Abstract

In this paper, we propose a method of chromatic aberration elimination in holographic display based on a zoomable liquid lens. The liquid lens is filled with two immiscible liquids and developed by using the principle of electrowetting. The shape at the liquid-liquid interface changes with the voltage applied to the liquid lens, so the focal length can be adjusted by changing the voltage. By using the liquid lens in the holographic display system, the position of the reconstructed image can be controlled. When three color lasers illuminate the corresponding holograms and the focal length of the liquid lens changes accordingly, three color images can coincide in the same location clearly. The experimental results verify its feasibility.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Holographic zoom micro-projection system based on three spatial light modulators

Di Wang, Chao Liu, and Qiong-Hua Wang
Opt. Express 27(6) 8048-8058 (2019)

Full color holographic display system based on intensity matching of reconstructed image

Di Wang, Chao Liu, Fan Chu, and Qiong-Hua Wang
Opt. Express 27(12) 16599-16612 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Y. Pan, Y. Wang, J. Liu, X. Li, and J. Jia, “Fast polygon-based method for calculating computer-generated holograms in three-dimensional display,” Appl. Opt. 52(1), A290–A299 (2013).
    [Crossref] [PubMed]
  2. N. Chen, C. Zuo, E. Y. Lam, and B. Lee, “3D imaging based on depth measurement technologies,” Sensors (Basel) 18(11), 3711 (2018).
    [Crossref] [PubMed]
  3. X. Li, D. Xiao, and Q. H. Wang, “Error-free holographic frames encryption with CA pixel-permutation encoding algorithm,” Opt. Lasers Eng. 100, 200–207 (2018).
    [Crossref]
  4. B. J. Jackin and T. Yatagai, “Fast calculation of spherical computer generated hologram using spherical wave spectrum method,” Opt. Express 21(1), 935–948 (2013).
    [Crossref] [PubMed]
  5. N. Chen, J. H. Park, and N. Kim, “Parameter analysis of integral Fourier hologram and its resolution enhancement,” Opt. Express 18(3), 2152–2167 (2010).
    [Crossref] [PubMed]
  6. D. Wang, C. Liu, L. Li, X. Zhou, and Q. H. Wang, “Adjustable liquid aperture to eliminate undesirable light in holographic projection,” Opt. Express 24(3), 2098–2105 (2016).
    [Crossref] [PubMed]
  7. A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Colour hologram projection with an SLM by exploiting its full phase modulation range,” Opt. Express 22(17), 20530–20541 (2014).
    [Crossref] [PubMed]
  8. A. Shiraki, N. Takada, M. Niwa, Y. Ichihashi, T. Shimobaba, N. Masuda, and T. Ito, “Simplified electroholographic color reconstruction system using graphics processing unit and liquid crystal display projector,” Opt. Express 17(18), 16038–16045 (2009).
    [Crossref] [PubMed]
  9. T. Kozacki and M. Chlipala, “Color holographic display with white light LED source and single phase only SLM,” Opt. Express 24(3), 2189–2199 (2016).
    [Crossref] [PubMed]
  10. Y. Tsuchiyama and K. Matsushima, “Full-color large-scaled computer-generated holograms using RGB color filters,” Opt. Express 25(3), 2016–2030 (2017).
    [Crossref] [PubMed]
  11. W. Zaperty, T. Kozacki, and M. Kujawińska, “Multi-SLM color holographic 3D display based on RGB spatial filter,” J. Disp. Technol. 12(12), 1724–1731 (2016).
    [Crossref]
  12. F. Yaraş, H. Kang, and L. Onural, “Real-time phase-only color holographic video display system using LED illumination,” Appl. Opt. 48(34), H48–H53 (2009).
    [Crossref] [PubMed]
  13. H. Zhang, J. Xie, J. Liu, and Y. Wang, “Elimination of a zero-order beam induced by a pixelated spatial light modulator for holographic projection,” Appl. Opt. 48(30), 5834–5841 (2009).
    [Crossref] [PubMed]
  14. T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing-zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” J. Disp. Technol. 7(7), 382–390 (2011).
    [Crossref]
  15. H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
    [Crossref] [PubMed]
  16. C. Wang, D. Wang, and Q. H. Wang, “A method of chromatic aberration compensation in holographic projection display based on a single spatial light modulator,” J. Soc. Inf. Disp. 23(1), 14–18 (2015).
    [Crossref]
  17. S. Kuiper and B. H. W. Hendriks, “Variable-focal liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
    [Crossref]
  18. Y. Wu, C. P. Chen, L. Mi, W. Zhang, J. Zhao, Y. Lu, W. Guo, B. Yu, Y. Li, and N. Maitlo, “Design of retinal-projection-based near-eye display with contact lens,” Opt. Express 26(9), 11553–11567 (2018).
    [Crossref] [PubMed]
  19. Z. Xin, D. Wei, M. Chen, C. Hu, J. Li, X. Zhang, J. Liao, H. Wang, and C. Xie, “Graphene-based adaptive liquid-crystal microlens array for a wide infrared spectral region,” Opt. Mater. Express 9(1), 183–194 (2019).
    [Crossref]
  20. H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
    [Crossref]
  21. M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” J. Disp. Technol. 10(6), 450–455 (2014).
    [Crossref]
  22. Y. Takaki and Y. Hayashi, “Increased horizontal viewing zone angle of a hologram by resolution redistribution of a spatial light modulator,” Appl. Opt. 47(19), D6–D11 (2008).
    [Crossref] [PubMed]

2019 (1)

2018 (3)

Y. Wu, C. P. Chen, L. Mi, W. Zhang, J. Zhao, Y. Lu, W. Guo, B. Yu, Y. Li, and N. Maitlo, “Design of retinal-projection-based near-eye display with contact lens,” Opt. Express 26(9), 11553–11567 (2018).
[Crossref] [PubMed]

N. Chen, C. Zuo, E. Y. Lam, and B. Lee, “3D imaging based on depth measurement technologies,” Sensors (Basel) 18(11), 3711 (2018).
[Crossref] [PubMed]

X. Li, D. Xiao, and Q. H. Wang, “Error-free holographic frames encryption with CA pixel-permutation encoding algorithm,” Opt. Lasers Eng. 100, 200–207 (2018).
[Crossref]

2017 (1)

2016 (3)

2015 (1)

C. Wang, D. Wang, and Q. H. Wang, “A method of chromatic aberration compensation in holographic projection display based on a single spatial light modulator,” J. Soc. Inf. Disp. 23(1), 14–18 (2015).
[Crossref]

2014 (2)

A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Colour hologram projection with an SLM by exploiting its full phase modulation range,” Opt. Express 22(17), 20530–20541 (2014).
[Crossref] [PubMed]

M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” J. Disp. Technol. 10(6), 450–455 (2014).
[Crossref]

2013 (2)

2012 (1)

2011 (1)

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing-zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” J. Disp. Technol. 7(7), 382–390 (2011).
[Crossref]

2010 (1)

2009 (3)

2008 (1)

2004 (2)

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

S. Kuiper and B. H. W. Hendriks, “Variable-focal liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

Bernet, S.

Chen, C. P.

Chen, M.

Chen, M. S.

M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” J. Disp. Technol. 10(6), 450–455 (2014).
[Crossref]

H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[Crossref] [PubMed]

Chen, N.

N. Chen, C. Zuo, E. Y. Lam, and B. Lee, “3D imaging based on depth measurement technologies,” Sensors (Basel) 18(11), 3711 (2018).
[Crossref] [PubMed]

N. Chen, J. H. Park, and N. Kim, “Parameter analysis of integral Fourier hologram and its resolution enhancement,” Opt. Express 18(3), 2152–2167 (2010).
[Crossref] [PubMed]

Chlipala, M.

Collings, N.

M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” J. Disp. Technol. 10(6), 450–455 (2014).
[Crossref]

H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[Crossref] [PubMed]

Fan, Y. H.

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Gauza, S.

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Guo, W.

Hayashi, Y.

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, “Variable-focal liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

Hu, C.

Ichihashi, Y.

Ito, T.

Jackin, B. J.

Jesacher, A.

Jia, J.

Kang, H.

Kim, N.

Kozacki, T.

W. Zaperty, T. Kozacki, and M. Kujawińska, “Multi-SLM color holographic 3D display based on RGB spatial filter,” J. Disp. Technol. 12(12), 1724–1731 (2016).
[Crossref]

T. Kozacki and M. Chlipala, “Color holographic display with white light LED source and single phase only SLM,” Opt. Express 24(3), 2189–2199 (2016).
[Crossref] [PubMed]

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, “Variable-focal liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

Kujawinska, M.

W. Zaperty, T. Kozacki, and M. Kujawińska, “Multi-SLM color holographic 3D display based on RGB spatial filter,” J. Disp. Technol. 12(12), 1724–1731 (2016).
[Crossref]

Kurita, T.

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing-zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” J. Disp. Technol. 7(7), 382–390 (2011).
[Crossref]

Lam, E. Y.

N. Chen, C. Zuo, E. Y. Lam, and B. Lee, “3D imaging based on depth measurement technologies,” Sensors (Basel) 18(11), 3711 (2018).
[Crossref] [PubMed]

Lee, B.

N. Chen, C. Zuo, E. Y. Lam, and B. Lee, “3D imaging based on depth measurement technologies,” Sensors (Basel) 18(11), 3711 (2018).
[Crossref] [PubMed]

Li, J.

Li, L.

Li, X.

X. Li, D. Xiao, and Q. H. Wang, “Error-free holographic frames encryption with CA pixel-permutation encoding algorithm,” Opt. Lasers Eng. 100, 200–207 (2018).
[Crossref]

Y. Pan, Y. Wang, J. Liu, X. Li, and J. Jia, “Fast polygon-based method for calculating computer-generated holograms in three-dimensional display,” Appl. Opt. 52(1), A290–A299 (2013).
[Crossref] [PubMed]

Li, Y.

Liao, J.

Lin, H. C.

M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” J. Disp. Technol. 10(6), 450–455 (2014).
[Crossref]

H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[Crossref] [PubMed]

Lin, Y. H.

M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” J. Disp. Technol. 10(6), 450–455 (2014).
[Crossref]

H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[Crossref] [PubMed]

Liu, C.

Liu, J.

Lu, Y.

Maitlo, N.

Masuda, N.

Matsushima, K.

Mi, L.

Mishina, T.

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing-zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” J. Disp. Technol. 7(7), 382–390 (2011).
[Crossref]

Niwa, M.

Oi, R.

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing-zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” J. Disp. Technol. 7(7), 382–390 (2011).
[Crossref]

Onural, L.

Pan, Y.

Park, J. H.

Ren, H.

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Ritsch-Marte, M.

Senoh, T.

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing-zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” J. Disp. Technol. 7(7), 382–390 (2011).
[Crossref]

Shimobaba, T.

Shiraki, A.

Takada, N.

Takaki, Y.

Tsuchiyama, Y.

Wang, C.

C. Wang, D. Wang, and Q. H. Wang, “A method of chromatic aberration compensation in holographic projection display based on a single spatial light modulator,” J. Soc. Inf. Disp. 23(1), 14–18 (2015).
[Crossref]

Wang, D.

D. Wang, C. Liu, L. Li, X. Zhou, and Q. H. Wang, “Adjustable liquid aperture to eliminate undesirable light in holographic projection,” Opt. Express 24(3), 2098–2105 (2016).
[Crossref] [PubMed]

C. Wang, D. Wang, and Q. H. Wang, “A method of chromatic aberration compensation in holographic projection display based on a single spatial light modulator,” J. Soc. Inf. Disp. 23(1), 14–18 (2015).
[Crossref]

Wang, H.

Wang, Q. H.

X. Li, D. Xiao, and Q. H. Wang, “Error-free holographic frames encryption with CA pixel-permutation encoding algorithm,” Opt. Lasers Eng. 100, 200–207 (2018).
[Crossref]

D. Wang, C. Liu, L. Li, X. Zhou, and Q. H. Wang, “Adjustable liquid aperture to eliminate undesirable light in holographic projection,” Opt. Express 24(3), 2098–2105 (2016).
[Crossref] [PubMed]

C. Wang, D. Wang, and Q. H. Wang, “A method of chromatic aberration compensation in holographic projection display based on a single spatial light modulator,” J. Soc. Inf. Disp. 23(1), 14–18 (2015).
[Crossref]

Wang, Y.

Wei, D.

Wu, S. T.

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Wu, Y.

Xiao, D.

X. Li, D. Xiao, and Q. H. Wang, “Error-free holographic frames encryption with CA pixel-permutation encoding algorithm,” Opt. Lasers Eng. 100, 200–207 (2018).
[Crossref]

Xie, C.

Xie, J.

Xin, Z.

Yamamoto, K.

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing-zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” J. Disp. Technol. 7(7), 382–390 (2011).
[Crossref]

Yaras, F.

Yatagai, T.

Yu, B.

Zaperty, W.

W. Zaperty, T. Kozacki, and M. Kujawińska, “Multi-SLM color holographic 3D display based on RGB spatial filter,” J. Disp. Technol. 12(12), 1724–1731 (2016).
[Crossref]

Zhang, H.

Zhang, W.

Zhang, X.

Zhao, J.

Zhou, X.

Zuo, C.

N. Chen, C. Zuo, E. Y. Lam, and B. Lee, “3D imaging based on depth measurement technologies,” Sensors (Basel) 18(11), 3711 (2018).
[Crossref] [PubMed]

Appl. Opt. (4)

Appl. Phys. Lett. (2)

S. Kuiper and B. H. W. Hendriks, “Variable-focal liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

J. Disp. Technol. (3)

M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” J. Disp. Technol. 10(6), 450–455 (2014).
[Crossref]

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing-zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” J. Disp. Technol. 7(7), 382–390 (2011).
[Crossref]

W. Zaperty, T. Kozacki, and M. Kujawińska, “Multi-SLM color holographic 3D display based on RGB spatial filter,” J. Disp. Technol. 12(12), 1724–1731 (2016).
[Crossref]

J. Soc. Inf. Disp. (1)

C. Wang, D. Wang, and Q. H. Wang, “A method of chromatic aberration compensation in holographic projection display based on a single spatial light modulator,” J. Soc. Inf. Disp. 23(1), 14–18 (2015).
[Crossref]

Opt. Express (9)

B. J. Jackin and T. Yatagai, “Fast calculation of spherical computer generated hologram using spherical wave spectrum method,” Opt. Express 21(1), 935–948 (2013).
[Crossref] [PubMed]

N. Chen, J. H. Park, and N. Kim, “Parameter analysis of integral Fourier hologram and its resolution enhancement,” Opt. Express 18(3), 2152–2167 (2010).
[Crossref] [PubMed]

D. Wang, C. Liu, L. Li, X. Zhou, and Q. H. Wang, “Adjustable liquid aperture to eliminate undesirable light in holographic projection,” Opt. Express 24(3), 2098–2105 (2016).
[Crossref] [PubMed]

A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Colour hologram projection with an SLM by exploiting its full phase modulation range,” Opt. Express 22(17), 20530–20541 (2014).
[Crossref] [PubMed]

A. Shiraki, N. Takada, M. Niwa, Y. Ichihashi, T. Shimobaba, N. Masuda, and T. Ito, “Simplified electroholographic color reconstruction system using graphics processing unit and liquid crystal display projector,” Opt. Express 17(18), 16038–16045 (2009).
[Crossref] [PubMed]

T. Kozacki and M. Chlipala, “Color holographic display with white light LED source and single phase only SLM,” Opt. Express 24(3), 2189–2199 (2016).
[Crossref] [PubMed]

Y. Tsuchiyama and K. Matsushima, “Full-color large-scaled computer-generated holograms using RGB color filters,” Opt. Express 25(3), 2016–2030 (2017).
[Crossref] [PubMed]

H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[Crossref] [PubMed]

Y. Wu, C. P. Chen, L. Mi, W. Zhang, J. Zhao, Y. Lu, W. Guo, B. Yu, Y. Li, and N. Maitlo, “Design of retinal-projection-based near-eye display with contact lens,” Opt. Express 26(9), 11553–11567 (2018).
[Crossref] [PubMed]

Opt. Lasers Eng. (1)

X. Li, D. Xiao, and Q. H. Wang, “Error-free holographic frames encryption with CA pixel-permutation encoding algorithm,” Opt. Lasers Eng. 100, 200–207 (2018).
[Crossref]

Opt. Mater. Express (1)

Sensors (Basel) (1)

N. Chen, C. Zuo, E. Y. Lam, and B. Lee, “3D imaging based on depth measurement technologies,” Sensors (Basel) 18(11), 3711 (2018).
[Crossref] [PubMed]

Supplementary Material (1)

NameDescription
» Visualization 1       Video result of a moving object

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Principle of the holographic reproduction. (a) Fresnel diffraction; (b) Fourier transform.
Fig. 2
Fig. 2 Color reconstruction with chromatic aberration.
Fig. 3
Fig. 3 Structure of the liquid lens. (a) State without voltage; (b) state when the voltage is applied on the device.
Fig. 4
Fig. 4 Color reconstruction with the proposed method.
Fig. 5
Fig. 5 Relationship between the focal length and the voltage of the liquid lens.
Fig. 6
Fig. 6 Flow chart of the iterative Fourier transform algorithm.
Fig. 7
Fig. 7 Experimental setup of the holographic reproduction.
Fig. 8
Fig. 8 Green reconstructed image when the voltage of the liquid lens changes. (a) dg = 40cm; (b) dg = 42.5cm; (c) dg = 65cm.
Fig. 9
Fig. 9 Reconstructed image when the voltage of the liquid lens changes. (a)-(c) are the images when U = 44.3V; (d) blue image when U = 42.8V; (e) green image when U = 43.6V.
Fig. 10
Fig. 10 Three color object after adjusting the resolutions. (a) Blue object; (b) green object; (c) red object.
Fig. 11
Fig. 11 Color holographic reconstruction.
Fig. 12
Fig. 12 Result of the holographic zoom display. (a) - (c) are the reconstructed images of different magnifications.
Fig. 13
Fig. 13 Results when using the traditional method. (a) Result when using the traditional solid lens to reconstruct the image; (b) result when correcting the hologram to change the position of the reconstructed image.
Fig. 14
Fig. 14 Result of the 3D object. (a) Result when focusing on the depth of “B”; (b) result when focusing on the depth of “H”.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

U s (x,y)= e iks isλ exp[ iπ sλ ( x 2 + y 2 )] {U(u,v)exp[ ik 2s ( u 2 + v 2 )}exp[ 2iπ sλ (xu+yv)] dudv,
U f (x,y)= e ikf ifλ exp[ iπ fλ ( x 2 + y 2 )] U(u,v)exp[ 2iπ fλ (xu+yv)] dudv.
f= r 2(n1) ,

Metrics