Abstract

Quasi-continuous-wave laser operation of 20 at.% Tm:LiYF4 thin films (84–240 μm) grown by Liquid Phase Epitaxy (LPE) on undoped LiYF4 substrates is achieved. The 240 μm-thick Tm:LiYF4 active layer pumped at 793 nm with a simple double-pass scheme generated 152 mW (average power) at 1.91 μm with a slope efficiency of 34.4% with respect to the absorbed pump power. A model of highly-doped Tm:LiYF4 lasers accounting for cross-relaxation, energy-transfer upconversion and energy migration is developed showing good agreement with the experiment. The pump quantum efficiency for Tm3+ ions is discussed and the energy-transfer parameters are derived. These results show that LPE-grown Tm:LiYF4 thin films are promising for ~1.9 μm thin-disk lasers.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Watt-level Tm:LiYF4 channel waveguide laser produced by diamond saw dicing

Pavel Loiko, Rémi Soulard, Gurvan Brasse, Jean-Louis Doualan, Blandine Guichardaz, Alain Braud, Aleksey Tyazhev, Ammar Hideur, and Patrice Camy
Opt. Express 26(19) 24653-24662 (2018)

Thermo-optic effects in Ho:KY(WO4)2 thin-disk lasers

Xavier Mateos, Pavel Loiko, Samir Lamrini, Karsten Scholle, Peter Fuhrberg, Sergei Vatnik, Ivan Vedin, Magdalena Aguiló, Francesc Díaz, Uwe Griebner, and Valentin Petrov
Opt. Mater. Express 8(3) 684-690 (2018)

Tm:KY(WO4)2 waveguide laser

S. Rivier, X. Mateos, V. Petrov, U. Griebner, Y. E. Romanyuk, C. N. Borca, F. Gardillou, and M. Pollnau
Opt. Express 15(9) 5885-5892 (2007)

References

  • View by:
  • |
  • |
  • |

  1. K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, Ed. (InTech, 2010), pp. 471–500.
  2. V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
    [Crossref]
  3. R. C. Stoneman and L. Esterowitz, “Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers,” Opt. Lett. 15(9), 486–488 (1990).
    [Crossref] [PubMed]
  4. P. Loiko, P. Koopmann, X. Mateos, J. M. Serres, V. Jambunathan, A. Lucianetti, T. Mocek, M. Aguiló, F. Díaz, U. Griebner, V. Petrov, and C. Kränkel, “Highly efficient, compact Tm3+:RE2O3 (RE = Y, Lu, Sc) sesquioxide lasers based on thermal guiding,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600713 (2018).
  5. Y. Wang, W. Chen, M. Mero, L. Zhang, H. Lin, Z. Lin, G. Zhang, F. Rotermund, Y. J. Cho, P. Loiko, X. Mateos, U. Griebner, and V. Petrov, “Sub-100 fs Tm:MgWO4 laser at 2017 nm mode locked by a graphene saturable absorber,” Opt. Lett. 42(16), 3076–3079 (2017).
    [Crossref] [PubMed]
  6. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
    [Crossref]
  7. A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
    [Crossref]
  8. C. J. Saraceno, F. Emaury, C. Schriber, A. Diebold, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Toward millijoule-level high-power ultrafast thin-disk oscillators,” IEEE J. Sel. Top. Quantum Electron. 21(1), 106–123 (2015).
    [Crossref]
  9. S. Vatnik, I. Vedin, M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, V. Petrov, and U. Griebner, “Efficient thin-disk Tm-laser operation based on Tm:KLu(WO4)2/KLu(WO4)2 epitaxies,” Opt. Lett. 37(3), 356–358 (2012).
    [Crossref] [PubMed]
  10. S. Rivier, X. Mateos, O. Silvestre, V. Petrov, U. Griebner, M. C. Pujol, M. Aguiló, F. Díaz, S. Vernay, and D. Rytz, “Thin-disk Yb:KLu(WO4)2 laser with single-pass pumping,” Opt. Lett. 33(7), 735–737 (2008).
    [Crossref] [PubMed]
  11. X. Mateos, S. Lamrini, K. Scholle, P. Fuhrberg, S. Vatnik, P. Loiko, I. Vedin, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Holmium thin-disk laser based on Ho:KY(WO4)2/KY(WO4)2 epitaxy with 60% slope efficiency and simplified pump geometry,” Opt. Lett. 42(17), 3490–3493 (2017).
    [Crossref] [PubMed]
  12. A. Diening, B.-M. Dicks, E. Heumann, G. Huber, A. Voss, M. Karszewski, and A. Giesen, “High-power Tm:YAG thin-disk laser,” in Conference on Lasers and Electro-Optics, (IEEE, 1998), pp. 259–260.
  13. G. Stoeppler, D. Parisi, M. Tonelli, and M. Eichhorn, “High-efficiency 1.9 µm Tm3+:LiLuF4 thin-disk laser,” Opt. Lett. 37(7), 1163–1165 (2012).
    [Crossref] [PubMed]
  14. E. J. Saarinen, E. Vasileva, O. Antipov, J.-P. Penttinen, M. Tavast, T. Leinonen, and O. G. Okhotnikov, “2-µm Tm:Lu2O3 ceramic disk laser intracavity-pumped by a semiconductor disk laser,” Opt. Express 21(20), 23844–23850 (2013).
    [Crossref] [PubMed]
  15. M. Schellhorn, P. Koopmann, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Diode-pumped Tm:Lu2O3 thin disk laser,” in Advanced Solid-State Photonics (Optical Society of America, 2011), paper ATuB14.
  16. J. Zhang, F. Schulze, K.F. Mak, V. Pervak, D. Bauer, D. Sutter, and O. Pronin, “High‐power, high‐efficiency Tm:YAG and Ho:YAG thin‐disk lasers,” Laser Photonics Rev. 12(3), 1700273 (2018).
  17. B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83(5), 2772–2787 (1998).
    [Crossref]
  18. S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B 84(3), 389–393 (2006).
    [Crossref]
  19. M. Schellhorn, “High-power diode-pumped Tm:YLF laser,” Appl. Phys. B 91(1), 71–74 (2008).
    [Crossref]
  20. P. Loiko, J. M. Serres, X. Mateos, S. Tacchini, M. Tonelli, S. Veronesi, D. Parisi, A. Di Lieto, K. Yumashev, U. Griebner, and V. Petrov, “Comparative spectroscopic and thermo-optic study of Tm:LiLnF4 (Ln = Y, Gd, and Lu) crystals for highly-efficient microchip lasers at ~2 μm,” Opt. Mater. Express 7(3), 844–854 (2017).
    [Crossref]
  21. W. Bolanos, F. Starecki, A. Benayad, G. Brasse, V. Ménard, J.-L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Tm:LiYF4 planar waveguide laser at 1.9 μm,” Opt. Lett. 37(19), 4032–4034 (2012).
    [Crossref] [PubMed]
  22. X. Mateos, P. Loiko, S. Lamrini, K. Scholle, P. Fuhrberg, S. Vatnik, I. Vedin, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Thermo-optic effects in Ho:KY(WO4)2 thin-disk lasers,” Opt. Mater. Express 8(3), 684–690 (2018).
    [Crossref]
  23. F. Starecki, W. Bolaños, G. Brasse, A. Benayad, M. Morales, J. L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Rare earth doped LiYF4 single crystalline films grown by liquid phase epitaxy for the fabrication of planar waveguide lasers,” J. Cryst. Growth 401, 537–541 (2014).
    [Crossref]
  24. S. A. Miller, H. E. Rast, and H. H. Caspers, “Lattice vibrations of LiYF4,” J. Chem. Phys. 52(8), 4172–4175 (1970).
    [Crossref]
  25. B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).
    [Crossref]
  26. E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm: YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron. 33(9), 1592–1600 (1997).
    [Crossref]
  27. M. Schellhorn, S. Ngcobo, and C. Bollig, “High-power diode-pumped Tm:YLF slab laser,” Appl. Phys. B 94(2), 195–198 (2009).
    [Crossref]
  28. Lasers and Laser-Related Equipment—Test Methods for Laser Beam Widths, Divergence Angles and Beam Propagation Ratios—Part 1: Stigmatic and Simple Astigmatic Beams, ISO 11146–1, 2005.
  29. R. J. Beach, “CW Theory of quasi-three level end-pumped laser oscillators,” Opt. Commun. 123(1-3), 385–393 (1996).
    [Crossref]
  30. I. Razumova, A. Tkachuk, A. Nikitichev, and D. Mironov, “Spectral-luminescent properties of Tm:YLF crystal,” J. Alloys Compd. 225(1–2), 129–132 (1995).
    [Crossref]
  31. K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency,” Opt. Lett. 39(15), 4380–4383 (2014).
    [Crossref] [PubMed]
  32. D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20(3), 277–278 (1966).
    [Crossref]
  33. S.-S. Li, H.-P. Xia, L. Fu, Y.-M. Dong, X.-M. Gu, J.-L. Zhang, D.-J. Wang, Y.-P. Zhang, H.-C. Jiang, and B.-J. Chen, “Optimum fluorescence emission around 1.8 µm for LiYF4 single crystals of various Tm3+-doping concentrations,” Chin. Phys. B 23(10), 107806 (2014).
    [Crossref]
  34. J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
    [Crossref]
  35. P. Loiko and M. Pollnau, “Stochastic model of energy-transfer processes among rare-earth ions. Example of Al2O3:Tm3+,” J. Phys. Chem. C 120(46), 26480–26489 (2016).
    [Crossref]

2018 (3)

P. Loiko, P. Koopmann, X. Mateos, J. M. Serres, V. Jambunathan, A. Lucianetti, T. Mocek, M. Aguiló, F. Díaz, U. Griebner, V. Petrov, and C. Kränkel, “Highly efficient, compact Tm3+:RE2O3 (RE = Y, Lu, Sc) sesquioxide lasers based on thermal guiding,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600713 (2018).

J. Zhang, F. Schulze, K.F. Mak, V. Pervak, D. Bauer, D. Sutter, and O. Pronin, “High‐power, high‐efficiency Tm:YAG and Ho:YAG thin‐disk lasers,” Laser Photonics Rev. 12(3), 1700273 (2018).

X. Mateos, P. Loiko, S. Lamrini, K. Scholle, P. Fuhrberg, S. Vatnik, I. Vedin, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Thermo-optic effects in Ho:KY(WO4)2 thin-disk lasers,” Opt. Mater. Express 8(3), 684–690 (2018).
[Crossref]

2017 (3)

P. Loiko, J. M. Serres, X. Mateos, S. Tacchini, M. Tonelli, S. Veronesi, D. Parisi, A. Di Lieto, K. Yumashev, U. Griebner, and V. Petrov, “Comparative spectroscopic and thermo-optic study of Tm:LiLnF4 (Ln = Y, Gd, and Lu) crystals for highly-efficient microchip lasers at ~2 μm,” Opt. Mater. Express 7(3), 844–854 (2017).
[Crossref]

Y. Wang, W. Chen, M. Mero, L. Zhang, H. Lin, Z. Lin, G. Zhang, F. Rotermund, Y. J. Cho, P. Loiko, X. Mateos, U. Griebner, and V. Petrov, “Sub-100 fs Tm:MgWO4 laser at 2017 nm mode locked by a graphene saturable absorber,” Opt. Lett. 42(16), 3076–3079 (2017).
[Crossref] [PubMed]

X. Mateos, S. Lamrini, K. Scholle, P. Fuhrberg, S. Vatnik, P. Loiko, I. Vedin, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Holmium thin-disk laser based on Ho:KY(WO4)2/KY(WO4)2 epitaxy with 60% slope efficiency and simplified pump geometry,” Opt. Lett. 42(17), 3490–3493 (2017).
[Crossref] [PubMed]

2016 (1)

P. Loiko and M. Pollnau, “Stochastic model of energy-transfer processes among rare-earth ions. Example of Al2O3:Tm3+,” J. Phys. Chem. C 120(46), 26480–26489 (2016).
[Crossref]

2015 (2)

C. J. Saraceno, F. Emaury, C. Schriber, A. Diebold, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Toward millijoule-level high-power ultrafast thin-disk oscillators,” IEEE J. Sel. Top. Quantum Electron. 21(1), 106–123 (2015).
[Crossref]

V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
[Crossref]

2014 (3)

S.-S. Li, H.-P. Xia, L. Fu, Y.-M. Dong, X.-M. Gu, J.-L. Zhang, D.-J. Wang, Y.-P. Zhang, H.-C. Jiang, and B.-J. Chen, “Optimum fluorescence emission around 1.8 µm for LiYF4 single crystals of various Tm3+-doping concentrations,” Chin. Phys. B 23(10), 107806 (2014).
[Crossref]

F. Starecki, W. Bolaños, G. Brasse, A. Benayad, M. Morales, J. L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Rare earth doped LiYF4 single crystalline films grown by liquid phase epitaxy for the fabrication of planar waveguide lasers,” J. Cryst. Growth 401, 537–541 (2014).
[Crossref]

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency,” Opt. Lett. 39(15), 4380–4383 (2014).
[Crossref] [PubMed]

2013 (1)

E. J. Saarinen, E. Vasileva, O. Antipov, J.-P. Penttinen, M. Tavast, T. Leinonen, and O. G. Okhotnikov, “2-µm Tm:Lu2O3 ceramic disk laser intracavity-pumped by a semiconductor disk laser,” Opt. Express 21(20), 23844–23850 (2013).
[Crossref] [PubMed]

2012 (3)

W. Bolanos, F. Starecki, A. Benayad, G. Brasse, V. Ménard, J.-L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Tm:LiYF4 planar waveguide laser at 1.9 μm,” Opt. Lett. 37(19), 4032–4034 (2012).
[Crossref] [PubMed]

S. Vatnik, I. Vedin, M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, V. Petrov, and U. Griebner, “Efficient thin-disk Tm-laser operation based on Tm:KLu(WO4)2/KLu(WO4)2 epitaxies,” Opt. Lett. 37(3), 356–358 (2012).
[Crossref] [PubMed]

G. Stoeppler, D. Parisi, M. Tonelli, and M. Eichhorn, “High-efficiency 1.9 µm Tm3+:LiLuF4 thin-disk laser,” Opt. Lett. 37(7), 1163–1165 (2012).
[Crossref] [PubMed]

2009 (1)

M. Schellhorn, S. Ngcobo, and C. Bollig, “High-power diode-pumped Tm:YLF slab laser,” Appl. Phys. B 94(2), 195–198 (2009).
[Crossref]

2008 (2)

S. Rivier, X. Mateos, O. Silvestre, V. Petrov, U. Griebner, M. C. Pujol, M. Aguiló, F. Díaz, S. Vernay, and D. Rytz, “Thin-disk Yb:KLu(WO4)2 laser with single-pass pumping,” Opt. Lett. 33(7), 735–737 (2008).
[Crossref] [PubMed]

M. Schellhorn, “High-power diode-pumped Tm:YLF laser,” Appl. Phys. B 91(1), 71–74 (2008).
[Crossref]

2007 (1)

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

2006 (1)

S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

2004 (1)

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).
[Crossref]

1998 (1)

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83(5), 2772–2787 (1998).
[Crossref]

1997 (1)

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm: YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron. 33(9), 1592–1600 (1997).
[Crossref]

1996 (1)

R. J. Beach, “CW Theory of quasi-three level end-pumped laser oscillators,” Opt. Commun. 123(1-3), 385–393 (1996).
[Crossref]

1995 (1)

I. Razumova, A. Tkachuk, A. Nikitichev, and D. Mironov, “Spectral-luminescent properties of Tm:YLF crystal,” J. Alloys Compd. 225(1–2), 129–132 (1995).
[Crossref]

1994 (1)

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

1990 (1)

R. C. Stoneman and L. Esterowitz, “Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers,” Opt. Lett. 15(9), 486–488 (1990).
[Crossref] [PubMed]

1988 (1)

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

1970 (1)

S. A. Miller, H. E. Rast, and H. H. Caspers, “Lattice vibrations of LiYF4,” J. Chem. Phys. 52(8), 4172–4175 (1970).
[Crossref]

1966 (1)

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20(3), 277–278 (1966).
[Crossref]

Aguiló, M.

P. Loiko, P. Koopmann, X. Mateos, J. M. Serres, V. Jambunathan, A. Lucianetti, T. Mocek, M. Aguiló, F. Díaz, U. Griebner, V. Petrov, and C. Kränkel, “Highly efficient, compact Tm3+:RE2O3 (RE = Y, Lu, Sc) sesquioxide lasers based on thermal guiding,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600713 (2018).

X. Mateos, P. Loiko, S. Lamrini, K. Scholle, P. Fuhrberg, S. Vatnik, I. Vedin, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Thermo-optic effects in Ho:KY(WO4)2 thin-disk lasers,” Opt. Mater. Express 8(3), 684–690 (2018).
[Crossref]

X. Mateos, S. Lamrini, K. Scholle, P. Fuhrberg, S. Vatnik, P. Loiko, I. Vedin, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Holmium thin-disk laser based on Ho:KY(WO4)2/KY(WO4)2 epitaxy with 60% slope efficiency and simplified pump geometry,” Opt. Lett. 42(17), 3490–3493 (2017).
[Crossref] [PubMed]

S. Vatnik, I. Vedin, M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, V. Petrov, and U. Griebner, “Efficient thin-disk Tm-laser operation based on Tm:KLu(WO4)2/KLu(WO4)2 epitaxies,” Opt. Lett. 37(3), 356–358 (2012).
[Crossref] [PubMed]

S. Rivier, X. Mateos, O. Silvestre, V. Petrov, U. Griebner, M. C. Pujol, M. Aguiló, F. Díaz, S. Vernay, and D. Rytz, “Thin-disk Yb:KLu(WO4)2 laser with single-pass pumping,” Opt. Lett. 33(7), 735–737 (2008).
[Crossref] [PubMed]

Antipov, O.

E. J. Saarinen, E. Vasileva, O. Antipov, J.-P. Penttinen, M. Tavast, T. Leinonen, and O. G. Okhotnikov, “2-µm Tm:Lu2O3 ceramic disk laser intracavity-pumped by a semiconductor disk laser,” Opt. Express 21(20), 23844–23850 (2013).
[Crossref] [PubMed]

Aravazhi, S.

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency,” Opt. Lett. 39(15), 4380–4383 (2014).
[Crossref] [PubMed]

Barnes, N. P.

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).
[Crossref]

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83(5), 2772–2787 (1998).
[Crossref]

Bauer, D.

J. Zhang, F. Schulze, K.F. Mak, V. Pervak, D. Bauer, D. Sutter, and O. Pronin, “High‐power, high‐efficiency Tm:YAG and Ho:YAG thin‐disk lasers,” Laser Photonics Rev. 12(3), 1700273 (2018).

Beach, R. J.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm: YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron. 33(9), 1592–1600 (1997).
[Crossref]

R. J. Beach, “CW Theory of quasi-three level end-pumped laser oscillators,” Opt. Commun. 123(1-3), 385–393 (1996).
[Crossref]

Benayad, A.

F. Starecki, W. Bolaños, G. Brasse, A. Benayad, M. Morales, J. L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Rare earth doped LiYF4 single crystalline films grown by liquid phase epitaxy for the fabrication of planar waveguide lasers,” J. Cryst. Growth 401, 537–541 (2014).
[Crossref]

W. Bolanos, F. Starecki, A. Benayad, G. Brasse, V. Ménard, J.-L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Tm:LiYF4 planar waveguide laser at 1.9 μm,” Opt. Lett. 37(19), 4032–4034 (2012).
[Crossref] [PubMed]

Betterton, J. G.

S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

Bolanos, W.

W. Bolanos, F. Starecki, A. Benayad, G. Brasse, V. Ménard, J.-L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Tm:LiYF4 planar waveguide laser at 1.9 μm,” Opt. Lett. 37(19), 4032–4034 (2012).
[Crossref] [PubMed]

Bolaños, W.

F. Starecki, W. Bolaños, G. Brasse, A. Benayad, M. Morales, J. L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Rare earth doped LiYF4 single crystalline films grown by liquid phase epitaxy for the fabrication of planar waveguide lasers,” J. Cryst. Growth 401, 537–541 (2014).
[Crossref]

Bollig, C.

M. Schellhorn, S. Ngcobo, and C. Bollig, “High-power diode-pumped Tm:YLF slab laser,” Appl. Phys. B 94(2), 195–198 (2009).
[Crossref]

Brasse, G.

F. Starecki, W. Bolaños, G. Brasse, A. Benayad, M. Morales, J. L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Rare earth doped LiYF4 single crystalline films grown by liquid phase epitaxy for the fabrication of planar waveguide lasers,” J. Cryst. Growth 401, 537–541 (2014).
[Crossref]

W. Bolanos, F. Starecki, A. Benayad, G. Brasse, V. Ménard, J.-L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Tm:LiYF4 planar waveguide laser at 1.9 μm,” Opt. Lett. 37(19), 4032–4034 (2012).
[Crossref] [PubMed]

Brauch, U.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Braud, A.

F. Starecki, W. Bolaños, G. Brasse, A. Benayad, M. Morales, J. L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Rare earth doped LiYF4 single crystalline films grown by liquid phase epitaxy for the fabrication of planar waveguide lasers,” J. Cryst. Growth 401, 537–541 (2014).
[Crossref]

W. Bolanos, F. Starecki, A. Benayad, G. Brasse, V. Ménard, J.-L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Tm:LiYF4 planar waveguide laser at 1.9 μm,” Opt. Lett. 37(19), 4032–4034 (2012).
[Crossref] [PubMed]

Caird, J. A.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Camy, P.

F. Starecki, W. Bolaños, G. Brasse, A. Benayad, M. Morales, J. L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Rare earth doped LiYF4 single crystalline films grown by liquid phase epitaxy for the fabrication of planar waveguide lasers,” J. Cryst. Growth 401, 537–541 (2014).
[Crossref]

W. Bolanos, F. Starecki, A. Benayad, G. Brasse, V. Ménard, J.-L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Tm:LiYF4 planar waveguide laser at 1.9 μm,” Opt. Lett. 37(19), 4032–4034 (2012).
[Crossref] [PubMed]

Carvajal, J. J.

S. Vatnik, I. Vedin, M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, V. Petrov, and U. Griebner, “Efficient thin-disk Tm-laser operation based on Tm:KLu(WO4)2/KLu(WO4)2 epitaxies,” Opt. Lett. 37(3), 356–358 (2012).
[Crossref] [PubMed]

Caspers, H. H.

S. A. Miller, H. E. Rast, and H. H. Caspers, “Lattice vibrations of LiYF4,” J. Chem. Phys. 52(8), 4172–4175 (1970).
[Crossref]

Chase, L. L.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Chen, B.-J.

S.-S. Li, H.-P. Xia, L. Fu, Y.-M. Dong, X.-M. Gu, J.-L. Zhang, D.-J. Wang, Y.-P. Zhang, H.-C. Jiang, and B.-J. Chen, “Optimum fluorescence emission around 1.8 µm for LiYF4 single crystals of various Tm3+-doping concentrations,” Chin. Phys. B 23(10), 107806 (2014).
[Crossref]

Chen, W.

Y. Wang, W. Chen, M. Mero, L. Zhang, H. Lin, Z. Lin, G. Zhang, F. Rotermund, Y. J. Cho, P. Loiko, X. Mateos, U. Griebner, and V. Petrov, “Sub-100 fs Tm:MgWO4 laser at 2017 nm mode locked by a graphene saturable absorber,” Opt. Lett. 42(16), 3076–3079 (2017).
[Crossref] [PubMed]

Cho, Y. J.

Y. Wang, W. Chen, M. Mero, L. Zhang, H. Lin, Z. Lin, G. Zhang, F. Rotermund, Y. J. Cho, P. Loiko, X. Mateos, U. Griebner, and V. Petrov, “Sub-100 fs Tm:MgWO4 laser at 2017 nm mode locked by a graphene saturable absorber,” Opt. Lett. 42(16), 3076–3079 (2017).
[Crossref] [PubMed]

Clarkson, W. A.

S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

Clay, R. A.

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20(3), 277–278 (1966).
[Crossref]

Di Bartolo, B.

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83(5), 2772–2787 (1998).
[Crossref]

Di Lieto, A.

P. Loiko, J. M. Serres, X. Mateos, S. Tacchini, M. Tonelli, S. Veronesi, D. Parisi, A. Di Lieto, K. Yumashev, U. Griebner, and V. Petrov, “Comparative spectroscopic and thermo-optic study of Tm:LiLnF4 (Ln = Y, Gd, and Lu) crystals for highly-efficient microchip lasers at ~2 μm,” Opt. Mater. Express 7(3), 844–854 (2017).
[Crossref]

Díaz, F.

X. Mateos, P. Loiko, S. Lamrini, K. Scholle, P. Fuhrberg, S. Vatnik, I. Vedin, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Thermo-optic effects in Ho:KY(WO4)2 thin-disk lasers,” Opt. Mater. Express 8(3), 684–690 (2018).
[Crossref]

P. Loiko, P. Koopmann, X. Mateos, J. M. Serres, V. Jambunathan, A. Lucianetti, T. Mocek, M. Aguiló, F. Díaz, U. Griebner, V. Petrov, and C. Kränkel, “Highly efficient, compact Tm3+:RE2O3 (RE = Y, Lu, Sc) sesquioxide lasers based on thermal guiding,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600713 (2018).

X. Mateos, S. Lamrini, K. Scholle, P. Fuhrberg, S. Vatnik, P. Loiko, I. Vedin, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Holmium thin-disk laser based on Ho:KY(WO4)2/KY(WO4)2 epitaxy with 60% slope efficiency and simplified pump geometry,” Opt. Lett. 42(17), 3490–3493 (2017).
[Crossref] [PubMed]

S. Vatnik, I. Vedin, M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, V. Petrov, and U. Griebner, “Efficient thin-disk Tm-laser operation based on Tm:KLu(WO4)2/KLu(WO4)2 epitaxies,” Opt. Lett. 37(3), 356–358 (2012).
[Crossref] [PubMed]

S. Rivier, X. Mateos, O. Silvestre, V. Petrov, U. Griebner, M. C. Pujol, M. Aguiló, F. Díaz, S. Vernay, and D. Rytz, “Thin-disk Yb:KLu(WO4)2 laser with single-pass pumping,” Opt. Lett. 33(7), 735–737 (2008).
[Crossref] [PubMed]

Dicks, B.-M.

A. Diening, B.-M. Dicks, E. Heumann, G. Huber, A. Voss, M. Karszewski, and A. Giesen, “High-power Tm:YAG thin-disk laser,” in Conference on Lasers and Electro-Optics, (IEEE, 1998), pp. 259–260.

Diebold, A.

C. J. Saraceno, F. Emaury, C. Schriber, A. Diebold, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Toward millijoule-level high-power ultrafast thin-disk oscillators,” IEEE J. Sel. Top. Quantum Electron. 21(1), 106–123 (2015).
[Crossref]

Diening, A.

A. Diening, B.-M. Dicks, E. Heumann, G. Huber, A. Voss, M. Karszewski, and A. Giesen, “High-power Tm:YAG thin-disk laser,” in Conference on Lasers and Electro-Optics, (IEEE, 1998), pp. 259–260.

Dong, Y.-M.

S.-S. Li, H.-P. Xia, L. Fu, Y.-M. Dong, X.-M. Gu, J.-L. Zhang, D.-J. Wang, Y.-P. Zhang, H.-C. Jiang, and B.-J. Chen, “Optimum fluorescence emission around 1.8 µm for LiYF4 single crystals of various Tm3+-doping concentrations,” Chin. Phys. B 23(10), 107806 (2014).
[Crossref]

Doualan, J. L.

F. Starecki, W. Bolaños, G. Brasse, A. Benayad, M. Morales, J. L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Rare earth doped LiYF4 single crystalline films grown by liquid phase epitaxy for the fabrication of planar waveguide lasers,” J. Cryst. Growth 401, 537–541 (2014).
[Crossref]

Doualan, J.-L.

W. Bolanos, F. Starecki, A. Benayad, G. Brasse, V. Ménard, J.-L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Tm:LiYF4 planar waveguide laser at 1.9 μm,” Opt. Lett. 37(19), 4032–4034 (2012).
[Crossref] [PubMed]

Eichhorn, M.

G. Stoeppler, D. Parisi, M. Tonelli, and M. Eichhorn, “High-efficiency 1.9 µm Tm3+:LiLuF4 thin-disk laser,” Opt. Lett. 37(7), 1163–1165 (2012).
[Crossref] [PubMed]

Emanuel, M. A.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm: YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron. 33(9), 1592–1600 (1997).
[Crossref]

Emaury, F.

C. J. Saraceno, F. Emaury, C. Schriber, A. Diebold, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Toward millijoule-level high-power ultrafast thin-disk oscillators,” IEEE J. Sel. Top. Quantum Electron. 21(1), 106–123 (2015).
[Crossref]

Esterowitz, L.

R. C. Stoneman and L. Esterowitz, “Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers,” Opt. Lett. 15(9), 486–488 (1990).
[Crossref] [PubMed]

Findlay, D.

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20(3), 277–278 (1966).
[Crossref]

Fu, L.

S.-S. Li, H.-P. Xia, L. Fu, Y.-M. Dong, X.-M. Gu, J.-L. Zhang, D.-J. Wang, Y.-P. Zhang, H.-C. Jiang, and B.-J. Chen, “Optimum fluorescence emission around 1.8 µm for LiYF4 single crystals of various Tm3+-doping concentrations,” Chin. Phys. B 23(10), 107806 (2014).
[Crossref]

Fuhrberg, P.

X. Mateos, P. Loiko, S. Lamrini, K. Scholle, P. Fuhrberg, S. Vatnik, I. Vedin, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Thermo-optic effects in Ho:KY(WO4)2 thin-disk lasers,” Opt. Mater. Express 8(3), 684–690 (2018).
[Crossref]

X. Mateos, S. Lamrini, K. Scholle, P. Fuhrberg, S. Vatnik, P. Loiko, I. Vedin, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Holmium thin-disk laser based on Ho:KY(WO4)2/KY(WO4)2 epitaxy with 60% slope efficiency and simplified pump geometry,” Opt. Lett. 42(17), 3490–3493 (2017).
[Crossref] [PubMed]

García-Blanco, S. M.

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency,” Opt. Lett. 39(15), 4380–4383 (2014).
[Crossref] [PubMed]

Giesen, A.

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

A. Diening, B.-M. Dicks, E. Heumann, G. Huber, A. Voss, M. Karszewski, and A. Giesen, “High-power Tm:YAG thin-disk laser,” in Conference on Lasers and Electro-Optics, (IEEE, 1998), pp. 259–260.

Golling, M.

C. J. Saraceno, F. Emaury, C. Schriber, A. Diebold, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Toward millijoule-level high-power ultrafast thin-disk oscillators,” IEEE J. Sel. Top. Quantum Electron. 21(1), 106–123 (2015).
[Crossref]

Gorton, E. K.

S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

Griebner, U.

X. Mateos, P. Loiko, S. Lamrini, K. Scholle, P. Fuhrberg, S. Vatnik, I. Vedin, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Thermo-optic effects in Ho:KY(WO4)2 thin-disk lasers,” Opt. Mater. Express 8(3), 684–690 (2018).
[Crossref]

P. Loiko, P. Koopmann, X. Mateos, J. M. Serres, V. Jambunathan, A. Lucianetti, T. Mocek, M. Aguiló, F. Díaz, U. Griebner, V. Petrov, and C. Kränkel, “Highly efficient, compact Tm3+:RE2O3 (RE = Y, Lu, Sc) sesquioxide lasers based on thermal guiding,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600713 (2018).

Y. Wang, W. Chen, M. Mero, L. Zhang, H. Lin, Z. Lin, G. Zhang, F. Rotermund, Y. J. Cho, P. Loiko, X. Mateos, U. Griebner, and V. Petrov, “Sub-100 fs Tm:MgWO4 laser at 2017 nm mode locked by a graphene saturable absorber,” Opt. Lett. 42(16), 3076–3079 (2017).
[Crossref] [PubMed]

X. Mateos, S. Lamrini, K. Scholle, P. Fuhrberg, S. Vatnik, P. Loiko, I. Vedin, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Holmium thin-disk laser based on Ho:KY(WO4)2/KY(WO4)2 epitaxy with 60% slope efficiency and simplified pump geometry,” Opt. Lett. 42(17), 3490–3493 (2017).
[Crossref] [PubMed]

P. Loiko, J. M. Serres, X. Mateos, S. Tacchini, M. Tonelli, S. Veronesi, D. Parisi, A. Di Lieto, K. Yumashev, U. Griebner, and V. Petrov, “Comparative spectroscopic and thermo-optic study of Tm:LiLnF4 (Ln = Y, Gd, and Lu) crystals for highly-efficient microchip lasers at ~2 μm,” Opt. Mater. Express 7(3), 844–854 (2017).
[Crossref]

S. Vatnik, I. Vedin, M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, V. Petrov, and U. Griebner, “Efficient thin-disk Tm-laser operation based on Tm:KLu(WO4)2/KLu(WO4)2 epitaxies,” Opt. Lett. 37(3), 356–358 (2012).
[Crossref] [PubMed]

S. Rivier, X. Mateos, O. Silvestre, V. Petrov, U. Griebner, M. C. Pujol, M. Aguiló, F. Díaz, S. Vernay, and D. Rytz, “Thin-disk Yb:KLu(WO4)2 laser with single-pass pumping,” Opt. Lett. 33(7), 735–737 (2008).
[Crossref] [PubMed]

Grivas, C.

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency,” Opt. Lett. 39(15), 4380–4383 (2014).
[Crossref] [PubMed]

Gu, X.-M.

S.-S. Li, H.-P. Xia, L. Fu, Y.-M. Dong, X.-M. Gu, J.-L. Zhang, D.-J. Wang, Y.-P. Zhang, H.-C. Jiang, and B.-J. Chen, “Optimum fluorescence emission around 1.8 µm for LiYF4 single crystals of various Tm3+-doping concentrations,” Chin. Phys. B 23(10), 107806 (2014).
[Crossref]

Heumann, E.

A. Diening, B.-M. Dicks, E. Heumann, G. Huber, A. Voss, M. Karszewski, and A. Giesen, “High-power Tm:YAG thin-disk laser,” in Conference on Lasers and Electro-Optics, (IEEE, 1998), pp. 259–260.

Hoffmann, M.

C. J. Saraceno, F. Emaury, C. Schriber, A. Diebold, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Toward millijoule-level high-power ultrafast thin-disk oscillators,” IEEE J. Sel. Top. Quantum Electron. 21(1), 106–123 (2015).
[Crossref]

Honea, E. C.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm: YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron. 33(9), 1592–1600 (1997).
[Crossref]

Huber, G.

A. Diening, B.-M. Dicks, E. Heumann, G. Huber, A. Voss, M. Karszewski, and A. Giesen, “High-power Tm:YAG thin-disk laser,” in Conference on Lasers and Electro-Optics, (IEEE, 1998), pp. 259–260.

Hügel, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Jambunathan, V.

P. Loiko, P. Koopmann, X. Mateos, J. M. Serres, V. Jambunathan, A. Lucianetti, T. Mocek, M. Aguiló, F. Díaz, U. Griebner, V. Petrov, and C. Kränkel, “Highly efficient, compact Tm3+:RE2O3 (RE = Y, Lu, Sc) sesquioxide lasers based on thermal guiding,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600713 (2018).

Jiang, H.-C.

S.-S. Li, H.-P. Xia, L. Fu, Y.-M. Dong, X.-M. Gu, J.-L. Zhang, D.-J. Wang, Y.-P. Zhang, H.-C. Jiang, and B.-J. Chen, “Optimum fluorescence emission around 1.8 µm for LiYF4 single crystals of various Tm3+-doping concentrations,” Chin. Phys. B 23(10), 107806 (2014).
[Crossref]

Karszewski, M.

A. Diening, B.-M. Dicks, E. Heumann, G. Huber, A. Voss, M. Karszewski, and A. Giesen, “High-power Tm:YAG thin-disk laser,” in Conference on Lasers and Electro-Optics, (IEEE, 1998), pp. 259–260.

Keller, U.

C. J. Saraceno, F. Emaury, C. Schriber, A. Diebold, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Toward millijoule-level high-power ultrafast thin-disk oscillators,” IEEE J. Sel. Top. Quantum Electron. 21(1), 106–123 (2015).
[Crossref]

Koopmann, P.

P. Loiko, P. Koopmann, X. Mateos, J. M. Serres, V. Jambunathan, A. Lucianetti, T. Mocek, M. Aguiló, F. Díaz, U. Griebner, V. Petrov, and C. Kränkel, “Highly efficient, compact Tm3+:RE2O3 (RE = Y, Lu, Sc) sesquioxide lasers based on thermal guiding,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600713 (2018).

Kränkel, C.

P. Loiko, P. Koopmann, X. Mateos, J. M. Serres, V. Jambunathan, A. Lucianetti, T. Mocek, M. Aguiló, F. Díaz, U. Griebner, V. Petrov, and C. Kränkel, “Highly efficient, compact Tm3+:RE2O3 (RE = Y, Lu, Sc) sesquioxide lasers based on thermal guiding,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600713 (2018).

Krupke, W. F.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Lamrini, S.

X. Mateos, P. Loiko, S. Lamrini, K. Scholle, P. Fuhrberg, S. Vatnik, I. Vedin, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Thermo-optic effects in Ho:KY(WO4)2 thin-disk lasers,” Opt. Mater. Express 8(3), 684–690 (2018).
[Crossref]

X. Mateos, S. Lamrini, K. Scholle, P. Fuhrberg, S. Vatnik, P. Loiko, I. Vedin, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Holmium thin-disk laser based on Ho:KY(WO4)2/KY(WO4)2 epitaxy with 60% slope efficiency and simplified pump geometry,” Opt. Lett. 42(17), 3490–3493 (2017).
[Crossref] [PubMed]

Leinonen, T.

E. J. Saarinen, E. Vasileva, O. Antipov, J.-P. Penttinen, M. Tavast, T. Leinonen, and O. G. Okhotnikov, “2-µm Tm:Lu2O3 ceramic disk laser intracavity-pumped by a semiconductor disk laser,” Opt. Express 21(20), 23844–23850 (2013).
[Crossref] [PubMed]

Li, S.-S.

S.-S. Li, H.-P. Xia, L. Fu, Y.-M. Dong, X.-M. Gu, J.-L. Zhang, D.-J. Wang, Y.-P. Zhang, H.-C. Jiang, and B.-J. Chen, “Optimum fluorescence emission around 1.8 µm for LiYF4 single crystals of various Tm3+-doping concentrations,” Chin. Phys. B 23(10), 107806 (2014).
[Crossref]

Lin, H.

Y. Wang, W. Chen, M. Mero, L. Zhang, H. Lin, Z. Lin, G. Zhang, F. Rotermund, Y. J. Cho, P. Loiko, X. Mateos, U. Griebner, and V. Petrov, “Sub-100 fs Tm:MgWO4 laser at 2017 nm mode locked by a graphene saturable absorber,” Opt. Lett. 42(16), 3076–3079 (2017).
[Crossref] [PubMed]

Lin, Z.

Y. Wang, W. Chen, M. Mero, L. Zhang, H. Lin, Z. Lin, G. Zhang, F. Rotermund, Y. J. Cho, P. Loiko, X. Mateos, U. Griebner, and V. Petrov, “Sub-100 fs Tm:MgWO4 laser at 2017 nm mode locked by a graphene saturable absorber,” Opt. Lett. 42(16), 3076–3079 (2017).
[Crossref] [PubMed]

Loiko, P.

P. Loiko, P. Koopmann, X. Mateos, J. M. Serres, V. Jambunathan, A. Lucianetti, T. Mocek, M. Aguiló, F. Díaz, U. Griebner, V. Petrov, and C. Kränkel, “Highly efficient, compact Tm3+:RE2O3 (RE = Y, Lu, Sc) sesquioxide lasers based on thermal guiding,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600713 (2018).

X. Mateos, P. Loiko, S. Lamrini, K. Scholle, P. Fuhrberg, S. Vatnik, I. Vedin, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Thermo-optic effects in Ho:KY(WO4)2 thin-disk lasers,” Opt. Mater. Express 8(3), 684–690 (2018).
[Crossref]

P. Loiko, J. M. Serres, X. Mateos, S. Tacchini, M. Tonelli, S. Veronesi, D. Parisi, A. Di Lieto, K. Yumashev, U. Griebner, and V. Petrov, “Comparative spectroscopic and thermo-optic study of Tm:LiLnF4 (Ln = Y, Gd, and Lu) crystals for highly-efficient microchip lasers at ~2 μm,” Opt. Mater. Express 7(3), 844–854 (2017).
[Crossref]

X. Mateos, S. Lamrini, K. Scholle, P. Fuhrberg, S. Vatnik, P. Loiko, I. Vedin, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Holmium thin-disk laser based on Ho:KY(WO4)2/KY(WO4)2 epitaxy with 60% slope efficiency and simplified pump geometry,” Opt. Lett. 42(17), 3490–3493 (2017).
[Crossref] [PubMed]

Y. Wang, W. Chen, M. Mero, L. Zhang, H. Lin, Z. Lin, G. Zhang, F. Rotermund, Y. J. Cho, P. Loiko, X. Mateos, U. Griebner, and V. Petrov, “Sub-100 fs Tm:MgWO4 laser at 2017 nm mode locked by a graphene saturable absorber,” Opt. Lett. 42(16), 3076–3079 (2017).
[Crossref] [PubMed]

P. Loiko and M. Pollnau, “Stochastic model of energy-transfer processes among rare-earth ions. Example of Al2O3:Tm3+,” J. Phys. Chem. C 120(46), 26480–26489 (2016).
[Crossref]

Lucianetti, A.

P. Loiko, P. Koopmann, X. Mateos, J. M. Serres, V. Jambunathan, A. Lucianetti, T. Mocek, M. Aguiló, F. Díaz, U. Griebner, V. Petrov, and C. Kränkel, “Highly efficient, compact Tm3+:RE2O3 (RE = Y, Lu, Sc) sesquioxide lasers based on thermal guiding,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600713 (2018).

Mackenzie, J. I.

S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

Mak, K.F.

J. Zhang, F. Schulze, K.F. Mak, V. Pervak, D. Bauer, D. Sutter, and O. Pronin, “High‐power, high‐efficiency Tm:YAG and Ho:YAG thin‐disk lasers,” Laser Photonics Rev. 12(3), 1700273 (2018).

Mateos, X.

X. Mateos, P. Loiko, S. Lamrini, K. Scholle, P. Fuhrberg, S. Vatnik, I. Vedin, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Thermo-optic effects in Ho:KY(WO4)2 thin-disk lasers,” Opt. Mater. Express 8(3), 684–690 (2018).
[Crossref]

P. Loiko, P. Koopmann, X. Mateos, J. M. Serres, V. Jambunathan, A. Lucianetti, T. Mocek, M. Aguiló, F. Díaz, U. Griebner, V. Petrov, and C. Kränkel, “Highly efficient, compact Tm3+:RE2O3 (RE = Y, Lu, Sc) sesquioxide lasers based on thermal guiding,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600713 (2018).

Y. Wang, W. Chen, M. Mero, L. Zhang, H. Lin, Z. Lin, G. Zhang, F. Rotermund, Y. J. Cho, P. Loiko, X. Mateos, U. Griebner, and V. Petrov, “Sub-100 fs Tm:MgWO4 laser at 2017 nm mode locked by a graphene saturable absorber,” Opt. Lett. 42(16), 3076–3079 (2017).
[Crossref] [PubMed]

P. Loiko, J. M. Serres, X. Mateos, S. Tacchini, M. Tonelli, S. Veronesi, D. Parisi, A. Di Lieto, K. Yumashev, U. Griebner, and V. Petrov, “Comparative spectroscopic and thermo-optic study of Tm:LiLnF4 (Ln = Y, Gd, and Lu) crystals for highly-efficient microchip lasers at ~2 μm,” Opt. Mater. Express 7(3), 844–854 (2017).
[Crossref]

X. Mateos, S. Lamrini, K. Scholle, P. Fuhrberg, S. Vatnik, P. Loiko, I. Vedin, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Holmium thin-disk laser based on Ho:KY(WO4)2/KY(WO4)2 epitaxy with 60% slope efficiency and simplified pump geometry,” Opt. Lett. 42(17), 3490–3493 (2017).
[Crossref] [PubMed]

S. Vatnik, I. Vedin, M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, V. Petrov, and U. Griebner, “Efficient thin-disk Tm-laser operation based on Tm:KLu(WO4)2/KLu(WO4)2 epitaxies,” Opt. Lett. 37(3), 356–358 (2012).
[Crossref] [PubMed]

S. Rivier, X. Mateos, O. Silvestre, V. Petrov, U. Griebner, M. C. Pujol, M. Aguiló, F. Díaz, S. Vernay, and D. Rytz, “Thin-disk Yb:KLu(WO4)2 laser with single-pass pumping,” Opt. Lett. 33(7), 735–737 (2008).
[Crossref] [PubMed]

Ménard, V.

W. Bolanos, F. Starecki, A. Benayad, G. Brasse, V. Ménard, J.-L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Tm:LiYF4 planar waveguide laser at 1.9 μm,” Opt. Lett. 37(19), 4032–4034 (2012).
[Crossref] [PubMed]

Mero, M.

Y. Wang, W. Chen, M. Mero, L. Zhang, H. Lin, Z. Lin, G. Zhang, F. Rotermund, Y. J. Cho, P. Loiko, X. Mateos, U. Griebner, and V. Petrov, “Sub-100 fs Tm:MgWO4 laser at 2017 nm mode locked by a graphene saturable absorber,” Opt. Lett. 42(16), 3076–3079 (2017).
[Crossref] [PubMed]

Miller, S. A.

S. A. Miller, H. E. Rast, and H. H. Caspers, “Lattice vibrations of LiYF4,” J. Chem. Phys. 52(8), 4172–4175 (1970).
[Crossref]

Mironov, D.

I. Razumova, A. Tkachuk, A. Nikitichev, and D. Mironov, “Spectral-luminescent properties of Tm:YLF crystal,” J. Alloys Compd. 225(1–2), 129–132 (1995).
[Crossref]

Mitchell, S. C.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm: YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron. 33(9), 1592–1600 (1997).
[Crossref]

Mocek, T.

P. Loiko, P. Koopmann, X. Mateos, J. M. Serres, V. Jambunathan, A. Lucianetti, T. Mocek, M. Aguiló, F. Díaz, U. Griebner, V. Petrov, and C. Kränkel, “Highly efficient, compact Tm3+:RE2O3 (RE = Y, Lu, Sc) sesquioxide lasers based on thermal guiding,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600713 (2018).

Moncorgé, R.

F. Starecki, W. Bolaños, G. Brasse, A. Benayad, M. Morales, J. L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Rare earth doped LiYF4 single crystalline films grown by liquid phase epitaxy for the fabrication of planar waveguide lasers,” J. Cryst. Growth 401, 537–541 (2014).
[Crossref]

W. Bolanos, F. Starecki, A. Benayad, G. Brasse, V. Ménard, J.-L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Tm:LiYF4 planar waveguide laser at 1.9 μm,” Opt. Lett. 37(19), 4032–4034 (2012).
[Crossref] [PubMed]

Morales, M.

F. Starecki, W. Bolaños, G. Brasse, A. Benayad, M. Morales, J. L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Rare earth doped LiYF4 single crystalline films grown by liquid phase epitaxy for the fabrication of planar waveguide lasers,” J. Cryst. Growth 401, 537–541 (2014).
[Crossref]

Ngcobo, S.

M. Schellhorn, S. Ngcobo, and C. Bollig, “High-power diode-pumped Tm:YLF slab laser,” Appl. Phys. B 94(2), 195–198 (2009).
[Crossref]

Nikitichev, A.

I. Razumova, A. Tkachuk, A. Nikitichev, and D. Mironov, “Spectral-luminescent properties of Tm:YLF crystal,” J. Alloys Compd. 225(1–2), 129–132 (1995).
[Crossref]

Okhotnikov, O. G.

E. J. Saarinen, E. Vasileva, O. Antipov, J.-P. Penttinen, M. Tavast, T. Leinonen, and O. G. Okhotnikov, “2-µm Tm:Lu2O3 ceramic disk laser intracavity-pumped by a semiconductor disk laser,” Opt. Express 21(20), 23844–23850 (2013).
[Crossref] [PubMed]

Opower, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Parisi, D.

P. Loiko, J. M. Serres, X. Mateos, S. Tacchini, M. Tonelli, S. Veronesi, D. Parisi, A. Di Lieto, K. Yumashev, U. Griebner, and V. Petrov, “Comparative spectroscopic and thermo-optic study of Tm:LiLnF4 (Ln = Y, Gd, and Lu) crystals for highly-efficient microchip lasers at ~2 μm,” Opt. Mater. Express 7(3), 844–854 (2017).
[Crossref]

G. Stoeppler, D. Parisi, M. Tonelli, and M. Eichhorn, “High-efficiency 1.9 µm Tm3+:LiLuF4 thin-disk laser,” Opt. Lett. 37(7), 1163–1165 (2012).
[Crossref] [PubMed]

Payne, S. A.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm: YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron. 33(9), 1592–1600 (1997).
[Crossref]

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Penttinen, J.-P.

E. J. Saarinen, E. Vasileva, O. Antipov, J.-P. Penttinen, M. Tavast, T. Leinonen, and O. G. Okhotnikov, “2-µm Tm:Lu2O3 ceramic disk laser intracavity-pumped by a semiconductor disk laser,” Opt. Express 21(20), 23844–23850 (2013).
[Crossref] [PubMed]

Pervak, V.

J. Zhang, F. Schulze, K.F. Mak, V. Pervak, D. Bauer, D. Sutter, and O. Pronin, “High‐power, high‐efficiency Tm:YAG and Ho:YAG thin‐disk lasers,” Laser Photonics Rev. 12(3), 1700273 (2018).

Petros, M.

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).
[Crossref]

Petrov, V.

X. Mateos, P. Loiko, S. Lamrini, K. Scholle, P. Fuhrberg, S. Vatnik, I. Vedin, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Thermo-optic effects in Ho:KY(WO4)2 thin-disk lasers,” Opt. Mater. Express 8(3), 684–690 (2018).
[Crossref]

P. Loiko, P. Koopmann, X. Mateos, J. M. Serres, V. Jambunathan, A. Lucianetti, T. Mocek, M. Aguiló, F. Díaz, U. Griebner, V. Petrov, and C. Kränkel, “Highly efficient, compact Tm3+:RE2O3 (RE = Y, Lu, Sc) sesquioxide lasers based on thermal guiding,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600713 (2018).

Y. Wang, W. Chen, M. Mero, L. Zhang, H. Lin, Z. Lin, G. Zhang, F. Rotermund, Y. J. Cho, P. Loiko, X. Mateos, U. Griebner, and V. Petrov, “Sub-100 fs Tm:MgWO4 laser at 2017 nm mode locked by a graphene saturable absorber,” Opt. Lett. 42(16), 3076–3079 (2017).
[Crossref] [PubMed]

X. Mateos, S. Lamrini, K. Scholle, P. Fuhrberg, S. Vatnik, P. Loiko, I. Vedin, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Holmium thin-disk laser based on Ho:KY(WO4)2/KY(WO4)2 epitaxy with 60% slope efficiency and simplified pump geometry,” Opt. Lett. 42(17), 3490–3493 (2017).
[Crossref] [PubMed]

P. Loiko, J. M. Serres, X. Mateos, S. Tacchini, M. Tonelli, S. Veronesi, D. Parisi, A. Di Lieto, K. Yumashev, U. Griebner, and V. Petrov, “Comparative spectroscopic and thermo-optic study of Tm:LiLnF4 (Ln = Y, Gd, and Lu) crystals for highly-efficient microchip lasers at ~2 μm,” Opt. Mater. Express 7(3), 844–854 (2017).
[Crossref]

V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
[Crossref]

S. Vatnik, I. Vedin, M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, V. Petrov, and U. Griebner, “Efficient thin-disk Tm-laser operation based on Tm:KLu(WO4)2/KLu(WO4)2 epitaxies,” Opt. Lett. 37(3), 356–358 (2012).
[Crossref] [PubMed]

S. Rivier, X. Mateos, O. Silvestre, V. Petrov, U. Griebner, M. C. Pujol, M. Aguiló, F. Díaz, S. Vernay, and D. Rytz, “Thin-disk Yb:KLu(WO4)2 laser with single-pass pumping,” Opt. Lett. 33(7), 735–737 (2008).
[Crossref] [PubMed]

Pollnau, M.

P. Loiko and M. Pollnau, “Stochastic model of energy-transfer processes among rare-earth ions. Example of Al2O3:Tm3+,” J. Phys. Chem. C 120(46), 26480–26489 (2016).
[Crossref]

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency,” Opt. Lett. 39(15), 4380–4383 (2014).
[Crossref] [PubMed]

Pronin, O.

J. Zhang, F. Schulze, K.F. Mak, V. Pervak, D. Bauer, D. Sutter, and O. Pronin, “High‐power, high‐efficiency Tm:YAG and Ho:YAG thin‐disk lasers,” Laser Photonics Rev. 12(3), 1700273 (2018).

Pujol, M. C.

S. Vatnik, I. Vedin, M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, V. Petrov, and U. Griebner, “Efficient thin-disk Tm-laser operation based on Tm:KLu(WO4)2/KLu(WO4)2 epitaxies,” Opt. Lett. 37(3), 356–358 (2012).
[Crossref] [PubMed]

S. Rivier, X. Mateos, O. Silvestre, V. Petrov, U. Griebner, M. C. Pujol, M. Aguiló, F. Díaz, S. Vernay, and D. Rytz, “Thin-disk Yb:KLu(WO4)2 laser with single-pass pumping,” Opt. Lett. 33(7), 735–737 (2008).
[Crossref] [PubMed]

Ramponi, A. J.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Rast, H. E.

S. A. Miller, H. E. Rast, and H. H. Caspers, “Lattice vibrations of LiYF4,” J. Chem. Phys. 52(8), 4172–4175 (1970).
[Crossref]

Razumova, I.

I. Razumova, A. Tkachuk, A. Nikitichev, and D. Mironov, “Spectral-luminescent properties of Tm:YLF crystal,” J. Alloys Compd. 225(1–2), 129–132 (1995).
[Crossref]

Rivier, S.

S. Rivier, X. Mateos, O. Silvestre, V. Petrov, U. Griebner, M. C. Pujol, M. Aguiló, F. Díaz, S. Vernay, and D. Rytz, “Thin-disk Yb:KLu(WO4)2 laser with single-pass pumping,” Opt. Lett. 33(7), 735–737 (2008).
[Crossref] [PubMed]

Rotermund, F.

Y. Wang, W. Chen, M. Mero, L. Zhang, H. Lin, Z. Lin, G. Zhang, F. Rotermund, Y. J. Cho, P. Loiko, X. Mateos, U. Griebner, and V. Petrov, “Sub-100 fs Tm:MgWO4 laser at 2017 nm mode locked by a graphene saturable absorber,” Opt. Lett. 42(16), 3076–3079 (2017).
[Crossref] [PubMed]

Rytz, D.

S. Rivier, X. Mateos, O. Silvestre, V. Petrov, U. Griebner, M. C. Pujol, M. Aguiló, F. Díaz, S. Vernay, and D. Rytz, “Thin-disk Yb:KLu(WO4)2 laser with single-pass pumping,” Opt. Lett. 33(7), 735–737 (2008).
[Crossref] [PubMed]

Saarinen, E. J.

E. J. Saarinen, E. Vasileva, O. Antipov, J.-P. Penttinen, M. Tavast, T. Leinonen, and O. G. Okhotnikov, “2-µm Tm:Lu2O3 ceramic disk laser intracavity-pumped by a semiconductor disk laser,” Opt. Express 21(20), 23844–23850 (2013).
[Crossref] [PubMed]

Saraceno, C. J.

C. J. Saraceno, F. Emaury, C. Schriber, A. Diebold, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Toward millijoule-level high-power ultrafast thin-disk oscillators,” IEEE J. Sel. Top. Quantum Electron. 21(1), 106–123 (2015).
[Crossref]

Schellhorn, M.

M. Schellhorn, S. Ngcobo, and C. Bollig, “High-power diode-pumped Tm:YLF slab laser,” Appl. Phys. B 94(2), 195–198 (2009).
[Crossref]

M. Schellhorn, “High-power diode-pumped Tm:YLF laser,” Appl. Phys. B 91(1), 71–74 (2008).
[Crossref]

Scholle, K.

X. Mateos, P. Loiko, S. Lamrini, K. Scholle, P. Fuhrberg, S. Vatnik, I. Vedin, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Thermo-optic effects in Ho:KY(WO4)2 thin-disk lasers,” Opt. Mater. Express 8(3), 684–690 (2018).
[Crossref]

X. Mateos, S. Lamrini, K. Scholle, P. Fuhrberg, S. Vatnik, P. Loiko, I. Vedin, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Holmium thin-disk laser based on Ho:KY(WO4)2/KY(WO4)2 epitaxy with 60% slope efficiency and simplified pump geometry,” Opt. Lett. 42(17), 3490–3493 (2017).
[Crossref] [PubMed]

Schriber, C.

C. J. Saraceno, F. Emaury, C. Schriber, A. Diebold, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Toward millijoule-level high-power ultrafast thin-disk oscillators,” IEEE J. Sel. Top. Quantum Electron. 21(1), 106–123 (2015).
[Crossref]

Schulze, F.

J. Zhang, F. Schulze, K.F. Mak, V. Pervak, D. Bauer, D. Sutter, and O. Pronin, “High‐power, high‐efficiency Tm:YAG and Ho:YAG thin‐disk lasers,” Laser Photonics Rev. 12(3), 1700273 (2018).

Segura, M.

S. Vatnik, I. Vedin, M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, V. Petrov, and U. Griebner, “Efficient thin-disk Tm-laser operation based on Tm:KLu(WO4)2/KLu(WO4)2 epitaxies,” Opt. Lett. 37(3), 356–358 (2012).
[Crossref] [PubMed]

Serres, J. M.

P. Loiko, P. Koopmann, X. Mateos, J. M. Serres, V. Jambunathan, A. Lucianetti, T. Mocek, M. Aguiló, F. Díaz, U. Griebner, V. Petrov, and C. Kränkel, “Highly efficient, compact Tm3+:RE2O3 (RE = Y, Lu, Sc) sesquioxide lasers based on thermal guiding,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600713 (2018).

P. Loiko, J. M. Serres, X. Mateos, S. Tacchini, M. Tonelli, S. Veronesi, D. Parisi, A. Di Lieto, K. Yumashev, U. Griebner, and V. Petrov, “Comparative spectroscopic and thermo-optic study of Tm:LiLnF4 (Ln = Y, Gd, and Lu) crystals for highly-efficient microchip lasers at ~2 μm,” Opt. Mater. Express 7(3), 844–854 (2017).
[Crossref]

Shepherd, D. P.

S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

Silvestre, O.

S. Rivier, X. Mateos, O. Silvestre, V. Petrov, U. Griebner, M. C. Pujol, M. Aguiló, F. Díaz, S. Vernay, and D. Rytz, “Thin-disk Yb:KLu(WO4)2 laser with single-pass pumping,” Opt. Lett. 33(7), 735–737 (2008).
[Crossref] [PubMed]

Singh, U. N.

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).
[Crossref]

Skidmore, J. A.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm: YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron. 33(9), 1592–1600 (1997).
[Crossref]

So, S.

S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

Speiser, J.

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

Speth, J. A.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm: YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron. 33(9), 1592–1600 (1997).
[Crossref]

Staber, P. R.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Starecki, F.

F. Starecki, W. Bolaños, G. Brasse, A. Benayad, M. Morales, J. L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Rare earth doped LiYF4 single crystalline films grown by liquid phase epitaxy for the fabrication of planar waveguide lasers,” J. Cryst. Growth 401, 537–541 (2014).
[Crossref]

W. Bolanos, F. Starecki, A. Benayad, G. Brasse, V. Ménard, J.-L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Tm:LiYF4 planar waveguide laser at 1.9 μm,” Opt. Lett. 37(19), 4032–4034 (2012).
[Crossref] [PubMed]

Stoeppler, G.

G. Stoeppler, D. Parisi, M. Tonelli, and M. Eichhorn, “High-efficiency 1.9 µm Tm3+:LiLuF4 thin-disk laser,” Opt. Lett. 37(7), 1163–1165 (2012).
[Crossref] [PubMed]

Stoneman, R. C.

R. C. Stoneman and L. Esterowitz, “Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers,” Opt. Lett. 15(9), 486–488 (1990).
[Crossref] [PubMed]

Südmeyer, T.

C. J. Saraceno, F. Emaury, C. Schriber, A. Diebold, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Toward millijoule-level high-power ultrafast thin-disk oscillators,” IEEE J. Sel. Top. Quantum Electron. 21(1), 106–123 (2015).
[Crossref]

Sutter, D.

J. Zhang, F. Schulze, K.F. Mak, V. Pervak, D. Bauer, D. Sutter, and O. Pronin, “High‐power, high‐efficiency Tm:YAG and Ho:YAG thin‐disk lasers,” Laser Photonics Rev. 12(3), 1700273 (2018).

Sutton, S. B.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm: YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron. 33(9), 1592–1600 (1997).
[Crossref]

Tacchini, S.

P. Loiko, J. M. Serres, X. Mateos, S. Tacchini, M. Tonelli, S. Veronesi, D. Parisi, A. Di Lieto, K. Yumashev, U. Griebner, and V. Petrov, “Comparative spectroscopic and thermo-optic study of Tm:LiLnF4 (Ln = Y, Gd, and Lu) crystals for highly-efficient microchip lasers at ~2 μm,” Opt. Mater. Express 7(3), 844–854 (2017).
[Crossref]

Tavast, M.

E. J. Saarinen, E. Vasileva, O. Antipov, J.-P. Penttinen, M. Tavast, T. Leinonen, and O. G. Okhotnikov, “2-µm Tm:Lu2O3 ceramic disk laser intracavity-pumped by a semiconductor disk laser,” Opt. Express 21(20), 23844–23850 (2013).
[Crossref] [PubMed]

Tkachuk, A.

I. Razumova, A. Tkachuk, A. Nikitichev, and D. Mironov, “Spectral-luminescent properties of Tm:YLF crystal,” J. Alloys Compd. 225(1–2), 129–132 (1995).
[Crossref]

Tonelli, M.

P. Loiko, J. M. Serres, X. Mateos, S. Tacchini, M. Tonelli, S. Veronesi, D. Parisi, A. Di Lieto, K. Yumashev, U. Griebner, and V. Petrov, “Comparative spectroscopic and thermo-optic study of Tm:LiLnF4 (Ln = Y, Gd, and Lu) crystals for highly-efficient microchip lasers at ~2 μm,” Opt. Mater. Express 7(3), 844–854 (2017).
[Crossref]

G. Stoeppler, D. Parisi, M. Tonelli, and M. Eichhorn, “High-efficiency 1.9 µm Tm3+:LiLuF4 thin-disk laser,” Opt. Lett. 37(7), 1163–1165 (2012).
[Crossref] [PubMed]

van Dalfsen, K.

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency,” Opt. Lett. 39(15), 4380–4383 (2014).
[Crossref] [PubMed]

Vasileva, E.

E. J. Saarinen, E. Vasileva, O. Antipov, J.-P. Penttinen, M. Tavast, T. Leinonen, and O. G. Okhotnikov, “2-µm Tm:Lu2O3 ceramic disk laser intracavity-pumped by a semiconductor disk laser,” Opt. Express 21(20), 23844–23850 (2013).
[Crossref] [PubMed]

Vatnik, S.

X. Mateos, P. Loiko, S. Lamrini, K. Scholle, P. Fuhrberg, S. Vatnik, I. Vedin, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Thermo-optic effects in Ho:KY(WO4)2 thin-disk lasers,” Opt. Mater. Express 8(3), 684–690 (2018).
[Crossref]

X. Mateos, S. Lamrini, K. Scholle, P. Fuhrberg, S. Vatnik, P. Loiko, I. Vedin, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Holmium thin-disk laser based on Ho:KY(WO4)2/KY(WO4)2 epitaxy with 60% slope efficiency and simplified pump geometry,” Opt. Lett. 42(17), 3490–3493 (2017).
[Crossref] [PubMed]

S. Vatnik, I. Vedin, M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, V. Petrov, and U. Griebner, “Efficient thin-disk Tm-laser operation based on Tm:KLu(WO4)2/KLu(WO4)2 epitaxies,” Opt. Lett. 37(3), 356–358 (2012).
[Crossref] [PubMed]

Vedin, I.

X. Mateos, P. Loiko, S. Lamrini, K. Scholle, P. Fuhrberg, S. Vatnik, I. Vedin, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Thermo-optic effects in Ho:KY(WO4)2 thin-disk lasers,” Opt. Mater. Express 8(3), 684–690 (2018).
[Crossref]

X. Mateos, S. Lamrini, K. Scholle, P. Fuhrberg, S. Vatnik, P. Loiko, I. Vedin, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Holmium thin-disk laser based on Ho:KY(WO4)2/KY(WO4)2 epitaxy with 60% slope efficiency and simplified pump geometry,” Opt. Lett. 42(17), 3490–3493 (2017).
[Crossref] [PubMed]

S. Vatnik, I. Vedin, M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, V. Petrov, and U. Griebner, “Efficient thin-disk Tm-laser operation based on Tm:KLu(WO4)2/KLu(WO4)2 epitaxies,” Opt. Lett. 37(3), 356–358 (2012).
[Crossref] [PubMed]

Vernay, S.

S. Rivier, X. Mateos, O. Silvestre, V. Petrov, U. Griebner, M. C. Pujol, M. Aguiló, F. Díaz, S. Vernay, and D. Rytz, “Thin-disk Yb:KLu(WO4)2 laser with single-pass pumping,” Opt. Lett. 33(7), 735–737 (2008).
[Crossref] [PubMed]

Veronesi, S.

P. Loiko, J. M. Serres, X. Mateos, S. Tacchini, M. Tonelli, S. Veronesi, D. Parisi, A. Di Lieto, K. Yumashev, U. Griebner, and V. Petrov, “Comparative spectroscopic and thermo-optic study of Tm:LiLnF4 (Ln = Y, Gd, and Lu) crystals for highly-efficient microchip lasers at ~2 μm,” Opt. Mater. Express 7(3), 844–854 (2017).
[Crossref]

Voss, A.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

A. Diening, B.-M. Dicks, E. Heumann, G. Huber, A. Voss, M. Karszewski, and A. Giesen, “High-power Tm:YAG thin-disk laser,” in Conference on Lasers and Electro-Optics, (IEEE, 1998), pp. 259–260.

Walsh, B. M.

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).
[Crossref]

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83(5), 2772–2787 (1998).
[Crossref]

Wang, D.-J.

S.-S. Li, H.-P. Xia, L. Fu, Y.-M. Dong, X.-M. Gu, J.-L. Zhang, D.-J. Wang, Y.-P. Zhang, H.-C. Jiang, and B.-J. Chen, “Optimum fluorescence emission around 1.8 µm for LiYF4 single crystals of various Tm3+-doping concentrations,” Chin. Phys. B 23(10), 107806 (2014).
[Crossref]

Wang, Y.

Y. Wang, W. Chen, M. Mero, L. Zhang, H. Lin, Z. Lin, G. Zhang, F. Rotermund, Y. J. Cho, P. Loiko, X. Mateos, U. Griebner, and V. Petrov, “Sub-100 fs Tm:MgWO4 laser at 2017 nm mode locked by a graphene saturable absorber,” Opt. Lett. 42(16), 3076–3079 (2017).
[Crossref] [PubMed]

Wittig, K.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Xia, H.-P.

S.-S. Li, H.-P. Xia, L. Fu, Y.-M. Dong, X.-M. Gu, J.-L. Zhang, D.-J. Wang, Y.-P. Zhang, H.-C. Jiang, and B.-J. Chen, “Optimum fluorescence emission around 1.8 µm for LiYF4 single crystals of various Tm3+-doping concentrations,” Chin. Phys. B 23(10), 107806 (2014).
[Crossref]

Yu, J.

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).
[Crossref]

Yumashev, K.

P. Loiko, J. M. Serres, X. Mateos, S. Tacchini, M. Tonelli, S. Veronesi, D. Parisi, A. Di Lieto, K. Yumashev, U. Griebner, and V. Petrov, “Comparative spectroscopic and thermo-optic study of Tm:LiLnF4 (Ln = Y, Gd, and Lu) crystals for highly-efficient microchip lasers at ~2 μm,” Opt. Mater. Express 7(3), 844–854 (2017).
[Crossref]

Zhang, G.

Y. Wang, W. Chen, M. Mero, L. Zhang, H. Lin, Z. Lin, G. Zhang, F. Rotermund, Y. J. Cho, P. Loiko, X. Mateos, U. Griebner, and V. Petrov, “Sub-100 fs Tm:MgWO4 laser at 2017 nm mode locked by a graphene saturable absorber,” Opt. Lett. 42(16), 3076–3079 (2017).
[Crossref] [PubMed]

Zhang, J.

J. Zhang, F. Schulze, K.F. Mak, V. Pervak, D. Bauer, D. Sutter, and O. Pronin, “High‐power, high‐efficiency Tm:YAG and Ho:YAG thin‐disk lasers,” Laser Photonics Rev. 12(3), 1700273 (2018).

Zhang, J.-L.

S.-S. Li, H.-P. Xia, L. Fu, Y.-M. Dong, X.-M. Gu, J.-L. Zhang, D.-J. Wang, Y.-P. Zhang, H.-C. Jiang, and B.-J. Chen, “Optimum fluorescence emission around 1.8 µm for LiYF4 single crystals of various Tm3+-doping concentrations,” Chin. Phys. B 23(10), 107806 (2014).
[Crossref]

Zhang, L.

Y. Wang, W. Chen, M. Mero, L. Zhang, H. Lin, Z. Lin, G. Zhang, F. Rotermund, Y. J. Cho, P. Loiko, X. Mateos, U. Griebner, and V. Petrov, “Sub-100 fs Tm:MgWO4 laser at 2017 nm mode locked by a graphene saturable absorber,” Opt. Lett. 42(16), 3076–3079 (2017).
[Crossref] [PubMed]

Zhang, Y.-P.

S.-S. Li, H.-P. Xia, L. Fu, Y.-M. Dong, X.-M. Gu, J.-L. Zhang, D.-J. Wang, Y.-P. Zhang, H.-C. Jiang, and B.-J. Chen, “Optimum fluorescence emission around 1.8 µm for LiYF4 single crystals of various Tm3+-doping concentrations,” Chin. Phys. B 23(10), 107806 (2014).
[Crossref]

Appl. Phys. B (4)

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

M. Schellhorn, “High-power diode-pumped Tm:YLF laser,” Appl. Phys. B 91(1), 71–74 (2008).
[Crossref]

M. Schellhorn, S. Ngcobo, and C. Bollig, “High-power diode-pumped Tm:YLF slab laser,” Appl. Phys. B 94(2), 195–198 (2009).
[Crossref]

Chin. Phys. B (1)

S.-S. Li, H.-P. Xia, L. Fu, Y.-M. Dong, X.-M. Gu, J.-L. Zhang, D.-J. Wang, Y.-P. Zhang, H.-C. Jiang, and B.-J. Chen, “Optimum fluorescence emission around 1.8 µm for LiYF4 single crystals of various Tm3+-doping concentrations,” Chin. Phys. B 23(10), 107806 (2014).
[Crossref]

IEEE J. Quantum Electron. (2)

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm: YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron. 33(9), 1592–1600 (1997).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

C. J. Saraceno, F. Emaury, C. Schriber, A. Diebold, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Toward millijoule-level high-power ultrafast thin-disk oscillators,” IEEE J. Sel. Top. Quantum Electron. 21(1), 106–123 (2015).
[Crossref]

P. Loiko, P. Koopmann, X. Mateos, J. M. Serres, V. Jambunathan, A. Lucianetti, T. Mocek, M. Aguiló, F. Díaz, U. Griebner, V. Petrov, and C. Kränkel, “Highly efficient, compact Tm3+:RE2O3 (RE = Y, Lu, Sc) sesquioxide lasers based on thermal guiding,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600713 (2018).

J. Alloys Compd. (1)

I. Razumova, A. Tkachuk, A. Nikitichev, and D. Mironov, “Spectral-luminescent properties of Tm:YLF crystal,” J. Alloys Compd. 225(1–2), 129–132 (1995).
[Crossref]

J. Appl. Phys. (2)

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).
[Crossref]

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83(5), 2772–2787 (1998).
[Crossref]

J. Chem. Phys. (1)

S. A. Miller, H. E. Rast, and H. H. Caspers, “Lattice vibrations of LiYF4,” J. Chem. Phys. 52(8), 4172–4175 (1970).
[Crossref]

J. Cryst. Growth (1)

F. Starecki, W. Bolaños, G. Brasse, A. Benayad, M. Morales, J. L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Rare earth doped LiYF4 single crystalline films grown by liquid phase epitaxy for the fabrication of planar waveguide lasers,” J. Cryst. Growth 401, 537–541 (2014).
[Crossref]

J. Phys. Chem. C (1)

P. Loiko and M. Pollnau, “Stochastic model of energy-transfer processes among rare-earth ions. Example of Al2O3:Tm3+,” J. Phys. Chem. C 120(46), 26480–26489 (2016).
[Crossref]

Laser Photonics Rev. (1)

J. Zhang, F. Schulze, K.F. Mak, V. Pervak, D. Bauer, D. Sutter, and O. Pronin, “High‐power, high‐efficiency Tm:YAG and Ho:YAG thin‐disk lasers,” Laser Photonics Rev. 12(3), 1700273 (2018).

Opt. Commun. (1)

R. J. Beach, “CW Theory of quasi-three level end-pumped laser oscillators,” Opt. Commun. 123(1-3), 385–393 (1996).
[Crossref]

Opt. Express (1)

E. J. Saarinen, E. Vasileva, O. Antipov, J.-P. Penttinen, M. Tavast, T. Leinonen, and O. G. Okhotnikov, “2-µm Tm:Lu2O3 ceramic disk laser intracavity-pumped by a semiconductor disk laser,” Opt. Express 21(20), 23844–23850 (2013).
[Crossref] [PubMed]

Opt. Lett. (8)

R. C. Stoneman and L. Esterowitz, “Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers,” Opt. Lett. 15(9), 486–488 (1990).
[Crossref] [PubMed]

G. Stoeppler, D. Parisi, M. Tonelli, and M. Eichhorn, “High-efficiency 1.9 µm Tm3+:LiLuF4 thin-disk laser,” Opt. Lett. 37(7), 1163–1165 (2012).
[Crossref] [PubMed]

Y. Wang, W. Chen, M. Mero, L. Zhang, H. Lin, Z. Lin, G. Zhang, F. Rotermund, Y. J. Cho, P. Loiko, X. Mateos, U. Griebner, and V. Petrov, “Sub-100 fs Tm:MgWO4 laser at 2017 nm mode locked by a graphene saturable absorber,” Opt. Lett. 42(16), 3076–3079 (2017).
[Crossref] [PubMed]

S. Vatnik, I. Vedin, M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, V. Petrov, and U. Griebner, “Efficient thin-disk Tm-laser operation based on Tm:KLu(WO4)2/KLu(WO4)2 epitaxies,” Opt. Lett. 37(3), 356–358 (2012).
[Crossref] [PubMed]

S. Rivier, X. Mateos, O. Silvestre, V. Petrov, U. Griebner, M. C. Pujol, M. Aguiló, F. Díaz, S. Vernay, and D. Rytz, “Thin-disk Yb:KLu(WO4)2 laser with single-pass pumping,” Opt. Lett. 33(7), 735–737 (2008).
[Crossref] [PubMed]

X. Mateos, S. Lamrini, K. Scholle, P. Fuhrberg, S. Vatnik, P. Loiko, I. Vedin, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Holmium thin-disk laser based on Ho:KY(WO4)2/KY(WO4)2 epitaxy with 60% slope efficiency and simplified pump geometry,” Opt. Lett. 42(17), 3490–3493 (2017).
[Crossref] [PubMed]

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency,” Opt. Lett. 39(15), 4380–4383 (2014).
[Crossref] [PubMed]

W. Bolanos, F. Starecki, A. Benayad, G. Brasse, V. Ménard, J.-L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Tm:LiYF4 planar waveguide laser at 1.9 μm,” Opt. Lett. 37(19), 4032–4034 (2012).
[Crossref] [PubMed]

Opt. Mater. Express (2)

X. Mateos, P. Loiko, S. Lamrini, K. Scholle, P. Fuhrberg, S. Vatnik, I. Vedin, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Thermo-optic effects in Ho:KY(WO4)2 thin-disk lasers,” Opt. Mater. Express 8(3), 684–690 (2018).
[Crossref]

P. Loiko, J. M. Serres, X. Mateos, S. Tacchini, M. Tonelli, S. Veronesi, D. Parisi, A. Di Lieto, K. Yumashev, U. Griebner, and V. Petrov, “Comparative spectroscopic and thermo-optic study of Tm:LiLnF4 (Ln = Y, Gd, and Lu) crystals for highly-efficient microchip lasers at ~2 μm,” Opt. Mater. Express 7(3), 844–854 (2017).
[Crossref]

Phys. Lett. (1)

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20(3), 277–278 (1966).
[Crossref]

Prog. Quantum Electron. (1)

V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
[Crossref]

Other (4)

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, Ed. (InTech, 2010), pp. 471–500.

A. Diening, B.-M. Dicks, E. Heumann, G. Huber, A. Voss, M. Karszewski, and A. Giesen, “High-power Tm:YAG thin-disk laser,” in Conference on Lasers and Electro-Optics, (IEEE, 1998), pp. 259–260.

M. Schellhorn, P. Koopmann, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Diode-pumped Tm:Lu2O3 thin disk laser,” in Advanced Solid-State Photonics (Optical Society of America, 2011), paper ATuB14.

Lasers and Laser-Related Equipment—Test Methods for Laser Beam Widths, Divergence Angles and Beam Propagation Ratios—Part 1: Stigmatic and Simple Astigmatic Beams, ISO 11146–1, 2005.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Bright-field microscope images of 20 at.% Tm:LiYF4 / (001) LiYF4 epitaxy: (a) top surface of the as-grown layer, arrow indicates surface dendritic LiF structures; (b) laser-grade polished top surface of the active layer (thickness: 100 μm); (c) growth defects at the substrate / layer interface (indicated by an arrow) due to striation defects in bulk LiYF4 substrate; (d) growth defect at the layer surface (indicated by an arrow).
Fig. 2
Fig. 2 Optical microscope image of the polished side facet of the 20 at.% Tm:LiYF4 / (001) LiYF4 epitaxy. The arrow indicates the crystallographic [001] direction.
Fig. 3
Fig. 3 Spectroscopy of 20 at.% Tm:LiYF4 thin films: (a) Absorption spectra for the 3H63H4 and 3H63F4 transitions (in black) compared with the absorption cross-section, σabs, spectra for a 3 at.% Tm:LiYF4 single-crystal (in red), both for σ-polarization; (b) luminescence spectra for the 3F43H6 transition and π and σ polarizations, the excitation wavelength is 780 nm.
Fig. 4
Fig. 4 Decay of luminescence from the 3H4 (a) and 3F4 (b) states of Tm3+ ions for 20 at.% Tm:LiYF4 thin films: circles – experimental data, black lines – single-exponential fits.
Fig. 5
Fig. 5 (a) Scheme of the laser based on 20 at.% Tm:LiYF4 / LiYF4 epitaxy: P – Glan-Taylor polarizer, PM – pump mirror, OC – output coupler; (b) typical oscilloscope traces of the laser emission showing relaxation oscillations and the incident pump radiation; (c) typical laser emission spectrum (unpolarized output).
Fig. 6
Fig. 6 Evaluation of the beam quality factors M2x,y for output beam of the laser based on 20 at.% Tm:LiYF4 / LiYF4 epitaxy: symbols – experimental data on the squared beam diameters, curves – their parabolic fits. Layer thickness: 240 μm, TOC = 5%, Pinc = 2.2 W. Inset – 2D profile of the laser beam in the far-field captured with a thermal imaging screen.
Fig. 7
Fig. 7 Input-output dependences for the 20 at.% Tm:LiYF4 active layers (quasi-CW operation, duty cycle: 1:2): (a) layer thickness: 240 µm, various TOC; (b) TOC = 2%, various layer thickness. η – slope efficiency. The vertical axis corresponds to the averaged peak output power.
Fig. 8
Fig. 8 (a) Simplified scheme of energy levels of Tm3+ ions in LiYF4 showing possible spectroscopic processes (pump, laser, CR – cross-relaxation, black arrows – radiative decay, NR – non-radiative relaxation, ETU – energy-transfer upconversion, EM – energy migration); (b) Quasi-three-level scheme of a Tm:LiYF4 laser used for modeling.
Fig. 9
Fig. 9 Pump quantum efficiency ηq for 20 at.% Tm:LiYF4 well above the laser threshold as a function of TOC for energy-migration rates Wd varying from 28 to 280 × 103 s−1, l = 240 µm, L = 0.2%. Calculation with Eq. (14). CCR = 6.4 × 10−17 cm3s−1, τ30 = 1.51 ms, σLSE = 2.48 × 10−21 cm2 and σLabs = 0.31 × 10−21 cm2.
Fig. 10
Fig. 10 Modified Findlay-Clay analysis for 20 at.% Tm:LiYF4: laser threshold Pth as a function of transmission of the output coupler TOC (a) for KETU varying from 0 to 6.0 × 10−18 cm3s−1 and fixed Wd = 170 × 103 s−1 and (b) for Wd varying from 28 to 280 × 103 s−1 and fixed KETU = 1.0 × 10−18 cm3s−1. Modeling parameters: l = 240µm, L = 0.2%, CCR = 6.4 × 10−17 cm3s−1, and wp = 17 µm.
Fig. 11
Fig. 11 Modified Caird diagram for the laser based on 240 μm-thick 20 at.% Tm:LiYF4 active layer: inverse of the laser slope efficiency, 1/η, plotted as a function of inverse of the output coupling, 1/TOC. Black solid line and curve: no absorption saturation (ηabs = const, standard Caird plot) or absorption saturation (ηabsconst) for KETU = 0 and Wd = 0; dashed colour curves - ηabsconst, Wd varying from 28 to 280 × 103 s−1 and KETU = 0; dotted red curve - ηabsconst, Wd = 170 × 103 s−1 and KETU = 1.0 × 10−18 cm3s−1; circles – experimental data.
Fig. 12
Fig. 12 Modified Findlay-Clay diagram for the laser based on 240 μm-thick 20 at.% Tm:LiYF4 active layer: laser threshold, Pth, plotted as a function of output coupling, TOC. Black line: KETU = 0 and Wd = 0; dashed green curve - Wd = 170 × 103 s−1 and KETU = 0; dotted red curve - Wd = 170 × 103 s−1 and KETU = 1.0 × 10−18 cm3s−1; circles – experimental data. The passive loss L is 0.2%. For all curves, ηabsconst.
Fig. 13
Fig. 13 Optical-to-optical efficiency, ηopt, versus the number of pump passes Np for 5 at.% Tm: and 20 at.% Tm:LiYF4 active layers. Modeling parameters: 2wp = 200 µm, Pinc = 1 kW, l = 240 µm, L = 0.2% and TOC = 2%.

Tables (1)

Tables Icon

Table 1 Output Characteristics a of Lasers Based on Highly-Doped Tm:LiYF4 Active Layers.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

η = h ν L h ν P η q η abs T OC T OC + L ,
P th = h ν P π w p 2 η q η abs ( σ abs L + σ SE L ) τ 2 ( σ abs N Tm l + T OC + L 2 ) ,
g 0 l = ( σ SE L N 2 σ abs L N 1 ) l T OC + L 2 .
η abs 1 pass ( T OC ) = 1 exp ( σ abs P N 1 l ) .
η abs total ( T OC ) = η abs 1-pass [ 1 + R p ( 1 η abs 1-pass ) ] .
d N 2 d t = 2 C CR N 1 N 3 2 K ETU N 2 2 N 2 τ 2 ( σ SE L N 2 σ abs L N 1 ) I L ,
d N 3 d t = σ abs P N 1 I P C CR N 1 N 3 ( W d + 1 τ 30 ) N 3 + K ETU N 2 2 ,
η q = N 2 τ 2 + ( σ SE L N 2 σ abs L N 1 ) I L σ abs P N 1 I P .
η q σ abs P N 1 I P = 2 C CR N 1 N 3 2 K E T U N 2 2 .
N 3 = σ abs P N 1 I P + K E T U N 2 2 W d + 1 / τ 30 + C CR N 1 .
η q = 2 C C R N 1 W d + 1 / τ 30 K ETU N 2 2 σ abs P N 1 I P C C R N 1 W d + 1 / τ 30 + 1 .
η q = 2 C CR N 1 W d + 1 / τ 30 1 + C CR N 1 W d + 1 / τ 30 + 2 K ETU ( N Tm N 1 ) 2 N Tm N 1 τ 2 + ( T OC + L ) P out h ν L T OC π w p 2 l .
η q = 2 C CR N 1 W d + 1 / τ 30 + C C R N 1 .
η q = 1 / τ 30 + 2 W CR ( 1 / τ 3rad ) ( 1 β 32 ) 1 / τ 30 + W CR .
η q = 1 + W CR 1 / τ 30 + W CR .
η q = 2 C CR W d + 1 / τ 30 C CR W d + 1 / τ 30 + ( σ SE L + σ abs L ) l σ SE L N Tm l ( T OC + L ) / 2 .

Metrics