Abstract

We propose a broadband and high-resolution dual-comb interferometer (DCI) realized with dense electro-optic frequency combs (EOFCs), which are generated with two-stage electro-optic modulation and nonlinear fiber spectral broadening. The broadband coarse comb is generated in the first-stage modulation and the space between neighboring combs is filled with a dense electrical comb in the second-stage modulation. The spectral resolution of the DCI can be flexibly changed from 10 MHz to 1 GHz easily as required, and electro-optic DCIs with 10-MHz, 100-MHz, and 1-GHz frequency resolutions are experimentally realized. Meanwhile, DCI working in the quasi-integer-ratio mode is easily implemented in this system for the increased refresh rate and improved figure of merit especially for high resolution. As a demonstration, 150000 comb lines with 10 MHz frequency interval are resolved in the experiment.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dense electro-optic frequency comb generated by two-stage modulation for dual-comb spectroscopy

Shuai Wang, Xinyu Fan, Bingxin Xu, and Zuyuan He
Opt. Lett. 42(19) 3984-3987 (2017)

Hybrid dual-comb interferometer with easily established mutual coherence and a very high refresh rate

Shuai Wang, Xinyu Fan, Bingxin Xu, Bin Wang, Jiangbing Du, and Zuyuan He
Opt. Lett. 43(14) 3441-3444 (2018)

Fast MHz spectral-resolution dual-comb spectroscopy with electro-optic modulators

Shuai Wang, Xinyu Fan, Bingxin Xu, and Zuyuan He
Opt. Lett. 44(1) 65-68 (2019)

References

  • View by:
  • |
  • |
  • |

  1. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233 (2002).
    [Crossref] [PubMed]
  2. L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10–19 level,” Science 303, 1843–1845 (2004).
    [Crossref] [PubMed]
  3. S. Schiller, “Spectrometry with frequency combs,” Opt. Lett. 27, 766–768 (2002).
    [Crossref]
  4. I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3, 414–426 (2016).
    [Crossref]
  5. S. A. Meek, A. Hipke, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Doppler-free fourier transform spectroscopy,” Opt. Lett. 43, 162–165 (2018).
    [Crossref] [PubMed]
  6. T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent raman spectro-imaging with laser frequency combs,” Nature 502, 355 (2013).
    [Crossref] [PubMed]
  7. G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1, 290–298 (2014).
    [Crossref]
  8. H. Zhang, H. Wei, X. Wu, H. Yang, and Y. Li, “Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling,” Opt. Express 22, 6597–6604 (2014).
    [Crossref] [PubMed]
  9. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
    [Crossref] [PubMed]
  10. M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
    [Crossref]
  11. G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27 (2016).
    [Crossref]
  12. A. Parriaux, K. Hammani, and G. Millot, “Two-micron all-fibered dual-comb spectrometer based on electro-optic modulators and wavelength conversion,” Commun. Phys. 1, 17 (2018).
    [Crossref]
  13. A. Hugi, G. Villares, S. Blaser, H. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229 (2012).
    [Crossref] [PubMed]
  14. S. M. Link, D. J. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356, 1164–1168 (2017).
    [Crossref] [PubMed]
  15. D. A. Long, A. J. Fleisher, K. O. Douglass, S. E. Maxwell, K. Bielska, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39, 2688–2690 (2014).
    [Crossref] [PubMed]
  16. P. Martín-Mateos, B. Jerez, and P. Acedo, “Dual electro-optic optical frequency combs for multiheterodyne molecular dispersion spectroscopy,” Opt. Express 23, 21149–21158 (2015).
    [Crossref] [PubMed]
  17. V. Durán, P. A. Andrekson, and V. Torres-Company, “Electro-optic dual-comb interferometry over 40 nm bandwidth,” Opt. Lett. 41, 4190–4193 (2016).
    [Crossref]
  18. F. S. Vieira, F. C. Cruz, D. F. Plusquellic, and S. A. Diddams, “Tunable resolution terahertz dual frequency comb spectrometer,” Opt. Express 24, 30100–30107 (2016).
    [Crossref]
  19. A. J. Fleisher, D. A. Long, Z. D. Reed, J. T. Hodges, and D. F. Plusquellic, “Coherent cavity-enhanced dual-comb spectroscopy,” Opt. Express 24, 10424–10434 (2016).
    [Crossref] [PubMed]
  20. M. Yan, P.-L. Luo, K. Iwakuni, G. Millot, T. W. Hänsch, and N. Picqué, “Mid-infrared dual-comb spectroscopy with electro-optic modulators,” Light. Sci. Appl. 6, e17076 (2017).
    [Crossref]
  21. R. Wu, V. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35, 3234–3236 (2010).
    [Crossref] [PubMed]
  22. T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a mach-zehnder modulator,” Opt. Lett. 32, 1515–1517 (2007).
    [Crossref] [PubMed]
  23. S. Wang, X. Fan, B. Xu, B. Wang, J. Du, and Z. He, “Hybrid dual-comb interferometer with easily established mutual coherence and a very high refresh rate,” Opt. Lett. 43, 3441–3444 (2018).
    [Crossref] [PubMed]
  24. K. Beha, D. C. Cole, P. Del’Haye, A. Coillet, S. A. Diddams, and S. B. Papp, “Electronic synthesis of light,” Optica 4, 406–411 (2017).
    [Crossref]
  25. D. R. Carlson, D. D. Hickstein, W. Zhang, A. J. Metcalf, F. Quinlan, S. A. Diddams, and S. B. Papp, “Ultrafast electro-optic light with subcycle control,” Science 361, 1358–1363 (2018).
    [Crossref] [PubMed]
  26. Y. Bao, X. Yi, Z. Li, Q. Chen, J. Li, X. Fan, and X. Zhang, “A digitally generated ultrafine optical frequency comb for spectral measurements with 0.01-pm resolution and 0.7-μs response time,” Light. Sci. Appl. 4, e300 (2015).
    [Crossref]
  27. N. B. Hébert, V. Michaud-Belleau, J. D. Anstie, J.-D. Deschênes, A. N. Luiten, and J. Genest, “Self-heterodyne interference spectroscopy using a comb generated by pseudo-random modulation,” Opt. Express 23, 27806–27818 (2015).
    [Crossref] [PubMed]
  28. X. Yan, X. Zou, W. Pan, L. Yan, and J. Azaña, “Fully digital programmable optical frequency comb generation and application,” Opt. Lett. 43, 283–286 (2018).
    [Crossref] [PubMed]
  29. S. Wang, X. Fan, B. Xu, and Z. He, “Dense electro-optic frequency comb generated by two-stage modulation for dual-comb spectroscopy,” Opt. Lett. 42, 3984–3987 (2017).
    [Crossref] [PubMed]
  30. N. B. Hébert, S. Boudreau, J. Genest, and J.-D. Deschênes, “Coherent dual-comb interferometry with quasi-integer-ratio repetition rates,” Opt. Express 22, 29152–29160 (2014).
    [Crossref] [PubMed]
  31. N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18, 7929–7945 (2010).
    [Crossref] [PubMed]
  32. S. Wang, X. Fan, B. Xu, and Z. He, “Fast mhz spectral-resolution dual-comb spectroscopy with electro-optic modulators,” Opt. Lett. 44, 65–68 (2019).
    [Crossref] [PubMed]
  33. B. C. Smith, B. Lomsadze, and S. T. Cundiff, “Optimum repetition rates for dual-comb spectroscopy,” Opt. Express 26, 12049–12056 (2018).
    [Crossref] [PubMed]
  34. T. Sakamoto, T. Kawanishi, and M. Tsuchiya, “10 ghz, 2.4 ps pulse generation using a single-stage dual-drive mach-zehnder modulator,” Opt. Lett. 33, 890–892 (2008).
    [Crossref] [PubMed]
  35. P. Martín-Mateos, B. Jerez, P. Largo-Izquierdo, and P. Acedo, “Frequency accurate coherent electro-optic dual-comb spectroscopy in real-time,” Opt. Express 26, 9700–9713 (2018).
    [Crossref] [PubMed]

2019 (1)

S. Wang, X. Fan, B. Xu, and Z. He, “Fast mhz spectral-resolution dual-comb spectroscopy with electro-optic modulators,” Opt. Lett. 44, 65–68 (2019).
[Crossref] [PubMed]

2018 (7)

B. C. Smith, B. Lomsadze, and S. T. Cundiff, “Optimum repetition rates for dual-comb spectroscopy,” Opt. Express 26, 12049–12056 (2018).
[Crossref] [PubMed]

D. R. Carlson, D. D. Hickstein, W. Zhang, A. J. Metcalf, F. Quinlan, S. A. Diddams, and S. B. Papp, “Ultrafast electro-optic light with subcycle control,” Science 361, 1358–1363 (2018).
[Crossref] [PubMed]

P. Martín-Mateos, B. Jerez, P. Largo-Izquierdo, and P. Acedo, “Frequency accurate coherent electro-optic dual-comb spectroscopy in real-time,” Opt. Express 26, 9700–9713 (2018).
[Crossref] [PubMed]

S. Wang, X. Fan, B. Xu, B. Wang, J. Du, and Z. He, “Hybrid dual-comb interferometer with easily established mutual coherence and a very high refresh rate,” Opt. Lett. 43, 3441–3444 (2018).
[Crossref] [PubMed]

X. Yan, X. Zou, W. Pan, L. Yan, and J. Azaña, “Fully digital programmable optical frequency comb generation and application,” Opt. Lett. 43, 283–286 (2018).
[Crossref] [PubMed]

S. A. Meek, A. Hipke, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Doppler-free fourier transform spectroscopy,” Opt. Lett. 43, 162–165 (2018).
[Crossref] [PubMed]

A. Parriaux, K. Hammani, and G. Millot, “Two-micron all-fibered dual-comb spectrometer based on electro-optic modulators and wavelength conversion,” Commun. Phys. 1, 17 (2018).
[Crossref]

2017 (4)

S. M. Link, D. J. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356, 1164–1168 (2017).
[Crossref] [PubMed]

S. Wang, X. Fan, B. Xu, and Z. He, “Dense electro-optic frequency comb generated by two-stage modulation for dual-comb spectroscopy,” Opt. Lett. 42, 3984–3987 (2017).
[Crossref] [PubMed]

K. Beha, D. C. Cole, P. Del’Haye, A. Coillet, S. A. Diddams, and S. B. Papp, “Electronic synthesis of light,” Optica 4, 406–411 (2017).
[Crossref]

M. Yan, P.-L. Luo, K. Iwakuni, G. Millot, T. W. Hänsch, and N. Picqué, “Mid-infrared dual-comb spectroscopy with electro-optic modulators,” Light. Sci. Appl. 6, e17076 (2017).
[Crossref]

2016 (6)

V. Durán, P. A. Andrekson, and V. Torres-Company, “Electro-optic dual-comb interferometry over 40 nm bandwidth,” Opt. Lett. 41, 4190–4193 (2016).
[Crossref]

F. S. Vieira, F. C. Cruz, D. F. Plusquellic, and S. A. Diddams, “Tunable resolution terahertz dual frequency comb spectrometer,” Opt. Express 24, 30100–30107 (2016).
[Crossref]

A. J. Fleisher, D. A. Long, Z. D. Reed, J. T. Hodges, and D. F. Plusquellic, “Coherent cavity-enhanced dual-comb spectroscopy,” Opt. Express 24, 10424–10434 (2016).
[Crossref] [PubMed]

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
[Crossref]

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27 (2016).
[Crossref]

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3, 414–426 (2016).
[Crossref]

2015 (3)

P. Martín-Mateos, B. Jerez, and P. Acedo, “Dual electro-optic optical frequency combs for multiheterodyne molecular dispersion spectroscopy,” Opt. Express 23, 21149–21158 (2015).
[Crossref] [PubMed]

Y. Bao, X. Yi, Z. Li, Q. Chen, J. Li, X. Fan, and X. Zhang, “A digitally generated ultrafine optical frequency comb for spectral measurements with 0.01-pm resolution and 0.7-μs response time,” Light. Sci. Appl. 4, e300 (2015).
[Crossref]

N. B. Hébert, V. Michaud-Belleau, J. D. Anstie, J.-D. Deschênes, A. N. Luiten, and J. Genest, “Self-heterodyne interference spectroscopy using a comb generated by pseudo-random modulation,” Opt. Express 23, 27806–27818 (2015).
[Crossref] [PubMed]

2014 (4)

N. B. Hébert, S. Boudreau, J. Genest, and J.-D. Deschênes, “Coherent dual-comb interferometry with quasi-integer-ratio repetition rates,” Opt. Express 22, 29152–29160 (2014).
[Crossref] [PubMed]

G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1, 290–298 (2014).
[Crossref]

H. Zhang, H. Wei, X. Wu, H. Yang, and Y. Li, “Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling,” Opt. Express 22, 6597–6604 (2014).
[Crossref] [PubMed]

D. A. Long, A. J. Fleisher, K. O. Douglass, S. E. Maxwell, K. Bielska, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39, 2688–2690 (2014).
[Crossref] [PubMed]

2013 (1)

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent raman spectro-imaging with laser frequency combs,” Nature 502, 355 (2013).
[Crossref] [PubMed]

2012 (1)

A. Hugi, G. Villares, S. Blaser, H. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229 (2012).
[Crossref] [PubMed]

2010 (2)

N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18, 7929–7945 (2010).
[Crossref] [PubMed]

R. Wu, V. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35, 3234–3236 (2010).
[Crossref] [PubMed]

2008 (2)

T. Sakamoto, T. Kawanishi, and M. Tsuchiya, “10 ghz, 2.4 ps pulse generation using a single-stage dual-drive mach-zehnder modulator,” Opt. Lett. 33, 890–892 (2008).
[Crossref] [PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref] [PubMed]

2007 (1)

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a mach-zehnder modulator,” Opt. Lett. 32, 1515–1517 (2007).
[Crossref] [PubMed]

2004 (1)

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10–19 level,” Science 303, 1843–1845 (2004).
[Crossref] [PubMed]

2002 (2)

S. Schiller, “Spectrometry with frequency combs,” Opt. Lett. 27, 766–768 (2002).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233 (2002).
[Crossref] [PubMed]

Acedo, P.

P. Martín-Mateos, B. Jerez, P. Largo-Izquierdo, and P. Acedo, “Frequency accurate coherent electro-optic dual-comb spectroscopy in real-time,” Opt. Express 26, 9700–9713 (2018).
[Crossref] [PubMed]

P. Martín-Mateos, B. Jerez, and P. Acedo, “Dual electro-optic optical frequency combs for multiheterodyne molecular dispersion spectroscopy,” Opt. Express 23, 21149–21158 (2015).
[Crossref] [PubMed]

Andrekson, P. A.

V. Durán, P. A. Andrekson, and V. Torres-Company, “Electro-optic dual-comb interferometry over 40 nm bandwidth,” Opt. Lett. 41, 4190–4193 (2016).
[Crossref]

Anstie, J. D.

N. B. Hébert, V. Michaud-Belleau, J. D. Anstie, J.-D. Deschênes, A. N. Luiten, and J. Genest, “Self-heterodyne interference spectroscopy using a comb generated by pseudo-random modulation,” Opt. Express 23, 27806–27818 (2015).
[Crossref] [PubMed]

Azaña, J.

X. Yan, X. Zou, W. Pan, L. Yan, and J. Azaña, “Fully digital programmable optical frequency comb generation and application,” Opt. Lett. 43, 283–286 (2018).
[Crossref] [PubMed]

Bao, Y.

Y. Bao, X. Yi, Z. Li, Q. Chen, J. Li, X. Fan, and X. Zhang, “A digitally generated ultrafine optical frequency comb for spectral measurements with 0.01-pm resolution and 0.7-μs response time,” Light. Sci. Appl. 4, e300 (2015).
[Crossref]

Bartels, A.

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10–19 level,” Science 303, 1843–1845 (2004).
[Crossref] [PubMed]

Baumann, E.

G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1, 290–298 (2014).
[Crossref]

Beha, K.

K. Beha, D. C. Cole, P. Del’Haye, A. Coillet, S. A. Diddams, and S. B. Papp, “Electronic synthesis of light,” Optica 4, 406–411 (2017).
[Crossref]

Bendahmane, A.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27 (2016).
[Crossref]

Bernhardt, B.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent raman spectro-imaging with laser frequency combs,” Nature 502, 355 (2013).
[Crossref] [PubMed]

Bi, Z.

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10–19 level,” Science 303, 1843–1845 (2004).
[Crossref] [PubMed]

Bielska, K.

D. A. Long, A. J. Fleisher, K. O. Douglass, S. E. Maxwell, K. Bielska, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39, 2688–2690 (2014).
[Crossref] [PubMed]

Blaser, S.

A. Hugi, G. Villares, S. Blaser, H. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229 (2012).
[Crossref] [PubMed]

Boudreau, S.

N. B. Hébert, S. Boudreau, J. Genest, and J.-D. Deschênes, “Coherent dual-comb interferometry with quasi-integer-ratio repetition rates,” Opt. Express 22, 29152–29160 (2014).
[Crossref] [PubMed]

Carlson, D. R.

D. R. Carlson, D. D. Hickstein, W. Zhang, A. J. Metcalf, F. Quinlan, S. A. Diddams, and S. B. Papp, “Ultrafast electro-optic light with subcycle control,” Science 361, 1358–1363 (2018).
[Crossref] [PubMed]

Chen, Q.

Y. Bao, X. Yi, Z. Li, Q. Chen, J. Li, X. Fan, and X. Zhang, “A digitally generated ultrafine optical frequency comb for spectral measurements with 0.01-pm resolution and 0.7-μs response time,” Light. Sci. Appl. 4, e300 (2015).
[Crossref]

Coddington, I.

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3, 414–426 (2016).
[Crossref]

G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1, 290–298 (2014).
[Crossref]

N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18, 7929–7945 (2010).
[Crossref] [PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref] [PubMed]

Coillet, A.

K. Beha, D. C. Cole, P. Del’Haye, A. Coillet, S. A. Diddams, and S. B. Papp, “Electronic synthesis of light,” Optica 4, 406–411 (2017).
[Crossref]

Cole, D. C.

K. Beha, D. C. Cole, P. Del’Haye, A. Coillet, S. A. Diddams, and S. B. Papp, “Electronic synthesis of light,” Optica 4, 406–411 (2017).
[Crossref]

Cromer, C.

G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1, 290–298 (2014).
[Crossref]

Cruz, F. C.

F. S. Vieira, F. C. Cruz, D. F. Plusquellic, and S. A. Diddams, “Tunable resolution terahertz dual frequency comb spectrometer,” Opt. Express 24, 30100–30107 (2016).
[Crossref]

Cundiff, S. T.

B. C. Smith, B. Lomsadze, and S. T. Cundiff, “Optimum repetition rates for dual-comb spectroscopy,” Opt. Express 26, 12049–12056 (2018).
[Crossref] [PubMed]

Del’Haye, P.

K. Beha, D. C. Cole, P. Del’Haye, A. Coillet, S. A. Diddams, and S. B. Papp, “Electronic synthesis of light,” Optica 4, 406–411 (2017).
[Crossref]

Deschênes, J.-D.

N. B. Hébert, V. Michaud-Belleau, J. D. Anstie, J.-D. Deschênes, A. N. Luiten, and J. Genest, “Self-heterodyne interference spectroscopy using a comb generated by pseudo-random modulation,” Opt. Express 23, 27806–27818 (2015).
[Crossref] [PubMed]

N. B. Hébert, S. Boudreau, J. Genest, and J.-D. Deschênes, “Coherent dual-comb interferometry with quasi-integer-ratio repetition rates,” Opt. Express 22, 29152–29160 (2014).
[Crossref] [PubMed]

Diddams, S. A.

D. R. Carlson, D. D. Hickstein, W. Zhang, A. J. Metcalf, F. Quinlan, S. A. Diddams, and S. B. Papp, “Ultrafast electro-optic light with subcycle control,” Science 361, 1358–1363 (2018).
[Crossref] [PubMed]

K. Beha, D. C. Cole, P. Del’Haye, A. Coillet, S. A. Diddams, and S. B. Papp, “Electronic synthesis of light,” Optica 4, 406–411 (2017).
[Crossref]

F. S. Vieira, F. C. Cruz, D. F. Plusquellic, and S. A. Diddams, “Tunable resolution terahertz dual frequency comb spectrometer,” Opt. Express 24, 30100–30107 (2016).
[Crossref]

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10–19 level,” Science 303, 1843–1845 (2004).
[Crossref] [PubMed]

Douglass, K. O.

D. A. Long, A. J. Fleisher, K. O. Douglass, S. E. Maxwell, K. Bielska, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39, 2688–2690 (2014).
[Crossref] [PubMed]

Du, J.

S. Wang, X. Fan, B. Xu, B. Wang, J. Du, and Z. He, “Hybrid dual-comb interferometer with easily established mutual coherence and a very high refresh rate,” Opt. Lett. 43, 3441–3444 (2018).
[Crossref] [PubMed]

Durán, V.

V. Durán, P. A. Andrekson, and V. Torres-Company, “Electro-optic dual-comb interferometry over 40 nm bandwidth,” Opt. Lett. 41, 4190–4193 (2016).
[Crossref]

Faist, J.

A. Hugi, G. Villares, S. Blaser, H. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229 (2012).
[Crossref] [PubMed]

Fan, X.

S. Wang, X. Fan, B. Xu, and Z. He, “Fast mhz spectral-resolution dual-comb spectroscopy with electro-optic modulators,” Opt. Lett. 44, 65–68 (2019).
[Crossref] [PubMed]

S. Wang, X. Fan, B. Xu, B. Wang, J. Du, and Z. He, “Hybrid dual-comb interferometer with easily established mutual coherence and a very high refresh rate,” Opt. Lett. 43, 3441–3444 (2018).
[Crossref] [PubMed]

S. Wang, X. Fan, B. Xu, and Z. He, “Dense electro-optic frequency comb generated by two-stage modulation for dual-comb spectroscopy,” Opt. Lett. 42, 3984–3987 (2017).
[Crossref] [PubMed]

Y. Bao, X. Yi, Z. Li, Q. Chen, J. Li, X. Fan, and X. Zhang, “A digitally generated ultrafine optical frequency comb for spectral measurements with 0.01-pm resolution and 0.7-μs response time,” Light. Sci. Appl. 4, e300 (2015).
[Crossref]

Fleisher, A. J.

A. J. Fleisher, D. A. Long, Z. D. Reed, J. T. Hodges, and D. F. Plusquellic, “Coherent cavity-enhanced dual-comb spectroscopy,” Opt. Express 24, 10424–10434 (2016).
[Crossref] [PubMed]

D. A. Long, A. J. Fleisher, K. O. Douglass, S. E. Maxwell, K. Bielska, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39, 2688–2690 (2014).
[Crossref] [PubMed]

Genest, J.

N. B. Hébert, V. Michaud-Belleau, J. D. Anstie, J.-D. Deschênes, A. N. Luiten, and J. Genest, “Self-heterodyne interference spectroscopy using a comb generated by pseudo-random modulation,” Opt. Express 23, 27806–27818 (2015).
[Crossref] [PubMed]

N. B. Hébert, S. Boudreau, J. Genest, and J.-D. Deschênes, “Coherent dual-comb interferometry with quasi-integer-ratio repetition rates,” Opt. Express 22, 29152–29160 (2014).
[Crossref] [PubMed]

Giorgetta, F. R.

G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1, 290–298 (2014).
[Crossref]

Guelachvili, G.

S. A. Meek, A. Hipke, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Doppler-free fourier transform spectroscopy,” Opt. Lett. 43, 162–165 (2018).
[Crossref] [PubMed]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent raman spectro-imaging with laser frequency combs,” Nature 502, 355 (2013).
[Crossref] [PubMed]

Hammani, K.

A. Parriaux, K. Hammani, and G. Millot, “Two-micron all-fibered dual-comb spectrometer based on electro-optic modulators and wavelength conversion,” Commun. Phys. 1, 17 (2018).
[Crossref]

Hänsch, T. W.

S. A. Meek, A. Hipke, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Doppler-free fourier transform spectroscopy,” Opt. Lett. 43, 162–165 (2018).
[Crossref] [PubMed]

M. Yan, P.-L. Luo, K. Iwakuni, G. Millot, T. W. Hänsch, and N. Picqué, “Mid-infrared dual-comb spectroscopy with electro-optic modulators,” Light. Sci. Appl. 6, e17076 (2017).
[Crossref]

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27 (2016).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent raman spectro-imaging with laser frequency combs,” Nature 502, 355 (2013).
[Crossref] [PubMed]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233 (2002).
[Crossref] [PubMed]

He, Z.

S. Wang, X. Fan, B. Xu, and Z. He, “Fast mhz spectral-resolution dual-comb spectroscopy with electro-optic modulators,” Opt. Lett. 44, 65–68 (2019).
[Crossref] [PubMed]

S. Wang, X. Fan, B. Xu, B. Wang, J. Du, and Z. He, “Hybrid dual-comb interferometer with easily established mutual coherence and a very high refresh rate,” Opt. Lett. 43, 3441–3444 (2018).
[Crossref] [PubMed]

S. Wang, X. Fan, B. Xu, and Z. He, “Dense electro-optic frequency comb generated by two-stage modulation for dual-comb spectroscopy,” Opt. Lett. 42, 3984–3987 (2017).
[Crossref] [PubMed]

Hébert, N. B.

N. B. Hébert, V. Michaud-Belleau, J. D. Anstie, J.-D. Deschênes, A. N. Luiten, and J. Genest, “Self-heterodyne interference spectroscopy using a comb generated by pseudo-random modulation,” Opt. Express 23, 27806–27818 (2015).
[Crossref] [PubMed]

N. B. Hébert, S. Boudreau, J. Genest, and J.-D. Deschênes, “Coherent dual-comb interferometry with quasi-integer-ratio repetition rates,” Opt. Express 22, 29152–29160 (2014).
[Crossref] [PubMed]

Hickstein, D. D.

D. R. Carlson, D. D. Hickstein, W. Zhang, A. J. Metcalf, F. Quinlan, S. A. Diddams, and S. B. Papp, “Ultrafast electro-optic light with subcycle control,” Science 361, 1358–1363 (2018).
[Crossref] [PubMed]

Hipke, A.

S. A. Meek, A. Hipke, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Doppler-free fourier transform spectroscopy,” Opt. Lett. 43, 162–165 (2018).
[Crossref] [PubMed]

Hodges, J. T.

A. J. Fleisher, D. A. Long, Z. D. Reed, J. T. Hodges, and D. F. Plusquellic, “Coherent cavity-enhanced dual-comb spectroscopy,” Opt. Express 24, 10424–10434 (2016).
[Crossref] [PubMed]

D. A. Long, A. J. Fleisher, K. O. Douglass, S. E. Maxwell, K. Bielska, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39, 2688–2690 (2014).
[Crossref] [PubMed]

Hollberg, L.

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10–19 level,” Science 303, 1843–1845 (2004).
[Crossref] [PubMed]

Holzner, S.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent raman spectro-imaging with laser frequency combs,” Nature 502, 355 (2013).
[Crossref] [PubMed]

Holzwarth, R.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233 (2002).
[Crossref] [PubMed]

Hovhannisyan, T.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27 (2016).
[Crossref]

Hugi, A.

A. Hugi, G. Villares, S. Blaser, H. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229 (2012).
[Crossref] [PubMed]

Ideguchi, T.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent raman spectro-imaging with laser frequency combs,” Nature 502, 355 (2013).
[Crossref] [PubMed]

Iwakuni, K.

M. Yan, P.-L. Luo, K. Iwakuni, G. Millot, T. W. Hänsch, and N. Picqué, “Mid-infrared dual-comb spectroscopy with electro-optic modulators,” Light. Sci. Appl. 6, e17076 (2017).
[Crossref]

Izutsu, M.

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a mach-zehnder modulator,” Opt. Lett. 32, 1515–1517 (2007).
[Crossref] [PubMed]

Jerez, B.

P. Martín-Mateos, B. Jerez, P. Largo-Izquierdo, and P. Acedo, “Frequency accurate coherent electro-optic dual-comb spectroscopy in real-time,” Opt. Express 26, 9700–9713 (2018).
[Crossref] [PubMed]

P. Martín-Mateos, B. Jerez, and P. Acedo, “Dual electro-optic optical frequency combs for multiheterodyne molecular dispersion spectroscopy,” Opt. Express 23, 21149–21158 (2015).
[Crossref] [PubMed]

Kawanishi, T.

T. Sakamoto, T. Kawanishi, and M. Tsuchiya, “10 ghz, 2.4 ps pulse generation using a single-stage dual-drive mach-zehnder modulator,” Opt. Lett. 33, 890–892 (2008).
[Crossref] [PubMed]

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a mach-zehnder modulator,” Opt. Lett. 32, 1515–1517 (2007).
[Crossref] [PubMed]

Keller, U.

S. M. Link, D. J. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356, 1164–1168 (2017).
[Crossref] [PubMed]

Kofler, J.

G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1, 290–298 (2014).
[Crossref]

Largo-Izquierdo, P.

P. Martín-Mateos, B. Jerez, P. Largo-Izquierdo, and P. Acedo, “Frequency accurate coherent electro-optic dual-comb spectroscopy in real-time,” Opt. Express 26, 9700–9713 (2018).
[Crossref] [PubMed]

Leaird, D. E.

R. Wu, V. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35, 3234–3236 (2010).
[Crossref] [PubMed]

Li, J.

Y. Bao, X. Yi, Z. Li, Q. Chen, J. Li, X. Fan, and X. Zhang, “A digitally generated ultrafine optical frequency comb for spectral measurements with 0.01-pm resolution and 0.7-μs response time,” Light. Sci. Appl. 4, e300 (2015).
[Crossref]

Li, Y.

H. Zhang, H. Wei, X. Wu, H. Yang, and Y. Li, “Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling,” Opt. Express 22, 6597–6604 (2014).
[Crossref] [PubMed]

Li, Z.

Y. Bao, X. Yi, Z. Li, Q. Chen, J. Li, X. Fan, and X. Zhang, “A digitally generated ultrafine optical frequency comb for spectral measurements with 0.01-pm resolution and 0.7-μs response time,” Light. Sci. Appl. 4, e300 (2015).
[Crossref]

Link, S. M.

S. M. Link, D. J. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356, 1164–1168 (2017).
[Crossref] [PubMed]

Liu, H.

A. Hugi, G. Villares, S. Blaser, H. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229 (2012).
[Crossref] [PubMed]

Lomsadze, B.

B. C. Smith, B. Lomsadze, and S. T. Cundiff, “Optimum repetition rates for dual-comb spectroscopy,” Opt. Express 26, 12049–12056 (2018).
[Crossref] [PubMed]

Long, C. M.

R. Wu, V. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35, 3234–3236 (2010).
[Crossref] [PubMed]

Long, D. A.

A. J. Fleisher, D. A. Long, Z. D. Reed, J. T. Hodges, and D. F. Plusquellic, “Coherent cavity-enhanced dual-comb spectroscopy,” Opt. Express 24, 10424–10434 (2016).
[Crossref] [PubMed]

D. A. Long, A. J. Fleisher, K. O. Douglass, S. E. Maxwell, K. Bielska, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39, 2688–2690 (2014).
[Crossref] [PubMed]

Luiten, A. N.

N. B. Hébert, V. Michaud-Belleau, J. D. Anstie, J.-D. Deschênes, A. N. Luiten, and J. Genest, “Self-heterodyne interference spectroscopy using a comb generated by pseudo-random modulation,” Opt. Express 23, 27806–27818 (2015).
[Crossref] [PubMed]

Luo, P.-L.

M. Yan, P.-L. Luo, K. Iwakuni, G. Millot, T. W. Hänsch, and N. Picqué, “Mid-infrared dual-comb spectroscopy with electro-optic modulators,” Light. Sci. Appl. 6, e17076 (2017).
[Crossref]

Ma, L.-S.

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10–19 level,” Science 303, 1843–1845 (2004).
[Crossref] [PubMed]

Maas, D. J.

S. M. Link, D. J. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356, 1164–1168 (2017).
[Crossref] [PubMed]

Martín-Mateos, P.

P. Martín-Mateos, B. Jerez, P. Largo-Izquierdo, and P. Acedo, “Frequency accurate coherent electro-optic dual-comb spectroscopy in real-time,” Opt. Express 26, 9700–9713 (2018).
[Crossref] [PubMed]

P. Martín-Mateos, B. Jerez, and P. Acedo, “Dual electro-optic optical frequency combs for multiheterodyne molecular dispersion spectroscopy,” Opt. Express 23, 21149–21158 (2015).
[Crossref] [PubMed]

Maxwell, S. E.

D. A. Long, A. J. Fleisher, K. O. Douglass, S. E. Maxwell, K. Bielska, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39, 2688–2690 (2014).
[Crossref] [PubMed]

Meek, S. A.

S. A. Meek, A. Hipke, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Doppler-free fourier transform spectroscopy,” Opt. Lett. 43, 162–165 (2018).
[Crossref] [PubMed]

Metcalf, A. J.

D. R. Carlson, D. D. Hickstein, W. Zhang, A. J. Metcalf, F. Quinlan, S. A. Diddams, and S. B. Papp, “Ultrafast electro-optic light with subcycle control,” Science 361, 1358–1363 (2018).
[Crossref] [PubMed]

Michaud-Belleau, V.

N. B. Hébert, V. Michaud-Belleau, J. D. Anstie, J.-D. Deschênes, A. N. Luiten, and J. Genest, “Self-heterodyne interference spectroscopy using a comb generated by pseudo-random modulation,” Opt. Express 23, 27806–27818 (2015).
[Crossref] [PubMed]

Millot, G.

A. Parriaux, K. Hammani, and G. Millot, “Two-micron all-fibered dual-comb spectrometer based on electro-optic modulators and wavelength conversion,” Commun. Phys. 1, 17 (2018).
[Crossref]

M. Yan, P.-L. Luo, K. Iwakuni, G. Millot, T. W. Hänsch, and N. Picqué, “Mid-infrared dual-comb spectroscopy with electro-optic modulators,” Light. Sci. Appl. 6, e17076 (2017).
[Crossref]

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27 (2016).
[Crossref]

Newbury, N.

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3, 414–426 (2016).
[Crossref]

Newbury, N. R.

G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1, 290–298 (2014).
[Crossref]

N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18, 7929–7945 (2010).
[Crossref] [PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref] [PubMed]

Oates, C.

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10–19 level,” Science 303, 1843–1845 (2004).
[Crossref] [PubMed]

Pan, W.

X. Yan, X. Zou, W. Pan, L. Yan, and J. Azaña, “Fully digital programmable optical frequency comb generation and application,” Opt. Lett. 43, 283–286 (2018).
[Crossref] [PubMed]

Papp, S. B.

D. R. Carlson, D. D. Hickstein, W. Zhang, A. J. Metcalf, F. Quinlan, S. A. Diddams, and S. B. Papp, “Ultrafast electro-optic light with subcycle control,” Science 361, 1358–1363 (2018).
[Crossref] [PubMed]

K. Beha, D. C. Cole, P. Del’Haye, A. Coillet, S. A. Diddams, and S. B. Papp, “Electronic synthesis of light,” Optica 4, 406–411 (2017).
[Crossref]

Parriaux, A.

A. Parriaux, K. Hammani, and G. Millot, “Two-micron all-fibered dual-comb spectrometer based on electro-optic modulators and wavelength conversion,” Commun. Phys. 1, 17 (2018).
[Crossref]

Petron, G.

G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1, 290–298 (2014).
[Crossref]

Picqué, N.

S. A. Meek, A. Hipke, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Doppler-free fourier transform spectroscopy,” Opt. Lett. 43, 162–165 (2018).
[Crossref] [PubMed]

M. Yan, P.-L. Luo, K. Iwakuni, G. Millot, T. W. Hänsch, and N. Picqué, “Mid-infrared dual-comb spectroscopy with electro-optic modulators,” Light. Sci. Appl. 6, e17076 (2017).
[Crossref]

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27 (2016).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent raman spectro-imaging with laser frequency combs,” Nature 502, 355 (2013).
[Crossref] [PubMed]

Pitois, S.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27 (2016).
[Crossref]

Plusquellic, D. F.

A. J. Fleisher, D. A. Long, Z. D. Reed, J. T. Hodges, and D. F. Plusquellic, “Coherent cavity-enhanced dual-comb spectroscopy,” Opt. Express 24, 10424–10434 (2016).
[Crossref] [PubMed]

F. S. Vieira, F. C. Cruz, D. F. Plusquellic, and S. A. Diddams, “Tunable resolution terahertz dual frequency comb spectrometer,” Opt. Express 24, 30100–30107 (2016).
[Crossref]

D. A. Long, A. J. Fleisher, K. O. Douglass, S. E. Maxwell, K. Bielska, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39, 2688–2690 (2014).
[Crossref] [PubMed]

Quinlan, F.

D. R. Carlson, D. D. Hickstein, W. Zhang, A. J. Metcalf, F. Quinlan, S. A. Diddams, and S. B. Papp, “Ultrafast electro-optic light with subcycle control,” Science 361, 1358–1363 (2018).
[Crossref] [PubMed]

Reed, Z. D.

A. J. Fleisher, D. A. Long, Z. D. Reed, J. T. Hodges, and D. F. Plusquellic, “Coherent cavity-enhanced dual-comb spectroscopy,” Opt. Express 24, 10424–10434 (2016).
[Crossref] [PubMed]

Rieker, G. B.

G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1, 290–298 (2014).
[Crossref]

Robertsson, L.

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10–19 level,” Science 303, 1843–1845 (2004).
[Crossref] [PubMed]

Sakamoto, T.

T. Sakamoto, T. Kawanishi, and M. Tsuchiya, “10 ghz, 2.4 ps pulse generation using a single-stage dual-drive mach-zehnder modulator,” Opt. Lett. 33, 890–892 (2008).
[Crossref] [PubMed]

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a mach-zehnder modulator,” Opt. Lett. 32, 1515–1517 (2007).
[Crossref] [PubMed]

Schiller, S.

S. Schiller, “Spectrometry with frequency combs,” Opt. Lett. 27, 766–768 (2002).
[Crossref]

Sinclair, L. C.

G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1, 290–298 (2014).
[Crossref]

Smith, B. C.

B. C. Smith, B. Lomsadze, and S. T. Cundiff, “Optimum repetition rates for dual-comb spectroscopy,” Opt. Express 26, 12049–12056 (2018).
[Crossref] [PubMed]

Suh, M.-G.

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
[Crossref]

Supradeepa, V.

R. Wu, V. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35, 3234–3236 (2010).
[Crossref] [PubMed]

Swann, W.

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3, 414–426 (2016).
[Crossref]

N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18, 7929–7945 (2010).
[Crossref] [PubMed]

Swann, W. C.

G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1, 290–298 (2014).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref] [PubMed]

Sweeney, C.

G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1, 290–298 (2014).
[Crossref]

Tans, P. P.

G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1, 290–298 (2014).
[Crossref]

Torres-Company, V.

V. Durán, P. A. Andrekson, and V. Torres-Company, “Electro-optic dual-comb interferometry over 40 nm bandwidth,” Opt. Lett. 41, 4190–4193 (2016).
[Crossref]

Tsuchiya, M.

T. Sakamoto, T. Kawanishi, and M. Tsuchiya, “10 ghz, 2.4 ps pulse generation using a single-stage dual-drive mach-zehnder modulator,” Opt. Lett. 33, 890–892 (2008).
[Crossref] [PubMed]

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233 (2002).
[Crossref] [PubMed]

Vahala, K. J.

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
[Crossref]

Vieira, F. S.

F. S. Vieira, F. C. Cruz, D. F. Plusquellic, and S. A. Diddams, “Tunable resolution terahertz dual frequency comb spectrometer,” Opt. Express 24, 30100–30107 (2016).
[Crossref]

Villares, G.

A. Hugi, G. Villares, S. Blaser, H. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229 (2012).
[Crossref] [PubMed]

Waldburger, D.

S. M. Link, D. J. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356, 1164–1168 (2017).
[Crossref] [PubMed]

Wang, B.

S. Wang, X. Fan, B. Xu, B. Wang, J. Du, and Z. He, “Hybrid dual-comb interferometer with easily established mutual coherence and a very high refresh rate,” Opt. Lett. 43, 3441–3444 (2018).
[Crossref] [PubMed]

Wang, S.

S. Wang, X. Fan, B. Xu, and Z. He, “Fast mhz spectral-resolution dual-comb spectroscopy with electro-optic modulators,” Opt. Lett. 44, 65–68 (2019).
[Crossref] [PubMed]

S. Wang, X. Fan, B. Xu, B. Wang, J. Du, and Z. He, “Hybrid dual-comb interferometer with easily established mutual coherence and a very high refresh rate,” Opt. Lett. 43, 3441–3444 (2018).
[Crossref] [PubMed]

S. Wang, X. Fan, B. Xu, and Z. He, “Dense electro-optic frequency comb generated by two-stage modulation for dual-comb spectroscopy,” Opt. Lett. 42, 3984–3987 (2017).
[Crossref] [PubMed]

Wei, H.

H. Zhang, H. Wei, X. Wu, H. Yang, and Y. Li, “Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling,” Opt. Express 22, 6597–6604 (2014).
[Crossref] [PubMed]

Weiner, A. M.

R. Wu, V. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35, 3234–3236 (2010).
[Crossref] [PubMed]

Wilpers, G.

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10–19 level,” Science 303, 1843–1845 (2004).
[Crossref] [PubMed]

Windeler, R. S.

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10–19 level,” Science 303, 1843–1845 (2004).
[Crossref] [PubMed]

Wu, R.

R. Wu, V. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35, 3234–3236 (2010).
[Crossref] [PubMed]

Wu, X.

H. Zhang, H. Wei, X. Wu, H. Yang, and Y. Li, “Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling,” Opt. Express 22, 6597–6604 (2014).
[Crossref] [PubMed]

Xu, B.

S. Wang, X. Fan, B. Xu, and Z. He, “Fast mhz spectral-resolution dual-comb spectroscopy with electro-optic modulators,” Opt. Lett. 44, 65–68 (2019).
[Crossref] [PubMed]

S. Wang, X. Fan, B. Xu, B. Wang, J. Du, and Z. He, “Hybrid dual-comb interferometer with easily established mutual coherence and a very high refresh rate,” Opt. Lett. 43, 3441–3444 (2018).
[Crossref] [PubMed]

S. Wang, X. Fan, B. Xu, and Z. He, “Dense electro-optic frequency comb generated by two-stage modulation for dual-comb spectroscopy,” Opt. Lett. 42, 3984–3987 (2017).
[Crossref] [PubMed]

Yan, L.

X. Yan, X. Zou, W. Pan, L. Yan, and J. Azaña, “Fully digital programmable optical frequency comb generation and application,” Opt. Lett. 43, 283–286 (2018).
[Crossref] [PubMed]

Yan, M.

M. Yan, P.-L. Luo, K. Iwakuni, G. Millot, T. W. Hänsch, and N. Picqué, “Mid-infrared dual-comb spectroscopy with electro-optic modulators,” Light. Sci. Appl. 6, e17076 (2017).
[Crossref]

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27 (2016).
[Crossref]

Yan, X.

X. Yan, X. Zou, W. Pan, L. Yan, and J. Azaña, “Fully digital programmable optical frequency comb generation and application,” Opt. Lett. 43, 283–286 (2018).
[Crossref] [PubMed]

Yang, H.

H. Zhang, H. Wei, X. Wu, H. Yang, and Y. Li, “Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling,” Opt. Express 22, 6597–6604 (2014).
[Crossref] [PubMed]

Yang, K. Y.

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
[Crossref]

Yang, Q.-F.

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
[Crossref]

Yi, X.

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
[Crossref]

Y. Bao, X. Yi, Z. Li, Q. Chen, J. Li, X. Fan, and X. Zhang, “A digitally generated ultrafine optical frequency comb for spectral measurements with 0.01-pm resolution and 0.7-μs response time,” Light. Sci. Appl. 4, e300 (2015).
[Crossref]

Zhang, H.

H. Zhang, H. Wei, X. Wu, H. Yang, and Y. Li, “Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling,” Opt. Express 22, 6597–6604 (2014).
[Crossref] [PubMed]

Zhang, W.

D. R. Carlson, D. D. Hickstein, W. Zhang, A. J. Metcalf, F. Quinlan, S. A. Diddams, and S. B. Papp, “Ultrafast electro-optic light with subcycle control,” Science 361, 1358–1363 (2018).
[Crossref] [PubMed]

Zhang, X.

Y. Bao, X. Yi, Z. Li, Q. Chen, J. Li, X. Fan, and X. Zhang, “A digitally generated ultrafine optical frequency comb for spectral measurements with 0.01-pm resolution and 0.7-μs response time,” Light. Sci. Appl. 4, e300 (2015).
[Crossref]

Zolot, A. M.

G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1, 290–298 (2014).
[Crossref]

Zou, X.

X. Yan, X. Zou, W. Pan, L. Yan, and J. Azaña, “Fully digital programmable optical frequency comb generation and application,” Opt. Lett. 43, 283–286 (2018).
[Crossref] [PubMed]

Zucco, M.

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10–19 level,” Science 303, 1843–1845 (2004).
[Crossref] [PubMed]

Commun. Phys. (1)

A. Parriaux, K. Hammani, and G. Millot, “Two-micron all-fibered dual-comb spectrometer based on electro-optic modulators and wavelength conversion,” Commun. Phys. 1, 17 (2018).
[Crossref]

Light. Sci. Appl. (2)

M. Yan, P.-L. Luo, K. Iwakuni, G. Millot, T. W. Hänsch, and N. Picqué, “Mid-infrared dual-comb spectroscopy with electro-optic modulators,” Light. Sci. Appl. 6, e17076 (2017).
[Crossref]

Y. Bao, X. Yi, Z. Li, Q. Chen, J. Li, X. Fan, and X. Zhang, “A digitally generated ultrafine optical frequency comb for spectral measurements with 0.01-pm resolution and 0.7-μs response time,” Light. Sci. Appl. 4, e300 (2015).
[Crossref]

Nat. Photonics (1)

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27 (2016).
[Crossref]

Nature (3)

A. Hugi, G. Villares, S. Blaser, H. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229 (2012).
[Crossref] [PubMed]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233 (2002).
[Crossref] [PubMed]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent raman spectro-imaging with laser frequency combs,” Nature 502, 355 (2013).
[Crossref] [PubMed]

Opt. Express (9)

H. Zhang, H. Wei, X. Wu, H. Yang, and Y. Li, “Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling,” Opt. Express 22, 6597–6604 (2014).
[Crossref] [PubMed]

P. Martín-Mateos, B. Jerez, and P. Acedo, “Dual electro-optic optical frequency combs for multiheterodyne molecular dispersion spectroscopy,” Opt. Express 23, 21149–21158 (2015).
[Crossref] [PubMed]

F. S. Vieira, F. C. Cruz, D. F. Plusquellic, and S. A. Diddams, “Tunable resolution terahertz dual frequency comb spectrometer,” Opt. Express 24, 30100–30107 (2016).
[Crossref]

A. J. Fleisher, D. A. Long, Z. D. Reed, J. T. Hodges, and D. F. Plusquellic, “Coherent cavity-enhanced dual-comb spectroscopy,” Opt. Express 24, 10424–10434 (2016).
[Crossref] [PubMed]

N. B. Hébert, V. Michaud-Belleau, J. D. Anstie, J.-D. Deschênes, A. N. Luiten, and J. Genest, “Self-heterodyne interference spectroscopy using a comb generated by pseudo-random modulation,” Opt. Express 23, 27806–27818 (2015).
[Crossref] [PubMed]

N. B. Hébert, S. Boudreau, J. Genest, and J.-D. Deschênes, “Coherent dual-comb interferometry with quasi-integer-ratio repetition rates,” Opt. Express 22, 29152–29160 (2014).
[Crossref] [PubMed]

N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18, 7929–7945 (2010).
[Crossref] [PubMed]

B. C. Smith, B. Lomsadze, and S. T. Cundiff, “Optimum repetition rates for dual-comb spectroscopy,” Opt. Express 26, 12049–12056 (2018).
[Crossref] [PubMed]

P. Martín-Mateos, B. Jerez, P. Largo-Izquierdo, and P. Acedo, “Frequency accurate coherent electro-optic dual-comb spectroscopy in real-time,” Opt. Express 26, 9700–9713 (2018).
[Crossref] [PubMed]

Opt. Lett. (11)

D. A. Long, A. J. Fleisher, K. O. Douglass, S. E. Maxwell, K. Bielska, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39, 2688–2690 (2014).
[Crossref] [PubMed]

T. Sakamoto, T. Kawanishi, and M. Tsuchiya, “10 ghz, 2.4 ps pulse generation using a single-stage dual-drive mach-zehnder modulator,” Opt. Lett. 33, 890–892 (2008).
[Crossref] [PubMed]

S. Wang, X. Fan, B. Xu, and Z. He, “Fast mhz spectral-resolution dual-comb spectroscopy with electro-optic modulators,” Opt. Lett. 44, 65–68 (2019).
[Crossref] [PubMed]

X. Yan, X. Zou, W. Pan, L. Yan, and J. Azaña, “Fully digital programmable optical frequency comb generation and application,” Opt. Lett. 43, 283–286 (2018).
[Crossref] [PubMed]

S. Wang, X. Fan, B. Xu, and Z. He, “Dense electro-optic frequency comb generated by two-stage modulation for dual-comb spectroscopy,” Opt. Lett. 42, 3984–3987 (2017).
[Crossref] [PubMed]

R. Wu, V. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35, 3234–3236 (2010).
[Crossref] [PubMed]

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a mach-zehnder modulator,” Opt. Lett. 32, 1515–1517 (2007).
[Crossref] [PubMed]

S. Wang, X. Fan, B. Xu, B. Wang, J. Du, and Z. He, “Hybrid dual-comb interferometer with easily established mutual coherence and a very high refresh rate,” Opt. Lett. 43, 3441–3444 (2018).
[Crossref] [PubMed]

V. Durán, P. A. Andrekson, and V. Torres-Company, “Electro-optic dual-comb interferometry over 40 nm bandwidth,” Opt. Lett. 41, 4190–4193 (2016).
[Crossref]

S. A. Meek, A. Hipke, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Doppler-free fourier transform spectroscopy,” Opt. Lett. 43, 162–165 (2018).
[Crossref] [PubMed]

S. Schiller, “Spectrometry with frequency combs,” Opt. Lett. 27, 766–768 (2002).
[Crossref]

Optica (3)

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3, 414–426 (2016).
[Crossref]

G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1, 290–298 (2014).
[Crossref]

K. Beha, D. C. Cole, P. Del’Haye, A. Coillet, S. A. Diddams, and S. B. Papp, “Electronic synthesis of light,” Optica 4, 406–411 (2017).
[Crossref]

Phys. Rev. Lett. (1)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref] [PubMed]

Science (4)

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
[Crossref]

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10–19 level,” Science 303, 1843–1845 (2004).
[Crossref] [PubMed]

S. M. Link, D. J. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356, 1164–1168 (2017).
[Crossref] [PubMed]

D. R. Carlson, D. D. Hickstein, W. Zhang, A. J. Metcalf, F. Quinlan, S. A. Diddams, and S. B. Papp, “Ultrafast electro-optic light with subcycle control,” Science 361, 1358–1363 (2018).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Operation principle of flexible EOFC generation. SG, signal generator; DD-MZM, dual-drive Mach-Zehnder modulator; MZM, Mach-Zehnder modulator; AWG: arbitrary waveform generator. The SG is synchronous with AWG; (b) The optical spectrums of the EOFCs with the repetition rates of 18 GHz (in blue) and 100 MHz (in red).
Fig. 2
Fig. 2 Experimental setup of the DCI with flexible repetition rates. FL, fiber laser; DUT, device under test; BPD, balanced photodetector. All electrical devices in blue (include SG1, SG2, SG3, AWG1, AWG2, and A/D) are synchronous to one reference clock.
Fig. 3
Fig. 3 Electrical spectrum of 40 ms interferograms. (a) 450 GHz bandwidth with 1 GHz repetition rate; (b) 450 GHz bandwidth with 100 MHz repetition rate; (c) Close-up of (a) with 2 GHz bandwidth; (d) Close-up of (b) with 2 GHz bandwidth.
Fig. 4
Fig. 4 Demodulated electrical spectrum of 40 ms interferograms. (a) 450 GHz bandwidth with 10 MHz repetition rate; (b) Close-up of (a) with 1 GHz bandwidth.
Fig. 5
Fig. 5 FOM of the DCIs with different repetition rates versus average time.
Fig. 6
Fig. 6 (a) Operation principle of the broadband frequency-flexible EOFC generation. DCF, dispersion compensation fiber; HNLF, high-nonlinear fiber. The SG in first stage is synchronous with AWG; (b) Optical spectrum of original coarse EOFC (in blue), broadband coarse EOFC (in red), and broadband dense EOFC (in black).
Fig. 7
Fig. 7 Experimental setup of the broadband DCI with flexible high resolution.
Fig. 8
Fig. 8 Electrical spectrum of 40 ms interferograms. (a) 1.5 THz bandwidth with 10 MHz repetition rate; (b) Close-up of (a) with 1 GHz bandwidth.
Fig. 9
Fig. 9 Lineshape of one RF beating frequency with the average time of 1s. (a) 7th order sideband in first-stage modulation and 1st order sideband in second-stage modulation; (b) 32nd order sideband in the first-stage and 1st order sideband in second-stage modulation.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Q c = SNR f × M = 2 T ( γ 1 ( NEP ) 2 / P p 2 + 4 c γ η 1 h ν / P p + 2 b c γ 2 ( RIN ) P p 2 + 8 D 2 f p 1 ) 1 / 2 = 2 T ( a NEP + a shot + a RIN + a range ) 1 / 2
Q q = 2 T ( ( 1 / K + 1 ) b c γ 2 ( RIN ) P p 2 + 8 D 2 f p 1 K 1 ) 1 / 2 = 2 T ( 1 + K 2 K a RIN + K 1 a range ) 1 / 2

Metrics