Abstract

Frequency-selective scattering of light can be achieved by metallic nanoparticle’s localized surface plasmon resonance (LSPR). And this property may find an application in a transparent projection screen: ideally, specially designed metallic nanoparticles dispersed in a transparent matrix only selectively scatter red, green and blue light and transmit the visible light of other colors. However, optical absorption and surface dispersion of a metallic nanoparticle, whose size is comparable or smaller than mean free path of electrons in the constituent material, degenerate the desired performance by broadening the resonance peak width (i.e., decreasing frequency-selectivity) and decreasing light scattering intensity. In this work, it is shown that the problem can be solved by introducing gain material. Numerical simulations are performed on nanostructures based on silver (Ag), gold (Au) or aluminum (Al) with or without gain material, to examine the effect of gain material and to search for suitable structures for sharp selective scattering of red, green and blue light. And it is found that introducing gain material greatly improves performance of the structures based on Ag or Au except the structures based on Al. The most suitable structures for sharp selective scattering of red, green and blue light are, respectively, found to be the core-shell structures of silica/Au (core/shell), silica/Ag and Ag/silica, all with gain material.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Scattering and absorption from super-spherical nanoparticles: analysis and design for transparent displays [Invited]

Davide Ramaccia, Alessandro Toscano, and Filiberto Bilotti
J. Opt. Soc. Am. B 34(7) D62-D67 (2017)

Quantum effects in the plasmon response of bimetallic core-shell nanostructures

Dana-Codruta Marinica, Javier Aizpurua, and Andrei G. Borisov
Opt. Express 24(21) 23941-23956 (2016)

Temperature and atmosphere tunability of the nanoplasmonic resonance of a volumetric eutectic-based Bi2O3-Ag metamaterial

Katarzyna Sadecka, Johann Toudert, Hancza B. Surma, and Dorota A. Pawlak
Opt. Express 23(15) 19098-19111 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. L. Newman, Head-up displays: Designing the way ahead (Routledge, 2017).
  2. J. F. Goldenberg and T. S. McKechnie, “Diffraction analysis of bulk diffusers for projection-screen applications,” J. Opt. Soc. Am. A 2(12), 2337–2347 (1985).
    [Crossref]
  3. B. Geffroy, P. le Roy, and C. Prat, “Organic light-emitting diode (OLED) technology: materials, devices and display technologies,” Polym. Int. 55(6), 572–582 (2006).
    [Crossref]
  4. C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5(1), 3152 (2014).
    [Crossref] [PubMed]
  5. K. Saito and T. Tatsuma, “A transparent projection screen based on plasmonic Ag nanocubes,” Nanoscale 7(48), 20365–20368 (2015).
    [Crossref] [PubMed]
  6. A. Monti, A. Toscano, and F. Bilotti, “Analysis of the scattering and absorption properties of ellipsoidal nanoparticle arrays for the design of full-color transparent screens,” J. Appl. Phys. 121(24), 243106 (2017).
    [Crossref]
  7. Y. Ye, T. Chen, J. Zhen, C. Xu, J. Zhang, and H. Li, “Resonant scattering of green light enabled by Ag@TiO2 and its application in a green light projection screen,” Nanoscale 10(5), 2438–2446 (2018).
    [Crossref] [PubMed]
  8. U. Kreibig and C. Fragstein, “The limitation of electron mean free path in small silver particles,” Z. Phys. 224(4), 307–323 (1969).
    [Crossref]
  9. C. Noguez, “Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical Environment,” J. Phys. Chem. C 111(10), 3806–3819 (2007).
    [Crossref]
  10. A. Monti, A. Toscano, and F. Bilotti, “Exploiting the surface dispersion of nanoparticles to design optical-resistive sheets and Salisbury absorbers,” Opt. Lett. 41(14), 3383–3386 (2016).
    [Crossref] [PubMed]
  11. Y. Ye, T. P. Chen, Z. Liu, and X. Yuan, “Effect of Surface Scattering of Electrons on Ratios of Optical Absorption and Scattering to Extinction of Gold Nanoshell,” Nanoscale Res. Lett. 13(1), 299 (2018).
    [Crossref] [PubMed]
  12. R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon Resonance Shifts of Au-Coated Au2S Nanoshells: Insight into Multicomponent Nanoparticle Growth,” Phys. Rev. Lett. 78(22), 4217–4220 (1997).
    [Crossref]
  13. S. L. Westcott, J. B. Jackson, C. Radloff, and N. J. Halas, “Relative contributions to the plasmon line shape of metal nanoshells,” Phys. Rev. B Condens. Matter Mater. Phys. 66(15), 155431 (2002).
    [Crossref]
  14. G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold Nanoshells Improve Single Nanoparticle Molecular Sensors,” Nano Lett. 4(10), 1853–1857 (2004).
    [Crossref]
  15. R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16(10), 1824–1832 (1999).
    [Crossref]
  16. I. Avrutsky, “Surface plasmons at nanoscale relief gratings between a metal and a dielectric medium with optical gain,” Phys. Rev. B Condens. Matter Mater. Phys. 70(15), 155416 (2004).
    [Crossref]
  17. M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium,” Opt. Lett. 31(20), 3022–3024 (2006).
    [Crossref] [PubMed]
  18. M. J. Digonnet, Rare Earth Doped Fiber Lasers and Amplifiers, 2nd ed. (Marcel Dekker, Inc., New York, 1993).
  19. N. M. Lawandy, “Localized surface plasmon singularities in amplifying media,” Appl. Phys. Lett. 85(21), 5040–5042 (2004).
    [Crossref]
  20. F. Hide, B. J. Schwartz, M. A. Díaz-García, and A. J. Heeger, “Conjugated polymers as solid-state laser materials,” Synth. Met. 91(1-3), 35–40 (1997).
    [Crossref]
  21. J. A. Gordon and R. W. Ziolkowski, “The design and simulated performance of a coated nano-particle laser,” Opt. Express 15(5), 2622–2653 (2007).
    [Crossref] [PubMed]
  22. X. F. Li and S. F. Yu, “Design of low-threshold compact Au-nanoparticle lasers,” Opt. Lett. 35(15), 2535–2537 (2010).
    [Crossref] [PubMed]
  23. S. D. Campbell and R. W. Ziolkowski, “Impact of strong localization of the incident power density on the nano-amplifier characteristics of active coated nano-particles,” Opt. Commun. 285(16), 3341–3352 (2012).
    [Crossref]
  24. H. Zhang, J. Zhou, W. Zou, and M. He, “Surface plasmon amplification characteristics of an active three-layer nanoshell-based spaser,” J. Appl. Phys. 112(7), 074309 (2012).
    [Crossref]
  25. D. J. Wu, Y. Cheng, X. W. Wu, and X. J. Liu, “An active metallic nanomatryushka with two similar super-resonances,” J. Appl. Phys. 116(1), 013502 (2014).
    [Crossref]
  26. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [Crossref]
  27. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, 2008).
  28. M. Quinten, Optical properties of nanoparticle systems: Mie and beyond (John Wiley & Sons, 2010).
  29. U. Kreibig and M. Vollmer, Optical properties of metal clusters (Springer Science & Business Media, 2013), Vol. 25.
  30. E. D. Palik, Handbook of optical constants of solids (Academic press, 1998), Vol. 3.
  31. E. Prodan and P. Nordlander, “Structural Tunability of the Plasmon Resonances in Metallic Nanoshells,” Nano Lett. 3(4), 543–547 (2003).
    [Crossref]
  32. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
    [Crossref] [PubMed]
  33. W. Yang, “Improved recursive algorithm for light scattering by a multilayered sphere,” Appl. Opt. 42(9), 1710–1720 (2003).
    [Crossref] [PubMed]
  34. M. G. Blaber, M. D. Arnold, and M. J. Ford, “Search for the Ideal Plasmonic Nanoshell: The Effects of Surface Scattering and Alternatives to Gold and Silver,” J. Phys. Chem. C 113(8), 3041–3045 (2009).
    [Crossref]
  35. A. Moroz, “Electron Mean Free Path in a Spherical Shell Geometry,” J. Phys. Chem. C 112(29), 10641–10652 (2008).
    [Crossref]
  36. M. J. Powell, “The BOBYQA algorithm for bound constrained optimization without derivatives,” Cambridge NA Report NA2009/06, University of Cambridge, Cambridge (2009).
  37. D. N. Klyshko, Photons and Nonlinear Optics (Gordon, New York, 1988).

2018 (2)

Y. Ye, T. Chen, J. Zhen, C. Xu, J. Zhang, and H. Li, “Resonant scattering of green light enabled by Ag@TiO2 and its application in a green light projection screen,” Nanoscale 10(5), 2438–2446 (2018).
[Crossref] [PubMed]

Y. Ye, T. P. Chen, Z. Liu, and X. Yuan, “Effect of Surface Scattering of Electrons on Ratios of Optical Absorption and Scattering to Extinction of Gold Nanoshell,” Nanoscale Res. Lett. 13(1), 299 (2018).
[Crossref] [PubMed]

2017 (1)

A. Monti, A. Toscano, and F. Bilotti, “Analysis of the scattering and absorption properties of ellipsoidal nanoparticle arrays for the design of full-color transparent screens,” J. Appl. Phys. 121(24), 243106 (2017).
[Crossref]

2016 (1)

A. Monti, A. Toscano, and F. Bilotti, “Exploiting the surface dispersion of nanoparticles to design optical-resistive sheets and Salisbury absorbers,” Opt. Lett. 41(14), 3383–3386 (2016).
[Crossref] [PubMed]

2015 (1)

K. Saito and T. Tatsuma, “A transparent projection screen based on plasmonic Ag nanocubes,” Nanoscale 7(48), 20365–20368 (2015).
[Crossref] [PubMed]

2014 (2)

C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5(1), 3152 (2014).
[Crossref] [PubMed]

D. J. Wu, Y. Cheng, X. W. Wu, and X. J. Liu, “An active metallic nanomatryushka with two similar super-resonances,” J. Appl. Phys. 116(1), 013502 (2014).
[Crossref]

2012 (2)

S. D. Campbell and R. W. Ziolkowski, “Impact of strong localization of the incident power density on the nano-amplifier characteristics of active coated nano-particles,” Opt. Commun. 285(16), 3341–3352 (2012).
[Crossref]

H. Zhang, J. Zhou, W. Zou, and M. He, “Surface plasmon amplification characteristics of an active three-layer nanoshell-based spaser,” J. Appl. Phys. 112(7), 074309 (2012).
[Crossref]

2010 (1)

X. F. Li and S. F. Yu, “Design of low-threshold compact Au-nanoparticle lasers,” Opt. Lett. 35(15), 2535–2537 (2010).
[Crossref] [PubMed]

2009 (2)

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Search for the Ideal Plasmonic Nanoshell: The Effects of Surface Scattering and Alternatives to Gold and Silver,” J. Phys. Chem. C 113(8), 3041–3045 (2009).
[Crossref]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

2008 (1)

A. Moroz, “Electron Mean Free Path in a Spherical Shell Geometry,” J. Phys. Chem. C 112(29), 10641–10652 (2008).
[Crossref]

2007 (2)

J. A. Gordon and R. W. Ziolkowski, “The design and simulated performance of a coated nano-particle laser,” Opt. Express 15(5), 2622–2653 (2007).
[Crossref] [PubMed]

C. Noguez, “Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical Environment,” J. Phys. Chem. C 111(10), 3806–3819 (2007).
[Crossref]

2006 (2)

B. Geffroy, P. le Roy, and C. Prat, “Organic light-emitting diode (OLED) technology: materials, devices and display technologies,” Polym. Int. 55(6), 572–582 (2006).
[Crossref]

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium,” Opt. Lett. 31(20), 3022–3024 (2006).
[Crossref] [PubMed]

2004 (3)

N. M. Lawandy, “Localized surface plasmon singularities in amplifying media,” Appl. Phys. Lett. 85(21), 5040–5042 (2004).
[Crossref]

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold Nanoshells Improve Single Nanoparticle Molecular Sensors,” Nano Lett. 4(10), 1853–1857 (2004).
[Crossref]

I. Avrutsky, “Surface plasmons at nanoscale relief gratings between a metal and a dielectric medium with optical gain,” Phys. Rev. B Condens. Matter Mater. Phys. 70(15), 155416 (2004).
[Crossref]

2003 (3)

W. Yang, “Improved recursive algorithm for light scattering by a multilayered sphere,” Appl. Opt. 42(9), 1710–1720 (2003).
[Crossref] [PubMed]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

E. Prodan and P. Nordlander, “Structural Tunability of the Plasmon Resonances in Metallic Nanoshells,” Nano Lett. 3(4), 543–547 (2003).
[Crossref]

2002 (1)

S. L. Westcott, J. B. Jackson, C. Radloff, and N. J. Halas, “Relative contributions to the plasmon line shape of metal nanoshells,” Phys. Rev. B Condens. Matter Mater. Phys. 66(15), 155431 (2002).
[Crossref]

1999 (1)

R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16(10), 1824–1832 (1999).
[Crossref]

1997 (2)

F. Hide, B. J. Schwartz, M. A. Díaz-García, and A. J. Heeger, “Conjugated polymers as solid-state laser materials,” Synth. Met. 91(1-3), 35–40 (1997).
[Crossref]

R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon Resonance Shifts of Au-Coated Au2S Nanoshells: Insight into Multicomponent Nanoparticle Growth,” Phys. Rev. Lett. 78(22), 4217–4220 (1997).
[Crossref]

1985 (1)

J. F. Goldenberg and T. S. McKechnie, “Diffraction analysis of bulk diffusers for projection-screen applications,” J. Opt. Soc. Am. A 2(12), 2337–2347 (1985).
[Crossref]

1969 (1)

U. Kreibig and C. Fragstein, “The limitation of electron mean free path in small silver particles,” Z. Phys. 224(4), 307–323 (1969).
[Crossref]

Adegoke, J.

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium,” Opt. Lett. 31(20), 3022–3024 (2006).
[Crossref] [PubMed]

Arnold, M. D.

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Search for the Ideal Plasmonic Nanoshell: The Effects of Surface Scattering and Alternatives to Gold and Silver,” J. Phys. Chem. C 113(8), 3041–3045 (2009).
[Crossref]

Averitt, R. D.

R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16(10), 1824–1832 (1999).
[Crossref]

R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon Resonance Shifts of Au-Coated Au2S Nanoshells: Insight into Multicomponent Nanoparticle Growth,” Phys. Rev. Lett. 78(22), 4217–4220 (1997).
[Crossref]

Avrutsky, I.

I. Avrutsky, “Surface plasmons at nanoscale relief gratings between a metal and a dielectric medium with optical gain,” Phys. Rev. B Condens. Matter Mater. Phys. 70(15), 155416 (2004).
[Crossref]

Bahoura, M.

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium,” Opt. Lett. 31(20), 3022–3024 (2006).
[Crossref] [PubMed]

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Bein, T.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold Nanoshells Improve Single Nanoparticle Molecular Sensors,” Nano Lett. 4(10), 1853–1857 (2004).
[Crossref]

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Bilotti, F.

A. Monti, A. Toscano, and F. Bilotti, “Analysis of the scattering and absorption properties of ellipsoidal nanoparticle arrays for the design of full-color transparent screens,” J. Appl. Phys. 121(24), 243106 (2017).
[Crossref]

A. Monti, A. Toscano, and F. Bilotti, “Exploiting the surface dispersion of nanoparticles to design optical-resistive sheets and Salisbury absorbers,” Opt. Lett. 41(14), 3383–3386 (2016).
[Crossref] [PubMed]

Blaber, M. G.

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Search for the Ideal Plasmonic Nanoshell: The Effects of Surface Scattering and Alternatives to Gold and Silver,” J. Phys. Chem. C 113(8), 3041–3045 (2009).
[Crossref]

Brogl, S.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold Nanoshells Improve Single Nanoparticle Molecular Sensors,” Nano Lett. 4(10), 1853–1857 (2004).
[Crossref]

Campbell, S. D.

S. D. Campbell and R. W. Ziolkowski, “Impact of strong localization of the incident power density on the nano-amplifier characteristics of active coated nano-particles,” Opt. Commun. 285(16), 3341–3352 (2012).
[Crossref]

Chen, T.

Y. Ye, T. Chen, J. Zhen, C. Xu, J. Zhang, and H. Li, “Resonant scattering of green light enabled by Ag@TiO2 and its application in a green light projection screen,” Nanoscale 10(5), 2438–2446 (2018).
[Crossref] [PubMed]

Chen, T. P.

Y. Ye, T. P. Chen, Z. Liu, and X. Yuan, “Effect of Surface Scattering of Electrons on Ratios of Optical Absorption and Scattering to Extinction of Gold Nanoshell,” Nanoscale Res. Lett. 13(1), 299 (2018).
[Crossref] [PubMed]

Cheng, Y.

D. J. Wu, Y. Cheng, X. W. Wu, and X. J. Liu, “An active metallic nanomatryushka with two similar super-resonances,” J. Appl. Phys. 116(1), 013502 (2014).
[Crossref]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

DeLacy, B. G.

C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5(1), 3152 (2014).
[Crossref] [PubMed]

Díaz-García, M. A.

F. Hide, B. J. Schwartz, M. A. Díaz-García, and A. J. Heeger, “Conjugated polymers as solid-state laser materials,” Synth. Met. 91(1-3), 35–40 (1997).
[Crossref]

Drachev, V. P.

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium,” Opt. Lett. 31(20), 3022–3024 (2006).
[Crossref] [PubMed]

Feldmann, J.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold Nanoshells Improve Single Nanoparticle Molecular Sensors,” Nano Lett. 4(10), 1853–1857 (2004).
[Crossref]

Fieres, B.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold Nanoshells Improve Single Nanoparticle Molecular Sensors,” Nano Lett. 4(10), 1853–1857 (2004).
[Crossref]

Ford, M. J.

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Search for the Ideal Plasmonic Nanoshell: The Effects of Surface Scattering and Alternatives to Gold and Silver,” J. Phys. Chem. C 113(8), 3041–3045 (2009).
[Crossref]

Fragstein, C.

U. Kreibig and C. Fragstein, “The limitation of electron mean free path in small silver particles,” Z. Phys. 224(4), 307–323 (1969).
[Crossref]

Geffroy, B.

B. Geffroy, P. le Roy, and C. Prat, “Organic light-emitting diode (OLED) technology: materials, devices and display technologies,” Polym. Int. 55(6), 572–582 (2006).
[Crossref]

Goldenberg, J. F.

J. F. Goldenberg and T. S. McKechnie, “Diffraction analysis of bulk diffusers for projection-screen applications,” J. Opt. Soc. Am. A 2(12), 2337–2347 (1985).
[Crossref]

Gordon, J. A.

J. A. Gordon and R. W. Ziolkowski, “The design and simulated performance of a coated nano-particle laser,” Opt. Express 15(5), 2622–2653 (2007).
[Crossref] [PubMed]

Halas, N. J.

S. L. Westcott, J. B. Jackson, C. Radloff, and N. J. Halas, “Relative contributions to the plasmon line shape of metal nanoshells,” Phys. Rev. B Condens. Matter Mater. Phys. 66(15), 155431 (2002).
[Crossref]

R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16(10), 1824–1832 (1999).
[Crossref]

R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon Resonance Shifts of Au-Coated Au2S Nanoshells: Insight into Multicomponent Nanoparticle Growth,” Phys. Rev. Lett. 78(22), 4217–4220 (1997).
[Crossref]

He, M.

H. Zhang, J. Zhou, W. Zou, and M. He, “Surface plasmon amplification characteristics of an active three-layer nanoshell-based spaser,” J. Appl. Phys. 112(7), 074309 (2012).
[Crossref]

Heeger, A. J.

F. Hide, B. J. Schwartz, M. A. Díaz-García, and A. J. Heeger, “Conjugated polymers as solid-state laser materials,” Synth. Met. 91(1-3), 35–40 (1997).
[Crossref]

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Hide, F.

F. Hide, B. J. Schwartz, M. A. Díaz-García, and A. J. Heeger, “Conjugated polymers as solid-state laser materials,” Synth. Met. 91(1-3), 35–40 (1997).
[Crossref]

Hsu, C. W.

C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5(1), 3152 (2014).
[Crossref] [PubMed]

Jackson, J. B.

S. L. Westcott, J. B. Jackson, C. Radloff, and N. J. Halas, “Relative contributions to the plasmon line shape of metal nanoshells,” Phys. Rev. B Condens. Matter Mater. Phys. 66(15), 155431 (2002).
[Crossref]

Joannopoulos, J. D.

C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5(1), 3152 (2014).
[Crossref] [PubMed]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Klar, T. A.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold Nanoshells Improve Single Nanoparticle Molecular Sensors,” Nano Lett. 4(10), 1853–1857 (2004).
[Crossref]

Kreibig, U.

U. Kreibig and C. Fragstein, “The limitation of electron mean free path in small silver particles,” Z. Phys. 224(4), 307–323 (1969).
[Crossref]

Kürzinger, K.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold Nanoshells Improve Single Nanoparticle Molecular Sensors,” Nano Lett. 4(10), 1853–1857 (2004).
[Crossref]

Lawandy, N. M.

N. M. Lawandy, “Localized surface plasmon singularities in amplifying media,” Appl. Phys. Lett. 85(21), 5040–5042 (2004).
[Crossref]

le Roy, P.

B. Geffroy, P. le Roy, and C. Prat, “Organic light-emitting diode (OLED) technology: materials, devices and display technologies,” Polym. Int. 55(6), 572–582 (2006).
[Crossref]

Li, H.

Y. Ye, T. Chen, J. Zhen, C. Xu, J. Zhang, and H. Li, “Resonant scattering of green light enabled by Ag@TiO2 and its application in a green light projection screen,” Nanoscale 10(5), 2438–2446 (2018).
[Crossref] [PubMed]

Li, X. F.

X. F. Li and S. F. Yu, “Design of low-threshold compact Au-nanoparticle lasers,” Opt. Lett. 35(15), 2535–2537 (2010).
[Crossref] [PubMed]

Liu, X. J.

D. J. Wu, Y. Cheng, X. W. Wu, and X. J. Liu, “An active metallic nanomatryushka with two similar super-resonances,” J. Appl. Phys. 116(1), 013502 (2014).
[Crossref]

Liu, Z.

Y. Ye, T. P. Chen, Z. Liu, and X. Yuan, “Effect of Surface Scattering of Electrons on Ratios of Optical Absorption and Scattering to Extinction of Gold Nanoshell,” Nanoscale Res. Lett. 13(1), 299 (2018).
[Crossref] [PubMed]

McKechnie, T. S.

J. F. Goldenberg and T. S. McKechnie, “Diffraction analysis of bulk diffusers for projection-screen applications,” J. Opt. Soc. Am. A 2(12), 2337–2347 (1985).
[Crossref]

Monti, A.

A. Monti, A. Toscano, and F. Bilotti, “Analysis of the scattering and absorption properties of ellipsoidal nanoparticle arrays for the design of full-color transparent screens,” J. Appl. Phys. 121(24), 243106 (2017).
[Crossref]

A. Monti, A. Toscano, and F. Bilotti, “Exploiting the surface dispersion of nanoparticles to design optical-resistive sheets and Salisbury absorbers,” Opt. Lett. 41(14), 3383–3386 (2016).
[Crossref] [PubMed]

Moroz, A.

A. Moroz, “Electron Mean Free Path in a Spherical Shell Geometry,” J. Phys. Chem. C 112(29), 10641–10652 (2008).
[Crossref]

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Nichtl, A.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold Nanoshells Improve Single Nanoparticle Molecular Sensors,” Nano Lett. 4(10), 1853–1857 (2004).
[Crossref]

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium,” Opt. Lett. 31(20), 3022–3024 (2006).
[Crossref] [PubMed]

Noguez, C.

C. Noguez, “Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical Environment,” J. Phys. Chem. C 111(10), 3806–3819 (2007).
[Crossref]

Nordlander, P.

E. Prodan and P. Nordlander, “Structural Tunability of the Plasmon Resonances in Metallic Nanoshells,” Nano Lett. 3(4), 543–547 (2003).
[Crossref]

Petkov, N.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold Nanoshells Improve Single Nanoparticle Molecular Sensors,” Nano Lett. 4(10), 1853–1857 (2004).
[Crossref]

Prat, C.

B. Geffroy, P. le Roy, and C. Prat, “Organic light-emitting diode (OLED) technology: materials, devices and display technologies,” Polym. Int. 55(6), 572–582 (2006).
[Crossref]

Prodan, E.

E. Prodan and P. Nordlander, “Structural Tunability of the Plasmon Resonances in Metallic Nanoshells,” Nano Lett. 3(4), 543–547 (2003).
[Crossref]

Qiu, W.

C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5(1), 3152 (2014).
[Crossref] [PubMed]

Radloff, C.

S. L. Westcott, J. B. Jackson, C. Radloff, and N. J. Halas, “Relative contributions to the plasmon line shape of metal nanoshells,” Phys. Rev. B Condens. Matter Mater. Phys. 66(15), 155431 (2002).
[Crossref]

Raschke, G.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold Nanoshells Improve Single Nanoparticle Molecular Sensors,” Nano Lett. 4(10), 1853–1857 (2004).
[Crossref]

Ritzo, B. A.

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium,” Opt. Lett. 31(20), 3022–3024 (2006).
[Crossref] [PubMed]

Rogach, A. L.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold Nanoshells Improve Single Nanoparticle Molecular Sensors,” Nano Lett. 4(10), 1853–1857 (2004).
[Crossref]

Saito, K.

K. Saito and T. Tatsuma, “A transparent projection screen based on plasmonic Ag nanocubes,” Nanoscale 7(48), 20365–20368 (2015).
[Crossref] [PubMed]

Sarkar, D.

R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon Resonance Shifts of Au-Coated Au2S Nanoshells: Insight into Multicomponent Nanoparticle Growth,” Phys. Rev. Lett. 78(22), 4217–4220 (1997).
[Crossref]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Schwartz, B. J.

F. Hide, B. J. Schwartz, M. A. Díaz-García, and A. J. Heeger, “Conjugated polymers as solid-state laser materials,” Synth. Met. 91(1-3), 35–40 (1997).
[Crossref]

Shalaev, V. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium,” Opt. Lett. 31(20), 3022–3024 (2006).
[Crossref] [PubMed]

Shapira, O.

C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5(1), 3152 (2014).
[Crossref] [PubMed]

Small, C. E.

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium,” Opt. Lett. 31(20), 3022–3024 (2006).
[Crossref] [PubMed]

Soljacic, M.

C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5(1), 3152 (2014).
[Crossref] [PubMed]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Susha, A. S.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold Nanoshells Improve Single Nanoparticle Molecular Sensors,” Nano Lett. 4(10), 1853–1857 (2004).
[Crossref]

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Tatsuma, T.

K. Saito and T. Tatsuma, “A transparent projection screen based on plasmonic Ag nanocubes,” Nanoscale 7(48), 20365–20368 (2015).
[Crossref] [PubMed]

Toscano, A.

A. Monti, A. Toscano, and F. Bilotti, “Analysis of the scattering and absorption properties of ellipsoidal nanoparticle arrays for the design of full-color transparent screens,” J. Appl. Phys. 121(24), 243106 (2017).
[Crossref]

A. Monti, A. Toscano, and F. Bilotti, “Exploiting the surface dispersion of nanoparticles to design optical-resistive sheets and Salisbury absorbers,” Opt. Lett. 41(14), 3383–3386 (2016).
[Crossref] [PubMed]

Westcott, S. L.

S. L. Westcott, J. B. Jackson, C. Radloff, and N. J. Halas, “Relative contributions to the plasmon line shape of metal nanoshells,” Phys. Rev. B Condens. Matter Mater. Phys. 66(15), 155431 (2002).
[Crossref]

R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16(10), 1824–1832 (1999).
[Crossref]

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Wu, D. J.

D. J. Wu, Y. Cheng, X. W. Wu, and X. J. Liu, “An active metallic nanomatryushka with two similar super-resonances,” J. Appl. Phys. 116(1), 013502 (2014).
[Crossref]

Wu, X. W.

D. J. Wu, Y. Cheng, X. W. Wu, and X. J. Liu, “An active metallic nanomatryushka with two similar super-resonances,” J. Appl. Phys. 116(1), 013502 (2014).
[Crossref]

Xu, C.

Y. Ye, T. Chen, J. Zhen, C. Xu, J. Zhang, and H. Li, “Resonant scattering of green light enabled by Ag@TiO2 and its application in a green light projection screen,” Nanoscale 10(5), 2438–2446 (2018).
[Crossref] [PubMed]

Yang, W.

W. Yang, “Improved recursive algorithm for light scattering by a multilayered sphere,” Appl. Opt. 42(9), 1710–1720 (2003).
[Crossref] [PubMed]

Ye, Y.

Y. Ye, T. P. Chen, Z. Liu, and X. Yuan, “Effect of Surface Scattering of Electrons on Ratios of Optical Absorption and Scattering to Extinction of Gold Nanoshell,” Nanoscale Res. Lett. 13(1), 299 (2018).
[Crossref] [PubMed]

Y. Ye, T. Chen, J. Zhen, C. Xu, J. Zhang, and H. Li, “Resonant scattering of green light enabled by Ag@TiO2 and its application in a green light projection screen,” Nanoscale 10(5), 2438–2446 (2018).
[Crossref] [PubMed]

Yu, S. F.

X. F. Li and S. F. Yu, “Design of low-threshold compact Au-nanoparticle lasers,” Opt. Lett. 35(15), 2535–2537 (2010).
[Crossref] [PubMed]

Yuan, X.

Y. Ye, T. P. Chen, Z. Liu, and X. Yuan, “Effect of Surface Scattering of Electrons on Ratios of Optical Absorption and Scattering to Extinction of Gold Nanoshell,” Nanoscale Res. Lett. 13(1), 299 (2018).
[Crossref] [PubMed]

Zhang, H.

H. Zhang, J. Zhou, W. Zou, and M. He, “Surface plasmon amplification characteristics of an active three-layer nanoshell-based spaser,” J. Appl. Phys. 112(7), 074309 (2012).
[Crossref]

Zhang, J.

Y. Ye, T. Chen, J. Zhen, C. Xu, J. Zhang, and H. Li, “Resonant scattering of green light enabled by Ag@TiO2 and its application in a green light projection screen,” Nanoscale 10(5), 2438–2446 (2018).
[Crossref] [PubMed]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Zhen, B.

C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5(1), 3152 (2014).
[Crossref] [PubMed]

Zhen, J.

Y. Ye, T. Chen, J. Zhen, C. Xu, J. Zhang, and H. Li, “Resonant scattering of green light enabled by Ag@TiO2 and its application in a green light projection screen,” Nanoscale 10(5), 2438–2446 (2018).
[Crossref] [PubMed]

Zhou, J.

H. Zhang, J. Zhou, W. Zou, and M. He, “Surface plasmon amplification characteristics of an active three-layer nanoshell-based spaser,” J. Appl. Phys. 112(7), 074309 (2012).
[Crossref]

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium,” Opt. Lett. 31(20), 3022–3024 (2006).
[Crossref] [PubMed]

Ziolkowski, R. W.

S. D. Campbell and R. W. Ziolkowski, “Impact of strong localization of the incident power density on the nano-amplifier characteristics of active coated nano-particles,” Opt. Commun. 285(16), 3341–3352 (2012).
[Crossref]

J. A. Gordon and R. W. Ziolkowski, “The design and simulated performance of a coated nano-particle laser,” Opt. Express 15(5), 2622–2653 (2007).
[Crossref] [PubMed]

Zou, W.

H. Zhang, J. Zhou, W. Zou, and M. He, “Surface plasmon amplification characteristics of an active three-layer nanoshell-based spaser,” J. Appl. Phys. 112(7), 074309 (2012).
[Crossref]

Appl. Opt. (1)

W. Yang, “Improved recursive algorithm for light scattering by a multilayered sphere,” Appl. Opt. 42(9), 1710–1720 (2003).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

N. M. Lawandy, “Localized surface plasmon singularities in amplifying media,” Appl. Phys. Lett. 85(21), 5040–5042 (2004).
[Crossref]

J. Appl. Phys. (3)

H. Zhang, J. Zhou, W. Zou, and M. He, “Surface plasmon amplification characteristics of an active three-layer nanoshell-based spaser,” J. Appl. Phys. 112(7), 074309 (2012).
[Crossref]

D. J. Wu, Y. Cheng, X. W. Wu, and X. J. Liu, “An active metallic nanomatryushka with two similar super-resonances,” J. Appl. Phys. 116(1), 013502 (2014).
[Crossref]

A. Monti, A. Toscano, and F. Bilotti, “Analysis of the scattering and absorption properties of ellipsoidal nanoparticle arrays for the design of full-color transparent screens,” J. Appl. Phys. 121(24), 243106 (2017).
[Crossref]

J. Opt. Soc. Am. A (1)

J. F. Goldenberg and T. S. McKechnie, “Diffraction analysis of bulk diffusers for projection-screen applications,” J. Opt. Soc. Am. A 2(12), 2337–2347 (1985).
[Crossref]

J. Opt. Soc. Am. B (1)

R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16(10), 1824–1832 (1999).
[Crossref]

J. Phys. Chem. B (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

J. Phys. Chem. C (3)

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Search for the Ideal Plasmonic Nanoshell: The Effects of Surface Scattering and Alternatives to Gold and Silver,” J. Phys. Chem. C 113(8), 3041–3045 (2009).
[Crossref]

A. Moroz, “Electron Mean Free Path in a Spherical Shell Geometry,” J. Phys. Chem. C 112(29), 10641–10652 (2008).
[Crossref]

C. Noguez, “Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical Environment,” J. Phys. Chem. C 111(10), 3806–3819 (2007).
[Crossref]

Nano Lett. (2)

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold Nanoshells Improve Single Nanoparticle Molecular Sensors,” Nano Lett. 4(10), 1853–1857 (2004).
[Crossref]

E. Prodan and P. Nordlander, “Structural Tunability of the Plasmon Resonances in Metallic Nanoshells,” Nano Lett. 3(4), 543–547 (2003).
[Crossref]

Nanoscale (2)

Y. Ye, T. Chen, J. Zhen, C. Xu, J. Zhang, and H. Li, “Resonant scattering of green light enabled by Ag@TiO2 and its application in a green light projection screen,” Nanoscale 10(5), 2438–2446 (2018).
[Crossref] [PubMed]

K. Saito and T. Tatsuma, “A transparent projection screen based on plasmonic Ag nanocubes,” Nanoscale 7(48), 20365–20368 (2015).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

Y. Ye, T. P. Chen, Z. Liu, and X. Yuan, “Effect of Surface Scattering of Electrons on Ratios of Optical Absorption and Scattering to Extinction of Gold Nanoshell,” Nanoscale Res. Lett. 13(1), 299 (2018).
[Crossref] [PubMed]

Nat. Commun. (1)

C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5(1), 3152 (2014).
[Crossref] [PubMed]

Nature (1)

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Opt. Commun. (1)

S. D. Campbell and R. W. Ziolkowski, “Impact of strong localization of the incident power density on the nano-amplifier characteristics of active coated nano-particles,” Opt. Commun. 285(16), 3341–3352 (2012).
[Crossref]

Opt. Express (1)

J. A. Gordon and R. W. Ziolkowski, “The design and simulated performance of a coated nano-particle laser,” Opt. Express 15(5), 2622–2653 (2007).
[Crossref] [PubMed]

Opt. Lett. (3)

X. F. Li and S. F. Yu, “Design of low-threshold compact Au-nanoparticle lasers,” Opt. Lett. 35(15), 2535–2537 (2010).
[Crossref] [PubMed]

A. Monti, A. Toscano, and F. Bilotti, “Exploiting the surface dispersion of nanoparticles to design optical-resistive sheets and Salisbury absorbers,” Opt. Lett. 41(14), 3383–3386 (2016).
[Crossref] [PubMed]

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium,” Opt. Lett. 31(20), 3022–3024 (2006).
[Crossref] [PubMed]

Phys. Rev. B Condens. Matter Mater. Phys. (2)

I. Avrutsky, “Surface plasmons at nanoscale relief gratings between a metal and a dielectric medium with optical gain,” Phys. Rev. B Condens. Matter Mater. Phys. 70(15), 155416 (2004).
[Crossref]

S. L. Westcott, J. B. Jackson, C. Radloff, and N. J. Halas, “Relative contributions to the plasmon line shape of metal nanoshells,” Phys. Rev. B Condens. Matter Mater. Phys. 66(15), 155431 (2002).
[Crossref]

Phys. Rev. Lett. (1)

R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon Resonance Shifts of Au-Coated Au2S Nanoshells: Insight into Multicomponent Nanoparticle Growth,” Phys. Rev. Lett. 78(22), 4217–4220 (1997).
[Crossref]

Polym. Int. (1)

B. Geffroy, P. le Roy, and C. Prat, “Organic light-emitting diode (OLED) technology: materials, devices and display technologies,” Polym. Int. 55(6), 572–582 (2006).
[Crossref]

Synth. Met. (1)

F. Hide, B. J. Schwartz, M. A. Díaz-García, and A. J. Heeger, “Conjugated polymers as solid-state laser materials,” Synth. Met. 91(1-3), 35–40 (1997).
[Crossref]

Z. Phys. (1)

U. Kreibig and C. Fragstein, “The limitation of electron mean free path in small silver particles,” Z. Phys. 224(4), 307–323 (1969).
[Crossref]

Other (8)

R. L. Newman, Head-up displays: Designing the way ahead (Routledge, 2017).

M. J. Digonnet, Rare Earth Doped Fiber Lasers and Amplifiers, 2nd ed. (Marcel Dekker, Inc., New York, 1993).

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, 2008).

M. Quinten, Optical properties of nanoparticle systems: Mie and beyond (John Wiley & Sons, 2010).

U. Kreibig and M. Vollmer, Optical properties of metal clusters (Springer Science & Business Media, 2013), Vol. 25.

E. D. Palik, Handbook of optical constants of solids (Academic press, 1998), Vol. 3.

M. J. Powell, “The BOBYQA algorithm for bound constrained optimization without derivatives,” Cambridge NA Report NA2009/06, University of Cambridge, Cambridge (2009).

D. N. Klyshko, Photons and Nonlinear Optics (Gordon, New York, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic illustration of the concept of transparent projection screen achieved by selective scattering of red, green and blue light.
Fig. 2
Fig. 2 Calculated extinction efficiency spectrum of a single nanosphere with diameter of 10 nm by Mie theory [28], for (a) Ag, (b) Au and (c) Al. The real part of dielectric function is plotted for (d) Ag, (e) Au and (f) Al. The surrounding medium’s refractive index is 1.5, so surrounding medium’s dielectric function is ε s = n s 2 =2.25, and the resonance peaks appear at the wavelengths at which Re[ ε m (λ) ]=2 ε s =4.5. The dielectric functions of the metals are from literature [30]. Definition of extinction efficiency is given in “Results and discussion”.
Fig. 3
Fig. 3 Schematic illustration of the structures to be used during optimization, where ε m is the dielectric function of metal (Ag, Au or Al), ε Sil is the dielectric function of silica (subject to whether or not doped with gain material, to be explained later), and ε s = 2.25 is the dielectric function of the surrounding medium. (a) A single metallic nanosphere. (b) The core-shell structure of “Silica/Metal” without gain material. (c) The core-shell structure of “Metal/Silica”, silica shell is doped with gain material. (d) The core-shell structure of “Silica/Metal”, silica core is doped with gain material.
Fig. 4
Fig. 4 Efficiency spectrums of optimized structures for selective scattering of red light. The left column, i.e., (a), (c), (e) and (g) are for the optimized structures without gain material, and spectrums of their corresponding structures optimized with gain material are shown in the right column, i.e., (b), (d), (f) and (h). (a) Au sphere without gain. (b) Au/silica with gain. (c) Silica/Au without gain. (d) Silica/Au with gain. (e) Silica/Ag without gain. (f) Silica/Ag with gain. (g) Silica/Al without gain. (h) Silica/Al with gain. For each structure, the optimized parameters and optimized values of FOM are tabulated in Table 3 in the same alphabetic order as their respective structure appears in this figure.
Fig. 5
Fig. 5 Efficiency spectrums of optimized structures for selective scattering of green light. The left column, i.e., (a), (c) and (e) are for the optimized structures without gain material, and spectrums of their corresponding structures optimized with gain material are shown in the right column, i.e., (b), (d) and (f). (a) Ag sphere without gain. (b) Ag/silica with gain. (c) Silica/Ag without gain. (d) Silica/Ag with gain. (e) Silica/Al without gain. (f) Silica/Al with gain. For each structure, the optimized parameters and optimized values of FOM are tabulated in Table 4 in the same alphabetic order as their respective structure appears in this figure.
Fig. 6
Fig. 6 Efficiency spectrums of optimized structures for selective scattering of blue light. The left column, i.e., (a), (c) and (e) are the optimized structures without gain material, and spectrums of their corresponding structures optimized with gain material are shown in the right panels, i.e., (b), (d) and (f). (a) Ag sphere without gain. (b) Ag/silica with gain. (c) Silica/Ag without gain. (d) Silica/Ag with gain. (e) Silica/Al without gain. (f) Silica/Al with gain. For each structure, the optimized parameters and optimized values of FOM are tabulated in Table 5 in the same alphabetic order as their respective structure appears in this figure.
Fig. 7
Fig. 7 Intensity of the scattered light at the resonant wavelengths versus the scattering angle (in the unit of degree) in polar form for the most suitable structures respectively for selective scattering of red, green and blue light: (a) Silica/Au with gain material (Table 3), (b) Silica/Ag with gain material (Table 4), and (c) Ag/silica with gain material (Table 5). The incident light has a unit intensity and equal intensity for the p- and s- components with respect to the scattering plane. Calculations are carried out with the Mie theory.
Fig. 8
Fig. 8 Simulated transmittance of a film dispersed with the three most suitable structures. Densities of the three structures are chosen such that transmittance at their corresponding resonance wavelengths become 20%. Surrounding medium is assumed to have a refractive index of 1.5. Average transmittance is 60.66%.

Tables (6)

Tables Icon

Table 1 Structures on which optimizations are to be performed to search for solutions of sharp selective scattering of red, green and blue light.

Tables Icon

Table 2 Plasma frequencies, damping rates and Fermi velocities of bulk metals used in correcting the metals’ dielectric functions for the size effect [34].

Tables Icon

Table 3 Optimized tuning parameters and values of optimized FOM for the structures mentioned in Fig. 4, with the same alphabetic order

Tables Icon

Table 4 Optimized tuning parameters and values of optimized FOM for the structures mentioned in Fig. 5, with the same alphabetic order

Tables Icon

Table 5 Optimized tuning parameters and values of optimized FOM for the structures mentioned in Fig. 6, with the same alphabetic order

Tables Icon

Table 6 Comparison of optimized values of FOM from this work to those from previous works for red, green and blue light

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

FOM= σ sca ( λ R ) 2 σ sca ¯ +max{ | σ abs | }
ε m (ω)= ε exp (ω)+ ω p 2 ω(ω+i γ b ) ω p 2 ω[ ω+i( γ b + γ s ) ]
γ s = v F L B
L B = 4( r o 3 r i 3 ) 3( r o 2 + r i 2 )
L B = 4 3 r
N Sil =1.45+ik
T(λ)= e N σ ext (λ)t
T(λ)= e N' σ ext (λ)

Metrics