Opt. Lett. (1)

M. Imaki and T. Kobayashi, “Infrared frequency upconverter for high-sensitivity imaging of gas plumes,” Opt. Lett. 32(13), 1923–1925 (2007).
[Crossref] [PubMed]

Proc. SPIE (7)

R. T. Wainner, N. F. Aubut, M. C. Laderer, and M. B. Frish, “Scanning, standoff TDLAS leak imaging and quantification,” Proc. SPIE 10210, 1021006 (2017).
[Crossref]

T. Sakagami, H. Anzai, and S. Kubo, “Development of a gas leak detection method based on infrared spectrum imaging utilizing microbolometer camera,” Proc. SPIE 8013, 80130C (2011).
[Crossref]

Y. Long, L. Wang, J. Li, C. Zhang, and B. Zhang, “Detectivity of gas leakage based on electromagnetic radiation transfer,” Proc. SPIE 8013, 80130D (2011).
[Crossref]

N. Hagen, R. T. Kester, C. G. Morlier, J. A. Panek, P. Drayton, D. Fashimpaur, P. Stone, and E. Adams, “Video-rate spectral imaging of gas leaks in the longwave infrared,” Proc. SPIE 8710, 871005 (2013).
[Crossref]

N. Hagen, R. T. Kester, and C. Walker, “Real-time quantitative hydrocarbon gas imaging with the gas cloud imager (GCI),” Proc. SPIE 8358, 83581J (2012).
[Crossref]

M.-A. Gagnon, K.-A. Jahjah, F. Marcotte, P. Tremblay, V. Farley, and M. Chamberland, “Time-resolved thermal infrared multispectral imaging of gases and minerals,” Proc. SPIE 9263, 92630G (2014).
[Crossref]

E. Naranjo, S. Baliga, and P. Bernascolle, “IR gas imaging in an industrial setting,” Proc. SPIE 7661, 76610K (2010).
[Crossref]

Sensors (Basel) (1)

A. Ibarguren, J. Molina, L. Susperregi, and I. Maurtua, “Thermal tracking in mobile robots for leak inspection activities,” Sensors (Basel) 13(10), 13560–13574 (2013).
[Crossref] [PubMed]

Other (3)

R. Benson, R. Madding, R. Lucier, J. Lyons, and P. Czerepuszko, “Standoff passive optical leak detection of volatile organic compounds using a cooled InSb based infrared imager,” in 99th Annual Conference and Exhibition of the Air and Waste Management Association 2006 (Air and Waste Management Association, 2006), 06-A-131.

“Northwest-Infrared,” https://nwir.pnl.gov/nsd/nsd.nsf/Welcome , retrieved October 10, 2018.

M. Vollmer and K. P. Möllmann, Infrared Thermal Imaging: Fundamentals, Research and Applications (John Wiley & Sons, 2017).

Supplementary Material (5)

NameDescription
» Visualization 1       A video clip to present how to measure the frame rate of the Archimedean spiral push-broom differential thermal imaging prototype for gas leakage detection.
» Visualization 2       A video clip to present the experimental setup and the running prototype of Archimedean spiral push-broom differential thermal imaging for gas leakage detection.
» Visualization 3       A video clip to present to ethylene gas imaging lab test results of the in-band, out-band, differential, "differential + in-band". The gas leak rate is 20ml/min. The temperature difference between the gas and background is 3K.
» Visualization 4       A video clip to present to ethylene gas imaging lab test results of the in-band, out-band, differential, "differential + in-band". The gas leak rate is 35ml/min. The temperature difference between the gas and background is 10K.
» Visualization 5       A video clip to present to ethylene gas imaging field test results of the in-band, out-band, differential, "differential + in-band". The gas leak rate is 30ml/min. The temperature difference between the gas and background is 15K.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a)–(c) Three different positions of the FPA relative to a four-zone A-disk in which each zone is an independent filter and position P B is superior to P A or P C for stable push-broom filtering. (d)-(e) The yellow filtering zone starts (the green spiral) and ends (the red spiral) the push-broom filtering for the first row of the FPA.
Fig. 2
Fig. 2 Single A-disk filtering zone and its geometric relationship with the FPA. The blue rectangle represents the FPA with m×n pixels. The center of the A-disk O is the origin of Cartesian coordinates. r H and θ H are the polar radius and polar angle of the FPA’s upper-left pixel H(1,1). M(1,m/2) is the center pixel of the first row of the FPA. θ 0 is the initial polar angle of the red dotted Archimedean spiral. The A-disk rotates counterclockwise at the constant angular velocity ω.
Fig. 3
Fig. 3 Sets of the optimum parameters FPA position ( r H , θ H ) and frame rate fps when NU takes the minimum value. N U min varies with the (a) r H , (b) θ H and (c) frame rate of the ASPBF imaging system at three different values for the characteristic parameter χ. The red dots represent the theoretical working points.
Fig. 4
Fig. 4 (a) Schematic diagrams of the in-band and out-band filtering zones of the A-disk, their spectral transmittance curves, and the gas absorption peak. (b) Schematic diagram of the ASPBF imaging system for gas detection.
Fig. 5
Fig. 5 (a–c) Distributions of CO N diff , SN R diff , and F1-score with variations in the cut-on wavelengths λ inband and λ outband at a C2H4 concentration length of 5000 ppm·m, background temperature of 303 K, and gas temperature of 296 K. Black square: maximum value and corresponding cut-on wavelengths of the in-band and out-band. (d) Transmittance of C2H4 gas with an absorption peak at 10.55 µm. (e) The maximum F1-score values vary at different ΔTs. (f) The cut-on wavelengths λ inband and λ outband corresponding to the maximum F1-score at different ΔTs.
Fig. 6
Fig. 6 (a) ASPBF-based dual-band differential thermal imaging prototype. (b) Four-zone dual-band A-disk with three circular holes and one slotted hole around the outer ring. (c) Schematic diagram of the frame synchronous pulses and rising edges of the readout signal. (d) Spectral characteristics for gas imaging, including the spectral radiance of the ambient background at 303 K (black curve), gas absorbance of C2H4 gas at the concentration length of 200 ppm·m (red curve), spectral transmittivity curves of the in-band (magenta) and out-band (blue) filtering zones, and normalized spectral response of the FPA (orange dotted curve).
Fig. 7
Fig. 7 Mean values of continuously captured images at different T B in the in-band and out-band.
Fig. 8
Fig. 8 Experimental setup in the laboratory. C2H4 gas comes out of the plastic tube and is observed against the background of the extended blackbody. The gas flow rate is precisely controlled by EL-FlOW. The ASPBF-based dual-band differential thermal imaging prototype is placed 2.1 meters’ away from the blackbody. (Visualization 2)
Fig. 9
Fig. 9 Lab test imaging results of C2H4 gas leakage with the prototype at the leak rate of 20 ml/min and ΔT of 3 K (Visualization 3). (a) in-band image. (b) out-band image. (c) differential image calculated by Eq. (14). (d) “differential + in-band” image. (e) Gray-value along the 121th line of the in-band image (blue solid curve) and “differential + in-band” image (red dotted curve). The gas region is encircled by a purple ellipse. Another lab test at higher leak rate of 35ml/min and higher ΔT of 10 K is also conducted (Visualization 4).
Fig. 10
Fig. 10 (a) Gas contrast of the differential image ( CO N diff ) at different gas flow rates when the blackbody temperature T B was 303 K and gas temperature was 300 K. (b) CO N diff at different blackbody temperatures when the gas flow rate was 25 ml/min and gas temperature was 300 K. Red dots: experimental results; solid blue line: theoretical simulation curve.
Fig. 11
Fig. 11 Field test imaging results of C2H4 gas leakage with the prototype at the leak rate of 30 ml/min and ΔT of 15 K (Visualization 5). (a) in-band image. (b) out-band image. (c) differential image calculated by Eq. (14). (d) “differential + in-band” image. (e) Gray-value along the 133th line of the in-band image (blue solid curve) and “differential + in-band” image (red dotted curve). The gas region is encircled by a purple ellipse.

Tables (2)

Tables Icon

Table 1 Input and designed parameter values & the real performance of our prototype

Tables Icon

Table 2 Comparison of C2H4 Gas Detection.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

r=χ( θ+ θ 0 ωt ),
θ 0 = r M χ θ M ,
t rotate ( u,v )= 1 ω [ θ P + θ 0 r P χ ],
( x P y P )=( r H cos( θ H )+(v1) d x r H sin( θ H )(u1) d y ),
T readout (u,v)=( u1 ) T line .
D( u,v )= T readout ( u,v ) t rotate ( u,v ).
NU= 1 T τ 1 mn u=1 n v=1 m ( D( u,v ) D ¯ ) 2 ×100%,
P plume = A d τ optics 4 F # 2 λ τ filter ( λ )[ τ gas ( λ ) ε B M λ ( T B )+(1 τ gas ( λ )) M λ ( T gas ) ]dλ ,
P BG = A d τ optics 4 F # 2 λ τ filter ( λ ) ε B M λ ( T B )dλ .
CO N diff =| ( P BG inband P BG outband )( P plume inband P plume outband ) ( P BG inband P BG outband ) |,
SN R diff = V S / V N = V S V NEP = [ ( P BG inband P BG outband )( P plume inband P plume outband ) ] 2 NEP ,
NEP= A d τ optics 4 F # 2 NETD λ τ filter ( λ ) ε B M λ ( T B ) T dλ.
F1-score= S N ^ R diff C O ^ N diff S N ^ R diff +C O ^ N diff ,
I Differential = I inband α I outband

Metrics