Abstract

Structured illumination microscopy (SIM) is a powerful super-resolved imaging technique which enables to perform fast and in vivo imaging of bio-samples. In order to achieve a better resolution of a SIM system, evanescent waves with larger in-plane wave-vector are preferred for SIM, among which the total internal reflection (TIRF-SIM) and the plasmonic SIM (pSIM) configurations are widely studied. Here, we demonstrated a metal-dielectric waveguide (MDW) based SIM system - termed as MDW-SIM, which can achieve a good compromise between TIRF-SIM and pSIM. The MDW can support a low-loss waveguide mode at an aqueous environment, with an evanescent tail existing above the water/dielectric interface for SIM. A proof-of-concept imaging experiment was performed on fluorescent beads, where a spatial resolution of 86nm was achieved at a 473nm illumination wavelength and a 1.45 numerical aperture objective lens. The proposed MDW-SIM has a great potential for the bio-imaging applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Sub-100nm resolution PSIM by utilizing modified optical vortices with fractional topological charges for precise phase shifting

Shibiao Wei, Ting Lei, Luping Du, Chonglei Zhang, Houkai Chen, Yong Yang, S. W. Zhu, and X.-C. Yuan
Opt. Express 23(23) 30143-30148 (2015)

Three-dimensional super-resolution imaging of live whole cells using galvanometer-based structured illumination microscopy

Wenjie Liu, Qiulan Liu, Zhimin Zhang, Yubing Han, Cuifang Kuang, Liang Xu, Hongqin Yang, and Xu Liu
Opt. Express 27(5) 7237-7248 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. W. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007).
    [Crossref] [PubMed]
  2. L. Schermelleh, R. Heintzmann, and H. Leonhardt, “A guide to super-resolution fluorescence microscopy,” J. Cell Biol. 190(2), 165–175 (2010).
    [Crossref] [PubMed]
  3. S. J. Sahl, S. W. Hell, and S. Jakobs, “Fluorescence nanoscopy in cell biology,” Nat. Rev. Mol. Cell Biol. 18(11), 685–701 (2017).
    [Crossref] [PubMed]
  4. Y. M. Sigal, R. Zhou, and X. Zhuang, “Visualizing and discovering cellular structures with super-resolution microscopy,” Science 361(6405), 880–887 (2018).
    [Crossref] [PubMed]
  5. C. Cremer and T. Cremer, “Considerations on a laser-scanning-microscope with high resolution and depth of field,” Microsc. Acta 81(1), 31–44 (1978).
    [PubMed]
  6. C. J. Sheppard and T. Wilson, “The theory of the direct-view confocal microscope,” J. Microsc. 124(Pt 2), 107–117 (1981).
    [Crossref] [PubMed]
  7. G. J. Brakenhoff, H. T. van der Voort, E. A. van Spronsen, W. A. Linnemans, and N. Nanninga, “Three-dimensional chromatin distribution in neuroblastoma nuclei shown by confocal scanning laser microscopy,” Nature 317(6039), 748–749 (1985).
    [Crossref] [PubMed]
  8. N. Rotenberg and L. Kuipers, “Mapping nanoscale light fields,” Nat. Photonics 8(12), 919–926 (2014).
    [Crossref]
  9. E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237(5357), 510–512 (1972).
    [Crossref] [PubMed]
  10. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [Crossref] [PubMed]
  11. T. A. Klar and S. W. Hell, “Subdiffraction resolution in far-field fluorescence microscopy,” Opt. Lett. 24(14), 954–956 (1999).
    [Crossref] [PubMed]
  12. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
    [Crossref] [PubMed]
  13. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
    [Crossref] [PubMed]
  14. M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(Pt 2), 82–87 (2000).
    [Crossref] [PubMed]
  15. M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
    [Crossref] [PubMed]
  16. L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320(5881), 1332–1336 (2008).
    [Crossref] [PubMed]
  17. J. Qian, M. Lei, D. Dan, B. Yao, X. Zhou, Y. Yang, S. Yan, J. Min, and X. Yu, “Full-color structured illumination optical sectioning microscopy,” Sci. Rep. 5(1), 14513 (2015).
    [Crossref] [PubMed]
  18. A. Doblas, H. Shabani, G. Saavedra, and C. Preza, “Tunable-frequency three-dimensional structured illumination microscopy with reduced data-acquisition,” Opt. Express 26(23), 30476–30491 (2018).
    [Crossref] [PubMed]
  19. R. Heintzmann and C. G. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” in Optical Biopsies and Microscopic Techniques III, (International Society for Optics and Photonics, 1999), 185–197.
  20. M. G. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
    [Crossref] [PubMed]
  21. E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A. 109(3), E135–E143 (2012).
    [Crossref] [PubMed]
  22. X. Zhang, M. Zhang, D. Li, W. He, J. Peng, E. Betzig, and P. Xu, “Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy,” Proc. Natl. Acad. Sci. U.S.A. 113(37), 10364–10369 (2016).
    [Crossref] [PubMed]
  23. D. Li, L. Shao, B.-C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. Hammer, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
    [Crossref] [PubMed]
  24. R. Heintzmann, T. M. Jovin, and C. Cremer, “Saturated patterned excitation microscopy--a concept for optical resolution improvement,” J. Opt. Soc. Am. A 19(8), 1599–1609 (2002).
    [Crossref] [PubMed]
  25. X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, P. Xi, L. Tang, Y. Zhang, Y. Liu, S. Tan, and L. Chen, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
    [Crossref] [PubMed]
  26. Y. Chen, W. Liu, Z. Zhang, C. Zheng, Y. Huang, R. Cao, D. Zhu, L. Xu, M. Zhang, Y.-H. Zhang, J. Fan, L. Jin, Y. Xu, C. Kuang, and X. Liu, “Multi-color live-cell super-resolution volume imaging with multi-angle interference microscopy,” Nat. Commun. 9(1), 4818 (2018).
    [Crossref] [PubMed]
  27. F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, “Wide field super-resolution surface imaging through plasmonic structured illumination microscopy,” Nano Lett. 14(8), 4634–4639 (2014).
    [Crossref] [PubMed]
  28. J. L. Ponsetto, A. Bezryadina, F. Wei, K. Onishi, H. Shen, E. Huang, L. Ferrari, Q. Ma, Y. Zou, and Z. Liu, “Experimental demonstration of localized plasmonic structured illumination microscopy,” ACS Nano 11(6), 5344–5350 (2017).
    [Crossref] [PubMed]
  29. F. Meng, L. Du, A. Yang, and X. Yuan, “Low loss surface electromagnetic waves on a metal–dielectric waveguide working at short wavelength and aqueous environment,” Opt. Commun. 433, 10–13 (2019).
    [Crossref]
  30. C. Sheppard and P. Török, “An electromagnetic theory of imaging in fluorescence microscopy, and imaging in polarization fluorescence microscopy,” Bioimaging 5(4), 205–218 (1997).
    [Crossref]
  31. W. T. Tang, E. Chung, Y.-H. Kim, P. T. So, and C. J. Sheppard, “Investigation of the point spread function of surface plasmon-coupled emission microscopy,” Opt. Express 15(8), 4634–4646 (2007).
    [Crossref] [PubMed]
  32. E. Chung, Y.-H. Kim, W. T. Tang, C. J. Sheppard, and P. T. So, “Wide-field extended-resolution fluorescence microscopy with standing surface-plasmon-resonance waves,” Opt. Lett. 34(15), 2366–2368 (2009).
    [Crossref] [PubMed]
  33. G. E. Cragg and P. T. So, “Lateral resolution enhancement with standing evanescent waves,” Opt. Lett. 25(1), 46–48 (2000).
    [Crossref] [PubMed]
  34. P. T. So, H.-S. Kwon, and C. Y. Dong, “Resolution enhancement in standing-wave total internal reflection microscopy: a point-spread-function engineering approach,” J. Opt. Soc. Am. A 18(11), 2833–2845 (2001).
    [Crossref] [PubMed]
  35. P. Hänninen, S. Hell, J. Salo, E. Soini, and C. Cremer, “Two‐photon excitation 4Pi confocal microscope: enhanced axial resolution microscope for biological research,” Appl. Phys. Lett. 66(13), 1698–1700 (1995).
    [Crossref]
  36. M. Müller, V. Mönkemöller, S. Hennig, W. Hübner, and T. Huser, “Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ,” Nat. Commun. 7(1), 10980 (2016).
    [Crossref] [PubMed]

2019 (1)

F. Meng, L. Du, A. Yang, and X. Yuan, “Low loss surface electromagnetic waves on a metal–dielectric waveguide working at short wavelength and aqueous environment,” Opt. Commun. 433, 10–13 (2019).
[Crossref]

2018 (4)

A. Doblas, H. Shabani, G. Saavedra, and C. Preza, “Tunable-frequency three-dimensional structured illumination microscopy with reduced data-acquisition,” Opt. Express 26(23), 30476–30491 (2018).
[Crossref] [PubMed]

X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, P. Xi, L. Tang, Y. Zhang, Y. Liu, S. Tan, and L. Chen, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
[Crossref] [PubMed]

Y. Chen, W. Liu, Z. Zhang, C. Zheng, Y. Huang, R. Cao, D. Zhu, L. Xu, M. Zhang, Y.-H. Zhang, J. Fan, L. Jin, Y. Xu, C. Kuang, and X. Liu, “Multi-color live-cell super-resolution volume imaging with multi-angle interference microscopy,” Nat. Commun. 9(1), 4818 (2018).
[Crossref] [PubMed]

Y. M. Sigal, R. Zhou, and X. Zhuang, “Visualizing and discovering cellular structures with super-resolution microscopy,” Science 361(6405), 880–887 (2018).
[Crossref] [PubMed]

2017 (2)

S. J. Sahl, S. W. Hell, and S. Jakobs, “Fluorescence nanoscopy in cell biology,” Nat. Rev. Mol. Cell Biol. 18(11), 685–701 (2017).
[Crossref] [PubMed]

J. L. Ponsetto, A. Bezryadina, F. Wei, K. Onishi, H. Shen, E. Huang, L. Ferrari, Q. Ma, Y. Zou, and Z. Liu, “Experimental demonstration of localized plasmonic structured illumination microscopy,” ACS Nano 11(6), 5344–5350 (2017).
[Crossref] [PubMed]

2016 (2)

X. Zhang, M. Zhang, D. Li, W. He, J. Peng, E. Betzig, and P. Xu, “Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy,” Proc. Natl. Acad. Sci. U.S.A. 113(37), 10364–10369 (2016).
[Crossref] [PubMed]

M. Müller, V. Mönkemöller, S. Hennig, W. Hübner, and T. Huser, “Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ,” Nat. Commun. 7(1), 10980 (2016).
[Crossref] [PubMed]

2015 (2)

D. Li, L. Shao, B.-C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. Hammer, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref] [PubMed]

J. Qian, M. Lei, D. Dan, B. Yao, X. Zhou, Y. Yang, S. Yan, J. Min, and X. Yu, “Full-color structured illumination optical sectioning microscopy,” Sci. Rep. 5(1), 14513 (2015).
[Crossref] [PubMed]

2014 (2)

N. Rotenberg and L. Kuipers, “Mapping nanoscale light fields,” Nat. Photonics 8(12), 919–926 (2014).
[Crossref]

F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, “Wide field super-resolution surface imaging through plasmonic structured illumination microscopy,” Nano Lett. 14(8), 4634–4639 (2014).
[Crossref] [PubMed]

2012 (1)

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A. 109(3), E135–E143 (2012).
[Crossref] [PubMed]

2010 (1)

L. Schermelleh, R. Heintzmann, and H. Leonhardt, “A guide to super-resolution fluorescence microscopy,” J. Cell Biol. 190(2), 165–175 (2010).
[Crossref] [PubMed]

2009 (1)

E. Chung, Y.-H. Kim, W. T. Tang, C. J. Sheppard, and P. T. So, “Wide-field extended-resolution fluorescence microscopy with standing surface-plasmon-resonance waves,” Opt. Lett. 34(15), 2366–2368 (2009).
[Crossref] [PubMed]

2008 (2)

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320(5881), 1332–1336 (2008).
[Crossref] [PubMed]

2007 (2)

S. W. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007).
[Crossref] [PubMed]

W. T. Tang, E. Chung, Y.-H. Kim, P. T. So, and C. J. Sheppard, “Investigation of the point spread function of surface plasmon-coupled emission microscopy,” Opt. Express 15(8), 4634–4646 (2007).
[Crossref] [PubMed]

2006 (2)

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

2005 (1)

M. G. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
[Crossref] [PubMed]

2002 (1)

R. Heintzmann, T. M. Jovin, and C. Cremer, “Saturated patterned excitation microscopy--a concept for optical resolution improvement,” J. Opt. Soc. Am. A 19(8), 1599–1609 (2002).
[Crossref] [PubMed]

2001 (1)

P. T. So, H.-S. Kwon, and C. Y. Dong, “Resolution enhancement in standing-wave total internal reflection microscopy: a point-spread-function engineering approach,” J. Opt. Soc. Am. A 18(11), 2833–2845 (2001).
[Crossref] [PubMed]

2000 (2)

G. E. Cragg and P. T. So, “Lateral resolution enhancement with standing evanescent waves,” Opt. Lett. 25(1), 46–48 (2000).
[Crossref] [PubMed]

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(Pt 2), 82–87 (2000).
[Crossref] [PubMed]

1999 (1)

T. A. Klar and S. W. Hell, “Subdiffraction resolution in far-field fluorescence microscopy,” Opt. Lett. 24(14), 954–956 (1999).
[Crossref] [PubMed]

1997 (1)

C. Sheppard and P. Török, “An electromagnetic theory of imaging in fluorescence microscopy, and imaging in polarization fluorescence microscopy,” Bioimaging 5(4), 205–218 (1997).
[Crossref]

1995 (1)

P. Hänninen, S. Hell, J. Salo, E. Soini, and C. Cremer, “Two‐photon excitation 4Pi confocal microscope: enhanced axial resolution microscope for biological research,” Appl. Phys. Lett. 66(13), 1698–1700 (1995).
[Crossref]

1994 (1)

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
[Crossref] [PubMed]

1985 (1)

G. J. Brakenhoff, H. T. van der Voort, E. A. van Spronsen, W. A. Linnemans, and N. Nanninga, “Three-dimensional chromatin distribution in neuroblastoma nuclei shown by confocal scanning laser microscopy,” Nature 317(6039), 748–749 (1985).
[Crossref] [PubMed]

1981 (1)

C. J. Sheppard and T. Wilson, “The theory of the direct-view confocal microscope,” J. Microsc. 124(Pt 2), 107–117 (1981).
[Crossref] [PubMed]

1978 (1)

C. Cremer and T. Cremer, “Considerations on a laser-scanning-microscope with high resolution and depth of field,” Microsc. Acta 81(1), 31–44 (1978).
[PubMed]

1972 (1)

E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237(5357), 510–512 (1972).
[Crossref] [PubMed]

Agard, D. A.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320(5881), 1332–1336 (2008).
[Crossref] [PubMed]

Ash, E. A.

E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237(5357), 510–512 (1972).
[Crossref] [PubMed]

Baird, M. A.

D. Li, L. Shao, B.-C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. Hammer, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref] [PubMed]

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

Beach, J. R.

D. Li, L. Shao, B.-C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. Hammer, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref] [PubMed]

Betzig, E.

X. Zhang, M. Zhang, D. Li, W. He, J. Peng, E. Betzig, and P. Xu, “Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy,” Proc. Natl. Acad. Sci. U.S.A. 113(37), 10364–10369 (2016).
[Crossref] [PubMed]

D. Li, L. Shao, B.-C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. Hammer, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Bezryadina, A.

J. L. Ponsetto, A. Bezryadina, F. Wei, K. Onishi, H. Shen, E. Huang, L. Ferrari, Q. Ma, Y. Zou, and Z. Liu, “Experimental demonstration of localized plasmonic structured illumination microscopy,” ACS Nano 11(6), 5344–5350 (2017).
[Crossref] [PubMed]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Brakenhoff, G. J.

G. J. Brakenhoff, H. T. van der Voort, E. A. van Spronsen, W. A. Linnemans, and N. Nanninga, “Three-dimensional chromatin distribution in neuroblastoma nuclei shown by confocal scanning laser microscopy,” Nature 317(6039), 748–749 (1985).
[Crossref] [PubMed]

Burke, B.

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320(5881), 1332–1336 (2008).
[Crossref] [PubMed]

Cande, W. Z.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Cao, R.

Y. Chen, W. Liu, Z. Zhang, C. Zheng, Y. Huang, R. Cao, D. Zhu, L. Xu, M. Zhang, Y.-H. Zhang, J. Fan, L. Jin, Y. Xu, C. Kuang, and X. Liu, “Multi-color live-cell super-resolution volume imaging with multi-angle interference microscopy,” Nat. Commun. 9(1), 4818 (2018).
[Crossref] [PubMed]

Cardoso, M. C.

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320(5881), 1332–1336 (2008).
[Crossref] [PubMed]

Carlton, P. M.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320(5881), 1332–1336 (2008).
[Crossref] [PubMed]

Chen, B.-C.

D. Li, L. Shao, B.-C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. Hammer, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref] [PubMed]

Chen, L.

X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, P. Xi, L. Tang, Y. Zhang, Y. Liu, S. Tan, and L. Chen, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
[Crossref] [PubMed]

Chen, Y.

Y. Chen, W. Liu, Z. Zhang, C. Zheng, Y. Huang, R. Cao, D. Zhu, L. Xu, M. Zhang, Y.-H. Zhang, J. Fan, L. Jin, Y. Xu, C. Kuang, and X. Liu, “Multi-color live-cell super-resolution volume imaging with multi-angle interference microscopy,” Nat. Commun. 9(1), 4818 (2018).
[Crossref] [PubMed]

Chung, E.

E. Chung, Y.-H. Kim, W. T. Tang, C. J. Sheppard, and P. T. So, “Wide-field extended-resolution fluorescence microscopy with standing surface-plasmon-resonance waves,” Opt. Lett. 34(15), 2366–2368 (2009).
[Crossref] [PubMed]

W. T. Tang, E. Chung, Y.-H. Kim, P. T. So, and C. J. Sheppard, “Investigation of the point spread function of surface plasmon-coupled emission microscopy,” Opt. Express 15(8), 4634–4646 (2007).
[Crossref] [PubMed]

Cragg, G. E.

G. E. Cragg and P. T. So, “Lateral resolution enhancement with standing evanescent waves,” Opt. Lett. 25(1), 46–48 (2000).
[Crossref] [PubMed]

Cremer, C.

R. Heintzmann, T. M. Jovin, and C. Cremer, “Saturated patterned excitation microscopy--a concept for optical resolution improvement,” J. Opt. Soc. Am. A 19(8), 1599–1609 (2002).
[Crossref] [PubMed]

P. Hänninen, S. Hell, J. Salo, E. Soini, and C. Cremer, “Two‐photon excitation 4Pi confocal microscope: enhanced axial resolution microscope for biological research,” Appl. Phys. Lett. 66(13), 1698–1700 (1995).
[Crossref]

C. Cremer and T. Cremer, “Considerations on a laser-scanning-microscope with high resolution and depth of field,” Microsc. Acta 81(1), 31–44 (1978).
[PubMed]

Cremer, T.

C. Cremer and T. Cremer, “Considerations on a laser-scanning-microscope with high resolution and depth of field,” Microsc. Acta 81(1), 31–44 (1978).
[PubMed]

Dan, D.

J. Qian, M. Lei, D. Dan, B. Yao, X. Zhou, Y. Yang, S. Yan, J. Min, and X. Yu, “Full-color structured illumination optical sectioning microscopy,” Sci. Rep. 5(1), 14513 (2015).
[Crossref] [PubMed]

Davidson, M. W.

D. Li, L. Shao, B.-C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. Hammer, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref] [PubMed]

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A. 109(3), E135–E143 (2012).
[Crossref] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Doblas, A.

A. Doblas, H. Shabani, G. Saavedra, and C. Preza, “Tunable-frequency three-dimensional structured illumination microscopy with reduced data-acquisition,” Opt. Express 26(23), 30476–30491 (2018).
[Crossref] [PubMed]

Dong, C. Y.

P. T. So, H.-S. Kwon, and C. Y. Dong, “Resolution enhancement in standing-wave total internal reflection microscopy: a point-spread-function engineering approach,” J. Opt. Soc. Am. A 18(11), 2833–2845 (2001).
[Crossref] [PubMed]

Du, L.

F. Meng, L. Du, A. Yang, and X. Yuan, “Low loss surface electromagnetic waves on a metal–dielectric waveguide working at short wavelength and aqueous environment,” Opt. Commun. 433, 10–13 (2019).
[Crossref]

Fan, J.

X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, P. Xi, L. Tang, Y. Zhang, Y. Liu, S. Tan, and L. Chen, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
[Crossref] [PubMed]

Y. Chen, W. Liu, Z. Zhang, C. Zheng, Y. Huang, R. Cao, D. Zhu, L. Xu, M. Zhang, Y.-H. Zhang, J. Fan, L. Jin, Y. Xu, C. Kuang, and X. Liu, “Multi-color live-cell super-resolution volume imaging with multi-angle interference microscopy,” Nat. Commun. 9(1), 4818 (2018).
[Crossref] [PubMed]

Ferrari, L.

J. L. Ponsetto, A. Bezryadina, F. Wei, K. Onishi, H. Shen, E. Huang, L. Ferrari, Q. Ma, Y. Zou, and Z. Liu, “Experimental demonstration of localized plasmonic structured illumination microscopy,” ACS Nano 11(6), 5344–5350 (2017).
[Crossref] [PubMed]

Golubovskaya, I. N.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Gustafsson, M. G.

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A. 109(3), E135–E143 (2012).
[Crossref] [PubMed]

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320(5881), 1332–1336 (2008).
[Crossref] [PubMed]

M. G. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
[Crossref] [PubMed]

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(Pt 2), 82–87 (2000).
[Crossref] [PubMed]

Haase, S.

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320(5881), 1332–1336 (2008).
[Crossref] [PubMed]

Hammer, J. A.

D. Li, L. Shao, B.-C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. Hammer, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref] [PubMed]

Hänninen, P.

P. Hänninen, S. Hell, J. Salo, E. Soini, and C. Cremer, “Two‐photon excitation 4Pi confocal microscope: enhanced axial resolution microscope for biological research,” Appl. Phys. Lett. 66(13), 1698–1700 (1995).
[Crossref]

He, W.

X. Zhang, M. Zhang, D. Li, W. He, J. Peng, E. Betzig, and P. Xu, “Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy,” Proc. Natl. Acad. Sci. U.S.A. 113(37), 10364–10369 (2016).
[Crossref] [PubMed]

Heintzmann, R.

L. Schermelleh, R. Heintzmann, and H. Leonhardt, “A guide to super-resolution fluorescence microscopy,” J. Cell Biol. 190(2), 165–175 (2010).
[Crossref] [PubMed]

R. Heintzmann, T. M. Jovin, and C. Cremer, “Saturated patterned excitation microscopy--a concept for optical resolution improvement,” J. Opt. Soc. Am. A 19(8), 1599–1609 (2002).
[Crossref] [PubMed]

Hell, S.

P. Hänninen, S. Hell, J. Salo, E. Soini, and C. Cremer, “Two‐photon excitation 4Pi confocal microscope: enhanced axial resolution microscope for biological research,” Appl. Phys. Lett. 66(13), 1698–1700 (1995).
[Crossref]

Hell, S. W.

S. J. Sahl, S. W. Hell, and S. Jakobs, “Fluorescence nanoscopy in cell biology,” Nat. Rev. Mol. Cell Biol. 18(11), 685–701 (2017).
[Crossref] [PubMed]

S. W. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007).
[Crossref] [PubMed]

T. A. Klar and S. W. Hell, “Subdiffraction resolution in far-field fluorescence microscopy,” Opt. Lett. 24(14), 954–956 (1999).
[Crossref] [PubMed]

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
[Crossref] [PubMed]

Hennig, S.

M. Müller, V. Mönkemöller, S. Hennig, W. Hübner, and T. Huser, “Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ,” Nat. Commun. 7(1), 10980 (2016).
[Crossref] [PubMed]

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Huang, E.

J. L. Ponsetto, A. Bezryadina, F. Wei, K. Onishi, H. Shen, E. Huang, L. Ferrari, Q. Ma, Y. Zou, and Z. Liu, “Experimental demonstration of localized plasmonic structured illumination microscopy,” ACS Nano 11(6), 5344–5350 (2017).
[Crossref] [PubMed]

F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, “Wide field super-resolution surface imaging through plasmonic structured illumination microscopy,” Nano Lett. 14(8), 4634–4639 (2014).
[Crossref] [PubMed]

Huang, X.

X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, P. Xi, L. Tang, Y. Zhang, Y. Liu, S. Tan, and L. Chen, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
[Crossref] [PubMed]

Huang, Y.

Y. Chen, W. Liu, Z. Zhang, C. Zheng, Y. Huang, R. Cao, D. Zhu, L. Xu, M. Zhang, Y.-H. Zhang, J. Fan, L. Jin, Y. Xu, C. Kuang, and X. Liu, “Multi-color live-cell super-resolution volume imaging with multi-angle interference microscopy,” Nat. Commun. 9(1), 4818 (2018).
[Crossref] [PubMed]

Hübner, W.

M. Müller, V. Mönkemöller, S. Hennig, W. Hübner, and T. Huser, “Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ,” Nat. Commun. 7(1), 10980 (2016).
[Crossref] [PubMed]

Huser, T.

M. Müller, V. Mönkemöller, S. Hennig, W. Hübner, and T. Huser, “Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ,” Nat. Commun. 7(1), 10980 (2016).
[Crossref] [PubMed]

Jakobs, S.

S. J. Sahl, S. W. Hell, and S. Jakobs, “Fluorescence nanoscopy in cell biology,” Nat. Rev. Mol. Cell Biol. 18(11), 685–701 (2017).
[Crossref] [PubMed]

Jin, L.

Y. Chen, W. Liu, Z. Zhang, C. Zheng, Y. Huang, R. Cao, D. Zhu, L. Xu, M. Zhang, Y.-H. Zhang, J. Fan, L. Jin, Y. Xu, C. Kuang, and X. Liu, “Multi-color live-cell super-resolution volume imaging with multi-angle interference microscopy,” Nat. Commun. 9(1), 4818 (2018).
[Crossref] [PubMed]

Johansson, G. A.

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A. 109(3), E135–E143 (2012).
[Crossref] [PubMed]

Jovin, T. M.

R. Heintzmann, T. M. Jovin, and C. Cremer, “Saturated patterned excitation microscopy--a concept for optical resolution improvement,” J. Opt. Soc. Am. A 19(8), 1599–1609 (2002).
[Crossref] [PubMed]

Kamps-Hughes, N.

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A. 109(3), E135–E143 (2012).
[Crossref] [PubMed]

Kim, Y.-H.

E. Chung, Y.-H. Kim, W. T. Tang, C. J. Sheppard, and P. T. So, “Wide-field extended-resolution fluorescence microscopy with standing surface-plasmon-resonance waves,” Opt. Lett. 34(15), 2366–2368 (2009).
[Crossref] [PubMed]

W. T. Tang, E. Chung, Y.-H. Kim, P. T. So, and C. J. Sheppard, “Investigation of the point spread function of surface plasmon-coupled emission microscopy,” Opt. Express 15(8), 4634–4646 (2007).
[Crossref] [PubMed]

Kirchhausen, T.

D. Li, L. Shao, B.-C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. Hammer, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref] [PubMed]

Klar, T. A.

T. A. Klar and S. W. Hell, “Subdiffraction resolution in far-field fluorescence microscopy,” Opt. Lett. 24(14), 954–956 (1999).
[Crossref] [PubMed]

Kner, P.

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320(5881), 1332–1336 (2008).
[Crossref] [PubMed]

Kuang, C.

Y. Chen, W. Liu, Z. Zhang, C. Zheng, Y. Huang, R. Cao, D. Zhu, L. Xu, M. Zhang, Y.-H. Zhang, J. Fan, L. Jin, Y. Xu, C. Kuang, and X. Liu, “Multi-color live-cell super-resolution volume imaging with multi-angle interference microscopy,” Nat. Commun. 9(1), 4818 (2018).
[Crossref] [PubMed]

Kuipers, L.

N. Rotenberg and L. Kuipers, “Mapping nanoscale light fields,” Nat. Photonics 8(12), 919–926 (2014).
[Crossref]

Kwon, H.-S.

P. T. So, H.-S. Kwon, and C. Y. Dong, “Resolution enhancement in standing-wave total internal reflection microscopy: a point-spread-function engineering approach,” J. Opt. Soc. Am. A 18(11), 2833–2845 (2001).
[Crossref] [PubMed]

Lal, A.

X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, P. Xi, L. Tang, Y. Zhang, Y. Liu, S. Tan, and L. Chen, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
[Crossref] [PubMed]

Lei, M.

J. Qian, M. Lei, D. Dan, B. Yao, X. Zhou, Y. Yang, S. Yan, J. Min, and X. Yu, “Full-color structured illumination optical sectioning microscopy,” Sci. Rep. 5(1), 14513 (2015).
[Crossref] [PubMed]

Leonhardt, H.

L. Schermelleh, R. Heintzmann, and H. Leonhardt, “A guide to super-resolution fluorescence microscopy,” J. Cell Biol. 190(2), 165–175 (2010).
[Crossref] [PubMed]

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320(5881), 1332–1336 (2008).
[Crossref] [PubMed]

Li, D.

X. Zhang, M. Zhang, D. Li, W. He, J. Peng, E. Betzig, and P. Xu, “Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy,” Proc. Natl. Acad. Sci. U.S.A. 113(37), 10364–10369 (2016).
[Crossref] [PubMed]

D. Li, L. Shao, B.-C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. Hammer, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref] [PubMed]

Li, L.

X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, P. Xi, L. Tang, Y. Zhang, Y. Liu, S. Tan, and L. Chen, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
[Crossref] [PubMed]

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Linnemans, W. A.

G. J. Brakenhoff, H. T. van der Voort, E. A. van Spronsen, W. A. Linnemans, and N. Nanninga, “Three-dimensional chromatin distribution in neuroblastoma nuclei shown by confocal scanning laser microscopy,” Nature 317(6039), 748–749 (1985).
[Crossref] [PubMed]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Liu, H.

X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, P. Xi, L. Tang, Y. Zhang, Y. Liu, S. Tan, and L. Chen, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
[Crossref] [PubMed]

Liu, W.

Y. Chen, W. Liu, Z. Zhang, C. Zheng, Y. Huang, R. Cao, D. Zhu, L. Xu, M. Zhang, Y.-H. Zhang, J. Fan, L. Jin, Y. Xu, C. Kuang, and X. Liu, “Multi-color live-cell super-resolution volume imaging with multi-angle interference microscopy,” Nat. Commun. 9(1), 4818 (2018).
[Crossref] [PubMed]

Liu, X.

Y. Chen, W. Liu, Z. Zhang, C. Zheng, Y. Huang, R. Cao, D. Zhu, L. Xu, M. Zhang, Y.-H. Zhang, J. Fan, L. Jin, Y. Xu, C. Kuang, and X. Liu, “Multi-color live-cell super-resolution volume imaging with multi-angle interference microscopy,” Nat. Commun. 9(1), 4818 (2018).
[Crossref] [PubMed]

Liu, Y.

X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, P. Xi, L. Tang, Y. Zhang, Y. Liu, S. Tan, and L. Chen, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
[Crossref] [PubMed]

Liu, Z.

J. L. Ponsetto, A. Bezryadina, F. Wei, K. Onishi, H. Shen, E. Huang, L. Ferrari, Q. Ma, Y. Zou, and Z. Liu, “Experimental demonstration of localized plasmonic structured illumination microscopy,” ACS Nano 11(6), 5344–5350 (2017).
[Crossref] [PubMed]

F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, “Wide field super-resolution surface imaging through plasmonic structured illumination microscopy,” Nano Lett. 14(8), 4634–4639 (2014).
[Crossref] [PubMed]

Lu, D.

F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, “Wide field super-resolution surface imaging through plasmonic structured illumination microscopy,” Nano Lett. 14(8), 4634–4639 (2014).
[Crossref] [PubMed]

Ma, Q.

J. L. Ponsetto, A. Bezryadina, F. Wei, K. Onishi, H. Shen, E. Huang, L. Ferrari, Q. Ma, Y. Zou, and Z. Liu, “Experimental demonstration of localized plasmonic structured illumination microscopy,” ACS Nano 11(6), 5344–5350 (2017).
[Crossref] [PubMed]

Macklin, J. J.

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A. 109(3), E135–E143 (2012).
[Crossref] [PubMed]

Mao, H.

X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, P. Xi, L. Tang, Y. Zhang, Y. Liu, S. Tan, and L. Chen, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
[Crossref] [PubMed]

Meng, F.

F. Meng, L. Du, A. Yang, and X. Yuan, “Low loss surface electromagnetic waves on a metal–dielectric waveguide working at short wavelength and aqueous environment,” Opt. Commun. 433, 10–13 (2019).
[Crossref]

Milkie, D. E.

D. Li, L. Shao, B.-C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. Hammer, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref] [PubMed]

Min, J.

J. Qian, M. Lei, D. Dan, B. Yao, X. Zhou, Y. Yang, S. Yan, J. Min, and X. Yu, “Full-color structured illumination optical sectioning microscopy,” Sci. Rep. 5(1), 14513 (2015).
[Crossref] [PubMed]

Mönkemöller, V.

M. Müller, V. Mönkemöller, S. Hennig, W. Hübner, and T. Huser, “Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ,” Nat. Commun. 7(1), 10980 (2016).
[Crossref] [PubMed]

Moses, B.

D. Li, L. Shao, B.-C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. Hammer, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref] [PubMed]

Müller, M.

M. Müller, V. Mönkemöller, S. Hennig, W. Hübner, and T. Huser, “Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ,” Nat. Commun. 7(1), 10980 (2016).
[Crossref] [PubMed]

Nanninga, N.

G. J. Brakenhoff, H. T. van der Voort, E. A. van Spronsen, W. A. Linnemans, and N. Nanninga, “Three-dimensional chromatin distribution in neuroblastoma nuclei shown by confocal scanning laser microscopy,” Nature 317(6039), 748–749 (1985).
[Crossref] [PubMed]

Nicholls, G.

E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237(5357), 510–512 (1972).
[Crossref] [PubMed]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Onishi, K.

J. L. Ponsetto, A. Bezryadina, F. Wei, K. Onishi, H. Shen, E. Huang, L. Ferrari, Q. Ma, Y. Zou, and Z. Liu, “Experimental demonstration of localized plasmonic structured illumination microscopy,” ACS Nano 11(6), 5344–5350 (2017).
[Crossref] [PubMed]

Pasham, M.

D. Li, L. Shao, B.-C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. Hammer, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref] [PubMed]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Peng, J.

X. Zhang, M. Zhang, D. Li, W. He, J. Peng, E. Betzig, and P. Xu, “Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy,” Proc. Natl. Acad. Sci. U.S.A. 113(37), 10364–10369 (2016).
[Crossref] [PubMed]

Ponsetto, J. L.

J. L. Ponsetto, A. Bezryadina, F. Wei, K. Onishi, H. Shen, E. Huang, L. Ferrari, Q. Ma, Y. Zou, and Z. Liu, “Experimental demonstration of localized plasmonic structured illumination microscopy,” ACS Nano 11(6), 5344–5350 (2017).
[Crossref] [PubMed]

F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, “Wide field super-resolution surface imaging through plasmonic structured illumination microscopy,” Nano Lett. 14(8), 4634–4639 (2014).
[Crossref] [PubMed]

Preza, C.

A. Doblas, H. Shabani, G. Saavedra, and C. Preza, “Tunable-frequency three-dimensional structured illumination microscopy with reduced data-acquisition,” Opt. Express 26(23), 30476–30491 (2018).
[Crossref] [PubMed]

Qian, J.

J. Qian, M. Lei, D. Dan, B. Yao, X. Zhou, Y. Yang, S. Yan, J. Min, and X. Yu, “Full-color structured illumination optical sectioning microscopy,” Sci. Rep. 5(1), 14513 (2015).
[Crossref] [PubMed]

Rego, E. H.

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A. 109(3), E135–E143 (2012).
[Crossref] [PubMed]

Rotenberg, N.

N. Rotenberg and L. Kuipers, “Mapping nanoscale light fields,” Nat. Photonics 8(12), 919–926 (2014).
[Crossref]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

Saavedra, G.

A. Doblas, H. Shabani, G. Saavedra, and C. Preza, “Tunable-frequency three-dimensional structured illumination microscopy with reduced data-acquisition,” Opt. Express 26(23), 30476–30491 (2018).
[Crossref] [PubMed]

Sahl, S. J.

S. J. Sahl, S. W. Hell, and S. Jakobs, “Fluorescence nanoscopy in cell biology,” Nat. Rev. Mol. Cell Biol. 18(11), 685–701 (2017).
[Crossref] [PubMed]

Salo, J.

P. Hänninen, S. Hell, J. Salo, E. Soini, and C. Cremer, “Two‐photon excitation 4Pi confocal microscope: enhanced axial resolution microscope for biological research,” Appl. Phys. Lett. 66(13), 1698–1700 (1995).
[Crossref]

Schermelleh, L.

L. Schermelleh, R. Heintzmann, and H. Leonhardt, “A guide to super-resolution fluorescence microscopy,” J. Cell Biol. 190(2), 165–175 (2010).
[Crossref] [PubMed]

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320(5881), 1332–1336 (2008).
[Crossref] [PubMed]

Sedat, J. W.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320(5881), 1332–1336 (2008).
[Crossref] [PubMed]

Shabani, H.

A. Doblas, H. Shabani, G. Saavedra, and C. Preza, “Tunable-frequency three-dimensional structured illumination microscopy with reduced data-acquisition,” Opt. Express 26(23), 30476–30491 (2018).
[Crossref] [PubMed]

Shao, L.

D. Li, L. Shao, B.-C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. Hammer, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref] [PubMed]

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A. 109(3), E135–E143 (2012).
[Crossref] [PubMed]

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320(5881), 1332–1336 (2008).
[Crossref] [PubMed]

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Shen, H.

J. L. Ponsetto, A. Bezryadina, F. Wei, K. Onishi, H. Shen, E. Huang, L. Ferrari, Q. Ma, Y. Zou, and Z. Liu, “Experimental demonstration of localized plasmonic structured illumination microscopy,” ACS Nano 11(6), 5344–5350 (2017).
[Crossref] [PubMed]

F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, “Wide field super-resolution surface imaging through plasmonic structured illumination microscopy,” Nano Lett. 14(8), 4634–4639 (2014).
[Crossref] [PubMed]

Sheppard, C.

C. Sheppard and P. Török, “An electromagnetic theory of imaging in fluorescence microscopy, and imaging in polarization fluorescence microscopy,” Bioimaging 5(4), 205–218 (1997).
[Crossref]

Sheppard, C. J.

E. Chung, Y.-H. Kim, W. T. Tang, C. J. Sheppard, and P. T. So, “Wide-field extended-resolution fluorescence microscopy with standing surface-plasmon-resonance waves,” Opt. Lett. 34(15), 2366–2368 (2009).
[Crossref] [PubMed]

W. T. Tang, E. Chung, Y.-H. Kim, P. T. So, and C. J. Sheppard, “Investigation of the point spread function of surface plasmon-coupled emission microscopy,” Opt. Express 15(8), 4634–4646 (2007).
[Crossref] [PubMed]

C. J. Sheppard and T. Wilson, “The theory of the direct-view confocal microscope,” J. Microsc. 124(Pt 2), 107–117 (1981).
[Crossref] [PubMed]

Sigal, Y. M.

Y. M. Sigal, R. Zhou, and X. Zhuang, “Visualizing and discovering cellular structures with super-resolution microscopy,” Science 361(6405), 880–887 (2018).
[Crossref] [PubMed]

So, P. T.

E. Chung, Y.-H. Kim, W. T. Tang, C. J. Sheppard, and P. T. So, “Wide-field extended-resolution fluorescence microscopy with standing surface-plasmon-resonance waves,” Opt. Lett. 34(15), 2366–2368 (2009).
[Crossref] [PubMed]

W. T. Tang, E. Chung, Y.-H. Kim, P. T. So, and C. J. Sheppard, “Investigation of the point spread function of surface plasmon-coupled emission microscopy,” Opt. Express 15(8), 4634–4646 (2007).
[Crossref] [PubMed]

P. T. So, H.-S. Kwon, and C. Y. Dong, “Resolution enhancement in standing-wave total internal reflection microscopy: a point-spread-function engineering approach,” J. Opt. Soc. Am. A 18(11), 2833–2845 (2001).
[Crossref] [PubMed]

G. E. Cragg and P. T. So, “Lateral resolution enhancement with standing evanescent waves,” Opt. Lett. 25(1), 46–48 (2000).
[Crossref] [PubMed]

Soini, E.

P. Hänninen, S. Hell, J. Salo, E. Soini, and C. Cremer, “Two‐photon excitation 4Pi confocal microscope: enhanced axial resolution microscope for biological research,” Appl. Phys. Lett. 66(13), 1698–1700 (1995).
[Crossref]

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Tan, S.

X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, P. Xi, L. Tang, Y. Zhang, Y. Liu, S. Tan, and L. Chen, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
[Crossref] [PubMed]

Tang, L.

X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, P. Xi, L. Tang, Y. Zhang, Y. Liu, S. Tan, and L. Chen, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
[Crossref] [PubMed]

Tang, W. T.

E. Chung, Y.-H. Kim, W. T. Tang, C. J. Sheppard, and P. T. So, “Wide-field extended-resolution fluorescence microscopy with standing surface-plasmon-resonance waves,” Opt. Lett. 34(15), 2366–2368 (2009).
[Crossref] [PubMed]

W. T. Tang, E. Chung, Y.-H. Kim, P. T. So, and C. J. Sheppard, “Investigation of the point spread function of surface plasmon-coupled emission microscopy,” Opt. Express 15(8), 4634–4646 (2007).
[Crossref] [PubMed]

Török, P.

C. Sheppard and P. Török, “An electromagnetic theory of imaging in fluorescence microscopy, and imaging in polarization fluorescence microscopy,” Bioimaging 5(4), 205–218 (1997).
[Crossref]

van der Voort, H. T.

G. J. Brakenhoff, H. T. van der Voort, E. A. van Spronsen, W. A. Linnemans, and N. Nanninga, “Three-dimensional chromatin distribution in neuroblastoma nuclei shown by confocal scanning laser microscopy,” Nature 317(6039), 748–749 (1985).
[Crossref] [PubMed]

van Spronsen, E. A.

G. J. Brakenhoff, H. T. van der Voort, E. A. van Spronsen, W. A. Linnemans, and N. Nanninga, “Three-dimensional chromatin distribution in neuroblastoma nuclei shown by confocal scanning laser microscopy,” Nature 317(6039), 748–749 (1985).
[Crossref] [PubMed]

Wan, W.

F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, “Wide field super-resolution surface imaging through plasmonic structured illumination microscopy,” Nano Lett. 14(8), 4634–4639 (2014).
[Crossref] [PubMed]

Wang, C. J.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Wei, F.

J. L. Ponsetto, A. Bezryadina, F. Wei, K. Onishi, H. Shen, E. Huang, L. Ferrari, Q. Ma, Y. Zou, and Z. Liu, “Experimental demonstration of localized plasmonic structured illumination microscopy,” ACS Nano 11(6), 5344–5350 (2017).
[Crossref] [PubMed]

F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, “Wide field super-resolution surface imaging through plasmonic structured illumination microscopy,” Nano Lett. 14(8), 4634–4639 (2014).
[Crossref] [PubMed]

Wei, L.

X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, P. Xi, L. Tang, Y. Zhang, Y. Liu, S. Tan, and L. Chen, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
[Crossref] [PubMed]

Wichmann, J.

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
[Crossref] [PubMed]

Wilson, T.

C. J. Sheppard and T. Wilson, “The theory of the direct-view confocal microscope,” J. Microsc. 124(Pt 2), 107–117 (1981).
[Crossref] [PubMed]

Winoto, L.

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A. 109(3), E135–E143 (2012).
[Crossref] [PubMed]

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320(5881), 1332–1336 (2008).
[Crossref] [PubMed]

Wu, R.

X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, P. Xi, L. Tang, Y. Zhang, Y. Liu, S. Tan, and L. Chen, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
[Crossref] [PubMed]

Wu, Y.

X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, P. Xi, L. Tang, Y. Zhang, Y. Liu, S. Tan, and L. Chen, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
[Crossref] [PubMed]

Xi, P.

X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, P. Xi, L. Tang, Y. Zhang, Y. Liu, S. Tan, and L. Chen, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
[Crossref] [PubMed]

Xu, L.

Y. Chen, W. Liu, Z. Zhang, C. Zheng, Y. Huang, R. Cao, D. Zhu, L. Xu, M. Zhang, Y.-H. Zhang, J. Fan, L. Jin, Y. Xu, C. Kuang, and X. Liu, “Multi-color live-cell super-resolution volume imaging with multi-angle interference microscopy,” Nat. Commun. 9(1), 4818 (2018).
[Crossref] [PubMed]

Xu, P.

X. Zhang, M. Zhang, D. Li, W. He, J. Peng, E. Betzig, and P. Xu, “Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy,” Proc. Natl. Acad. Sci. U.S.A. 113(37), 10364–10369 (2016).
[Crossref] [PubMed]

D. Li, L. Shao, B.-C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. Hammer, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref] [PubMed]

Xu, Y.

Y. Chen, W. Liu, Z. Zhang, C. Zheng, Y. Huang, R. Cao, D. Zhu, L. Xu, M. Zhang, Y.-H. Zhang, J. Fan, L. Jin, Y. Xu, C. Kuang, and X. Liu, “Multi-color live-cell super-resolution volume imaging with multi-angle interference microscopy,” Nat. Commun. 9(1), 4818 (2018).
[Crossref] [PubMed]

Yan, S.

J. Qian, M. Lei, D. Dan, B. Yao, X. Zhou, Y. Yang, S. Yan, J. Min, and X. Yu, “Full-color structured illumination optical sectioning microscopy,” Sci. Rep. 5(1), 14513 (2015).
[Crossref] [PubMed]

Yang, A.

F. Meng, L. Du, A. Yang, and X. Yuan, “Low loss surface electromagnetic waves on a metal–dielectric waveguide working at short wavelength and aqueous environment,” Opt. Commun. 433, 10–13 (2019).
[Crossref]

Yang, Y.

J. Qian, M. Lei, D. Dan, B. Yao, X. Zhou, Y. Yang, S. Yan, J. Min, and X. Yu, “Full-color structured illumination optical sectioning microscopy,” Sci. Rep. 5(1), 14513 (2015).
[Crossref] [PubMed]

Yao, B.

J. Qian, M. Lei, D. Dan, B. Yao, X. Zhou, Y. Yang, S. Yan, J. Min, and X. Yu, “Full-color structured illumination optical sectioning microscopy,” Sci. Rep. 5(1), 14513 (2015).
[Crossref] [PubMed]

Yu, X.

J. Qian, M. Lei, D. Dan, B. Yao, X. Zhou, Y. Yang, S. Yan, J. Min, and X. Yu, “Full-color structured illumination optical sectioning microscopy,” Sci. Rep. 5(1), 14513 (2015).
[Crossref] [PubMed]

Yuan, X.

F. Meng, L. Du, A. Yang, and X. Yuan, “Low loss surface electromagnetic waves on a metal–dielectric waveguide working at short wavelength and aqueous environment,” Opt. Commun. 433, 10–13 (2019).
[Crossref]

Zhang, M.

Y. Chen, W. Liu, Z. Zhang, C. Zheng, Y. Huang, R. Cao, D. Zhu, L. Xu, M. Zhang, Y.-H. Zhang, J. Fan, L. Jin, Y. Xu, C. Kuang, and X. Liu, “Multi-color live-cell super-resolution volume imaging with multi-angle interference microscopy,” Nat. Commun. 9(1), 4818 (2018).
[Crossref] [PubMed]

X. Zhang, M. Zhang, D. Li, W. He, J. Peng, E. Betzig, and P. Xu, “Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy,” Proc. Natl. Acad. Sci. U.S.A. 113(37), 10364–10369 (2016).
[Crossref] [PubMed]

D. Li, L. Shao, B.-C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. Hammer, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref] [PubMed]

Zhang, X.

X. Zhang, M. Zhang, D. Li, W. He, J. Peng, E. Betzig, and P. Xu, “Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy,” Proc. Natl. Acad. Sci. U.S.A. 113(37), 10364–10369 (2016).
[Crossref] [PubMed]

D. Li, L. Shao, B.-C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. Hammer, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref] [PubMed]

Zhang, Y.

X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, P. Xi, L. Tang, Y. Zhang, Y. Liu, S. Tan, and L. Chen, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
[Crossref] [PubMed]

Zhang, Y.-H.

Y. Chen, W. Liu, Z. Zhang, C. Zheng, Y. Huang, R. Cao, D. Zhu, L. Xu, M. Zhang, Y.-H. Zhang, J. Fan, L. Jin, Y. Xu, C. Kuang, and X. Liu, “Multi-color live-cell super-resolution volume imaging with multi-angle interference microscopy,” Nat. Commun. 9(1), 4818 (2018).
[Crossref] [PubMed]

Zhang, Z.

Y. Chen, W. Liu, Z. Zhang, C. Zheng, Y. Huang, R. Cao, D. Zhu, L. Xu, M. Zhang, Y.-H. Zhang, J. Fan, L. Jin, Y. Xu, C. Kuang, and X. Liu, “Multi-color live-cell super-resolution volume imaging with multi-angle interference microscopy,” Nat. Commun. 9(1), 4818 (2018).
[Crossref] [PubMed]

Zheng, C.

Y. Chen, W. Liu, Z. Zhang, C. Zheng, Y. Huang, R. Cao, D. Zhu, L. Xu, M. Zhang, Y.-H. Zhang, J. Fan, L. Jin, Y. Xu, C. Kuang, and X. Liu, “Multi-color live-cell super-resolution volume imaging with multi-angle interference microscopy,” Nat. Commun. 9(1), 4818 (2018).
[Crossref] [PubMed]

Zhou, R.

Y. M. Sigal, R. Zhou, and X. Zhuang, “Visualizing and discovering cellular structures with super-resolution microscopy,” Science 361(6405), 880–887 (2018).
[Crossref] [PubMed]

Zhou, X.

J. Qian, M. Lei, D. Dan, B. Yao, X. Zhou, Y. Yang, S. Yan, J. Min, and X. Yu, “Full-color structured illumination optical sectioning microscopy,” Sci. Rep. 5(1), 14513 (2015).
[Crossref] [PubMed]

Zhu, D.

Y. Chen, W. Liu, Z. Zhang, C. Zheng, Y. Huang, R. Cao, D. Zhu, L. Xu, M. Zhang, Y.-H. Zhang, J. Fan, L. Jin, Y. Xu, C. Kuang, and X. Liu, “Multi-color live-cell super-resolution volume imaging with multi-angle interference microscopy,” Nat. Commun. 9(1), 4818 (2018).
[Crossref] [PubMed]

Zhuang, X.

Y. M. Sigal, R. Zhou, and X. Zhuang, “Visualizing and discovering cellular structures with super-resolution microscopy,” Science 361(6405), 880–887 (2018).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

Zou, Y.

J. L. Ponsetto, A. Bezryadina, F. Wei, K. Onishi, H. Shen, E. Huang, L. Ferrari, Q. Ma, Y. Zou, and Z. Liu, “Experimental demonstration of localized plasmonic structured illumination microscopy,” ACS Nano 11(6), 5344–5350 (2017).
[Crossref] [PubMed]

ACS Nano (1)

J. L. Ponsetto, A. Bezryadina, F. Wei, K. Onishi, H. Shen, E. Huang, L. Ferrari, Q. Ma, Y. Zou, and Z. Liu, “Experimental demonstration of localized plasmonic structured illumination microscopy,” ACS Nano 11(6), 5344–5350 (2017).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

P. Hänninen, S. Hell, J. Salo, E. Soini, and C. Cremer, “Two‐photon excitation 4Pi confocal microscope: enhanced axial resolution microscope for biological research,” Appl. Phys. Lett. 66(13), 1698–1700 (1995).
[Crossref]

Bioimaging (1)

C. Sheppard and P. Török, “An electromagnetic theory of imaging in fluorescence microscopy, and imaging in polarization fluorescence microscopy,” Bioimaging 5(4), 205–218 (1997).
[Crossref]

Biophys. J. (1)

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

J. Cell Biol. (1)

L. Schermelleh, R. Heintzmann, and H. Leonhardt, “A guide to super-resolution fluorescence microscopy,” J. Cell Biol. 190(2), 165–175 (2010).
[Crossref] [PubMed]

J. Microsc. (2)

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(Pt 2), 82–87 (2000).
[Crossref] [PubMed]

C. J. Sheppard and T. Wilson, “The theory of the direct-view confocal microscope,” J. Microsc. 124(Pt 2), 107–117 (1981).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (2)

P. T. So, H.-S. Kwon, and C. Y. Dong, “Resolution enhancement in standing-wave total internal reflection microscopy: a point-spread-function engineering approach,” J. Opt. Soc. Am. A 18(11), 2833–2845 (2001).
[Crossref] [PubMed]

R. Heintzmann, T. M. Jovin, and C. Cremer, “Saturated patterned excitation microscopy--a concept for optical resolution improvement,” J. Opt. Soc. Am. A 19(8), 1599–1609 (2002).
[Crossref] [PubMed]

Microsc. Acta (1)

C. Cremer and T. Cremer, “Considerations on a laser-scanning-microscope with high resolution and depth of field,” Microsc. Acta 81(1), 31–44 (1978).
[PubMed]

Nano Lett. (1)

F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, “Wide field super-resolution surface imaging through plasmonic structured illumination microscopy,” Nano Lett. 14(8), 4634–4639 (2014).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, P. Xi, L. Tang, Y. Zhang, Y. Liu, S. Tan, and L. Chen, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
[Crossref] [PubMed]

Nat. Commun. (2)

Y. Chen, W. Liu, Z. Zhang, C. Zheng, Y. Huang, R. Cao, D. Zhu, L. Xu, M. Zhang, Y.-H. Zhang, J. Fan, L. Jin, Y. Xu, C. Kuang, and X. Liu, “Multi-color live-cell super-resolution volume imaging with multi-angle interference microscopy,” Nat. Commun. 9(1), 4818 (2018).
[Crossref] [PubMed]

M. Müller, V. Mönkemöller, S. Hennig, W. Hübner, and T. Huser, “Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ,” Nat. Commun. 7(1), 10980 (2016).
[Crossref] [PubMed]

Nat. Methods (1)

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

Nat. Photonics (1)

N. Rotenberg and L. Kuipers, “Mapping nanoscale light fields,” Nat. Photonics 8(12), 919–926 (2014).
[Crossref]

Nat. Rev. Mol. Cell Biol. (1)

S. J. Sahl, S. W. Hell, and S. Jakobs, “Fluorescence nanoscopy in cell biology,” Nat. Rev. Mol. Cell Biol. 18(11), 685–701 (2017).
[Crossref] [PubMed]

Nature (2)

E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237(5357), 510–512 (1972).
[Crossref] [PubMed]

G. J. Brakenhoff, H. T. van der Voort, E. A. van Spronsen, W. A. Linnemans, and N. Nanninga, “Three-dimensional chromatin distribution in neuroblastoma nuclei shown by confocal scanning laser microscopy,” Nature 317(6039), 748–749 (1985).
[Crossref] [PubMed]

Opt. Commun. (1)

F. Meng, L. Du, A. Yang, and X. Yuan, “Low loss surface electromagnetic waves on a metal–dielectric waveguide working at short wavelength and aqueous environment,” Opt. Commun. 433, 10–13 (2019).
[Crossref]

Opt. Express (2)

W. T. Tang, E. Chung, Y.-H. Kim, P. T. So, and C. J. Sheppard, “Investigation of the point spread function of surface plasmon-coupled emission microscopy,” Opt. Express 15(8), 4634–4646 (2007).
[Crossref] [PubMed]

A. Doblas, H. Shabani, G. Saavedra, and C. Preza, “Tunable-frequency three-dimensional structured illumination microscopy with reduced data-acquisition,” Opt. Express 26(23), 30476–30491 (2018).
[Crossref] [PubMed]

Opt. Lett. (4)

E. Chung, Y.-H. Kim, W. T. Tang, C. J. Sheppard, and P. T. So, “Wide-field extended-resolution fluorescence microscopy with standing surface-plasmon-resonance waves,” Opt. Lett. 34(15), 2366–2368 (2009).
[Crossref] [PubMed]

G. E. Cragg and P. T. So, “Lateral resolution enhancement with standing evanescent waves,” Opt. Lett. 25(1), 46–48 (2000).
[Crossref] [PubMed]

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
[Crossref] [PubMed]

T. A. Klar and S. W. Hell, “Subdiffraction resolution in far-field fluorescence microscopy,” Opt. Lett. 24(14), 954–956 (1999).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (3)

M. G. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
[Crossref] [PubMed]

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A. 109(3), E135–E143 (2012).
[Crossref] [PubMed]

X. Zhang, M. Zhang, D. Li, W. He, J. Peng, E. Betzig, and P. Xu, “Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy,” Proc. Natl. Acad. Sci. U.S.A. 113(37), 10364–10369 (2016).
[Crossref] [PubMed]

Sci. Rep. (1)

J. Qian, M. Lei, D. Dan, B. Yao, X. Zhou, Y. Yang, S. Yan, J. Min, and X. Yu, “Full-color structured illumination optical sectioning microscopy,” Sci. Rep. 5(1), 14513 (2015).
[Crossref] [PubMed]

Science (5)

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320(5881), 1332–1336 (2008).
[Crossref] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Y. M. Sigal, R. Zhou, and X. Zhuang, “Visualizing and discovering cellular structures with super-resolution microscopy,” Science 361(6405), 880–887 (2018).
[Crossref] [PubMed]

S. W. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007).
[Crossref] [PubMed]

D. Li, L. Shao, B.-C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. Hammer, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref] [PubMed]

Other (1)

R. Heintzmann and C. G. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” in Optical Biopsies and Microscopic Techniques III, (International Society for Optics and Photonics, 1999), 185–197.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental setup of the MDW-SIM configuration. P: Polarizer, λ/2: half-wave plate, SLM: spatial light modulator, 4f: 4-f system, DM: dichroic mirror, BS: beam splitter, LP: long pass filter. Inset (a), schematic diagram of the MDW structure. From top to bottom: water, silica, Al and glass substrate, respectively. Their refractive indices are n1 = 1.33, n2 = 1.46, n3 = 0.684 + 6i, and n4 = 1.515. Inset (b), the calculated reflection curve of the MDW when the thicknesses of silica layer and Al film are 20nm and 560nm, under the illumination with a 473nm laser beam. Inset (c), the evanescent standing wave pattern formed at the water-silica interface captured at the back image plane by the sCMOS camera. The scalar bar represents 500nm.
Fig. 2
Fig. 2 (a) Back focal plane image of the reflected laser beam from the MDW structure captured by the CCD camera. The dark arcs at the vertical direction indicate the existence of the MDW mode. (b) Two beam spots are generated and projected onto the objective lens by the SLM at the positions of dark arcs, to excite the MDW mode and form the evanescent standing wave. (c) The fluorescence signals captured at the back focal plane, where a bright ring is formed at the same radial position of the dark arcs. The yellow dashed circle represents the angle of total internal reflection.
Fig. 3
Fig. 3 The experimental (a) and calculated (b) point spread function of the system. (c) The Gaussian-shaped spot converted from (a) by using the R-L deconvolution. (d) Their cross section comparison of (a)-(c). (e)-(g) The corresponding OTFs of (a)-(c). The scalar bar represents 100nm.
Fig. 4
Fig. 4 Demonstration of the resolvability of the proposed MDW-SIM. (a) The wide field image of the florescence beads. (b) The 1D reconstructed SIM image at the vertical direction. (c) The 2D reconstructed SIM image at both directions. (d) The zoom-in view of region 1 in (b), illustrating an 86nm resolution of the system. (e) The zoom-in view of region 2 in (b), where two adjacent fluorescence beads with 102nm separation are successfully distinguished. (f) The highlighted region in (c), where all of the four pairs of particles are distinguished in the 2D SIM image.
Fig. 5
Fig. 5 Power spectra of the original wide field image (a), the image after R-L deconvolution (b), the 1D SIM (c) and 2D SIM image (d), respectively. The yellow circles refer to the ± 1st-order frequency components.

Metrics