Abstract

A photonic nanojet (PNJ) is a tightly focused beam that emerges from the shadow surface of microparticles. Due to its high peak intensity and subwavelength beam waist, the PNJ has increasingly attracted attention, with potential applications in optical imaging, nanolithography, and nanoparticle sensing. A variety of ways have been demonstrated to further shrink the beam waist of PNJs, such as engineering the microparticle geometry and optimizing a multilayer structure. In this simulation work, we report the realization of an ultranarrow PNJ, which is formed by an engineered two-layer microcylinder of high refractive-index materials. Finite element analysis shows that under 632.8 nm illumination, the full width at half maximum of the beam waist can reach 87 nm (~λ/7.3). As far as we know, this is the narrowest PNJ ever reported. Using the backscattering intensity as a contrast mechanism, we also demonstrated the imaging resolution and capability of the ultranarrow PNJ through numerical simulations. We anticipate that this ultranarrow PNJ will open new possibilities in a variety of research areas, including nanoparticle detection, biomedical imaging, and nanolithography.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optimization of photonic nanojets generated by multilayer microcylinders with a genetic algorithm

Yin Huang, Zhishen Zhen, Yuecheng Shen, Changjun Min, and Georgios Veronis
Opt. Express 27(2) 1310-1325 (2019)

Ultralong photonic nanojet formed by dielectric microtoroid structure

Baifu Zhang, Jingjing Hao, Zhe Shen, Heng Wu, Kang Zhu, Ji Xu, and Jianping Ding
Appl. Opt. 57(28) 8331-8337 (2018)

Modulation of photonic nanojets generated by microspheres decorated with concentric rings

M. X. Wu, B. J. Huang, R. Chen, Y. Yang, J. F. Wu, R. Ji, X. D. Chen, and M. H. Hong
Opt. Express 23(15) 20096-20103 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. S. Benincasa, P. W. Barber, J. Z. Zhang, W. F. Hsieh, and R. K. Chang, “Spatial distribution of the internal and near-field intensities of large cylindrical and spherical scatterers,” Appl. Opt. 26(7), 1348–1356 (1987).
    [Crossref] [PubMed]
  2. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
    [Crossref] [PubMed]
  3. S. Lecler, Y. Takakura, and P. Meyrueis, “Properties of a three-dimensional photonic jet,” Opt. Lett. 30(19), 2641–2643 (2005).
    [Crossref] [PubMed]
  4. B. S. Luk’yanchuk, R. Paniagua-Dominguez, I. Minin, O. Minin, and Z. Wang, “Refractive index less than two: photonic nanojets yesterday, today and tomorrow Invited,” Opt. Mater. Express 7(6), 1820–1847 (2017).
    [Crossref]
  5. S.-C. Kong, A. Taflove, and V. Backman, “Quasi one-dimensional light beam generated by a graded-index microsphere,” Opt. Express 17(5), 3722–3731 (2009).
    [Crossref] [PubMed]
  6. C. M. Ruiz and J. J. Simpson, “Detection of embedded ultra-subwavelength-thin dielectric features using elongated photonic nanojets,” Opt. Express 18(16), 16805–16812 (2010).
    [Crossref] [PubMed]
  7. X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
    [Crossref] [PubMed]
  8. G. Gu, J. Song, M. Chen, X. Peng, H. Liang, and J. Qu, “Single nanoparticle detection using a photonic nanojet,” Nanoscale 10(29), 14182–14189 (2018).
    [Crossref] [PubMed]
  9. A. A. E. Saleh and J. A. Dionne, “Toward Efficient Optical Trapping of Sub-10-nm Particles with Coaxial Plasmonic Apertures,” Nano Lett. 12(11), 5581–5586 (2012).
    [Crossref] [PubMed]
  10. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
    [Crossref]
  11. A. Jannasch, A. F. Demirörs, P. D. J. van Oostrum, A. van Blaaderen, and E. Schäffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics 6(7), 469–473 (2012).
    [Crossref]
  12. Y.-C. Li, H.-B. Xin, H.-X. Lei, L.-L. Liu, Y.-Z. Li, Y. Zhang, and B.-J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5(12), e16176 (2016).
    [Crossref] [PubMed]
  13. Y. Li, H. Xin, X. Liu, Y. Zhang, H. Lei, and B. Li, “Trapping and Detection of Nanoparticles and Cells Using a Parallel Photonic Nanojet Array,” ACS Nano 10(6), 5800–5808 (2016).
    [Crossref] [PubMed]
  14. E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
    [Crossref] [PubMed]
  15. W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
    [Crossref]
  16. Y. F. Lu, L. Zhang, W. D. Song, Y. W. Zheng, and B. S. Luk’yanchuk, “Laser writing of a subwavelength structure on silicon (100) surfaces with particle-enhanced optical irradiation,” JETP Lett. 72(9), 457–459 (2000).
    [Crossref]
  17. S. Yang, A. Taflove, and V. Backman, “Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet,” Opt. Express 19(8), 7084–7093 (2011).
    [Crossref] [PubMed]
  18. Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
    [Crossref] [PubMed]
  19. P. K. Upputuri, Z. Wu, L. Gong, C. K. Ong, and H. Wang, “Super-resolution coherent anti-Stokes Raman scattering microscopy with photonic nanojets,” Opt. Express 22(11), 12890–12899 (2014).
    [Crossref] [PubMed]
  20. C.-Y. Liu and K.-L. Hsiao, “Direct imaging of optimal photonic nanojets from core-shell microcylinders,” Opt. Lett. 40(22), 5303–5306 (2015).
    [Crossref] [PubMed]
  21. J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
    [Crossref]
  22. L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
    [Crossref]
  23. A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
    [Crossref]
  24. L. Chen, Y. Zhou, M. Wu, and M. Hong, “Remote-mode microsphere nano-imaging: new boundaries for optical microscopes,” Opto-Electronic Advances 1(1), 17000101 (2018).
    [Crossref]
  25. S.-C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express 16(18), 13713–13719 (2008).
    [Crossref] [PubMed]
  26. Z. Chen, A. Taflove, and V. Backman, “Highly efficient optical coupling and transport phenomena in chains of dielectric microspheres,” Opt. Lett. 31(3), 389–391 (2006).
    [Crossref] [PubMed]
  27. B. Born, J. D. A. Krupa, S. Geoffroy-Gagnon, and J. F. Holzman, “Integration of photonic nanojets and semiconductor nanoparticles for enhanced all-optical switching,” Nat. Commun. 6(1), 8097 (2015).
    [Crossref] [PubMed]
  28. Y. Zhou, H. Gao, J. Teng, X. Luo, and M. Hong, “Orbital angular momentum generation via a spiral phase microsphere,” Opt. Lett. 43(1), 34–37 (2018).
    [Crossref] [PubMed]
  29. J. Zhu and L. L. Goddard, “Spatial control of photonic nanojets,” Opt. Express 24(26), 30444–30464 (2016).
    [Crossref] [PubMed]
  30. P. Wu, J. Li, K. Wei, and W. Yue, “Tunable and ultra-elongated photonic nanojet generated by a liquid-immersed core-shell dielectric microsphere,” Appl. Phys. Express 8(11), 112001 (2015).
    [Crossref]
  31. Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic nanojet calculations in layered radially inhomogeneous micrometer-sized spherical particles,” J. Opt. Soc. Am. B 28(8), 1825–1830 (2011).
    [Crossref]
  32. Y. Shen, L. V. Wang, and J.-T. Shen, “Ultralong photonic nanojet formed by a two-layer dielectric microsphere,” Opt. Lett. 39(14), 4120–4123 (2014).
    [Crossref] [PubMed]
  33. G. Gu, R. Zhou, Z. Chen, H. Xu, G. Cai, Z. Cai, and M. Hong, “Super-long photonic nanojet generated from liquid-filled hollow microcylinder,” Opt. Lett. 40(4), 625–628 (2015).
    [Crossref] [PubMed]
  34. Z. Hengyu, C. Zaichun, C. T. Chong, and H. Minghui, “Photonic jet with ultralong working distance by hemispheric shell,” Opt. Express 23(5), 6626–6633 (2015).
    [Crossref] [PubMed]
  35. Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Microaxicon-generated photonic nanojets,” J. Opt. Soc. Am. B 32(8), 1570–1574 (2015).
    [Crossref]
  36. H. Yang, R. Trouillon, G. Huszka, and M. A. M. Gijs, “Super-Resolution Imaging of a Dielectric Microsphere Is Governed by the Waist of Its Photonic Nanojet,” Nano Lett. 16(8), 4862–4870 (2016).
    [Crossref] [PubMed]
  37. Y. Huang, Z. Zhen, Y. Shen, C. Min, and G. Veronis, “Optimization of photonic nanojets generated by multilayer microcylinders with a genetic algorithm,” Opt. Express 27(2), 1310–1325 (2019).
    [Crossref] [PubMed]
  38. G. Gu, J. Song, H. Liang, M. Zhao, Y. Chen, and J. Qu, “Overstepping the upper refractive index limit to form ultra-narrow photonic nanojets,” Sci. Rep. 7(1), 5635 (2017).
    [Crossref] [PubMed]
  39. M. X. Wu, B. J. Huang, R. Chen, Y. Yang, J. F. Wu, R. Ji, X. D. Chen, and M. H. Hong, “Modulation of photonic nanojets generated by microspheres decorated with concentric rings,” Opt. Express 23(15), 20096–20103 (2015).
    [Crossref] [PubMed]
  40. M. Wu, R. Chen, J. Soh, Y. Shen, L. Jiao, J. Wu, X. Chen, R. Ji, and M. Hong, “Super-focusing of center-covered engineered microsphere,” Sci. Rep. 6(1), 31637 (2016).
    [Crossref] [PubMed]
  41. L. Yue, B. Yan, and Z. Wang, “Photonic nanojet of cylindrical metalens assembled by hexagonally arranged nanofibers for breaking the diffraction limit,” Opt. Lett. 41(7), 1336–1339 (2016).
    [Crossref] [PubMed]
  42. H. Xing, W. Zhou, and Y. Wu, “Side-lobes-controlled photonic nanojet with a horizontal graded-index microcylinder,” Opt. Lett. 43(17), 4292–4295 (2018).
    [Crossref] [PubMed]
  43. Y. E. Geints, A. A. Zemlyanov, O. V. Minin, and I. V. Minin, “Systematic study and comparison of photonic nanojets produced by dielectric microparticles in 2D-and 3D-spatial configurations,” J. Opt. 20(6), 065606 (2018).
    [Crossref]
  44. S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
    [Crossref] [PubMed]
  45. B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
    [Crossref]
  46. D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1-xAs,” J. Appl. Phys. 60(2), 754–767 (1986).
    [Crossref]
  47. O. Mazurin, M. Streltsina, and T. Shavaikovskaya, Handbook of Glass Data (Elsevier, 1993).
  48. https://www.filmetrics.com/refractive-index-database/CdS/Cadmium-Sulfide
  49. S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci. 212­213, 654–660 (2003).
    [Crossref]
  50. L. Zhang, R. Tu, and H. Dai, “Parallel core-shell metal-dielectric-semiconductor germanium nanowires for high-current surround-gate field-effect transistors,” Nano Lett. 6(12), 2785–2789 (2006).
    [Crossref] [PubMed]
  51. P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly Directional Scattering from Dielectric Nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
    [Crossref]

2019 (1)

Y. Huang, Z. Zhen, Y. Shen, C. Min, and G. Veronis, “Optimization of photonic nanojets generated by multilayer microcylinders with a genetic algorithm,” Opt. Express 27(2), 1310–1325 (2019).
[Crossref] [PubMed]

2018 (5)

H. Xing, W. Zhou, and Y. Wu, “Side-lobes-controlled photonic nanojet with a horizontal graded-index microcylinder,” Opt. Lett. 43(17), 4292–4295 (2018).
[Crossref] [PubMed]

Y. E. Geints, A. A. Zemlyanov, O. V. Minin, and I. V. Minin, “Systematic study and comparison of photonic nanojets produced by dielectric microparticles in 2D-and 3D-spatial configurations,” J. Opt. 20(6), 065606 (2018).
[Crossref]

G. Gu, J. Song, M. Chen, X. Peng, H. Liang, and J. Qu, “Single nanoparticle detection using a photonic nanojet,” Nanoscale 10(29), 14182–14189 (2018).
[Crossref] [PubMed]

L. Chen, Y. Zhou, M. Wu, and M. Hong, “Remote-mode microsphere nano-imaging: new boundaries for optical microscopes,” Opto-Electronic Advances 1(1), 17000101 (2018).
[Crossref]

Y. Zhou, H. Gao, J. Teng, X. Luo, and M. Hong, “Orbital angular momentum generation via a spiral phase microsphere,” Opt. Lett. 43(1), 34–37 (2018).
[Crossref] [PubMed]

2017 (3)

B. S. Luk’yanchuk, R. Paniagua-Dominguez, I. Minin, O. Minin, and Z. Wang, “Refractive index less than two: photonic nanojets yesterday, today and tomorrow Invited,” Opt. Mater. Express 7(6), 1820–1847 (2017).
[Crossref]

G. Gu, J. Song, H. Liang, M. Zhao, Y. Chen, and J. Qu, “Overstepping the upper refractive index limit to form ultra-narrow photonic nanojets,” Sci. Rep. 7(1), 5635 (2017).
[Crossref] [PubMed]

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly Directional Scattering from Dielectric Nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

2016 (6)

M. Wu, R. Chen, J. Soh, Y. Shen, L. Jiao, J. Wu, X. Chen, R. Ji, and M. Hong, “Super-focusing of center-covered engineered microsphere,” Sci. Rep. 6(1), 31637 (2016).
[Crossref] [PubMed]

L. Yue, B. Yan, and Z. Wang, “Photonic nanojet of cylindrical metalens assembled by hexagonally arranged nanofibers for breaking the diffraction limit,” Opt. Lett. 41(7), 1336–1339 (2016).
[Crossref] [PubMed]

Y.-C. Li, H.-B. Xin, H.-X. Lei, L.-L. Liu, Y.-Z. Li, Y. Zhang, and B.-J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5(12), e16176 (2016).
[Crossref] [PubMed]

Y. Li, H. Xin, X. Liu, Y. Zhang, H. Lei, and B. Li, “Trapping and Detection of Nanoparticles and Cells Using a Parallel Photonic Nanojet Array,” ACS Nano 10(6), 5800–5808 (2016).
[Crossref] [PubMed]

J. Zhu and L. L. Goddard, “Spatial control of photonic nanojets,” Opt. Express 24(26), 30444–30464 (2016).
[Crossref] [PubMed]

H. Yang, R. Trouillon, G. Huszka, and M. A. M. Gijs, “Super-Resolution Imaging of a Dielectric Microsphere Is Governed by the Waist of Its Photonic Nanojet,” Nano Lett. 16(8), 4862–4870 (2016).
[Crossref] [PubMed]

2015 (7)

G. Gu, R. Zhou, Z. Chen, H. Xu, G. Cai, Z. Cai, and M. Hong, “Super-long photonic nanojet generated from liquid-filled hollow microcylinder,” Opt. Lett. 40(4), 625–628 (2015).
[Crossref] [PubMed]

Z. Hengyu, C. Zaichun, C. T. Chong, and H. Minghui, “Photonic jet with ultralong working distance by hemispheric shell,” Opt. Express 23(5), 6626–6633 (2015).
[Crossref] [PubMed]

Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Microaxicon-generated photonic nanojets,” J. Opt. Soc. Am. B 32(8), 1570–1574 (2015).
[Crossref]

P. Wu, J. Li, K. Wei, and W. Yue, “Tunable and ultra-elongated photonic nanojet generated by a liquid-immersed core-shell dielectric microsphere,” Appl. Phys. Express 8(11), 112001 (2015).
[Crossref]

B. Born, J. D. A. Krupa, S. Geoffroy-Gagnon, and J. F. Holzman, “Integration of photonic nanojets and semiconductor nanoparticles for enhanced all-optical switching,” Nat. Commun. 6(1), 8097 (2015).
[Crossref] [PubMed]

C.-Y. Liu and K.-L. Hsiao, “Direct imaging of optimal photonic nanojets from core-shell microcylinders,” Opt. Lett. 40(22), 5303–5306 (2015).
[Crossref] [PubMed]

M. X. Wu, B. J. Huang, R. Chen, Y. Yang, J. F. Wu, R. Ji, X. D. Chen, and M. H. Hong, “Modulation of photonic nanojets generated by microspheres decorated with concentric rings,” Opt. Express 23(15), 20096–20103 (2015).
[Crossref] [PubMed]

2014 (3)

P. K. Upputuri, Z. Wu, L. Gong, C. K. Ong, and H. Wang, “Super-resolution coherent anti-Stokes Raman scattering microscopy with photonic nanojets,” Opt. Express 22(11), 12890–12899 (2014).
[Crossref] [PubMed]

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

Y. Shen, L. V. Wang, and J.-T. Shen, “Ultralong photonic nanojet formed by a two-layer dielectric microsphere,” Opt. Lett. 39(14), 4120–4123 (2014).
[Crossref] [PubMed]

2013 (1)

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

2012 (2)

A. Jannasch, A. F. Demirörs, P. D. J. van Oostrum, A. van Blaaderen, and E. Schäffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics 6(7), 469–473 (2012).
[Crossref]

A. A. E. Saleh and J. A. Dionne, “Toward Efficient Optical Trapping of Sub-10-nm Particles with Coaxial Plasmonic Apertures,” Nano Lett. 12(11), 5581–5586 (2012).
[Crossref] [PubMed]

2011 (4)

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

S. Yang, A. Taflove, and V. Backman, “Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet,” Opt. Express 19(8), 7084–7093 (2011).
[Crossref] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic nanojet calculations in layered radially inhomogeneous micrometer-sized spherical particles,” J. Opt. Soc. Am. B 28(8), 1825–1830 (2011).
[Crossref]

2010 (1)

C. M. Ruiz and J. J. Simpson, “Detection of embedded ultra-subwavelength-thin dielectric features using elongated photonic nanojets,” Opt. Express 18(16), 16805–16812 (2010).
[Crossref] [PubMed]

2009 (2)

S.-C. Kong, A. Taflove, and V. Backman, “Quasi one-dimensional light beam generated by a graded-index microsphere,” Opt. Express 17(5), 3722–3731 (2009).
[Crossref] [PubMed]

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

2008 (2)

S.-C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express 16(18), 13713–13719 (2008).
[Crossref] [PubMed]

E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
[Crossref] [PubMed]

2007 (1)

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
[Crossref]

2006 (3)

Z. Chen, A. Taflove, and V. Backman, “Highly efficient optical coupling and transport phenomena in chains of dielectric microspheres,” Opt. Lett. 31(3), 389–391 (2006).
[Crossref] [PubMed]

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[Crossref] [PubMed]

L. Zhang, R. Tu, and H. Dai, “Parallel core-shell metal-dielectric-semiconductor germanium nanowires for high-current surround-gate field-effect transistors,” Nano Lett. 6(12), 2785–2789 (2006).
[Crossref] [PubMed]

2005 (2)

S. Lecler, Y. Takakura, and P. Meyrueis, “Properties of a three-dimensional photonic jet,” Opt. Lett. 30(19), 2641–2643 (2005).
[Crossref] [PubMed]

X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
[Crossref] [PubMed]

2004 (1)

Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
[Crossref] [PubMed]

2003 (1)

S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci. 212­213, 654–660 (2003).
[Crossref]

2000 (1)

Y. F. Lu, L. Zhang, W. D. Song, Y. W. Zheng, and B. S. Luk’yanchuk, “Laser writing of a subwavelength structure on silicon (100) surfaces with particle-enhanced optical irradiation,” JETP Lett. 72(9), 457–459 (2000).
[Crossref]

1994 (1)

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[Crossref]

1987 (1)

D. S. Benincasa, P. W. Barber, J. Z. Zhang, W. F. Hsieh, and R. K. Chang, “Spatial distribution of the internal and near-field intensities of large cylindrical and spherical scatterers,” Appl. Opt. 26(7), 1348–1356 (1987).
[Crossref] [PubMed]

1986 (1)

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1-xAs,” J. Appl. Phys. 60(2), 754–767 (1986).
[Crossref]

Arbouet, A.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly Directional Scattering from Dielectric Nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

Arnold, C. B.

E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
[Crossref] [PubMed]

Aspnes, D. E.

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1-xAs,” J. Appl. Phys. 60(2), 754–767 (1986).
[Crossref]

Astratov, V. N.

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

Backman, V.

S. Yang, A. Taflove, and V. Backman, “Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet,” Opt. Express 19(8), 7084–7093 (2011).
[Crossref] [PubMed]

S.-C. Kong, A. Taflove, and V. Backman, “Quasi one-dimensional light beam generated by a graded-index microsphere,” Opt. Express 17(5), 3722–3731 (2009).
[Crossref] [PubMed]

S.-C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express 16(18), 13713–13719 (2008).
[Crossref] [PubMed]

Z. Chen, A. Taflove, and V. Backman, “Highly efficient optical coupling and transport phenomena in chains of dielectric microspheres,” Opt. Lett. 31(3), 389–391 (2006).
[Crossref] [PubMed]

X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
[Crossref] [PubMed]

Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
[Crossref] [PubMed]

Barber, P. W.

D. S. Benincasa, P. W. Barber, J. Z. Zhang, W. F. Hsieh, and R. K. Chang, “Spatial distribution of the internal and near-field intensities of large cylindrical and spherical scatterers,” Appl. Opt. 26(7), 1348–1356 (1987).
[Crossref] [PubMed]

Baron, T.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly Directional Scattering from Dielectric Nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

Benincasa, D. S.

D. S. Benincasa, P. W. Barber, J. Z. Zhang, W. F. Hsieh, and R. K. Chang, “Spatial distribution of the internal and near-field intensities of large cylindrical and spherical scatterers,” Appl. Opt. 26(7), 1348–1356 (1987).
[Crossref] [PubMed]

Bhat, R.

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1-xAs,” J. Appl. Phys. 60(2), 754–767 (1986).
[Crossref]

Born, B.

B. Born, J. D. A. Krupa, S. Geoffroy-Gagnon, and J. F. Holzman, “Integration of photonic nanojets and semiconductor nanoparticles for enhanced all-optical switching,” Nat. Commun. 6(1), 8097 (2015).
[Crossref] [PubMed]

Bose, R.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Cai, G.

G. Gu, R. Zhou, Z. Chen, H. Xu, G. Cai, Z. Cai, and M. Hong, “Super-long photonic nanojet generated from liquid-filled hollow microcylinder,” Opt. Lett. 40(4), 625–628 (2015).
[Crossref] [PubMed]

Cai, Z.

G. Gu, R. Zhou, Z. Chen, H. Xu, G. Cai, Z. Cai, and M. Hong, “Super-long photonic nanojet generated from liquid-filled hollow microcylinder,” Opt. Lett. 40(4), 625–628 (2015).
[Crossref] [PubMed]

Chang, R. K.

D. S. Benincasa, P. W. Barber, J. Z. Zhang, W. F. Hsieh, and R. K. Chang, “Spatial distribution of the internal and near-field intensities of large cylindrical and spherical scatterers,” Appl. Opt. 26(7), 1348–1356 (1987).
[Crossref] [PubMed]

Chen, L.

L. Chen, Y. Zhou, M. Wu, and M. Hong, “Remote-mode microsphere nano-imaging: new boundaries for optical microscopes,” Opto-Electronic Advances 1(1), 17000101 (2018).
[Crossref]

Chen, M.

G. Gu, J. Song, M. Chen, X. Peng, H. Liang, and J. Qu, “Single nanoparticle detection using a photonic nanojet,” Nanoscale 10(29), 14182–14189 (2018).
[Crossref] [PubMed]

Chen, R.

M. Wu, R. Chen, J. Soh, Y. Shen, L. Jiao, J. Wu, X. Chen, R. Ji, and M. Hong, “Super-focusing of center-covered engineered microsphere,” Sci. Rep. 6(1), 31637 (2016).
[Crossref] [PubMed]

M. X. Wu, B. J. Huang, R. Chen, Y. Yang, J. F. Wu, R. Ji, X. D. Chen, and M. H. Hong, “Modulation of photonic nanojets generated by microspheres decorated with concentric rings,” Opt. Express 23(15), 20096–20103 (2015).
[Crossref] [PubMed]

Chen, X.

M. Wu, R. Chen, J. Soh, Y. Shen, L. Jiao, J. Wu, X. Chen, R. Ji, and M. Hong, “Super-focusing of center-covered engineered microsphere,” Sci. Rep. 6(1), 31637 (2016).
[Crossref] [PubMed]

Chen, X. D.

M. X. Wu, B. J. Huang, R. Chen, Y. Yang, J. F. Wu, R. Ji, X. D. Chen, and M. H. Hong, “Modulation of photonic nanojets generated by microspheres decorated with concentric rings,” Opt. Express 23(15), 20096–20103 (2015).
[Crossref] [PubMed]

Chen, Y.

G. Gu, J. Song, H. Liang, M. Zhao, Y. Chen, and J. Qu, “Overstepping the upper refractive index limit to form ultra-narrow photonic nanojets,” Sci. Rep. 7(1), 5635 (2017).
[Crossref] [PubMed]

Chen, Z.

G. Gu, R. Zhou, Z. Chen, H. Xu, G. Cai, Z. Cai, and M. Hong, “Super-long photonic nanojet generated from liquid-filled hollow microcylinder,” Opt. Lett. 40(4), 625–628 (2015).
[Crossref] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

Z. Chen, A. Taflove, and V. Backman, “Highly efficient optical coupling and transport phenomena in chains of dielectric microspheres,” Opt. Lett. 31(3), 389–391 (2006).
[Crossref] [PubMed]

X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
[Crossref] [PubMed]

Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
[Crossref] [PubMed]

Chong, C. T.

Z. Hengyu, C. Zaichun, C. T. Chong, and H. Minghui, “Photonic jet with ultralong working distance by hemispheric shell,” Opt. Express 23(5), 6626–6633 (2015).
[Crossref] [PubMed]

Cuche, A.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly Directional Scattering from Dielectric Nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

Cummer, S. A.

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[Crossref] [PubMed]

Dai, H.

L. Zhang, R. Tu, and H. Dai, “Parallel core-shell metal-dielectric-semiconductor germanium nanowires for high-current surround-gate field-effect transistors,” Nano Lett. 6(12), 2785–2789 (2006).
[Crossref] [PubMed]

Darafsheh, A.

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

Demirörs, A. F.

A. Jannasch, A. F. Demirörs, P. D. J. van Oostrum, A. van Blaaderen, and E. Schäffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics 6(7), 469–473 (2012).
[Crossref]

Derov, J. S.

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

des Francs, G. C.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly Directional Scattering from Dielectric Nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

Dionne, J. A.

A. A. E. Saleh and J. A. Dionne, “Toward Efficient Optical Trapping of Sub-10-nm Particles with Coaxial Plasmonic Apertures,” Nano Lett. 12(11), 5581–5586 (2012).
[Crossref] [PubMed]

Fournel, F.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly Directional Scattering from Dielectric Nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

Gao, H.

Y. Zhou, H. Gao, J. Teng, X. Luo, and M. Hong, “Orbital angular momentum generation via a spiral phase microsphere,” Opt. Lett. 43(1), 34–37 (2018).
[Crossref] [PubMed]

Geints, Y. E.

Y. E. Geints, A. A. Zemlyanov, O. V. Minin, and I. V. Minin, “Systematic study and comparison of photonic nanojets produced by dielectric microparticles in 2D-and 3D-spatial configurations,” J. Opt. 20(6), 065606 (2018).
[Crossref]

Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Microaxicon-generated photonic nanojets,” J. Opt. Soc. Am. B 32(8), 1570–1574 (2015).
[Crossref]

Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic nanojet calculations in layered radially inhomogeneous micrometer-sized spherical particles,” J. Opt. Soc. Am. B 28(8), 1825–1830 (2011).
[Crossref]

Geoffroy-Gagnon, S.

B. Born, J. D. A. Krupa, S. Geoffroy-Gagnon, and J. F. Holzman, “Integration of photonic nanojets and semiconductor nanoparticles for enhanced all-optical switching,” Nat. Commun. 6(1), 8097 (2015).
[Crossref] [PubMed]

Gijs, M. A. M.

H. Yang, R. Trouillon, G. Huszka, and M. A. M. Gijs, “Super-Resolution Imaging of a Dielectric Microsphere Is Governed by the Waist of Its Photonic Nanojet,” Nano Lett. 16(8), 4862–4870 (2016).
[Crossref] [PubMed]

Girard, C.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly Directional Scattering from Dielectric Nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

Goddard, L. L.

J. Zhu and L. L. Goddard, “Spatial control of photonic nanojets,” Opt. Express 24(26), 30444–30464 (2016).
[Crossref] [PubMed]

Gong, L.

P. K. Upputuri, Z. Wu, L. Gong, C. K. Ong, and H. Wang, “Super-resolution coherent anti-Stokes Raman scattering microscopy with photonic nanojets,” Opt. Express 22(11), 12890–12899 (2014).
[Crossref] [PubMed]

Gu, G.

G. Gu, J. Song, M. Chen, X. Peng, H. Liang, and J. Qu, “Single nanoparticle detection using a photonic nanojet,” Nanoscale 10(29), 14182–14189 (2018).
[Crossref] [PubMed]

G. Gu, J. Song, H. Liang, M. Zhao, Y. Chen, and J. Qu, “Overstepping the upper refractive index limit to form ultra-narrow photonic nanojets,” Sci. Rep. 7(1), 5635 (2017).
[Crossref] [PubMed]

G. Gu, R. Zhou, Z. Chen, H. Xu, G. Cai, Z. Cai, and M. Hong, “Super-long photonic nanojet generated from liquid-filled hollow microcylinder,” Opt. Lett. 40(4), 625–628 (2015).
[Crossref] [PubMed]

Guo, W.

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

Hengyu, Z.

Z. Hengyu, C. Zaichun, C. T. Chong, and H. Minghui, “Photonic jet with ultralong working distance by hemispheric shell,” Opt. Express 23(5), 6626–6633 (2015).
[Crossref] [PubMed]

Holzman, J. F.

B. Born, J. D. A. Krupa, S. Geoffroy-Gagnon, and J. F. Holzman, “Integration of photonic nanojets and semiconductor nanoparticles for enhanced all-optical switching,” Nat. Commun. 6(1), 8097 (2015).
[Crossref] [PubMed]

Hong, B. H.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Hong, M.

L. Chen, Y. Zhou, M. Wu, and M. Hong, “Remote-mode microsphere nano-imaging: new boundaries for optical microscopes,” Opto-Electronic Advances 1(1), 17000101 (2018).
[Crossref]

Y. Zhou, H. Gao, J. Teng, X. Luo, and M. Hong, “Orbital angular momentum generation via a spiral phase microsphere,” Opt. Lett. 43(1), 34–37 (2018).
[Crossref] [PubMed]

M. Wu, R. Chen, J. Soh, Y. Shen, L. Jiao, J. Wu, X. Chen, R. Ji, and M. Hong, “Super-focusing of center-covered engineered microsphere,” Sci. Rep. 6(1), 31637 (2016).
[Crossref] [PubMed]

G. Gu, R. Zhou, Z. Chen, H. Xu, G. Cai, Z. Cai, and M. Hong, “Super-long photonic nanojet generated from liquid-filled hollow microcylinder,” Opt. Lett. 40(4), 625–628 (2015).
[Crossref] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

Hong, M. H.

M. X. Wu, B. J. Huang, R. Chen, Y. Yang, J. F. Wu, R. Ji, X. D. Chen, and M. H. Hong, “Modulation of photonic nanojets generated by microspheres decorated with concentric rings,” Opt. Express 23(15), 20096–20103 (2015).
[Crossref] [PubMed]

Hsiao, K.-L.

C.-Y. Liu and K.-L. Hsiao, “Direct imaging of optimal photonic nanojets from core-shell microcylinders,” Opt. Lett. 40(22), 5303–5306 (2015).
[Crossref] [PubMed]

Hsieh, W. F.

D. S. Benincasa, P. W. Barber, J. Z. Zhang, W. F. Hsieh, and R. K. Chang, “Spatial distribution of the internal and near-field intensities of large cylindrical and spherical scatterers,” Appl. Opt. 26(7), 1348–1356 (1987).
[Crossref] [PubMed]

Huang, B. J.

M. X. Wu, B. J. Huang, R. Chen, Y. Yang, J. F. Wu, R. Ji, X. D. Chen, and M. H. Hong, “Modulation of photonic nanojets generated by microspheres decorated with concentric rings,” Opt. Express 23(15), 20096–20103 (2015).
[Crossref] [PubMed]

Huang, Y.

Y. Huang, Z. Zhen, Y. Shen, C. Min, and G. Veronis, “Optimization of photonic nanojets generated by multilayer microcylinders with a genetic algorithm,” Opt. Express 27(2), 1310–1325 (2019).
[Crossref] [PubMed]

Huszka, G.

H. Yang, R. Trouillon, G. Huszka, and M. A. M. Gijs, “Super-Resolution Imaging of a Dielectric Microsphere Is Governed by the Waist of Its Photonic Nanojet,” Nano Lett. 16(8), 4862–4870 (2016).
[Crossref] [PubMed]

Hwang, I.-C.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Jannasch, A.

A. Jannasch, A. F. Demirörs, P. D. J. van Oostrum, A. van Blaaderen, and E. Schäffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics 6(7), 469–473 (2012).
[Crossref]

Ji, R.

M. Wu, R. Chen, J. Soh, Y. Shen, L. Jiao, J. Wu, X. Chen, R. Ji, and M. Hong, “Super-focusing of center-covered engineered microsphere,” Sci. Rep. 6(1), 31637 (2016).
[Crossref] [PubMed]

M. X. Wu, B. J. Huang, R. Chen, Y. Yang, J. F. Wu, R. Ji, X. D. Chen, and M. H. Hong, “Modulation of photonic nanojets generated by microspheres decorated with concentric rings,” Opt. Express 23(15), 20096–20103 (2015).
[Crossref] [PubMed]

Jiao, L.

M. Wu, R. Chen, J. Soh, Y. Shen, L. Jiao, J. Wu, X. Chen, R. Ji, and M. Hong, “Super-focusing of center-covered engineered microsphere,” Sci. Rep. 6(1), 31637 (2016).
[Crossref] [PubMed]

Jin, P.

S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci. 212­213, 654–660 (2003).
[Crossref]

Jouravlev, M. V.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Juan, M. L.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Kaneko, K.

S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci. 212­213, 654–660 (2003).
[Crossref]

Katsnelson, A.

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
[Crossref]

Kaufman, L. J.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Kelso, S. M.

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1-xAs,” J. Appl. Phys. 60(2), 754–767 (1986).
[Crossref]

Khan, A.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

Kim, K. S.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Kim, P.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Kim, W. Y.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Kim, Y.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Kino, G. S.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[Crossref]

Kong, S.-C.

S.-C. Kong, A. Taflove, and V. Backman, “Quasi one-dimensional light beam generated by a graded-index microsphere,” Opt. Express 17(5), 3722–3731 (2009).
[Crossref] [PubMed]

S.-C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express 16(18), 13713–13719 (2008).
[Crossref] [PubMed]

Krupa, J. D. A.

B. Born, J. D. A. Krupa, S. Geoffroy-Gagnon, and J. F. Holzman, “Integration of photonic nanojets and semiconductor nanoparticles for enhanced all-optical switching,” Nat. Commun. 6(1), 8097 (2015).
[Crossref] [PubMed]

Larrey, V.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly Directional Scattering from Dielectric Nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

Larrieu, G.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly Directional Scattering from Dielectric Nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

Lecestre, A.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly Directional Scattering from Dielectric Nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

Lecler, S.

S. Lecler, Y. Takakura, and P. Meyrueis, “Properties of a three-dimensional photonic jet,” Opt. Lett. 30(19), 2641–2643 (2005).
[Crossref] [PubMed]

Lee, J. Y.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Lee, S.

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

Lei, H.

Y. Li, H. Xin, X. Liu, Y. Zhang, H. Lei, and B. Li, “Trapping and Detection of Nanoparticles and Cells Using a Parallel Photonic Nanojet Array,” ACS Nano 10(6), 5800–5808 (2016).
[Crossref] [PubMed]

Lei, H.-X.

Y.-C. Li, H.-B. Xin, H.-X. Lei, L.-L. Liu, Y.-Z. Li, Y. Zhang, and B.-J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5(12), e16176 (2016).
[Crossref] [PubMed]

Li, B.

Y. Li, H. Xin, X. Liu, Y. Zhang, H. Lei, and B. Li, “Trapping and Detection of Nanoparticles and Cells Using a Parallel Photonic Nanojet Array,” ACS Nano 10(6), 5800–5808 (2016).
[Crossref] [PubMed]

Li, B.-J.

Y.-C. Li, H.-B. Xin, H.-X. Lei, L.-L. Liu, Y.-Z. Li, Y. Zhang, and B.-J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5(12), e16176 (2016).
[Crossref] [PubMed]

Li, J.

P. Wu, J. Li, K. Wei, and W. Yue, “Tunable and ultra-elongated photonic nanojet generated by a liquid-immersed core-shell dielectric microsphere,” Appl. Phys. Express 8(11), 112001 (2015).
[Crossref]

Li, L.

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

Li, X.

X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
[Crossref] [PubMed]

Li, Y.

Y. Li, H. Xin, X. Liu, Y. Zhang, H. Lei, and B. Li, “Trapping and Detection of Nanoparticles and Cells Using a Parallel Photonic Nanojet Array,” ACS Nano 10(6), 5800–5808 (2016).
[Crossref] [PubMed]

Li, Y.-C.

Y.-C. Li, H.-B. Xin, H.-X. Lei, L.-L. Liu, Y.-Z. Li, Y. Zhang, and B.-J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5(12), e16176 (2016).
[Crossref] [PubMed]

Li, Y.-Z.

Y.-C. Li, H.-B. Xin, H.-X. Lei, L.-L. Liu, Y.-Z. Li, Y. Zhang, and B.-J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5(12), e16176 (2016).
[Crossref] [PubMed]

Liang, H.

G. Gu, J. Song, M. Chen, X. Peng, H. Liang, and J. Qu, “Single nanoparticle detection using a photonic nanojet,” Nanoscale 10(29), 14182–14189 (2018).
[Crossref] [PubMed]

G. Gu, J. Song, H. Liang, M. Zhao, Y. Chen, and J. Qu, “Overstepping the upper refractive index limit to form ultra-narrow photonic nanojets,” Sci. Rep. 7(1), 5635 (2017).
[Crossref] [PubMed]

Limberopoulos, N. I.

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

Liu, C.-Y.

C.-Y. Liu and K.-L. Hsiao, “Direct imaging of optimal photonic nanojets from core-shell microcylinders,” Opt. Lett. 40(22), 5303–5306 (2015).
[Crossref] [PubMed]

Liu, L.-L.

Y.-C. Li, H.-B. Xin, H.-X. Lei, L.-L. Liu, Y.-Z. Li, Y. Zhang, and B.-J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5(12), e16176 (2016).
[Crossref] [PubMed]

Liu, X.

Y. Li, H. Xin, X. Liu, Y. Zhang, H. Lei, and B. Li, “Trapping and Detection of Nanoparticles and Cells Using a Parallel Photonic Nanojet Array,” ACS Nano 10(6), 5800–5808 (2016).
[Crossref] [PubMed]

Liu, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

Logan, R. A.

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1-xAs,” J. Appl. Phys. 60(2), 754–767 (1986).
[Crossref]

Lu, Y. F.

Y. F. Lu, L. Zhang, W. D. Song, Y. W. Zheng, and B. S. Luk’yanchuk, “Laser writing of a subwavelength structure on silicon (100) surfaces with particle-enhanced optical irradiation,” JETP Lett. 72(9), 457–459 (2000).
[Crossref]

Luk’yanchuk, B.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

Luk’yanchuk, B. S.

B. S. Luk’yanchuk, R. Paniagua-Dominguez, I. Minin, O. Minin, and Z. Wang, “Refractive index less than two: photonic nanojets yesterday, today and tomorrow Invited,” Opt. Mater. Express 7(6), 1820–1847 (2017).
[Crossref]

Y. F. Lu, L. Zhang, W. D. Song, Y. W. Zheng, and B. S. Luk’yanchuk, “Laser writing of a subwavelength structure on silicon (100) surfaces with particle-enhanced optical irradiation,” JETP Lett. 72(9), 457–459 (2000).
[Crossref]

Luo, X.

Y. Zhou, H. Gao, J. Teng, X. Luo, and M. Hong, “Orbital angular momentum generation via a spiral phase microsphere,” Opt. Lett. 43(1), 34–37 (2018).
[Crossref] [PubMed]

Mamin, H. J.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[Crossref]

Mcleod, E.

E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
[Crossref] [PubMed]

Memis, O. G.

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
[Crossref]

Meyrueis, P.

S. Lecler, Y. Takakura, and P. Meyrueis, “Properties of a three-dimensional photonic jet,” Opt. Lett. 30(19), 2641–2643 (2005).
[Crossref] [PubMed]

Miao, L.

S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci. 212­213, 654–660 (2003).
[Crossref]

Min, C.

Y. Huang, Z. Zhen, Y. Shen, C. Min, and G. Veronis, “Optimization of photonic nanojets generated by multilayer microcylinders with a genetic algorithm,” Opt. Express 27(2), 1310–1325 (2019).
[Crossref] [PubMed]

Min, S. K.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Minghui, H.

Z. Hengyu, C. Zaichun, C. T. Chong, and H. Minghui, “Photonic jet with ultralong working distance by hemispheric shell,” Opt. Express 23(5), 6626–6633 (2015).
[Crossref] [PubMed]

Minin, I.

B. S. Luk’yanchuk, R. Paniagua-Dominguez, I. Minin, O. Minin, and Z. Wang, “Refractive index less than two: photonic nanojets yesterday, today and tomorrow Invited,” Opt. Mater. Express 7(6), 1820–1847 (2017).
[Crossref]

Minin, I. V.

Y. E. Geints, A. A. Zemlyanov, O. V. Minin, and I. V. Minin, “Systematic study and comparison of photonic nanojets produced by dielectric microparticles in 2D-and 3D-spatial configurations,” J. Opt. 20(6), 065606 (2018).
[Crossref]

Minin, O.

B. S. Luk’yanchuk, R. Paniagua-Dominguez, I. Minin, O. Minin, and Z. Wang, “Refractive index less than two: photonic nanojets yesterday, today and tomorrow Invited,” Opt. Mater. Express 7(6), 1820–1847 (2017).
[Crossref]

Minin, O. V.

Y. E. Geints, A. A. Zemlyanov, O. V. Minin, and I. V. Minin, “Systematic study and comparison of photonic nanojets produced by dielectric microparticles in 2D-and 3D-spatial configurations,” J. Opt. 20(6), 065606 (2018).
[Crossref]

Mohseni, H.

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
[Crossref]

Nabatova-Gabain, N.

S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci. 212­213, 654–660 (2003).
[Crossref]

Ong, C. K.

P. K. Upputuri, Z. Wu, L. Gong, C. K. Ong, and H. Wang, “Super-resolution coherent anti-Stokes Raman scattering microscopy with photonic nanojets,” Opt. Express 22(11), 12890–12899 (2014).
[Crossref] [PubMed]

Paillard, V.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly Directional Scattering from Dielectric Nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

Paniagua-Dominguez, R.

B. S. Luk’yanchuk, R. Paniagua-Dominguez, I. Minin, O. Minin, and Z. Wang, “Refractive index less than two: photonic nanojets yesterday, today and tomorrow Invited,” Opt. Mater. Express 7(6), 1820–1847 (2017).
[Crossref]

Panina, E. K.

Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Microaxicon-generated photonic nanojets,” J. Opt. Soc. Am. B 32(8), 1570–1574 (2015).
[Crossref]

Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic nanojet calculations in layered radially inhomogeneous micrometer-sized spherical particles,” J. Opt. Soc. Am. B 28(8), 1825–1830 (2011).
[Crossref]

Pendry, J.

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[Crossref] [PubMed]

Peng, X.

G. Gu, J. Song, M. Chen, X. Peng, H. Liang, and J. Qu, “Single nanoparticle detection using a photonic nanojet,” Nanoscale 10(29), 14182–14189 (2018).
[Crossref] [PubMed]

Popa, B.-I.

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[Crossref] [PubMed]

Qu, J.

G. Gu, J. Song, M. Chen, X. Peng, H. Liang, and J. Qu, “Single nanoparticle detection using a photonic nanojet,” Nanoscale 10(29), 14182–14189 (2018).
[Crossref] [PubMed]

G. Gu, J. Song, H. Liang, M. Zhao, Y. Chen, and J. Qu, “Overstepping the upper refractive index limit to form ultra-narrow photonic nanojets,” Sci. Rep. 7(1), 5635 (2017).
[Crossref] [PubMed]

Quidant, R.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Rugar, D.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[Crossref]

Ruiz, C. M.

C. M. Ruiz and J. J. Simpson, “Detection of embedded ultra-subwavelength-thin dielectric features using elongated photonic nanojets,” Opt. Express 18(16), 16805–16812 (2010).
[Crossref] [PubMed]

Sahakian, A.

S.-C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express 16(18), 13713–13719 (2008).
[Crossref] [PubMed]

Saleh, A. A. E.

A. A. E. Saleh and J. A. Dionne, “Toward Efficient Optical Trapping of Sub-10-nm Particles with Coaxial Plasmonic Apertures,” Nano Lett. 12(11), 5581–5586 (2012).
[Crossref] [PubMed]

Schäffer, E.

A. Jannasch, A. F. Demirörs, P. D. J. van Oostrum, A. van Blaaderen, and E. Schäffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics 6(7), 469–473 (2012).
[Crossref]

Schurig, D.

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[Crossref] [PubMed]

Shen, J.-T.

Y. Shen, L. V. Wang, and J.-T. Shen, “Ultralong photonic nanojet formed by a two-layer dielectric microsphere,” Opt. Lett. 39(14), 4120–4123 (2014).
[Crossref] [PubMed]

Shen, Y.

Y. Huang, Z. Zhen, Y. Shen, C. Min, and G. Veronis, “Optimization of photonic nanojets generated by multilayer microcylinders with a genetic algorithm,” Opt. Express 27(2), 1310–1325 (2019).
[Crossref] [PubMed]

M. Wu, R. Chen, J. Soh, Y. Shen, L. Jiao, J. Wu, X. Chen, R. Ji, and M. Hong, “Super-focusing of center-covered engineered microsphere,” Sci. Rep. 6(1), 31637 (2016).
[Crossref] [PubMed]

Y. Shen, L. V. Wang, and J.-T. Shen, “Ultralong photonic nanojet formed by a two-layer dielectric microsphere,” Opt. Lett. 39(14), 4120–4123 (2014).
[Crossref] [PubMed]

Simpson, J. J.

C. M. Ruiz and J. J. Simpson, “Detection of embedded ultra-subwavelength-thin dielectric features using elongated photonic nanojets,” Opt. Express 18(16), 16805–16812 (2010).
[Crossref] [PubMed]

Smith, D. R.

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[Crossref] [PubMed]

Soh, J.

M. Wu, R. Chen, J. Soh, Y. Shen, L. Jiao, J. Wu, X. Chen, R. Ji, and M. Hong, “Super-focusing of center-covered engineered microsphere,” Sci. Rep. 6(1), 31637 (2016).
[Crossref] [PubMed]

Song, J.

G. Gu, J. Song, M. Chen, X. Peng, H. Liang, and J. Qu, “Single nanoparticle detection using a photonic nanojet,” Nanoscale 10(29), 14182–14189 (2018).
[Crossref] [PubMed]

G. Gu, J. Song, H. Liang, M. Zhao, Y. Chen, and J. Qu, “Overstepping the upper refractive index limit to form ultra-narrow photonic nanojets,” Sci. Rep. 7(1), 5635 (2017).
[Crossref] [PubMed]

Song, W. D.

Y. F. Lu, L. Zhang, W. D. Song, Y. W. Zheng, and B. S. Luk’yanchuk, “Laser writing of a subwavelength structure on silicon (100) surfaces with particle-enhanced optical irradiation,” JETP Lett. 72(9), 457–459 (2000).
[Crossref]

Studenmund, W. R.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[Crossref]

Taflove, A.

S. Yang, A. Taflove, and V. Backman, “Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet,” Opt. Express 19(8), 7084–7093 (2011).
[Crossref] [PubMed]

S.-C. Kong, A. Taflove, and V. Backman, “Quasi one-dimensional light beam generated by a graded-index microsphere,” Opt. Express 17(5), 3722–3731 (2009).
[Crossref] [PubMed]

S.-C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express 16(18), 13713–13719 (2008).
[Crossref] [PubMed]

Z. Chen, A. Taflove, and V. Backman, “Highly efficient optical coupling and transport phenomena in chains of dielectric microspheres,” Opt. Lett. 31(3), 389–391 (2006).
[Crossref] [PubMed]

X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
[Crossref] [PubMed]

Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
[Crossref] [PubMed]

Takakura, Y.

S. Lecler, Y. Takakura, and P. Meyrueis, “Properties of a three-dimensional photonic jet,” Opt. Lett. 30(19), 2641–2643 (2005).
[Crossref] [PubMed]

Tanemura, S.

S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci. 212­213, 654–660 (2003).
[Crossref]

Teng, J.

Y. Zhou, H. Gao, J. Teng, X. Luo, and M. Hong, “Orbital angular momentum generation via a spiral phase microsphere,” Opt. Lett. 43(1), 34–37 (2018).
[Crossref] [PubMed]

Terai, A.

S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci. 212­213, 654–660 (2003).
[Crossref]

Terris, B. D.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[Crossref]

Trouillon, R.

H. Yang, R. Trouillon, G. Huszka, and M. A. M. Gijs, “Super-Resolution Imaging of a Dielectric Microsphere Is Governed by the Waist of Its Photonic Nanojet,” Nano Lett. 16(8), 4862–4870 (2016).
[Crossref] [PubMed]

Tu, R.

L. Zhang, R. Tu, and H. Dai, “Parallel core-shell metal-dielectric-semiconductor germanium nanowires for high-current surround-gate field-effect transistors,” Nano Lett. 6(12), 2785–2789 (2006).
[Crossref] [PubMed]

Upputuri, P. K.

P. K. Upputuri, Z. Wu, L. Gong, C. K. Ong, and H. Wang, “Super-resolution coherent anti-Stokes Raman scattering microscopy with photonic nanojets,” Opt. Express 22(11), 12890–12899 (2014).
[Crossref] [PubMed]

van Blaaderen, A.

A. Jannasch, A. F. Demirörs, P. D. J. van Oostrum, A. van Blaaderen, and E. Schäffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics 6(7), 469–473 (2012).
[Crossref]

van Oostrum, P. D. J.

A. Jannasch, A. F. Demirörs, P. D. J. van Oostrum, A. van Blaaderen, and E. Schäffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics 6(7), 469–473 (2012).
[Crossref]

Veronis, G.

Y. Huang, Z. Zhen, Y. Shen, C. Min, and G. Veronis, “Optimization of photonic nanojets generated by multilayer microcylinders with a genetic algorithm,” Opt. Express 27(2), 1310–1325 (2019).
[Crossref] [PubMed]

Walker, D. E.

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

Wang, H.

P. K. Upputuri, Z. Wu, L. Gong, C. K. Ong, and H. Wang, “Super-resolution coherent anti-Stokes Raman scattering microscopy with photonic nanojets,” Opt. Express 22(11), 12890–12899 (2014).
[Crossref] [PubMed]

Wang, L. V.

Y. Shen, L. V. Wang, and J.-T. Shen, “Ultralong photonic nanojet formed by a two-layer dielectric microsphere,” Opt. Lett. 39(14), 4120–4123 (2014).
[Crossref] [PubMed]

Wang, T.

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

Wang, Z.

B. S. Luk’yanchuk, R. Paniagua-Dominguez, I. Minin, O. Minin, and Z. Wang, “Refractive index less than two: photonic nanojets yesterday, today and tomorrow Invited,” Opt. Mater. Express 7(6), 1820–1847 (2017).
[Crossref]

L. Yue, B. Yan, and Z. Wang, “Photonic nanojet of cylindrical metalens assembled by hexagonally arranged nanofibers for breaking the diffraction limit,” Opt. Lett. 41(7), 1336–1339 (2016).
[Crossref] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

Wei, K.

P. Wu, J. Li, K. Wei, and W. Yue, “Tunable and ultra-elongated photonic nanojet generated by a liquid-immersed core-shell dielectric microsphere,” Appl. Phys. Express 8(11), 112001 (2015).
[Crossref]

Wiecha, P. R.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly Directional Scattering from Dielectric Nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

Wong, C. W.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Wu, J.

M. Wu, R. Chen, J. Soh, Y. Shen, L. Jiao, J. Wu, X. Chen, R. Ji, and M. Hong, “Super-focusing of center-covered engineered microsphere,” Sci. Rep. 6(1), 31637 (2016).
[Crossref] [PubMed]

Wu, J. F.

M. X. Wu, B. J. Huang, R. Chen, Y. Yang, J. F. Wu, R. Ji, X. D. Chen, and M. H. Hong, “Modulation of photonic nanojets generated by microspheres decorated with concentric rings,” Opt. Express 23(15), 20096–20103 (2015).
[Crossref] [PubMed]

Wu, M.

L. Chen, Y. Zhou, M. Wu, and M. Hong, “Remote-mode microsphere nano-imaging: new boundaries for optical microscopes,” Opto-Electronic Advances 1(1), 17000101 (2018).
[Crossref]

M. Wu, R. Chen, J. Soh, Y. Shen, L. Jiao, J. Wu, X. Chen, R. Ji, and M. Hong, “Super-focusing of center-covered engineered microsphere,” Sci. Rep. 6(1), 31637 (2016).
[Crossref] [PubMed]

Wu, M. X.

M. X. Wu, B. J. Huang, R. Chen, Y. Yang, J. F. Wu, R. Ji, X. D. Chen, and M. H. Hong, “Modulation of photonic nanojets generated by microspheres decorated with concentric rings,” Opt. Express 23(15), 20096–20103 (2015).
[Crossref] [PubMed]

Wu, P.

P. Wu, J. Li, K. Wei, and W. Yue, “Tunable and ultra-elongated photonic nanojet generated by a liquid-immersed core-shell dielectric microsphere,” Appl. Phys. Express 8(11), 112001 (2015).
[Crossref]

Wu, W.

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
[Crossref]

Wu, Y.

H. Xing, W. Zhou, and Y. Wu, “Side-lobes-controlled photonic nanojet with a horizontal graded-index microcylinder,” Opt. Lett. 43(17), 4292–4295 (2018).
[Crossref] [PubMed]

Wu, Z.

P. K. Upputuri, Z. Wu, L. Gong, C. K. Ong, and H. Wang, “Super-resolution coherent anti-Stokes Raman scattering microscopy with photonic nanojets,” Opt. Express 22(11), 12890–12899 (2014).
[Crossref] [PubMed]

Xin, H.

Y. Li, H. Xin, X. Liu, Y. Zhang, H. Lei, and B. Li, “Trapping and Detection of Nanoparticles and Cells Using a Parallel Photonic Nanojet Array,” ACS Nano 10(6), 5800–5808 (2016).
[Crossref] [PubMed]

Xin, H.-B.

Y.-C. Li, H.-B. Xin, H.-X. Lei, L.-L. Liu, Y.-Z. Li, Y. Zhang, and B.-J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5(12), e16176 (2016).
[Crossref] [PubMed]

Xing, H.

H. Xing, W. Zhou, and Y. Wu, “Side-lobes-controlled photonic nanojet with a horizontal graded-index microcylinder,” Opt. Lett. 43(17), 4292–4295 (2018).
[Crossref] [PubMed]

Xu, H.

G. Gu, R. Zhou, Z. Chen, H. Xu, G. Cai, Z. Cai, and M. Hong, “Super-long photonic nanojet generated from liquid-filled hollow microcylinder,” Opt. Lett. 40(4), 625–628 (2015).
[Crossref] [PubMed]

Yan, B.

L. Yue, B. Yan, and Z. Wang, “Photonic nanojet of cylindrical metalens assembled by hexagonally arranged nanofibers for breaking the diffraction limit,” Opt. Lett. 41(7), 1336–1339 (2016).
[Crossref] [PubMed]

Yan, Y.

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

Yang, H.

H. Yang, R. Trouillon, G. Huszka, and M. A. M. Gijs, “Super-Resolution Imaging of a Dielectric Microsphere Is Governed by the Waist of Its Photonic Nanojet,” Nano Lett. 16(8), 4862–4870 (2016).
[Crossref] [PubMed]

Yang, S.

S. Yang, A. Taflove, and V. Backman, “Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet,” Opt. Express 19(8), 7084–7093 (2011).
[Crossref] [PubMed]

Yang, Y.

M. X. Wu, B. J. Huang, R. Chen, Y. Yang, J. F. Wu, R. Ji, X. D. Chen, and M. H. Hong, “Modulation of photonic nanojets generated by microspheres decorated with concentric rings,” Opt. Express 23(15), 20096–20103 (2015).
[Crossref] [PubMed]

Yue, L.

L. Yue, B. Yan, and Z. Wang, “Photonic nanojet of cylindrical metalens assembled by hexagonally arranged nanofibers for breaking the diffraction limit,” Opt. Lett. 41(7), 1336–1339 (2016).
[Crossref] [PubMed]

Yue, W.

P. Wu, J. Li, K. Wei, and W. Yue, “Tunable and ultra-elongated photonic nanojet generated by a liquid-immersed core-shell dielectric microsphere,” Appl. Phys. Express 8(11), 112001 (2015).
[Crossref]

Zaichun, C.

Z. Hengyu, C. Zaichun, C. T. Chong, and H. Minghui, “Photonic jet with ultralong working distance by hemispheric shell,” Opt. Express 23(5), 6626–6633 (2015).
[Crossref] [PubMed]

Zemlyanov, A. A.

Y. E. Geints, A. A. Zemlyanov, O. V. Minin, and I. V. Minin, “Systematic study and comparison of photonic nanojets produced by dielectric microparticles in 2D-and 3D-spatial configurations,” J. Opt. 20(6), 065606 (2018).
[Crossref]

Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Microaxicon-generated photonic nanojets,” J. Opt. Soc. Am. B 32(8), 1570–1574 (2015).
[Crossref]

Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic nanojet calculations in layered radially inhomogeneous micrometer-sized spherical particles,” J. Opt. Soc. Am. B 28(8), 1825–1830 (2011).
[Crossref]

Zhang, J. Z.

D. S. Benincasa, P. W. Barber, J. Z. Zhang, W. F. Hsieh, and R. K. Chang, “Spatial distribution of the internal and near-field intensities of large cylindrical and spherical scatterers,” Appl. Opt. 26(7), 1348–1356 (1987).
[Crossref] [PubMed]

Zhang, L.

L. Zhang, R. Tu, and H. Dai, “Parallel core-shell metal-dielectric-semiconductor germanium nanowires for high-current surround-gate field-effect transistors,” Nano Lett. 6(12), 2785–2789 (2006).
[Crossref] [PubMed]

Y. F. Lu, L. Zhang, W. D. Song, Y. W. Zheng, and B. S. Luk’yanchuk, “Laser writing of a subwavelength structure on silicon (100) surfaces with particle-enhanced optical irradiation,” JETP Lett. 72(9), 457–459 (2000).
[Crossref]

Zhang, Y.

Y.-C. Li, H.-B. Xin, H.-X. Lei, L.-L. Liu, Y.-Z. Li, Y. Zhang, and B.-J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5(12), e16176 (2016).
[Crossref] [PubMed]

Y. Li, H. Xin, X. Liu, Y. Zhang, H. Lei, and B. Li, “Trapping and Detection of Nanoparticles and Cells Using a Parallel Photonic Nanojet Array,” ACS Nano 10(6), 5800–5808 (2016).
[Crossref] [PubMed]

Zhao, M.

G. Gu, J. Song, H. Liang, M. Zhao, Y. Chen, and J. Qu, “Overstepping the upper refractive index limit to form ultra-narrow photonic nanojets,” Sci. Rep. 7(1), 5635 (2017).
[Crossref] [PubMed]

Zhen, Z.

Y. Huang, Z. Zhen, Y. Shen, C. Min, and G. Veronis, “Optimization of photonic nanojets generated by multilayer microcylinders with a genetic algorithm,” Opt. Express 27(2), 1310–1325 (2019).
[Crossref] [PubMed]

Zheng, Y. W.

Y. F. Lu, L. Zhang, W. D. Song, Y. W. Zheng, and B. S. Luk’yanchuk, “Laser writing of a subwavelength structure on silicon (100) surfaces with particle-enhanced optical irradiation,” JETP Lett. 72(9), 457–459 (2000).
[Crossref]

Zhou, R.

G. Gu, R. Zhou, Z. Chen, H. Xu, G. Cai, Z. Cai, and M. Hong, “Super-long photonic nanojet generated from liquid-filled hollow microcylinder,” Opt. Lett. 40(4), 625–628 (2015).
[Crossref] [PubMed]

Zhou, W.

H. Xing, W. Zhou, and Y. Wu, “Side-lobes-controlled photonic nanojet with a horizontal graded-index microcylinder,” Opt. Lett. 43(17), 4292–4295 (2018).
[Crossref] [PubMed]

Zhou, Y.

Y. Zhou, H. Gao, J. Teng, X. Luo, and M. Hong, “Orbital angular momentum generation via a spiral phase microsphere,” Opt. Lett. 43(1), 34–37 (2018).
[Crossref] [PubMed]

L. Chen, Y. Zhou, M. Wu, and M. Hong, “Remote-mode microsphere nano-imaging: new boundaries for optical microscopes,” Opto-Electronic Advances 1(1), 17000101 (2018).
[Crossref]

Zhu, J.

J. Zhu and L. L. Goddard, “Spatial control of photonic nanojets,” Opt. Express 24(26), 30444–30464 (2016).
[Crossref] [PubMed]

ACS Nano (1)

Y. Li, H. Xin, X. Liu, Y. Zhang, H. Lei, and B. Li, “Trapping and Detection of Nanoparticles and Cells Using a Parallel Photonic Nanojet Array,” ACS Nano 10(6), 5800–5808 (2016).
[Crossref] [PubMed]

ACS Photonics (1)

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly Directional Scattering from Dielectric Nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

Appl. Opt. (1)

D. S. Benincasa, P. W. Barber, J. Z. Zhang, W. F. Hsieh, and R. K. Chang, “Spatial distribution of the internal and near-field intensities of large cylindrical and spherical scatterers,” Appl. Opt. 26(7), 1348–1356 (1987).
[Crossref] [PubMed]

Appl. Phys. Express (1)

P. Wu, J. Li, K. Wei, and W. Yue, “Tunable and ultra-elongated photonic nanojet generated by a liquid-immersed core-shell dielectric microsphere,” Appl. Phys. Express 8(11), 112001 (2015).
[Crossref]

Appl. Phys. Lett. (2)

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[Crossref]

Appl. Surf. Sci. (1)

S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci. 212­213, 654–660 (2003).
[Crossref]

J. Appl. Phys. (1)

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1-xAs,” J. Appl. Phys. 60(2), 754–767 (1986).
[Crossref]

J. Opt. (1)

Y. E. Geints, A. A. Zemlyanov, O. V. Minin, and I. V. Minin, “Systematic study and comparison of photonic nanojets produced by dielectric microparticles in 2D-and 3D-spatial configurations,” J. Opt. 20(6), 065606 (2018).
[Crossref]

J. Opt. Soc. Am. B (2)

Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic nanojet calculations in layered radially inhomogeneous micrometer-sized spherical particles,” J. Opt. Soc. Am. B 28(8), 1825–1830 (2011).
[Crossref]

Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Microaxicon-generated photonic nanojets,” J. Opt. Soc. Am. B 32(8), 1570–1574 (2015).
[Crossref]

JETP Lett. (1)

Y. F. Lu, L. Zhang, W. D. Song, Y. W. Zheng, and B. S. Luk’yanchuk, “Laser writing of a subwavelength structure on silicon (100) surfaces with particle-enhanced optical irradiation,” JETP Lett. 72(9), 457–459 (2000).
[Crossref]

Light Sci. Appl. (2)

Y.-C. Li, H.-B. Xin, H.-X. Lei, L.-L. Liu, Y.-Z. Li, Y. Zhang, and B.-J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5(12), e16176 (2016).
[Crossref] [PubMed]

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

Nano Lett. (3)

L. Zhang, R. Tu, and H. Dai, “Parallel core-shell metal-dielectric-semiconductor germanium nanowires for high-current surround-gate field-effect transistors,” Nano Lett. 6(12), 2785–2789 (2006).
[Crossref] [PubMed]

A. A. E. Saleh and J. A. Dionne, “Toward Efficient Optical Trapping of Sub-10-nm Particles with Coaxial Plasmonic Apertures,” Nano Lett. 12(11), 5581–5586 (2012).
[Crossref] [PubMed]

H. Yang, R. Trouillon, G. Huszka, and M. A. M. Gijs, “Super-Resolution Imaging of a Dielectric Microsphere Is Governed by the Waist of Its Photonic Nanojet,” Nano Lett. 16(8), 4862–4870 (2016).
[Crossref] [PubMed]

Nanoscale (1)

G. Gu, J. Song, M. Chen, X. Peng, H. Liang, and J. Qu, “Single nanoparticle detection using a photonic nanojet,” Nanoscale 10(29), 14182–14189 (2018).
[Crossref] [PubMed]

Nanotechnology (1)

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
[Crossref]

Nat. Commun. (2)

B. Born, J. D. A. Krupa, S. Geoffroy-Gagnon, and J. F. Holzman, “Integration of photonic nanojets and semiconductor nanoparticles for enhanced all-optical switching,” Nat. Commun. 6(1), 8097 (2015).
[Crossref] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
[Crossref] [PubMed]

Nat. Photonics (2)

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

A. Jannasch, A. F. Demirörs, P. D. J. van Oostrum, A. van Blaaderen, and E. Schäffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics 6(7), 469–473 (2012).
[Crossref]

Nature (1)

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Opt. Express (11)

S.-C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express 16(18), 13713–13719 (2008).
[Crossref] [PubMed]

Y. Huang, Z. Zhen, Y. Shen, C. Min, and G. Veronis, “Optimization of photonic nanojets generated by multilayer microcylinders with a genetic algorithm,” Opt. Express 27(2), 1310–1325 (2019).
[Crossref] [PubMed]

S.-C. Kong, A. Taflove, and V. Backman, “Quasi one-dimensional light beam generated by a graded-index microsphere,” Opt. Express 17(5), 3722–3731 (2009).
[Crossref] [PubMed]

C. M. Ruiz and J. J. Simpson, “Detection of embedded ultra-subwavelength-thin dielectric features using elongated photonic nanojets,” Opt. Express 18(16), 16805–16812 (2010).
[Crossref] [PubMed]

X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
[Crossref] [PubMed]

Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
[Crossref] [PubMed]

P. K. Upputuri, Z. Wu, L. Gong, C. K. Ong, and H. Wang, “Super-resolution coherent anti-Stokes Raman scattering microscopy with photonic nanojets,” Opt. Express 22(11), 12890–12899 (2014).
[Crossref] [PubMed]

S. Yang, A. Taflove, and V. Backman, “Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet,” Opt. Express 19(8), 7084–7093 (2011).
[Crossref] [PubMed]

Z. Hengyu, C. Zaichun, C. T. Chong, and H. Minghui, “Photonic jet with ultralong working distance by hemispheric shell,” Opt. Express 23(5), 6626–6633 (2015).
[Crossref] [PubMed]

J. Zhu and L. L. Goddard, “Spatial control of photonic nanojets,” Opt. Express 24(26), 30444–30464 (2016).
[Crossref] [PubMed]

M. X. Wu, B. J. Huang, R. Chen, Y. Yang, J. F. Wu, R. Ji, X. D. Chen, and M. H. Hong, “Modulation of photonic nanojets generated by microspheres decorated with concentric rings,” Opt. Express 23(15), 20096–20103 (2015).
[Crossref] [PubMed]

Opt. Lett. (8)

L. Yue, B. Yan, and Z. Wang, “Photonic nanojet of cylindrical metalens assembled by hexagonally arranged nanofibers for breaking the diffraction limit,” Opt. Lett. 41(7), 1336–1339 (2016).
[Crossref] [PubMed]

H. Xing, W. Zhou, and Y. Wu, “Side-lobes-controlled photonic nanojet with a horizontal graded-index microcylinder,” Opt. Lett. 43(17), 4292–4295 (2018).
[Crossref] [PubMed]

C.-Y. Liu and K.-L. Hsiao, “Direct imaging of optimal photonic nanojets from core-shell microcylinders,” Opt. Lett. 40(22), 5303–5306 (2015).
[Crossref] [PubMed]

S. Lecler, Y. Takakura, and P. Meyrueis, “Properties of a three-dimensional photonic jet,” Opt. Lett. 30(19), 2641–2643 (2005).
[Crossref] [PubMed]

Y. Shen, L. V. Wang, and J.-T. Shen, “Ultralong photonic nanojet formed by a two-layer dielectric microsphere,” Opt. Lett. 39(14), 4120–4123 (2014).
[Crossref] [PubMed]

G. Gu, R. Zhou, Z. Chen, H. Xu, G. Cai, Z. Cai, and M. Hong, “Super-long photonic nanojet generated from liquid-filled hollow microcylinder,” Opt. Lett. 40(4), 625–628 (2015).
[Crossref] [PubMed]

Z. Chen, A. Taflove, and V. Backman, “Highly efficient optical coupling and transport phenomena in chains of dielectric microspheres,” Opt. Lett. 31(3), 389–391 (2006).
[Crossref] [PubMed]

Y. Zhou, H. Gao, J. Teng, X. Luo, and M. Hong, “Orbital angular momentum generation via a spiral phase microsphere,” Opt. Lett. 43(1), 34–37 (2018).
[Crossref] [PubMed]

Opt. Mater. Express (1)

B. S. Luk’yanchuk, R. Paniagua-Dominguez, I. Minin, O. Minin, and Z. Wang, “Refractive index less than two: photonic nanojets yesterday, today and tomorrow Invited,” Opt. Mater. Express 7(6), 1820–1847 (2017).
[Crossref]

Opto-Electronic Advances (1)

L. Chen, Y. Zhou, M. Wu, and M. Hong, “Remote-mode microsphere nano-imaging: new boundaries for optical microscopes,” Opto-Electronic Advances 1(1), 17000101 (2018).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[Crossref] [PubMed]

Sci. Rep. (2)

M. Wu, R. Chen, J. Soh, Y. Shen, L. Jiao, J. Wu, X. Chen, R. Ji, and M. Hong, “Super-focusing of center-covered engineered microsphere,” Sci. Rep. 6(1), 31637 (2016).
[Crossref] [PubMed]

G. Gu, J. Song, H. Liang, M. Zhao, Y. Chen, and J. Qu, “Overstepping the upper refractive index limit to form ultra-narrow photonic nanojets,” Sci. Rep. 7(1), 5635 (2017).
[Crossref] [PubMed]

Other (2)

O. Mazurin, M. Streltsina, and T. Shavaikovskaya, Handbook of Glass Data (Elsevier, 1993).

https://www.filmetrics.com/refractive-index-database/CdS/Cadmium-Sulfide

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the cylindrical structure used in numerical simulations.
Fig. 2
Fig. 2 (a) Poynting vectors (small blue arrows) and streamlines (red solid lines) for a one-layer microcylinder of a high refractive-index material. R = 5λ and n = 3. The position of the focus is at d = 1.45 μm away from the center. (b) Poynting vectors and streamlines for the engineered one-layer microcylinder after splitting at d = 0.95 μm. R = 5λ and n = 3.5 (c) Poynting vectors and streamlines for the engineered two-layer microcylinder. Rs = 5λ, ns = 1.4, Rc = 4.55λ, and nc = 3.5. The splitting occurs at d = 1.0 μm. (d) Simulated intensity map of the PNJ formed by the engineered two-layer microcylinder. The PNJ outside the shadow surface is shown enlarged in the inset.
Fig. 3
Fig. 3 (a)-(c) Transverse intensity profiles (along the y axis) of the PNJ generated by the engineered two-layer microcylinder, quantified at different positions along the x axis. (d)-(e) Transverse intensity profiles of the PNJ generated by the engineered one-layer microcylinder, quantified at different positions along the x axis. All the intensities are normalized by the intensity of the incident light. Note that the vertical axes do not all have the same range.
Fig. 4
Fig. 4 Evolution of the FWHMs of transverse intensity profiles along the x axis for both the engineered two-layer microcylinder (red dots) and the engineered one-layer microcylinder (black squares).
Fig. 5
Fig. 5 (a) An illustration of the imaging process. A typical bar pattern, with the same line width (LW) and line spacing (LS), is scanned along the negative y direction. (b)-(e) Images reconstructed from scanning a series of bar patterns with LWs of 180 nm (b), 150 nm (c), 120 nm (d) and 110 nm (e), respectively. (f) Measured LW as a function of exact LW. Absolute values of the relative errors between these two variables are also plotted.
Fig. 6
Fig. 6 (a) Illustration of the imaging process. A micrometer-long target, with three different defects embedded, is scanned along the negative y direction. (b) Reconstructed images of the long target. For comparison, the profile of the refractive index of the sample is also plotted as a red dashed line.

Metrics