Abstract

In this paper, the thermal-lens induced mode coupling in step-index large mode area fiber laser is systematically investigated. The pertinent mode coupling coefficient is studied firstly, to the best of our knowledge. It is demonstrated that the mode coupling can be induced by the thermal-lens induced waveguide changing along the active fiber. It is found that the mode coupling can be enhanced mainly by the thermally-induced mode distortion and refractive index variation, both of which will become severe with the large thermal load. The impacts of fiber configuration parameters on the mode coupling are discussed. It is found that in the straight fiber, the mode coupling in a larger-core fiber can be weakened when the thermal load is low, but it will become stronger when thermal-lens effect is severe enough. However, in the bent fiber, enlarging core size, reducing core numerical aperture (NA), or decreasing bend radius will all aggravate the mode coupling. Especially when NA is excessively reduced, the mode coupling will be dramatically raised even with a small thermal load. The pertinent study is significant for understanding the mode coupling phenomenon in high-power fiber lasers.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Study on the adiabaticity criterion of the thermally-guided very-large-mode-area fiber

Wenbo Liu, Jianqiu Cao, and Jinbao Chen
Opt. Express 26(7) 7852-7865 (2018)

Measuring thermal load in fiber amplifiers in the presence of transversal mode instabilities

Franz Beier, Marco Plötner, Bettina Sattler, Fabian Stutzki, Till Walbaum, Andreas Liem, Nicoletta Haarlammert, Thomas Schreiber, Ramona Eberhardt, and Andreas Tünnermann
Opt. Lett. 42(21) 4311-4314 (2017)

Bendable large-mode-area fiber with a non-circular core

Junhua Ji, Huaiqin Lin, Raghuraman Sidharthan, Daryl Ho, Yanyan Zhou, Johan Nilsson, and Seongwoo Yoo
Appl. Opt. 57(22) 6388-6395 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. Nilsson and D. N. Payne, “Physics. High-power fiber lasers,” Science 332(6032), 921–922 (2011).
    [Crossref] [PubMed]
  2. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High-power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27(11), 63–92 (2010).
    [Crossref]
  3. E. Stiles, “New Developments in IPG Fiber Laser Technology,” in Proceedings of the 5th International Workshop on Fiber Lasers (2009).
  4. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
    [Crossref] [PubMed]
  5. D. Brown and H. J. Hoffman, “Thermal, stress, and Thermo-Optic effects in high average power double-clad Silica fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 37(2), 207–217 (2001).
    [Crossref]
  6. F. Jansen, F. Stutzki, H. J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express 20(4), 3997–4008 (2012).
    [Crossref] [PubMed]
  7. K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Thermo-optical effects in high-power ytterbium-doped fiber amplifiers,” Opt. Express 19(24), 23965–23980 (2011).
    [Crossref] [PubMed]
  8. J. D. Foster and L. M. Osterink, “Thermal effects in a Nd:YAG laser,” J. Appl. Phys. 41(9), 3656–3663 (1970).
    [Crossref]
  9. M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pump solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
    [Crossref]
  10. A. Montmerle Bonnefois, M. Gilbert, P.-Y. Thro, and J.-M. Weulersse, “Thermal lensing and spherical aberration in high-power transversally pumped laser rods,” Opt. Commun. 259(1), 223–235 (2006).
    [Crossref]
  11. J. Zhu, P. Zhou, Y. Ma, X. Xu, and Z. Liu, “Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers,” Opt. Express 19(19), 18645–18654 (2011).
    [Crossref] [PubMed]
  12. J. Cao, S. Guo, X. Xu, J. Chen, and Q. Lu, “Investigation on power scalability of diffraction-limited Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 373–383 (2014).
    [Crossref]
  13. H. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Average power limit of fiber-laser systems with nearly diffraction-limited beam quality,” Proc. SPIE 9728, 97280E (2016).
  14. S. Hädrich, T. Schreiber, T. Pertsch, J. Limpert, T. Peschel, R. Eberhardt, and A. Tünnermann, “Thermo-optical behavior of rare-earth-doped low-NA fibers in high power operation,” Opt. Express 14(13), 6091–6097 (2006).
    [Crossref] [PubMed]
  15. H. S. Kim, V. Sudesh, T. S. McComb, and M. C. Richardson, “Investigation of the thermal characteristic of a gain guided, index anti-guided fiber,” J. Korean Phys. Soc. 56(1), 209–213 (2010).
    [Crossref]
  16. F. Jansen, F. Stutzki, H. J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “High-power thermally guiding index-antiguiding-core fibers,” Opt. Lett. 38(4), 510–512 (2013).
    [Crossref] [PubMed]
  17. J. Cao, W. Liu, H. Ying, J. Chen, and Q. Lu, “Numerical study on a single-mode continuous-wave thermally guiding very-large-mode-area fiber amplifier,” Laser Phys. 28(3), 035105 (2018).
    [Crossref]
  18. W. Liu, J. Cao, and J. Chen, “Study on the adiabaticity criterion of the thermally-guided very-large-mode-area fiber,” Opt. Express 26(7), 7852–7865 (2018).
    [Crossref] [PubMed]
  19. L. Dong, “Thermal lensing in optical fibers,” Opt. Express 24(17), 19841–19852 (2016).
    [Crossref] [PubMed]
  20. C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
    [Crossref]
  21. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
    [Crossref] [PubMed]
  22. F. Stutzki, H. J. Otto, F. Jansen, C. Gaida, C. Jauregui, J. Limpert, and A. Tünnermann, “High-speed modal decomposition of mode instabilities in high-power fiber lasers,” Opt. Lett. 36(23), 4572–4574 (2011).
    [Crossref] [PubMed]
  23. J. Lægsgaard, “Optimizing Yb concentration of fiber amplifiers in the presence of transverse modal instabilities and photodarkening,” Appl. Opt. 55(8), 1966–1970 (2016).
    [Crossref] [PubMed]
  24. A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
    [Crossref] [PubMed]
  25. C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
    [Crossref] [PubMed]
  26. K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Theoretical analysis of mode instability in high-power fiber amplifiers,” Opt. Express 21(2), 1944–1971 (2013).
    [Crossref] [PubMed]
  27. R. T. Schermer, “Mode scalability in bent optical fibers,” Opt. Express 15(24), 15674–15701 (2007).
    [Crossref] [PubMed]
  28. A. W. Snyder and J. D, Love, Optical Waveguide Theory (Chapman & Hall, 1983), Chap. 28 and Chap. 31.
  29. P. D. McIntyre and A. W. Snyder, “Power transfer between optical fibers,” J. Opt. Soc. Am. A 63(12), 1518–1527 (1973).
    [Crossref]
  30. R. Sidharthan, J. Ji, K. J. Lim, S. H. Lim, H. Li, J. W. Lua, Y. Zhou, C. H. Tse, D. Ho, Y. M. Seng, S. L. Chua, and S. Yoo, “Step-index high-absorption Yb-doped large-mode-area fiber with Ge-doped raised cladding,” Opt. Lett. 43(23), 5897–5900 (2018).
    [Crossref] [PubMed]
  31. Z. Jiang and J. R. Marciante, “Impact of transverse spatial-hole burning on beam quality in large-mode-area Yb-doped fibers,” J. Opt. Soc. Am. B 25(2), 247–254 (2008).
    [Crossref]
  32. P. Ma, R. Tao, X. Wang, P. Zhou, and Z. Liu, “High-power narrow-band and polarization-maintained all fiber superfluorescent source,” IEEE Photonics Technol. Lett. 27(8), 879–882 (2015).
    [Crossref]
  33. J. Xu, H. Xiao, J. Leng, H. Zhang, P. Zhou, J. Chen, W. Liu, P. Ma, J. Wu, and Z. Liu, “2.53 kW all-fiberized superfluorescent fiber source based on a compact single-stage power-scaling scheme,” Laser Phys. Lett. 13(10), 105101 (2016).
    [Crossref]

2018 (3)

J. Cao, W. Liu, H. Ying, J. Chen, and Q. Lu, “Numerical study on a single-mode continuous-wave thermally guiding very-large-mode-area fiber amplifier,” Laser Phys. 28(3), 035105 (2018).
[Crossref]

W. Liu, J. Cao, and J. Chen, “Study on the adiabaticity criterion of the thermally-guided very-large-mode-area fiber,” Opt. Express 26(7), 7852–7865 (2018).
[Crossref] [PubMed]

R. Sidharthan, J. Ji, K. J. Lim, S. H. Lim, H. Li, J. W. Lua, Y. Zhou, C. H. Tse, D. Ho, Y. M. Seng, S. L. Chua, and S. Yoo, “Step-index high-absorption Yb-doped large-mode-area fiber with Ge-doped raised cladding,” Opt. Lett. 43(23), 5897–5900 (2018).
[Crossref] [PubMed]

2016 (4)

J. Lægsgaard, “Optimizing Yb concentration of fiber amplifiers in the presence of transverse modal instabilities and photodarkening,” Appl. Opt. 55(8), 1966–1970 (2016).
[Crossref] [PubMed]

J. Xu, H. Xiao, J. Leng, H. Zhang, P. Zhou, J. Chen, W. Liu, P. Ma, J. Wu, and Z. Liu, “2.53 kW all-fiberized superfluorescent fiber source based on a compact single-stage power-scaling scheme,” Laser Phys. Lett. 13(10), 105101 (2016).
[Crossref]

L. Dong, “Thermal lensing in optical fibers,” Opt. Express 24(17), 19841–19852 (2016).
[Crossref] [PubMed]

H. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Average power limit of fiber-laser systems with nearly diffraction-limited beam quality,” Proc. SPIE 9728, 97280E (2016).

2015 (1)

P. Ma, R. Tao, X. Wang, P. Zhou, and Z. Liu, “High-power narrow-band and polarization-maintained all fiber superfluorescent source,” IEEE Photonics Technol. Lett. 27(8), 879–882 (2015).
[Crossref]

2014 (1)

J. Cao, S. Guo, X. Xu, J. Chen, and Q. Lu, “Investigation on power scalability of diffraction-limited Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 373–383 (2014).
[Crossref]

2013 (3)

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

F. Jansen, F. Stutzki, H. J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “High-power thermally guiding index-antiguiding-core fibers,” Opt. Lett. 38(4), 510–512 (2013).
[Crossref] [PubMed]

K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Theoretical analysis of mode instability in high-power fiber amplifiers,” Opt. Express 21(2), 1944–1971 (2013).
[Crossref] [PubMed]

2012 (2)

C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
[Crossref] [PubMed]

F. Jansen, F. Stutzki, H. J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express 20(4), 3997–4008 (2012).
[Crossref] [PubMed]

2011 (6)

K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Thermo-optical effects in high-power ytterbium-doped fiber amplifiers,” Opt. Express 19(24), 23965–23980 (2011).
[Crossref] [PubMed]

J. Nilsson and D. N. Payne, “Physics. High-power fiber lasers,” Science 332(6032), 921–922 (2011).
[Crossref] [PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref] [PubMed]

F. Stutzki, H. J. Otto, F. Jansen, C. Gaida, C. Jauregui, J. Limpert, and A. Tünnermann, “High-speed modal decomposition of mode instabilities in high-power fiber lasers,” Opt. Lett. 36(23), 4572–4574 (2011).
[Crossref] [PubMed]

J. Zhu, P. Zhou, Y. Ma, X. Xu, and Z. Liu, “Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers,” Opt. Express 19(19), 18645–18654 (2011).
[Crossref] [PubMed]

A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
[Crossref] [PubMed]

2010 (2)

H. S. Kim, V. Sudesh, T. S. McComb, and M. C. Richardson, “Investigation of the thermal characteristic of a gain guided, index anti-guided fiber,” J. Korean Phys. Soc. 56(1), 209–213 (2010).
[Crossref]

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High-power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27(11), 63–92 (2010).
[Crossref]

2008 (2)

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
[Crossref] [PubMed]

Z. Jiang and J. R. Marciante, “Impact of transverse spatial-hole burning on beam quality in large-mode-area Yb-doped fibers,” J. Opt. Soc. Am. B 25(2), 247–254 (2008).
[Crossref]

2007 (1)

R. T. Schermer, “Mode scalability in bent optical fibers,” Opt. Express 15(24), 15674–15701 (2007).
[Crossref] [PubMed]

2006 (2)

A. Montmerle Bonnefois, M. Gilbert, P.-Y. Thro, and J.-M. Weulersse, “Thermal lensing and spherical aberration in high-power transversally pumped laser rods,” Opt. Commun. 259(1), 223–235 (2006).
[Crossref]

S. Hädrich, T. Schreiber, T. Pertsch, J. Limpert, T. Peschel, R. Eberhardt, and A. Tünnermann, “Thermo-optical behavior of rare-earth-doped low-NA fibers in high power operation,” Opt. Express 14(13), 6091–6097 (2006).
[Crossref] [PubMed]

2001 (1)

D. Brown and H. J. Hoffman, “Thermal, stress, and Thermo-Optic effects in high average power double-clad Silica fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 37(2), 207–217 (2001).
[Crossref]

1990 (1)

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pump solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

1973 (1)

P. D. McIntyre and A. W. Snyder, “Power transfer between optical fibers,” J. Opt. Soc. Am. A 63(12), 1518–1527 (1973).
[Crossref]

1970 (1)

J. D. Foster and L. M. Osterink, “Thermal effects in a Nd:YAG laser,” J. Appl. Phys. 41(9), 3656–3663 (1970).
[Crossref]

Alkeskjold, T. T.

K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Theoretical analysis of mode instability in high-power fiber amplifiers,” Opt. Express 21(2), 1944–1971 (2013).
[Crossref] [PubMed]

K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Thermo-optical effects in high-power ytterbium-doped fiber amplifiers,” Opt. Express 19(24), 23965–23980 (2011).
[Crossref] [PubMed]

Barty, C. P. J.

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
[Crossref] [PubMed]

Beach, R. J.

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
[Crossref] [PubMed]

Broeng, J.

K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Theoretical analysis of mode instability in high-power fiber amplifiers,” Opt. Express 21(2), 1944–1971 (2013).
[Crossref] [PubMed]

K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Thermo-optical effects in high-power ytterbium-doped fiber amplifiers,” Opt. Express 19(24), 23965–23980 (2011).
[Crossref] [PubMed]

Brown, D.

D. Brown and H. J. Hoffman, “Thermal, stress, and Thermo-Optic effects in high average power double-clad Silica fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 37(2), 207–217 (2001).
[Crossref]

Cao, J.

J. Cao, W. Liu, H. Ying, J. Chen, and Q. Lu, “Numerical study on a single-mode continuous-wave thermally guiding very-large-mode-area fiber amplifier,” Laser Phys. 28(3), 035105 (2018).
[Crossref]

W. Liu, J. Cao, and J. Chen, “Study on the adiabaticity criterion of the thermally-guided very-large-mode-area fiber,” Opt. Express 26(7), 7852–7865 (2018).
[Crossref] [PubMed]

J. Cao, S. Guo, X. Xu, J. Chen, and Q. Lu, “Investigation on power scalability of diffraction-limited Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 373–383 (2014).
[Crossref]

Chen, J.

W. Liu, J. Cao, and J. Chen, “Study on the adiabaticity criterion of the thermally-guided very-large-mode-area fiber,” Opt. Express 26(7), 7852–7865 (2018).
[Crossref] [PubMed]

J. Cao, W. Liu, H. Ying, J. Chen, and Q. Lu, “Numerical study on a single-mode continuous-wave thermally guiding very-large-mode-area fiber amplifier,” Laser Phys. 28(3), 035105 (2018).
[Crossref]

J. Xu, H. Xiao, J. Leng, H. Zhang, P. Zhou, J. Chen, W. Liu, P. Ma, J. Wu, and Z. Liu, “2.53 kW all-fiberized superfluorescent fiber source based on a compact single-stage power-scaling scheme,” Laser Phys. Lett. 13(10), 105101 (2016).
[Crossref]

J. Cao, S. Guo, X. Xu, J. Chen, and Q. Lu, “Investigation on power scalability of diffraction-limited Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 373–383 (2014).
[Crossref]

Chua, S. L.

R. Sidharthan, J. Ji, K. J. Lim, S. H. Lim, H. Li, J. W. Lua, Y. Zhou, C. H. Tse, D. Ho, Y. M. Seng, S. L. Chua, and S. Yoo, “Step-index high-absorption Yb-doped large-mode-area fiber with Ge-doped raised cladding,” Opt. Lett. 43(23), 5897–5900 (2018).
[Crossref] [PubMed]

Clarkson, W. A.

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High-power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27(11), 63–92 (2010).
[Crossref]

Dawson, J. W.

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
[Crossref] [PubMed]

Dong, L.

L. Dong, “Thermal lensing in optical fibers,” Opt. Express 24(17), 19841–19852 (2016).
[Crossref] [PubMed]

Eberhardt, R.

S. Hädrich, T. Schreiber, T. Pertsch, J. Limpert, T. Peschel, R. Eberhardt, and A. Tünnermann, “Thermo-optical behavior of rare-earth-doped low-NA fibers in high power operation,” Opt. Express 14(13), 6091–6097 (2006).
[Crossref] [PubMed]

Eidam, T.

F. Jansen, F. Stutzki, H. J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express 20(4), 3997–4008 (2012).
[Crossref] [PubMed]

C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
[Crossref] [PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref] [PubMed]

Fields, R. A.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pump solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

Fincher, C. L.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pump solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

Foster, J. D.

J. D. Foster and L. M. Osterink, “Thermal effects in a Nd:YAG laser,” J. Appl. Phys. 41(9), 3656–3663 (1970).
[Crossref]

Gaida, C.

F. Stutzki, H. J. Otto, F. Jansen, C. Gaida, C. Jauregui, J. Limpert, and A. Tünnermann, “High-speed modal decomposition of mode instabilities in high-power fiber lasers,” Opt. Lett. 36(23), 4572–4574 (2011).
[Crossref] [PubMed]

Gilbert, M.

A. Montmerle Bonnefois, M. Gilbert, P.-Y. Thro, and J.-M. Weulersse, “Thermal lensing and spherical aberration in high-power transversally pumped laser rods,” Opt. Commun. 259(1), 223–235 (2006).
[Crossref]

Guo, S.

J. Cao, S. Guo, X. Xu, J. Chen, and Q. Lu, “Investigation on power scalability of diffraction-limited Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 373–383 (2014).
[Crossref]

Hädrich, S.

S. Hädrich, T. Schreiber, T. Pertsch, J. Limpert, T. Peschel, R. Eberhardt, and A. Tünnermann, “Thermo-optical behavior of rare-earth-doped low-NA fibers in high power operation,” Opt. Express 14(13), 6091–6097 (2006).
[Crossref] [PubMed]

Hansen, K. R.

K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Theoretical analysis of mode instability in high-power fiber amplifiers,” Opt. Express 21(2), 1944–1971 (2013).
[Crossref] [PubMed]

K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Thermo-optical effects in high-power ytterbium-doped fiber amplifiers,” Opt. Express 19(24), 23965–23980 (2011).
[Crossref] [PubMed]

Heebner, J. E.

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
[Crossref] [PubMed]

Ho, D.

R. Sidharthan, J. Ji, K. J. Lim, S. H. Lim, H. Li, J. W. Lua, Y. Zhou, C. H. Tse, D. Ho, Y. M. Seng, S. L. Chua, and S. Yoo, “Step-index high-absorption Yb-doped large-mode-area fiber with Ge-doped raised cladding,” Opt. Lett. 43(23), 5897–5900 (2018).
[Crossref] [PubMed]

Hoffman, H. J.

D. Brown and H. J. Hoffman, “Thermal, stress, and Thermo-Optic effects in high average power double-clad Silica fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 37(2), 207–217 (2001).
[Crossref]

Innocenzi, M. E.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pump solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

Jansen, F.

F. Jansen, F. Stutzki, H. J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “High-power thermally guiding index-antiguiding-core fibers,” Opt. Lett. 38(4), 510–512 (2013).
[Crossref] [PubMed]

F. Jansen, F. Stutzki, H. J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express 20(4), 3997–4008 (2012).
[Crossref] [PubMed]

C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
[Crossref] [PubMed]

F. Stutzki, H. J. Otto, F. Jansen, C. Gaida, C. Jauregui, J. Limpert, and A. Tünnermann, “High-speed modal decomposition of mode instabilities in high-power fiber lasers,” Opt. Lett. 36(23), 4572–4574 (2011).
[Crossref] [PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref] [PubMed]

Jauregui, C.

H. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Average power limit of fiber-laser systems with nearly diffraction-limited beam quality,” Proc. SPIE 9728, 97280E (2016).

F. Jansen, F. Stutzki, H. J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “High-power thermally guiding index-antiguiding-core fibers,” Opt. Lett. 38(4), 510–512 (2013).
[Crossref] [PubMed]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
[Crossref] [PubMed]

F. Jansen, F. Stutzki, H. J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express 20(4), 3997–4008 (2012).
[Crossref] [PubMed]

F. Stutzki, H. J. Otto, F. Jansen, C. Gaida, C. Jauregui, J. Limpert, and A. Tünnermann, “High-speed modal decomposition of mode instabilities in high-power fiber lasers,” Opt. Lett. 36(23), 4572–4574 (2011).
[Crossref] [PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref] [PubMed]

Ji, J.

R. Sidharthan, J. Ji, K. J. Lim, S. H. Lim, H. Li, J. W. Lua, Y. Zhou, C. H. Tse, D. Ho, Y. M. Seng, S. L. Chua, and S. Yoo, “Step-index high-absorption Yb-doped large-mode-area fiber with Ge-doped raised cladding,” Opt. Lett. 43(23), 5897–5900 (2018).
[Crossref] [PubMed]

Jiang, Z.

Z. Jiang and J. R. Marciante, “Impact of transverse spatial-hole burning on beam quality in large-mode-area Yb-doped fibers,” J. Opt. Soc. Am. B 25(2), 247–254 (2008).
[Crossref]

Kim, H. S.

H. S. Kim, V. Sudesh, T. S. McComb, and M. C. Richardson, “Investigation of the thermal characteristic of a gain guided, index anti-guided fiber,” J. Korean Phys. Soc. 56(1), 209–213 (2010).
[Crossref]

Lægsgaard, J.

J. Lægsgaard, “Optimizing Yb concentration of fiber amplifiers in the presence of transverse modal instabilities and photodarkening,” Appl. Opt. 55(8), 1966–1970 (2016).
[Crossref] [PubMed]

K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Theoretical analysis of mode instability in high-power fiber amplifiers,” Opt. Express 21(2), 1944–1971 (2013).
[Crossref] [PubMed]

K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Thermo-optical effects in high-power ytterbium-doped fiber amplifiers,” Opt. Express 19(24), 23965–23980 (2011).
[Crossref] [PubMed]

Leng, J.

J. Xu, H. Xiao, J. Leng, H. Zhang, P. Zhou, J. Chen, W. Liu, P. Ma, J. Wu, and Z. Liu, “2.53 kW all-fiberized superfluorescent fiber source based on a compact single-stage power-scaling scheme,” Laser Phys. Lett. 13(10), 105101 (2016).
[Crossref]

Li, H.

R. Sidharthan, J. Ji, K. J. Lim, S. H. Lim, H. Li, J. W. Lua, Y. Zhou, C. H. Tse, D. Ho, Y. M. Seng, S. L. Chua, and S. Yoo, “Step-index high-absorption Yb-doped large-mode-area fiber with Ge-doped raised cladding,” Opt. Lett. 43(23), 5897–5900 (2018).
[Crossref] [PubMed]

Liem, A.

F. Jansen, F. Stutzki, H. J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express 20(4), 3997–4008 (2012).
[Crossref] [PubMed]

Lim, K. J.

R. Sidharthan, J. Ji, K. J. Lim, S. H. Lim, H. Li, J. W. Lua, Y. Zhou, C. H. Tse, D. Ho, Y. M. Seng, S. L. Chua, and S. Yoo, “Step-index high-absorption Yb-doped large-mode-area fiber with Ge-doped raised cladding,” Opt. Lett. 43(23), 5897–5900 (2018).
[Crossref] [PubMed]

Lim, S. H.

R. Sidharthan, J. Ji, K. J. Lim, S. H. Lim, H. Li, J. W. Lua, Y. Zhou, C. H. Tse, D. Ho, Y. M. Seng, S. L. Chua, and S. Yoo, “Step-index high-absorption Yb-doped large-mode-area fiber with Ge-doped raised cladding,” Opt. Lett. 43(23), 5897–5900 (2018).
[Crossref] [PubMed]

Limpert, J.

H. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Average power limit of fiber-laser systems with nearly diffraction-limited beam quality,” Proc. SPIE 9728, 97280E (2016).

F. Jansen, F. Stutzki, H. J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “High-power thermally guiding index-antiguiding-core fibers,” Opt. Lett. 38(4), 510–512 (2013).
[Crossref] [PubMed]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
[Crossref] [PubMed]

F. Jansen, F. Stutzki, H. J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express 20(4), 3997–4008 (2012).
[Crossref] [PubMed]

F. Stutzki, H. J. Otto, F. Jansen, C. Gaida, C. Jauregui, J. Limpert, and A. Tünnermann, “High-speed modal decomposition of mode instabilities in high-power fiber lasers,” Opt. Lett. 36(23), 4572–4574 (2011).
[Crossref] [PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref] [PubMed]

S. Hädrich, T. Schreiber, T. Pertsch, J. Limpert, T. Peschel, R. Eberhardt, and A. Tünnermann, “Thermo-optical behavior of rare-earth-doped low-NA fibers in high power operation,” Opt. Express 14(13), 6091–6097 (2006).
[Crossref] [PubMed]

Liu, W.

J. Cao, W. Liu, H. Ying, J. Chen, and Q. Lu, “Numerical study on a single-mode continuous-wave thermally guiding very-large-mode-area fiber amplifier,” Laser Phys. 28(3), 035105 (2018).
[Crossref]

W. Liu, J. Cao, and J. Chen, “Study on the adiabaticity criterion of the thermally-guided very-large-mode-area fiber,” Opt. Express 26(7), 7852–7865 (2018).
[Crossref] [PubMed]

J. Xu, H. Xiao, J. Leng, H. Zhang, P. Zhou, J. Chen, W. Liu, P. Ma, J. Wu, and Z. Liu, “2.53 kW all-fiberized superfluorescent fiber source based on a compact single-stage power-scaling scheme,” Laser Phys. Lett. 13(10), 105101 (2016).
[Crossref]

Liu, Z.

J. Xu, H. Xiao, J. Leng, H. Zhang, P. Zhou, J. Chen, W. Liu, P. Ma, J. Wu, and Z. Liu, “2.53 kW all-fiberized superfluorescent fiber source based on a compact single-stage power-scaling scheme,” Laser Phys. Lett. 13(10), 105101 (2016).
[Crossref]

P. Ma, R. Tao, X. Wang, P. Zhou, and Z. Liu, “High-power narrow-band and polarization-maintained all fiber superfluorescent source,” IEEE Photonics Technol. Lett. 27(8), 879–882 (2015).
[Crossref]

J. Zhu, P. Zhou, Y. Ma, X. Xu, and Z. Liu, “Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers,” Opt. Express 19(19), 18645–18654 (2011).
[Crossref] [PubMed]

Lu, Q.

J. Cao, W. Liu, H. Ying, J. Chen, and Q. Lu, “Numerical study on a single-mode continuous-wave thermally guiding very-large-mode-area fiber amplifier,” Laser Phys. 28(3), 035105 (2018).
[Crossref]

J. Cao, S. Guo, X. Xu, J. Chen, and Q. Lu, “Investigation on power scalability of diffraction-limited Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 373–383 (2014).
[Crossref]

Lua, J. W.

R. Sidharthan, J. Ji, K. J. Lim, S. H. Lim, H. Li, J. W. Lua, Y. Zhou, C. H. Tse, D. Ho, Y. M. Seng, S. L. Chua, and S. Yoo, “Step-index high-absorption Yb-doped large-mode-area fiber with Ge-doped raised cladding,” Opt. Lett. 43(23), 5897–5900 (2018).
[Crossref] [PubMed]

Ma, P.

J. Xu, H. Xiao, J. Leng, H. Zhang, P. Zhou, J. Chen, W. Liu, P. Ma, J. Wu, and Z. Liu, “2.53 kW all-fiberized superfluorescent fiber source based on a compact single-stage power-scaling scheme,” Laser Phys. Lett. 13(10), 105101 (2016).
[Crossref]

P. Ma, R. Tao, X. Wang, P. Zhou, and Z. Liu, “High-power narrow-band and polarization-maintained all fiber superfluorescent source,” IEEE Photonics Technol. Lett. 27(8), 879–882 (2015).
[Crossref]

Ma, Y.

J. Zhu, P. Zhou, Y. Ma, X. Xu, and Z. Liu, “Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers,” Opt. Express 19(19), 18645–18654 (2011).
[Crossref] [PubMed]

Marciante, J. R.

Z. Jiang and J. R. Marciante, “Impact of transverse spatial-hole burning on beam quality in large-mode-area Yb-doped fibers,” J. Opt. Soc. Am. B 25(2), 247–254 (2008).
[Crossref]

McComb, T. S.

H. S. Kim, V. Sudesh, T. S. McComb, and M. C. Richardson, “Investigation of the thermal characteristic of a gain guided, index anti-guided fiber,” J. Korean Phys. Soc. 56(1), 209–213 (2010).
[Crossref]

McIntyre, P. D.

P. D. McIntyre and A. W. Snyder, “Power transfer between optical fibers,” J. Opt. Soc. Am. A 63(12), 1518–1527 (1973).
[Crossref]

Messerly, M. J.

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
[Crossref] [PubMed]

Montmerle Bonnefois, A.

A. Montmerle Bonnefois, M. Gilbert, P.-Y. Thro, and J.-M. Weulersse, “Thermal lensing and spherical aberration in high-power transversally pumped laser rods,” Opt. Commun. 259(1), 223–235 (2006).
[Crossref]

Nilsson, J.

J. Nilsson and D. N. Payne, “Physics. High-power fiber lasers,” Science 332(6032), 921–922 (2011).
[Crossref] [PubMed]

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High-power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27(11), 63–92 (2010).
[Crossref]

Osterink, L. M.

J. D. Foster and L. M. Osterink, “Thermal effects in a Nd:YAG laser,” J. Appl. Phys. 41(9), 3656–3663 (1970).
[Crossref]

Otto, H.

H. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Average power limit of fiber-laser systems with nearly diffraction-limited beam quality,” Proc. SPIE 9728, 97280E (2016).

Otto, H. J.

F. Jansen, F. Stutzki, H. J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “High-power thermally guiding index-antiguiding-core fibers,” Opt. Lett. 38(4), 510–512 (2013).
[Crossref] [PubMed]

F. Jansen, F. Stutzki, H. J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express 20(4), 3997–4008 (2012).
[Crossref] [PubMed]

C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
[Crossref] [PubMed]

F. Stutzki, H. J. Otto, F. Jansen, C. Gaida, C. Jauregui, J. Limpert, and A. Tünnermann, “High-speed modal decomposition of mode instabilities in high-power fiber lasers,” Opt. Lett. 36(23), 4572–4574 (2011).
[Crossref] [PubMed]

Otto, H.-J.

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref] [PubMed]

Pax, P. H.

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
[Crossref] [PubMed]

Payne, D. N.

J. Nilsson and D. N. Payne, “Physics. High-power fiber lasers,” Science 332(6032), 921–922 (2011).
[Crossref] [PubMed]

Pertsch, T.

S. Hädrich, T. Schreiber, T. Pertsch, J. Limpert, T. Peschel, R. Eberhardt, and A. Tünnermann, “Thermo-optical behavior of rare-earth-doped low-NA fibers in high power operation,” Opt. Express 14(13), 6091–6097 (2006).
[Crossref] [PubMed]

Peschel, T.

S. Hädrich, T. Schreiber, T. Pertsch, J. Limpert, T. Peschel, R. Eberhardt, and A. Tünnermann, “Thermo-optical behavior of rare-earth-doped low-NA fibers in high power operation,” Opt. Express 14(13), 6091–6097 (2006).
[Crossref] [PubMed]

Richardson, D. J.

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High-power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27(11), 63–92 (2010).
[Crossref]

Richardson, M. C.

H. S. Kim, V. Sudesh, T. S. McComb, and M. C. Richardson, “Investigation of the thermal characteristic of a gain guided, index anti-guided fiber,” J. Korean Phys. Soc. 56(1), 209–213 (2010).
[Crossref]

Schermer, R. T.

R. T. Schermer, “Mode scalability in bent optical fibers,” Opt. Express 15(24), 15674–15701 (2007).
[Crossref] [PubMed]

Schmidt, O.

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref] [PubMed]

Schreiber, T.

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref] [PubMed]

S. Hädrich, T. Schreiber, T. Pertsch, J. Limpert, T. Peschel, R. Eberhardt, and A. Tünnermann, “Thermo-optical behavior of rare-earth-doped low-NA fibers in high power operation,” Opt. Express 14(13), 6091–6097 (2006).
[Crossref] [PubMed]

Seng, Y. M.

R. Sidharthan, J. Ji, K. J. Lim, S. H. Lim, H. Li, J. W. Lua, Y. Zhou, C. H. Tse, D. Ho, Y. M. Seng, S. L. Chua, and S. Yoo, “Step-index high-absorption Yb-doped large-mode-area fiber with Ge-doped raised cladding,” Opt. Lett. 43(23), 5897–5900 (2018).
[Crossref] [PubMed]

Shverdin, M. Y.

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
[Crossref] [PubMed]

Siders, C. W.

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
[Crossref] [PubMed]

Sidharthan, R.

R. Sidharthan, J. Ji, K. J. Lim, S. H. Lim, H. Li, J. W. Lua, Y. Zhou, C. H. Tse, D. Ho, Y. M. Seng, S. L. Chua, and S. Yoo, “Step-index high-absorption Yb-doped large-mode-area fiber with Ge-doped raised cladding,” Opt. Lett. 43(23), 5897–5900 (2018).
[Crossref] [PubMed]

Smith, A. V.

A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
[Crossref] [PubMed]

Smith, J. J.

A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
[Crossref] [PubMed]

Snyder, A. W.

P. D. McIntyre and A. W. Snyder, “Power transfer between optical fibers,” J. Opt. Soc. Am. A 63(12), 1518–1527 (1973).
[Crossref]

Sridharan, A. K.

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
[Crossref] [PubMed]

Stappaerts, E. A.

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
[Crossref] [PubMed]

Stiles, E.

E. Stiles, “New Developments in IPG Fiber Laser Technology,” in Proceedings of the 5th International Workshop on Fiber Lasers (2009).

Stutzki, F.

F. Jansen, F. Stutzki, H. J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “High-power thermally guiding index-antiguiding-core fibers,” Opt. Lett. 38(4), 510–512 (2013).
[Crossref] [PubMed]

F. Jansen, F. Stutzki, H. J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express 20(4), 3997–4008 (2012).
[Crossref] [PubMed]

C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
[Crossref] [PubMed]

F. Stutzki, H. J. Otto, F. Jansen, C. Gaida, C. Jauregui, J. Limpert, and A. Tünnermann, “High-speed modal decomposition of mode instabilities in high-power fiber lasers,” Opt. Lett. 36(23), 4572–4574 (2011).
[Crossref] [PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref] [PubMed]

Sudesh, V.

H. S. Kim, V. Sudesh, T. S. McComb, and M. C. Richardson, “Investigation of the thermal characteristic of a gain guided, index anti-guided fiber,” J. Korean Phys. Soc. 56(1), 209–213 (2010).
[Crossref]

Tao, R.

P. Ma, R. Tao, X. Wang, P. Zhou, and Z. Liu, “High-power narrow-band and polarization-maintained all fiber superfluorescent source,” IEEE Photonics Technol. Lett. 27(8), 879–882 (2015).
[Crossref]

Thro, P.-Y.

A. Montmerle Bonnefois, M. Gilbert, P.-Y. Thro, and J.-M. Weulersse, “Thermal lensing and spherical aberration in high-power transversally pumped laser rods,” Opt. Commun. 259(1), 223–235 (2006).
[Crossref]

Tse, C. H.

R. Sidharthan, J. Ji, K. J. Lim, S. H. Lim, H. Li, J. W. Lua, Y. Zhou, C. H. Tse, D. Ho, Y. M. Seng, S. L. Chua, and S. Yoo, “Step-index high-absorption Yb-doped large-mode-area fiber with Ge-doped raised cladding,” Opt. Lett. 43(23), 5897–5900 (2018).
[Crossref] [PubMed]

Tünnermann, A.

H. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Average power limit of fiber-laser systems with nearly diffraction-limited beam quality,” Proc. SPIE 9728, 97280E (2016).

F. Jansen, F. Stutzki, H. J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “High-power thermally guiding index-antiguiding-core fibers,” Opt. Lett. 38(4), 510–512 (2013).
[Crossref] [PubMed]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
[Crossref] [PubMed]

F. Jansen, F. Stutzki, H. J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express 20(4), 3997–4008 (2012).
[Crossref] [PubMed]

F. Stutzki, H. J. Otto, F. Jansen, C. Gaida, C. Jauregui, J. Limpert, and A. Tünnermann, “High-speed modal decomposition of mode instabilities in high-power fiber lasers,” Opt. Lett. 36(23), 4572–4574 (2011).
[Crossref] [PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref] [PubMed]

S. Hädrich, T. Schreiber, T. Pertsch, J. Limpert, T. Peschel, R. Eberhardt, and A. Tünnermann, “Thermo-optical behavior of rare-earth-doped low-NA fibers in high power operation,” Opt. Express 14(13), 6091–6097 (2006).
[Crossref] [PubMed]

Wang, X.

P. Ma, R. Tao, X. Wang, P. Zhou, and Z. Liu, “High-power narrow-band and polarization-maintained all fiber superfluorescent source,” IEEE Photonics Technol. Lett. 27(8), 879–882 (2015).
[Crossref]

Weulersse, J.-M.

A. Montmerle Bonnefois, M. Gilbert, P.-Y. Thro, and J.-M. Weulersse, “Thermal lensing and spherical aberration in high-power transversally pumped laser rods,” Opt. Commun. 259(1), 223–235 (2006).
[Crossref]

Wirth, C.

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref] [PubMed]

Wu, J.

J. Xu, H. Xiao, J. Leng, H. Zhang, P. Zhou, J. Chen, W. Liu, P. Ma, J. Wu, and Z. Liu, “2.53 kW all-fiberized superfluorescent fiber source based on a compact single-stage power-scaling scheme,” Laser Phys. Lett. 13(10), 105101 (2016).
[Crossref]

Xiao, H.

J. Xu, H. Xiao, J. Leng, H. Zhang, P. Zhou, J. Chen, W. Liu, P. Ma, J. Wu, and Z. Liu, “2.53 kW all-fiberized superfluorescent fiber source based on a compact single-stage power-scaling scheme,” Laser Phys. Lett. 13(10), 105101 (2016).
[Crossref]

Xu, J.

J. Xu, H. Xiao, J. Leng, H. Zhang, P. Zhou, J. Chen, W. Liu, P. Ma, J. Wu, and Z. Liu, “2.53 kW all-fiberized superfluorescent fiber source based on a compact single-stage power-scaling scheme,” Laser Phys. Lett. 13(10), 105101 (2016).
[Crossref]

Xu, X.

J. Cao, S. Guo, X. Xu, J. Chen, and Q. Lu, “Investigation on power scalability of diffraction-limited Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 373–383 (2014).
[Crossref]

J. Zhu, P. Zhou, Y. Ma, X. Xu, and Z. Liu, “Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers,” Opt. Express 19(19), 18645–18654 (2011).
[Crossref] [PubMed]

Ying, H.

J. Cao, W. Liu, H. Ying, J. Chen, and Q. Lu, “Numerical study on a single-mode continuous-wave thermally guiding very-large-mode-area fiber amplifier,” Laser Phys. 28(3), 035105 (2018).
[Crossref]

Yoo, S.

R. Sidharthan, J. Ji, K. J. Lim, S. H. Lim, H. Li, J. W. Lua, Y. Zhou, C. H. Tse, D. Ho, Y. M. Seng, S. L. Chua, and S. Yoo, “Step-index high-absorption Yb-doped large-mode-area fiber with Ge-doped raised cladding,” Opt. Lett. 43(23), 5897–5900 (2018).
[Crossref] [PubMed]

Yura, H. T.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pump solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

Zhang, H.

J. Xu, H. Xiao, J. Leng, H. Zhang, P. Zhou, J. Chen, W. Liu, P. Ma, J. Wu, and Z. Liu, “2.53 kW all-fiberized superfluorescent fiber source based on a compact single-stage power-scaling scheme,” Laser Phys. Lett. 13(10), 105101 (2016).
[Crossref]

Zhou, P.

J. Xu, H. Xiao, J. Leng, H. Zhang, P. Zhou, J. Chen, W. Liu, P. Ma, J. Wu, and Z. Liu, “2.53 kW all-fiberized superfluorescent fiber source based on a compact single-stage power-scaling scheme,” Laser Phys. Lett. 13(10), 105101 (2016).
[Crossref]

P. Ma, R. Tao, X. Wang, P. Zhou, and Z. Liu, “High-power narrow-band and polarization-maintained all fiber superfluorescent source,” IEEE Photonics Technol. Lett. 27(8), 879–882 (2015).
[Crossref]

J. Zhu, P. Zhou, Y. Ma, X. Xu, and Z. Liu, “Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers,” Opt. Express 19(19), 18645–18654 (2011).
[Crossref] [PubMed]

Zhou, Y.

R. Sidharthan, J. Ji, K. J. Lim, S. H. Lim, H. Li, J. W. Lua, Y. Zhou, C. H. Tse, D. Ho, Y. M. Seng, S. L. Chua, and S. Yoo, “Step-index high-absorption Yb-doped large-mode-area fiber with Ge-doped raised cladding,” Opt. Lett. 43(23), 5897–5900 (2018).
[Crossref] [PubMed]

Zhu, J.

J. Zhu, P. Zhou, Y. Ma, X. Xu, and Z. Liu, “Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers,” Opt. Express 19(19), 18645–18654 (2011).
[Crossref] [PubMed]

Appl. Opt. (1)

J. Lægsgaard, “Optimizing Yb concentration of fiber amplifiers in the presence of transverse modal instabilities and photodarkening,” Appl. Opt. 55(8), 1966–1970 (2016).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pump solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

D. Brown and H. J. Hoffman, “Thermal, stress, and Thermo-Optic effects in high average power double-clad Silica fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 37(2), 207–217 (2001).
[Crossref]

J. Cao, S. Guo, X. Xu, J. Chen, and Q. Lu, “Investigation on power scalability of diffraction-limited Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 373–383 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (1)

P. Ma, R. Tao, X. Wang, P. Zhou, and Z. Liu, “High-power narrow-band and polarization-maintained all fiber superfluorescent source,” IEEE Photonics Technol. Lett. 27(8), 879–882 (2015).
[Crossref]

J. Appl. Phys. (1)

J. D. Foster and L. M. Osterink, “Thermal effects in a Nd:YAG laser,” J. Appl. Phys. 41(9), 3656–3663 (1970).
[Crossref]

J. Korean Phys. Soc. (1)

H. S. Kim, V. Sudesh, T. S. McComb, and M. C. Richardson, “Investigation of the thermal characteristic of a gain guided, index anti-guided fiber,” J. Korean Phys. Soc. 56(1), 209–213 (2010).
[Crossref]

J. Opt. Soc. Am. A (1)

P. D. McIntyre and A. W. Snyder, “Power transfer between optical fibers,” J. Opt. Soc. Am. A 63(12), 1518–1527 (1973).
[Crossref]

J. Opt. Soc. Am. B (2)

Z. Jiang and J. R. Marciante, “Impact of transverse spatial-hole burning on beam quality in large-mode-area Yb-doped fibers,” J. Opt. Soc. Am. B 25(2), 247–254 (2008).
[Crossref]

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High-power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27(11), 63–92 (2010).
[Crossref]

Laser Phys. (1)

J. Cao, W. Liu, H. Ying, J. Chen, and Q. Lu, “Numerical study on a single-mode continuous-wave thermally guiding very-large-mode-area fiber amplifier,” Laser Phys. 28(3), 035105 (2018).
[Crossref]

Laser Phys. Lett. (1)

J. Xu, H. Xiao, J. Leng, H. Zhang, P. Zhou, J. Chen, W. Liu, P. Ma, J. Wu, and Z. Liu, “2.53 kW all-fiberized superfluorescent fiber source based on a compact single-stage power-scaling scheme,” Laser Phys. Lett. 13(10), 105101 (2016).
[Crossref]

Nat. Photonics (1)

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Opt. Commun. (1)

A. Montmerle Bonnefois, M. Gilbert, P.-Y. Thro, and J.-M. Weulersse, “Thermal lensing and spherical aberration in high-power transversally pumped laser rods,” Opt. Commun. 259(1), 223–235 (2006).
[Crossref]

Opt. Express (12)

J. Zhu, P. Zhou, Y. Ma, X. Xu, and Z. Liu, “Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers,” Opt. Express 19(19), 18645–18654 (2011).
[Crossref] [PubMed]

F. Jansen, F. Stutzki, H. J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express 20(4), 3997–4008 (2012).
[Crossref] [PubMed]

K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Thermo-optical effects in high-power ytterbium-doped fiber amplifiers,” Opt. Express 19(24), 23965–23980 (2011).
[Crossref] [PubMed]

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
[Crossref] [PubMed]

W. Liu, J. Cao, and J. Chen, “Study on the adiabaticity criterion of the thermally-guided very-large-mode-area fiber,” Opt. Express 26(7), 7852–7865 (2018).
[Crossref] [PubMed]

L. Dong, “Thermal lensing in optical fibers,” Opt. Express 24(17), 19841–19852 (2016).
[Crossref] [PubMed]

S. Hädrich, T. Schreiber, T. Pertsch, J. Limpert, T. Peschel, R. Eberhardt, and A. Tünnermann, “Thermo-optical behavior of rare-earth-doped low-NA fibers in high power operation,” Opt. Express 14(13), 6091–6097 (2006).
[Crossref] [PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref] [PubMed]

A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
[Crossref] [PubMed]

C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
[Crossref] [PubMed]

K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Theoretical analysis of mode instability in high-power fiber amplifiers,” Opt. Express 21(2), 1944–1971 (2013).
[Crossref] [PubMed]

R. T. Schermer, “Mode scalability in bent optical fibers,” Opt. Express 15(24), 15674–15701 (2007).
[Crossref] [PubMed]

Opt. Lett. (3)

F. Stutzki, H. J. Otto, F. Jansen, C. Gaida, C. Jauregui, J. Limpert, and A. Tünnermann, “High-speed modal decomposition of mode instabilities in high-power fiber lasers,” Opt. Lett. 36(23), 4572–4574 (2011).
[Crossref] [PubMed]

R. Sidharthan, J. Ji, K. J. Lim, S. H. Lim, H. Li, J. W. Lua, Y. Zhou, C. H. Tse, D. Ho, Y. M. Seng, S. L. Chua, and S. Yoo, “Step-index high-absorption Yb-doped large-mode-area fiber with Ge-doped raised cladding,” Opt. Lett. 43(23), 5897–5900 (2018).
[Crossref] [PubMed]

F. Jansen, F. Stutzki, H. J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “High-power thermally guiding index-antiguiding-core fibers,” Opt. Lett. 38(4), 510–512 (2013).
[Crossref] [PubMed]

Proc. SPIE (1)

H. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Average power limit of fiber-laser systems with nearly diffraction-limited beam quality,” Proc. SPIE 9728, 97280E (2016).

Science (1)

J. Nilsson and D. N. Payne, “Physics. High-power fiber lasers,” Science 332(6032), 921–922 (2011).
[Crossref] [PubMed]

Other (2)

E. Stiles, “New Developments in IPG Fiber Laser Technology,” in Proceedings of the 5th International Workshop on Fiber Lasers (2009).

A. W. Snyder and J. D, Love, Optical Waveguide Theory (Chapman & Hall, 1983), Chap. 28 and Chap. 31.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1 The variations of calculated (a) Aeff, (b) Γ versus the thermal load in 40/250 μm core/diameter fiber with V values of 2.405, 3.54, and 4.72 (corresponding to 0.02, 0.03, and 0.04 NA respectively).
Fig. 2
Fig. 2 The calculated LP01 mode field distributions in 40/250 μm fiber with 0.04 NA and various bend radii (a) 50 cm, (b) 30 cm, (c) 10 cm. The dashed line shows the boundary of fiber core.
Fig. 3
Fig. 3 (a) The variation of calculated Aeff versus bend radius with various thermal loads. (b) The variation of Rm versus the thermal load corresponding to various degree of mode shrinking. e.g. when Q = 0 W/m, Rm is 8.5 cm, 13 cm, and 20 cm correspondingly cause 10%, 20%, and 30% reduction of Aeff without bending (913 μm2), respectively.
Fig. 4
Fig. 4 The variation of calculated LP01 mode field distribution with the thermal load in 40/250 μm fiber with 0.04 NA and 10-cm bend radius when (a) Q = 0 W/m, (b) Q = 100 W/m, (c) Q = 200 W/m. The dashed line shows the boundary of fiber core.
Fig. 5
Fig. 5 The variations of calculated Aeff and Rm versus the thermal load with (a) 25-μm core, (b) 30-μm core, (c) 40-μm core, (d) 60-μm core and V values of 3.54 and 4.72. The claddings of these fibers are 250 μm.
Fig. 6
Fig. 6 The variations of calculated (a) C’12, (b) (β0102) versus the thermal load in a 40/250 μm core/cladding diameter fiber with 0.04 NA.
Fig. 7
Fig. 7 Two-dimensional calculated LP01 and LP02 mode field variations with the thermal load (a) when Q is 0 W/m and 50 W/m, (b) when Q is 50 W/m and 100 W/m. The dashed lines in yellow, blue, and red correspond to the distributions of Δn with Q of 0 W/m, 50 W/m, and 100 W/m, respectively.
Fig. 8
Fig. 8 The variations of calculated (a) C’01, (b) (β0111) versus the thermal load in a 40/250 μm core/cladding diameter fiber with 0.04 NA and bend radii of 10 cm, 15 cm, 30 cm, and 50 cm.
Fig. 9
Fig. 9 Two-dimensional calculated LP01 and LP11 mode field variations versus the thermal load with bend radii of (a) 10 cm, (b) 50 cm. The dashed grey lines show the boundaries and centers of the fiber core.
Fig. 10
Fig. 10 The variation of calculated coefficient C’12 versus the thermal load with core NA of 0.04, 0.06, and 0.1 (corresponding to V value of 4.72, 7.08, and 11.8 respectively).
Fig. 11
Fig. 11 Two-dimensional calculated LP01 and LP02 mode fields when Q is 0 W/m and 100 W/m in 40/250 μm fiber with (a) 0.04 NA, (b) 0.06 NA, (c) 0.1 NA. The dashed line shows the boundary of the fiber core.
Fig. 12
Fig. 12 The effects of core and cladding size on the coefficient C’12. (a) The calculated value of C’12 with 30-μm, 40-μm, and 60-μm core diameter, the claddings are 250 μm. (b) The calculated value of C’12 with 170-μm, 200-μm, and 250-μm cladding diameter, the cores are 40 μm. The NA of these fibers are 0.05.
Fig. 13
Fig. 13 Two-dimensional calculated LP01 and LP02 mode fields when Q is 0 W/m and 50 W/m with core diameter of (a) 30 μm, (b) 60 μm. The dashed lines show the boundaries of the core.
Fig. 14
Fig. 14 (a) The varation of calculated C’01 versus the thermal load in 40/250 μm fiber with 0.03 NA, 0.06 NA, and 0.1 NA (corresponding to V value of 3.54, 7.08, and 11.8, respectively) and 15-cm bend radius. (b) The varation of C’01 versus the thermal load in 0.03-NA 40/250 μm fiber with bend radii of 30 cm, 50 cm, and 100 cm. The bend radii are chosen according to Rm (larger than 10 cm shown in Fig. 4c).
Fig. 15
Fig. 15 Two-dimensional calculated LP01 and LP11 mode field variations with the thermal load in a 40/250 μm fiber with 0.03 NA (a) when Q is 0 W/m, 15 W/m, and 50 W/m, (b) when Q is 100 W/m and 200 W/m. The dashed lines show the boundaries and centers of the core.
Fig. 16
Fig. 16 The effects of core and cladding size on the coefficient C’01. (a) The calculated value of C’01 with 30-μm, 40-μm, and 60-μm core diameter, the claddings are 250 μm. (b) The calculated value of C’01 with 170-μm, 200-μm, and 250-μm cladding diameter, the cores are 40 μm. The core NA of these fibers are 0.04 and the bend radii are 25 cm.
Fig. 17
Fig. 17 Two-dimensional calculated LP01 and LP11 mode field with thermal load of 0 W/m, 15 W/m, and 30 W/m in bent fiber with (a) 60-μm, (b) 30-μm core diameter. The dashed lines show the boundaries and centers of the fiber core.

Tables (1)

Tables Icon

Table 1 Fiber parameters in simulation

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A eff = ( - I(x,y)dxdy ) 2 - I 2 (x,y)dxdy
Γ= 0 a I(x,y)dxdy 0 b I(x,y)dxdy
n( n 0 +Δn)( 1+ x 1.28R )
| C jm |= k 2 β j β m α p | β j β m | A n 0 Δn ψ j ψ m dA A ψ j 2 dA A ψ m 2 dA α p C jm

Metrics