Abstract

Based on the theories of quantum weak measurement, we built a set of linear common-path optical weak measurement systems in frequency domain for detecting chiral molecules. The polarization resolution with this system to detect the optical rotation of chirality molecules is nearly two orders of magnitude higher than that of conventional polarizers. Combined with ultraviolet spectroscopy, the purity of the proline enantiomers mixture was detected. The purity resolution can reach to 0.14%, which is comparable to the liquid chromatography. Weak measurement combined with ultraviolet spectroscopy to non-separatedly detect the purity of chiral enantiomers has great application potential in the pharmaceutical industry.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical Activity for Exobiology and the Exploration of Mars

B. Halpern
Appl. Opt. 8(7) 1349-1353 (1969)

Optical enantioseparation of chiral molecules using asymmetric plasmonic nanoapertures

Hipólito A. Arredondo Champi, Rina H. Bustamante, and Walter J. Salcedo
Opt. Mater. Express 9(4) 1763-1775 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. N. L. Batista, F. M. Dos Santos, J. M. Batista, and Q. B. Cass, “Enantiomeric Mixtures in Natural Product Chemistry: Separation and Absolute Configuration Assignment,” Molecules 23(2), 1–18 (2018).
    [Crossref] [PubMed]
  2. L. Zhang, G. Wang, C. Xiong, L. Zheng, J. He, Y. Ding, H. Lu, G. Zhang, K. Cho, and L. Qiu, “Chirality detection of amino acid enantiomers by organic electrochemical transistor,” Biosens. Bioelectron. 105, 121–128 (2018).
    [Crossref] [PubMed]
  3. Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8, 14180 (2017).
    [Crossref] [PubMed]
  4. V. Dochez and G. Ducarme, “Primary hyperparathyroidism during pregnancy,” Arch. Gynecol. Obstet. 291(2), 259–263 (2015).
    [Crossref] [PubMed]
  5. P. Singh, S. K. Kumar, V. K. Maurya, B. K. Mehta, H. Ahmad, A. K. Dwivedi, V. Chaturvedi, T. S. Thakur, and S. Sinha, “S-Enantiomer of the Antitubercular Compound S006-830 Complements Activity of Frontline TB Drugs and Targets Biogenesis of Mycobacterium tuberculosis Cell Envelope,” ACS Omega 2(11), 8453–8465 (2017).
    [Crossref] [PubMed]
  6. S. di Somma, V. Liguori, M. Petitto, P. Galletti, and O. de Divitiis, “The hemodynamic effect of etozolin in the treatment of hypertension,” Curr. Ther. Res. Clin. Exp. 48, 1044–1052 (1990).
  7. L. Ma, X. Zhao, H. Liu, H. Zhu, W. Yang, Y. Qian, J. Wang, M. Feng, and Y. Li, “Antidepression medication improves quality of life in elderly patients with benign prostatic hyperplasia and depression,” Int. J. Clin. Exp. Med. 8(3), 4031–4037 (2015).
    [PubMed]
  8. P. S. Bonato and F. O. Paias, “Enantioselective Analysis of Omeprazole in Pharmaceutical Formulations by Chiral High-Performance Liquid Chromatography and Capillary Electrophoresis,” J. Braz. Chem. Soc. 15(2), 318–323 (2004).
    [Crossref]
  9. F. Kirsch and A. Buettner, “Characterisation of the metabolites of 1,8-cineole transferred into human milk: concentrations and ratio of enantiomers,” Metabolites 3(1), 47–71 (2013).
    [Crossref] [PubMed]
  10. K. Huang, F. Jiao, S. Liu, X. Li, and D. Huang, “Enantioselective extration of ketoprofen enantiomers using ester alcohol R,R-DI-Tartarates or S,S-DI-Tartarates as chiral selector,” Lat. Am. Appl. Res. 36, 187–191 (2006).
  11. Y. Shi, C. Zheng, J. Li, L. Yang, Z. Wang, and R. Wang, “Separation and Quantification of Four Main Chiral Glucosinolates in Radix Isatidis and Its Granules Using High-Performance Liquid Chromatography/Diode Array Detector Coupled with Circular Dichroism Detection,” Molecules 23(6), E1305 (2018).
    [Crossref] [PubMed]
  12. A. Petruczynik and M. Waksmundzka-Hajnos, “Analysis of basic psychotropic drugs in biological fluids and tissues by reversed- phase high performance liquid chromatography,” Acta Pol. Pharm. 74(2), 331–346 (2017).
    [PubMed]
  13. B. Ranjbar and P. Gill, “Circular dichroism techniques: biomolecular and nanostructural analyses- a review,” Chem. Biol. Drug Des. 74(2), 101–120 (2009).
    [Crossref] [PubMed]
  14. W. Liu, F. Ding, and Y. Sun, “Characterization of Phenosafranine–Hemoglobin Interactions in Aqueous Solution,” J. Solution Chem. 40(2), 231–246 (2011).
    [Crossref]
  15. I. Dolamic, B. Varnholt, and T. Bürgi, “Chirality transfer from gold nanocluster to adsorbate evidenced by vibrational circular dichroism,” Nat. Commun. 6, 7117 (2015).
    [Crossref] [PubMed]
  16. J. Labuta, S. Ishihara, T. Šikorský, Z. Futera, A. Shundo, L. Hanyková, J. V. Burda, K. Ariga, and J. P. Hill, “NMR spectroscopic detection of chirality and enantiopurity in referenced systems without formation of diastereomers,” Nat. Commun. 4, 2188 (2013).
    [Crossref] [PubMed]
  17. L. H. Ayman, N. Naumovski, A. M. William, and G. Ashraf, “Application of Carbon Nanotubes in Chiral and Achiral Separations of Pharmaceuticals,” Biologics Chem. Nanomaterials 7(186), 1–32 (2017).
  18. J. S. Lundeen and C. Bamber, “Procedure for Direct Measurement of General Quantum States Using Weak Measurement,” Phys. Rev. Lett. 108(7), 070402 (2012).
    [Crossref] [PubMed]
  19. L. Vaidman, “Evolution stopped in its tracks,” Nature 451(7175), 137–138 (2008).
    [Crossref] [PubMed]
  20. L. A. Rozema, A. Darabi, D. H. Mahler, A. Hayat, Y. Soudagar, and A. M. Steinberg, “Violation of Heisenberg’s measurement-disturbance relationship by weak measurements,” Phys. Rev. Lett. 109(10), 100404 (2012).
    [Crossref] [PubMed]
  21. A. N. Korotkov and D. V. Averin, “Continuous weak measurement of quantum coherent oscillations,” Phys. Rev. B Condens. Matter Mater. Phys. 64(16), 165310 (2001).
    [Crossref]
  22. N. W. Ritchie, J. G. Story, and R. G. Hulet, “Realization of a measurement of a “weak value”,” Phys. Rev. Lett. 66(9), 1107–1110 (1991).
    [Crossref] [PubMed]
  23. G. J. Pryde, J. L. O’Brien, A. G. White, T. C. Ralph, and H. M. Wiseman, “Measurement of quantum weak values of photon polarization,” Phys. Rev. Lett. 94(22), 220405 (2005).
    [Crossref] [PubMed]
  24. R. Jozsa, “Complex weak values in quantum measurement,” Quant. Phys. 76(044103), 1–5 (2007).
  25. L. J. Salazar-Serrano, A. Valencia, and J. P. Torres, “Observation of spectral interference for any path difference in an interferometer,” Opt. Lett. 39(15), 4478–4481 (2014).
    [Crossref] [PubMed]
  26. L. Dongmei, G. Tian, H. Yonghong, H. Qinghua, Z. Yilong, W. Xiangnan, S. Zhiyuan, Y. Yuxuan, Q. Zhen, and J. Yanhong, “A differential weak measurement system based on Sagnac interferometer for self-referencing biomolecule detection,” Appl. Phys. Lett. 50, 49LT01 (2017).
  27. D. Li, T. Guan, J. Jiang, and Y. He, “Nondisturbing transverse acoustic sensor based on weak measurement in Mach-Zehnder interferometer,” Opt. Eng. 56(3), 034107 (2017).
    [Crossref]
  28. D. Li, Q. He, Y. He, M. Xin, Y. Zhang, and Z. Shen, “Molecular imprinting sensor based on quantum weak measurement,” Biosens. Bioelectron. 94, 328–334 (2017).
    [Crossref] [PubMed]
  29. D. Li, Z. Shen, Y. He, Y. Zhang, Z. Chen, and H. Ma, “Application of quantum weak measurement for glucose concentration detection,” Appl. Opt. 55(7), 1697–1702 (2016).
    [Crossref] [PubMed]
  30. D. Li, T. Guan, F. Liu, A. Yang, Y. He, Q. He, Z. Shen, and M. Xin, “Optical rotation based chirality detection of enantiomers via weak measurement in frequency domain,” Appl. Phys. Lett. 112(21), 213701 (2018).
    [Crossref]
  31. Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the Result of a Measurement of a Component of the Spin of a Spin-1/2 Particle Can Turn Out to be 100,” Phys. Rev. Lett. 60(14), 1351–1354 (1988).
    [Crossref] [PubMed]
  32. I. M. Duck, P. M. Stevenson, and E. C. Sudarshan, “The sense in which a “weak measurement” of a spin-(1/2 particle’s spin component yields a value 100,” Phys. Rev. D Part. Fields 40(6), 2112–2117 (1989).
    [Crossref] [PubMed]
  33. D. Li, T. Guan, Y. He, F. Liu, A. Yang, Q. He, Z. Shen, and M. Xin, “A chiral sensor based on weak measurement for the determination of Proline enantiomers in diverse measuring circumstances,” Biosens. Bioelectron. 110, 103–109 (2018).
    [Crossref] [PubMed]
  34. Y. Zhang, D. Li, Y. He, Z. Shen, and Q. He, “Optical weak measurement system with common path implementation for label-free biomolecule sensing,” Opt. Lett. 41(22), 5409–5412 (2016).
    [Crossref] [PubMed]
  35. Y. Xu, L. Shi, T. Guan, C. Guo, D. Li, Y. Yang, X. Wang, L. Xie, Y. He, and W. Xie, “Optimization of a quantum weak measurement system with its working areas,” Opt. Express 26(16), 21119–21131 (2018).
    [Crossref] [PubMed]
  36. V. Thomsen, D. Schatzlein, and D. Mercuro, “Limit of Detection in Spectroscopy,” Spectroscopy (Springf.) 18(12), 112–114 (2003).

2018 (6)

A. N. L. Batista, F. M. Dos Santos, J. M. Batista, and Q. B. Cass, “Enantiomeric Mixtures in Natural Product Chemistry: Separation and Absolute Configuration Assignment,” Molecules 23(2), 1–18 (2018).
[Crossref] [PubMed]

L. Zhang, G. Wang, C. Xiong, L. Zheng, J. He, Y. Ding, H. Lu, G. Zhang, K. Cho, and L. Qiu, “Chirality detection of amino acid enantiomers by organic electrochemical transistor,” Biosens. Bioelectron. 105, 121–128 (2018).
[Crossref] [PubMed]

Y. Shi, C. Zheng, J. Li, L. Yang, Z. Wang, and R. Wang, “Separation and Quantification of Four Main Chiral Glucosinolates in Radix Isatidis and Its Granules Using High-Performance Liquid Chromatography/Diode Array Detector Coupled with Circular Dichroism Detection,” Molecules 23(6), E1305 (2018).
[Crossref] [PubMed]

D. Li, T. Guan, F. Liu, A. Yang, Y. He, Q. He, Z. Shen, and M. Xin, “Optical rotation based chirality detection of enantiomers via weak measurement in frequency domain,” Appl. Phys. Lett. 112(21), 213701 (2018).
[Crossref]

D. Li, T. Guan, Y. He, F. Liu, A. Yang, Q. He, Z. Shen, and M. Xin, “A chiral sensor based on weak measurement for the determination of Proline enantiomers in diverse measuring circumstances,” Biosens. Bioelectron. 110, 103–109 (2018).
[Crossref] [PubMed]

Y. Xu, L. Shi, T. Guan, C. Guo, D. Li, Y. Yang, X. Wang, L. Xie, Y. He, and W. Xie, “Optimization of a quantum weak measurement system with its working areas,” Opt. Express 26(16), 21119–21131 (2018).
[Crossref] [PubMed]

2017 (7)

L. Dongmei, G. Tian, H. Yonghong, H. Qinghua, Z. Yilong, W. Xiangnan, S. Zhiyuan, Y. Yuxuan, Q. Zhen, and J. Yanhong, “A differential weak measurement system based on Sagnac interferometer for self-referencing biomolecule detection,” Appl. Phys. Lett. 50, 49LT01 (2017).

D. Li, T. Guan, J. Jiang, and Y. He, “Nondisturbing transverse acoustic sensor based on weak measurement in Mach-Zehnder interferometer,” Opt. Eng. 56(3), 034107 (2017).
[Crossref]

D. Li, Q. He, Y. He, M. Xin, Y. Zhang, and Z. Shen, “Molecular imprinting sensor based on quantum weak measurement,” Biosens. Bioelectron. 94, 328–334 (2017).
[Crossref] [PubMed]

A. Petruczynik and M. Waksmundzka-Hajnos, “Analysis of basic psychotropic drugs in biological fluids and tissues by reversed- phase high performance liquid chromatography,” Acta Pol. Pharm. 74(2), 331–346 (2017).
[PubMed]

L. H. Ayman, N. Naumovski, A. M. William, and G. Ashraf, “Application of Carbon Nanotubes in Chiral and Achiral Separations of Pharmaceuticals,” Biologics Chem. Nanomaterials 7(186), 1–32 (2017).

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8, 14180 (2017).
[Crossref] [PubMed]

P. Singh, S. K. Kumar, V. K. Maurya, B. K. Mehta, H. Ahmad, A. K. Dwivedi, V. Chaturvedi, T. S. Thakur, and S. Sinha, “S-Enantiomer of the Antitubercular Compound S006-830 Complements Activity of Frontline TB Drugs and Targets Biogenesis of Mycobacterium tuberculosis Cell Envelope,” ACS Omega 2(11), 8453–8465 (2017).
[Crossref] [PubMed]

2016 (2)

2015 (3)

L. Ma, X. Zhao, H. Liu, H. Zhu, W. Yang, Y. Qian, J. Wang, M. Feng, and Y. Li, “Antidepression medication improves quality of life in elderly patients with benign prostatic hyperplasia and depression,” Int. J. Clin. Exp. Med. 8(3), 4031–4037 (2015).
[PubMed]

V. Dochez and G. Ducarme, “Primary hyperparathyroidism during pregnancy,” Arch. Gynecol. Obstet. 291(2), 259–263 (2015).
[Crossref] [PubMed]

I. Dolamic, B. Varnholt, and T. Bürgi, “Chirality transfer from gold nanocluster to adsorbate evidenced by vibrational circular dichroism,” Nat. Commun. 6, 7117 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (2)

J. Labuta, S. Ishihara, T. Šikorský, Z. Futera, A. Shundo, L. Hanyková, J. V. Burda, K. Ariga, and J. P. Hill, “NMR spectroscopic detection of chirality and enantiopurity in referenced systems without formation of diastereomers,” Nat. Commun. 4, 2188 (2013).
[Crossref] [PubMed]

F. Kirsch and A. Buettner, “Characterisation of the metabolites of 1,8-cineole transferred into human milk: concentrations and ratio of enantiomers,” Metabolites 3(1), 47–71 (2013).
[Crossref] [PubMed]

2012 (2)

J. S. Lundeen and C. Bamber, “Procedure for Direct Measurement of General Quantum States Using Weak Measurement,” Phys. Rev. Lett. 108(7), 070402 (2012).
[Crossref] [PubMed]

L. A. Rozema, A. Darabi, D. H. Mahler, A. Hayat, Y. Soudagar, and A. M. Steinberg, “Violation of Heisenberg’s measurement-disturbance relationship by weak measurements,” Phys. Rev. Lett. 109(10), 100404 (2012).
[Crossref] [PubMed]

2011 (1)

W. Liu, F. Ding, and Y. Sun, “Characterization of Phenosafranine–Hemoglobin Interactions in Aqueous Solution,” J. Solution Chem. 40(2), 231–246 (2011).
[Crossref]

2009 (1)

B. Ranjbar and P. Gill, “Circular dichroism techniques: biomolecular and nanostructural analyses- a review,” Chem. Biol. Drug Des. 74(2), 101–120 (2009).
[Crossref] [PubMed]

2008 (1)

L. Vaidman, “Evolution stopped in its tracks,” Nature 451(7175), 137–138 (2008).
[Crossref] [PubMed]

2007 (1)

R. Jozsa, “Complex weak values in quantum measurement,” Quant. Phys. 76(044103), 1–5 (2007).

2006 (1)

K. Huang, F. Jiao, S. Liu, X. Li, and D. Huang, “Enantioselective extration of ketoprofen enantiomers using ester alcohol R,R-DI-Tartarates or S,S-DI-Tartarates as chiral selector,” Lat. Am. Appl. Res. 36, 187–191 (2006).

2005 (1)

G. J. Pryde, J. L. O’Brien, A. G. White, T. C. Ralph, and H. M. Wiseman, “Measurement of quantum weak values of photon polarization,” Phys. Rev. Lett. 94(22), 220405 (2005).
[Crossref] [PubMed]

2004 (1)

P. S. Bonato and F. O. Paias, “Enantioselective Analysis of Omeprazole in Pharmaceutical Formulations by Chiral High-Performance Liquid Chromatography and Capillary Electrophoresis,” J. Braz. Chem. Soc. 15(2), 318–323 (2004).
[Crossref]

2003 (1)

V. Thomsen, D. Schatzlein, and D. Mercuro, “Limit of Detection in Spectroscopy,” Spectroscopy (Springf.) 18(12), 112–114 (2003).

2001 (1)

A. N. Korotkov and D. V. Averin, “Continuous weak measurement of quantum coherent oscillations,” Phys. Rev. B Condens. Matter Mater. Phys. 64(16), 165310 (2001).
[Crossref]

1991 (1)

N. W. Ritchie, J. G. Story, and R. G. Hulet, “Realization of a measurement of a “weak value”,” Phys. Rev. Lett. 66(9), 1107–1110 (1991).
[Crossref] [PubMed]

1990 (1)

S. di Somma, V. Liguori, M. Petitto, P. Galletti, and O. de Divitiis, “The hemodynamic effect of etozolin in the treatment of hypertension,” Curr. Ther. Res. Clin. Exp. 48, 1044–1052 (1990).

1989 (1)

I. M. Duck, P. M. Stevenson, and E. C. Sudarshan, “The sense in which a “weak measurement” of a spin-(1/2 particle’s spin component yields a value 100,” Phys. Rev. D Part. Fields 40(6), 2112–2117 (1989).
[Crossref] [PubMed]

1988 (1)

Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the Result of a Measurement of a Component of the Spin of a Spin-1/2 Particle Can Turn Out to be 100,” Phys. Rev. Lett. 60(14), 1351–1354 (1988).
[Crossref] [PubMed]

Aharonov, Y.

Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the Result of a Measurement of a Component of the Spin of a Spin-1/2 Particle Can Turn Out to be 100,” Phys. Rev. Lett. 60(14), 1351–1354 (1988).
[Crossref] [PubMed]

Ahmad, H.

P. Singh, S. K. Kumar, V. K. Maurya, B. K. Mehta, H. Ahmad, A. K. Dwivedi, V. Chaturvedi, T. S. Thakur, and S. Sinha, “S-Enantiomer of the Antitubercular Compound S006-830 Complements Activity of Frontline TB Drugs and Targets Biogenesis of Mycobacterium tuberculosis Cell Envelope,” ACS Omega 2(11), 8453–8465 (2017).
[Crossref] [PubMed]

Albert, D. Z.

Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the Result of a Measurement of a Component of the Spin of a Spin-1/2 Particle Can Turn Out to be 100,” Phys. Rev. Lett. 60(14), 1351–1354 (1988).
[Crossref] [PubMed]

Alù, A.

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8, 14180 (2017).
[Crossref] [PubMed]

Ariga, K.

J. Labuta, S. Ishihara, T. Šikorský, Z. Futera, A. Shundo, L. Hanyková, J. V. Burda, K. Ariga, and J. P. Hill, “NMR spectroscopic detection of chirality and enantiopurity in referenced systems without formation of diastereomers,” Nat. Commun. 4, 2188 (2013).
[Crossref] [PubMed]

Ashraf, G.

L. H. Ayman, N. Naumovski, A. M. William, and G. Ashraf, “Application of Carbon Nanotubes in Chiral and Achiral Separations of Pharmaceuticals,” Biologics Chem. Nanomaterials 7(186), 1–32 (2017).

Askarpour, A. N.

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8, 14180 (2017).
[Crossref] [PubMed]

Averin, D. V.

A. N. Korotkov and D. V. Averin, “Continuous weak measurement of quantum coherent oscillations,” Phys. Rev. B Condens. Matter Mater. Phys. 64(16), 165310 (2001).
[Crossref]

Ayman, L. H.

L. H. Ayman, N. Naumovski, A. M. William, and G. Ashraf, “Application of Carbon Nanotubes in Chiral and Achiral Separations of Pharmaceuticals,” Biologics Chem. Nanomaterials 7(186), 1–32 (2017).

Bamber, C.

J. S. Lundeen and C. Bamber, “Procedure for Direct Measurement of General Quantum States Using Weak Measurement,” Phys. Rev. Lett. 108(7), 070402 (2012).
[Crossref] [PubMed]

Batista, A. N. L.

A. N. L. Batista, F. M. Dos Santos, J. M. Batista, and Q. B. Cass, “Enantiomeric Mixtures in Natural Product Chemistry: Separation and Absolute Configuration Assignment,” Molecules 23(2), 1–18 (2018).
[Crossref] [PubMed]

Batista, J. M.

A. N. L. Batista, F. M. Dos Santos, J. M. Batista, and Q. B. Cass, “Enantiomeric Mixtures in Natural Product Chemistry: Separation and Absolute Configuration Assignment,” Molecules 23(2), 1–18 (2018).
[Crossref] [PubMed]

Bonato, P. S.

P. S. Bonato and F. O. Paias, “Enantioselective Analysis of Omeprazole in Pharmaceutical Formulations by Chiral High-Performance Liquid Chromatography and Capillary Electrophoresis,” J. Braz. Chem. Soc. 15(2), 318–323 (2004).
[Crossref]

Buettner, A.

F. Kirsch and A. Buettner, “Characterisation of the metabolites of 1,8-cineole transferred into human milk: concentrations and ratio of enantiomers,” Metabolites 3(1), 47–71 (2013).
[Crossref] [PubMed]

Burda, J. V.

J. Labuta, S. Ishihara, T. Šikorský, Z. Futera, A. Shundo, L. Hanyková, J. V. Burda, K. Ariga, and J. P. Hill, “NMR spectroscopic detection of chirality and enantiopurity in referenced systems without formation of diastereomers,” Nat. Commun. 4, 2188 (2013).
[Crossref] [PubMed]

Bürgi, T.

I. Dolamic, B. Varnholt, and T. Bürgi, “Chirality transfer from gold nanocluster to adsorbate evidenced by vibrational circular dichroism,” Nat. Commun. 6, 7117 (2015).
[Crossref] [PubMed]

Cass, Q. B.

A. N. L. Batista, F. M. Dos Santos, J. M. Batista, and Q. B. Cass, “Enantiomeric Mixtures in Natural Product Chemistry: Separation and Absolute Configuration Assignment,” Molecules 23(2), 1–18 (2018).
[Crossref] [PubMed]

Chaturvedi, V.

P. Singh, S. K. Kumar, V. K. Maurya, B. K. Mehta, H. Ahmad, A. K. Dwivedi, V. Chaturvedi, T. S. Thakur, and S. Sinha, “S-Enantiomer of the Antitubercular Compound S006-830 Complements Activity of Frontline TB Drugs and Targets Biogenesis of Mycobacterium tuberculosis Cell Envelope,” ACS Omega 2(11), 8453–8465 (2017).
[Crossref] [PubMed]

Chen, Z.

Cho, K.

L. Zhang, G. Wang, C. Xiong, L. Zheng, J. He, Y. Ding, H. Lu, G. Zhang, K. Cho, and L. Qiu, “Chirality detection of amino acid enantiomers by organic electrochemical transistor,” Biosens. Bioelectron. 105, 121–128 (2018).
[Crossref] [PubMed]

Darabi, A.

L. A. Rozema, A. Darabi, D. H. Mahler, A. Hayat, Y. Soudagar, and A. M. Steinberg, “Violation of Heisenberg’s measurement-disturbance relationship by weak measurements,” Phys. Rev. Lett. 109(10), 100404 (2012).
[Crossref] [PubMed]

de Divitiis, O.

S. di Somma, V. Liguori, M. Petitto, P. Galletti, and O. de Divitiis, “The hemodynamic effect of etozolin in the treatment of hypertension,” Curr. Ther. Res. Clin. Exp. 48, 1044–1052 (1990).

di Somma, S.

S. di Somma, V. Liguori, M. Petitto, P. Galletti, and O. de Divitiis, “The hemodynamic effect of etozolin in the treatment of hypertension,” Curr. Ther. Res. Clin. Exp. 48, 1044–1052 (1990).

Ding, F.

W. Liu, F. Ding, and Y. Sun, “Characterization of Phenosafranine–Hemoglobin Interactions in Aqueous Solution,” J. Solution Chem. 40(2), 231–246 (2011).
[Crossref]

Ding, Y.

L. Zhang, G. Wang, C. Xiong, L. Zheng, J. He, Y. Ding, H. Lu, G. Zhang, K. Cho, and L. Qiu, “Chirality detection of amino acid enantiomers by organic electrochemical transistor,” Biosens. Bioelectron. 105, 121–128 (2018).
[Crossref] [PubMed]

Dochez, V.

V. Dochez and G. Ducarme, “Primary hyperparathyroidism during pregnancy,” Arch. Gynecol. Obstet. 291(2), 259–263 (2015).
[Crossref] [PubMed]

Dolamic, I.

I. Dolamic, B. Varnholt, and T. Bürgi, “Chirality transfer from gold nanocluster to adsorbate evidenced by vibrational circular dichroism,” Nat. Commun. 6, 7117 (2015).
[Crossref] [PubMed]

Dongmei, L.

L. Dongmei, G. Tian, H. Yonghong, H. Qinghua, Z. Yilong, W. Xiangnan, S. Zhiyuan, Y. Yuxuan, Q. Zhen, and J. Yanhong, “A differential weak measurement system based on Sagnac interferometer for self-referencing biomolecule detection,” Appl. Phys. Lett. 50, 49LT01 (2017).

Dos Santos, F. M.

A. N. L. Batista, F. M. Dos Santos, J. M. Batista, and Q. B. Cass, “Enantiomeric Mixtures in Natural Product Chemistry: Separation and Absolute Configuration Assignment,” Molecules 23(2), 1–18 (2018).
[Crossref] [PubMed]

Ducarme, G.

V. Dochez and G. Ducarme, “Primary hyperparathyroidism during pregnancy,” Arch. Gynecol. Obstet. 291(2), 259–263 (2015).
[Crossref] [PubMed]

Duck, I. M.

I. M. Duck, P. M. Stevenson, and E. C. Sudarshan, “The sense in which a “weak measurement” of a spin-(1/2 particle’s spin component yields a value 100,” Phys. Rev. D Part. Fields 40(6), 2112–2117 (1989).
[Crossref] [PubMed]

Dwivedi, A. K.

P. Singh, S. K. Kumar, V. K. Maurya, B. K. Mehta, H. Ahmad, A. K. Dwivedi, V. Chaturvedi, T. S. Thakur, and S. Sinha, “S-Enantiomer of the Antitubercular Compound S006-830 Complements Activity of Frontline TB Drugs and Targets Biogenesis of Mycobacterium tuberculosis Cell Envelope,” ACS Omega 2(11), 8453–8465 (2017).
[Crossref] [PubMed]

Feng, M.

L. Ma, X. Zhao, H. Liu, H. Zhu, W. Yang, Y. Qian, J. Wang, M. Feng, and Y. Li, “Antidepression medication improves quality of life in elderly patients with benign prostatic hyperplasia and depression,” Int. J. Clin. Exp. Med. 8(3), 4031–4037 (2015).
[PubMed]

Futera, Z.

J. Labuta, S. Ishihara, T. Šikorský, Z. Futera, A. Shundo, L. Hanyková, J. V. Burda, K. Ariga, and J. P. Hill, “NMR spectroscopic detection of chirality and enantiopurity in referenced systems without formation of diastereomers,” Nat. Commun. 4, 2188 (2013).
[Crossref] [PubMed]

Galletti, P.

S. di Somma, V. Liguori, M. Petitto, P. Galletti, and O. de Divitiis, “The hemodynamic effect of etozolin in the treatment of hypertension,” Curr. Ther. Res. Clin. Exp. 48, 1044–1052 (1990).

Gill, P.

B. Ranjbar and P. Gill, “Circular dichroism techniques: biomolecular and nanostructural analyses- a review,” Chem. Biol. Drug Des. 74(2), 101–120 (2009).
[Crossref] [PubMed]

Guan, T.

D. Li, T. Guan, F. Liu, A. Yang, Y. He, Q. He, Z. Shen, and M. Xin, “Optical rotation based chirality detection of enantiomers via weak measurement in frequency domain,” Appl. Phys. Lett. 112(21), 213701 (2018).
[Crossref]

D. Li, T. Guan, Y. He, F. Liu, A. Yang, Q. He, Z. Shen, and M. Xin, “A chiral sensor based on weak measurement for the determination of Proline enantiomers in diverse measuring circumstances,” Biosens. Bioelectron. 110, 103–109 (2018).
[Crossref] [PubMed]

Y. Xu, L. Shi, T. Guan, C. Guo, D. Li, Y. Yang, X. Wang, L. Xie, Y. He, and W. Xie, “Optimization of a quantum weak measurement system with its working areas,” Opt. Express 26(16), 21119–21131 (2018).
[Crossref] [PubMed]

D. Li, T. Guan, J. Jiang, and Y. He, “Nondisturbing transverse acoustic sensor based on weak measurement in Mach-Zehnder interferometer,” Opt. Eng. 56(3), 034107 (2017).
[Crossref]

Guo, C.

Hanyková, L.

J. Labuta, S. Ishihara, T. Šikorský, Z. Futera, A. Shundo, L. Hanyková, J. V. Burda, K. Ariga, and J. P. Hill, “NMR spectroscopic detection of chirality and enantiopurity in referenced systems without formation of diastereomers,” Nat. Commun. 4, 2188 (2013).
[Crossref] [PubMed]

Hayat, A.

L. A. Rozema, A. Darabi, D. H. Mahler, A. Hayat, Y. Soudagar, and A. M. Steinberg, “Violation of Heisenberg’s measurement-disturbance relationship by weak measurements,” Phys. Rev. Lett. 109(10), 100404 (2012).
[Crossref] [PubMed]

He, J.

L. Zhang, G. Wang, C. Xiong, L. Zheng, J. He, Y. Ding, H. Lu, G. Zhang, K. Cho, and L. Qiu, “Chirality detection of amino acid enantiomers by organic electrochemical transistor,” Biosens. Bioelectron. 105, 121–128 (2018).
[Crossref] [PubMed]

He, Q.

D. Li, T. Guan, F. Liu, A. Yang, Y. He, Q. He, Z. Shen, and M. Xin, “Optical rotation based chirality detection of enantiomers via weak measurement in frequency domain,” Appl. Phys. Lett. 112(21), 213701 (2018).
[Crossref]

D. Li, T. Guan, Y. He, F. Liu, A. Yang, Q. He, Z. Shen, and M. Xin, “A chiral sensor based on weak measurement for the determination of Proline enantiomers in diverse measuring circumstances,” Biosens. Bioelectron. 110, 103–109 (2018).
[Crossref] [PubMed]

D. Li, Q. He, Y. He, M. Xin, Y. Zhang, and Z. Shen, “Molecular imprinting sensor based on quantum weak measurement,” Biosens. Bioelectron. 94, 328–334 (2017).
[Crossref] [PubMed]

Y. Zhang, D. Li, Y. He, Z. Shen, and Q. He, “Optical weak measurement system with common path implementation for label-free biomolecule sensing,” Opt. Lett. 41(22), 5409–5412 (2016).
[Crossref] [PubMed]

He, Y.

Y. Xu, L. Shi, T. Guan, C. Guo, D. Li, Y. Yang, X. Wang, L. Xie, Y. He, and W. Xie, “Optimization of a quantum weak measurement system with its working areas,” Opt. Express 26(16), 21119–21131 (2018).
[Crossref] [PubMed]

D. Li, T. Guan, Y. He, F. Liu, A. Yang, Q. He, Z. Shen, and M. Xin, “A chiral sensor based on weak measurement for the determination of Proline enantiomers in diverse measuring circumstances,” Biosens. Bioelectron. 110, 103–109 (2018).
[Crossref] [PubMed]

D. Li, T. Guan, F. Liu, A. Yang, Y. He, Q. He, Z. Shen, and M. Xin, “Optical rotation based chirality detection of enantiomers via weak measurement in frequency domain,” Appl. Phys. Lett. 112(21), 213701 (2018).
[Crossref]

D. Li, Q. He, Y. He, M. Xin, Y. Zhang, and Z. Shen, “Molecular imprinting sensor based on quantum weak measurement,” Biosens. Bioelectron. 94, 328–334 (2017).
[Crossref] [PubMed]

D. Li, T. Guan, J. Jiang, and Y. He, “Nondisturbing transverse acoustic sensor based on weak measurement in Mach-Zehnder interferometer,” Opt. Eng. 56(3), 034107 (2017).
[Crossref]

Y. Zhang, D. Li, Y. He, Z. Shen, and Q. He, “Optical weak measurement system with common path implementation for label-free biomolecule sensing,” Opt. Lett. 41(22), 5409–5412 (2016).
[Crossref] [PubMed]

D. Li, Z. Shen, Y. He, Y. Zhang, Z. Chen, and H. Ma, “Application of quantum weak measurement for glucose concentration detection,” Appl. Opt. 55(7), 1697–1702 (2016).
[Crossref] [PubMed]

Hill, J. P.

J. Labuta, S. Ishihara, T. Šikorský, Z. Futera, A. Shundo, L. Hanyková, J. V. Burda, K. Ariga, and J. P. Hill, “NMR spectroscopic detection of chirality and enantiopurity in referenced systems without formation of diastereomers,” Nat. Commun. 4, 2188 (2013).
[Crossref] [PubMed]

Huang, D.

K. Huang, F. Jiao, S. Liu, X. Li, and D. Huang, “Enantioselective extration of ketoprofen enantiomers using ester alcohol R,R-DI-Tartarates or S,S-DI-Tartarates as chiral selector,” Lat. Am. Appl. Res. 36, 187–191 (2006).

Huang, K.

K. Huang, F. Jiao, S. Liu, X. Li, and D. Huang, “Enantioselective extration of ketoprofen enantiomers using ester alcohol R,R-DI-Tartarates or S,S-DI-Tartarates as chiral selector,” Lat. Am. Appl. Res. 36, 187–191 (2006).

Hulet, R. G.

N. W. Ritchie, J. G. Story, and R. G. Hulet, “Realization of a measurement of a “weak value”,” Phys. Rev. Lett. 66(9), 1107–1110 (1991).
[Crossref] [PubMed]

Ishihara, S.

J. Labuta, S. Ishihara, T. Šikorský, Z. Futera, A. Shundo, L. Hanyková, J. V. Burda, K. Ariga, and J. P. Hill, “NMR spectroscopic detection of chirality and enantiopurity in referenced systems without formation of diastereomers,” Nat. Commun. 4, 2188 (2013).
[Crossref] [PubMed]

Jiang, J.

D. Li, T. Guan, J. Jiang, and Y. He, “Nondisturbing transverse acoustic sensor based on weak measurement in Mach-Zehnder interferometer,” Opt. Eng. 56(3), 034107 (2017).
[Crossref]

Jiao, F.

K. Huang, F. Jiao, S. Liu, X. Li, and D. Huang, “Enantioselective extration of ketoprofen enantiomers using ester alcohol R,R-DI-Tartarates or S,S-DI-Tartarates as chiral selector,” Lat. Am. Appl. Res. 36, 187–191 (2006).

Jozsa, R.

R. Jozsa, “Complex weak values in quantum measurement,” Quant. Phys. 76(044103), 1–5 (2007).

Kirsch, F.

F. Kirsch and A. Buettner, “Characterisation of the metabolites of 1,8-cineole transferred into human milk: concentrations and ratio of enantiomers,” Metabolites 3(1), 47–71 (2013).
[Crossref] [PubMed]

Korotkov, A. N.

A. N. Korotkov and D. V. Averin, “Continuous weak measurement of quantum coherent oscillations,” Phys. Rev. B Condens. Matter Mater. Phys. 64(16), 165310 (2001).
[Crossref]

Kumar, S. K.

P. Singh, S. K. Kumar, V. K. Maurya, B. K. Mehta, H. Ahmad, A. K. Dwivedi, V. Chaturvedi, T. S. Thakur, and S. Sinha, “S-Enantiomer of the Antitubercular Compound S006-830 Complements Activity of Frontline TB Drugs and Targets Biogenesis of Mycobacterium tuberculosis Cell Envelope,” ACS Omega 2(11), 8453–8465 (2017).
[Crossref] [PubMed]

Labuta, J.

J. Labuta, S. Ishihara, T. Šikorský, Z. Futera, A. Shundo, L. Hanyková, J. V. Burda, K. Ariga, and J. P. Hill, “NMR spectroscopic detection of chirality and enantiopurity in referenced systems without formation of diastereomers,” Nat. Commun. 4, 2188 (2013).
[Crossref] [PubMed]

Li, D.

D. Li, T. Guan, F. Liu, A. Yang, Y. He, Q. He, Z. Shen, and M. Xin, “Optical rotation based chirality detection of enantiomers via weak measurement in frequency domain,” Appl. Phys. Lett. 112(21), 213701 (2018).
[Crossref]

D. Li, T. Guan, Y. He, F. Liu, A. Yang, Q. He, Z. Shen, and M. Xin, “A chiral sensor based on weak measurement for the determination of Proline enantiomers in diverse measuring circumstances,” Biosens. Bioelectron. 110, 103–109 (2018).
[Crossref] [PubMed]

Y. Xu, L. Shi, T. Guan, C. Guo, D. Li, Y. Yang, X. Wang, L. Xie, Y. He, and W. Xie, “Optimization of a quantum weak measurement system with its working areas,” Opt. Express 26(16), 21119–21131 (2018).
[Crossref] [PubMed]

D. Li, T. Guan, J. Jiang, and Y. He, “Nondisturbing transverse acoustic sensor based on weak measurement in Mach-Zehnder interferometer,” Opt. Eng. 56(3), 034107 (2017).
[Crossref]

D. Li, Q. He, Y. He, M. Xin, Y. Zhang, and Z. Shen, “Molecular imprinting sensor based on quantum weak measurement,” Biosens. Bioelectron. 94, 328–334 (2017).
[Crossref] [PubMed]

D. Li, Z. Shen, Y. He, Y. Zhang, Z. Chen, and H. Ma, “Application of quantum weak measurement for glucose concentration detection,” Appl. Opt. 55(7), 1697–1702 (2016).
[Crossref] [PubMed]

Y. Zhang, D. Li, Y. He, Z. Shen, and Q. He, “Optical weak measurement system with common path implementation for label-free biomolecule sensing,” Opt. Lett. 41(22), 5409–5412 (2016).
[Crossref] [PubMed]

Li, J.

Y. Shi, C. Zheng, J. Li, L. Yang, Z. Wang, and R. Wang, “Separation and Quantification of Four Main Chiral Glucosinolates in Radix Isatidis and Its Granules Using High-Performance Liquid Chromatography/Diode Array Detector Coupled with Circular Dichroism Detection,” Molecules 23(6), E1305 (2018).
[Crossref] [PubMed]

Li, X.

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8, 14180 (2017).
[Crossref] [PubMed]

K. Huang, F. Jiao, S. Liu, X. Li, and D. Huang, “Enantioselective extration of ketoprofen enantiomers using ester alcohol R,R-DI-Tartarates or S,S-DI-Tartarates as chiral selector,” Lat. Am. Appl. Res. 36, 187–191 (2006).

Li, Y.

L. Ma, X. Zhao, H. Liu, H. Zhu, W. Yang, Y. Qian, J. Wang, M. Feng, and Y. Li, “Antidepression medication improves quality of life in elderly patients with benign prostatic hyperplasia and depression,” Int. J. Clin. Exp. Med. 8(3), 4031–4037 (2015).
[PubMed]

Liguori, V.

S. di Somma, V. Liguori, M. Petitto, P. Galletti, and O. de Divitiis, “The hemodynamic effect of etozolin in the treatment of hypertension,” Curr. Ther. Res. Clin. Exp. 48, 1044–1052 (1990).

Liu, F.

D. Li, T. Guan, Y. He, F. Liu, A. Yang, Q. He, Z. Shen, and M. Xin, “A chiral sensor based on weak measurement for the determination of Proline enantiomers in diverse measuring circumstances,” Biosens. Bioelectron. 110, 103–109 (2018).
[Crossref] [PubMed]

D. Li, T. Guan, F. Liu, A. Yang, Y. He, Q. He, Z. Shen, and M. Xin, “Optical rotation based chirality detection of enantiomers via weak measurement in frequency domain,” Appl. Phys. Lett. 112(21), 213701 (2018).
[Crossref]

Liu, H.

L. Ma, X. Zhao, H. Liu, H. Zhu, W. Yang, Y. Qian, J. Wang, M. Feng, and Y. Li, “Antidepression medication improves quality of life in elderly patients with benign prostatic hyperplasia and depression,” Int. J. Clin. Exp. Med. 8(3), 4031–4037 (2015).
[PubMed]

Liu, S.

K. Huang, F. Jiao, S. Liu, X. Li, and D. Huang, “Enantioselective extration of ketoprofen enantiomers using ester alcohol R,R-DI-Tartarates or S,S-DI-Tartarates as chiral selector,” Lat. Am. Appl. Res. 36, 187–191 (2006).

Liu, W.

W. Liu, F. Ding, and Y. Sun, “Characterization of Phenosafranine–Hemoglobin Interactions in Aqueous Solution,” J. Solution Chem. 40(2), 231–246 (2011).
[Crossref]

Lu, H.

L. Zhang, G. Wang, C. Xiong, L. Zheng, J. He, Y. Ding, H. Lu, G. Zhang, K. Cho, and L. Qiu, “Chirality detection of amino acid enantiomers by organic electrochemical transistor,” Biosens. Bioelectron. 105, 121–128 (2018).
[Crossref] [PubMed]

Lundeen, J. S.

J. S. Lundeen and C. Bamber, “Procedure for Direct Measurement of General Quantum States Using Weak Measurement,” Phys. Rev. Lett. 108(7), 070402 (2012).
[Crossref] [PubMed]

Ma, H.

Ma, L.

L. Ma, X. Zhao, H. Liu, H. Zhu, W. Yang, Y. Qian, J. Wang, M. Feng, and Y. Li, “Antidepression medication improves quality of life in elderly patients with benign prostatic hyperplasia and depression,” Int. J. Clin. Exp. Med. 8(3), 4031–4037 (2015).
[PubMed]

Mahler, D. H.

L. A. Rozema, A. Darabi, D. H. Mahler, A. Hayat, Y. Soudagar, and A. M. Steinberg, “Violation of Heisenberg’s measurement-disturbance relationship by weak measurements,” Phys. Rev. Lett. 109(10), 100404 (2012).
[Crossref] [PubMed]

Maurya, V. K.

P. Singh, S. K. Kumar, V. K. Maurya, B. K. Mehta, H. Ahmad, A. K. Dwivedi, V. Chaturvedi, T. S. Thakur, and S. Sinha, “S-Enantiomer of the Antitubercular Compound S006-830 Complements Activity of Frontline TB Drugs and Targets Biogenesis of Mycobacterium tuberculosis Cell Envelope,” ACS Omega 2(11), 8453–8465 (2017).
[Crossref] [PubMed]

Mehta, B. K.

P. Singh, S. K. Kumar, V. K. Maurya, B. K. Mehta, H. Ahmad, A. K. Dwivedi, V. Chaturvedi, T. S. Thakur, and S. Sinha, “S-Enantiomer of the Antitubercular Compound S006-830 Complements Activity of Frontline TB Drugs and Targets Biogenesis of Mycobacterium tuberculosis Cell Envelope,” ACS Omega 2(11), 8453–8465 (2017).
[Crossref] [PubMed]

Mercuro, D.

V. Thomsen, D. Schatzlein, and D. Mercuro, “Limit of Detection in Spectroscopy,” Spectroscopy (Springf.) 18(12), 112–114 (2003).

Naumovski, N.

L. H. Ayman, N. Naumovski, A. M. William, and G. Ashraf, “Application of Carbon Nanotubes in Chiral and Achiral Separations of Pharmaceuticals,” Biologics Chem. Nanomaterials 7(186), 1–32 (2017).

O’Brien, J. L.

G. J. Pryde, J. L. O’Brien, A. G. White, T. C. Ralph, and H. M. Wiseman, “Measurement of quantum weak values of photon polarization,” Phys. Rev. Lett. 94(22), 220405 (2005).
[Crossref] [PubMed]

Paias, F. O.

P. S. Bonato and F. O. Paias, “Enantioselective Analysis of Omeprazole in Pharmaceutical Formulations by Chiral High-Performance Liquid Chromatography and Capillary Electrophoresis,” J. Braz. Chem. Soc. 15(2), 318–323 (2004).
[Crossref]

Petitto, M.

S. di Somma, V. Liguori, M. Petitto, P. Galletti, and O. de Divitiis, “The hemodynamic effect of etozolin in the treatment of hypertension,” Curr. Ther. Res. Clin. Exp. 48, 1044–1052 (1990).

Petruczynik, A.

A. Petruczynik and M. Waksmundzka-Hajnos, “Analysis of basic psychotropic drugs in biological fluids and tissues by reversed- phase high performance liquid chromatography,” Acta Pol. Pharm. 74(2), 331–346 (2017).
[PubMed]

Pryde, G. J.

G. J. Pryde, J. L. O’Brien, A. G. White, T. C. Ralph, and H. M. Wiseman, “Measurement of quantum weak values of photon polarization,” Phys. Rev. Lett. 94(22), 220405 (2005).
[Crossref] [PubMed]

Qian, Y.

L. Ma, X. Zhao, H. Liu, H. Zhu, W. Yang, Y. Qian, J. Wang, M. Feng, and Y. Li, “Antidepression medication improves quality of life in elderly patients with benign prostatic hyperplasia and depression,” Int. J. Clin. Exp. Med. 8(3), 4031–4037 (2015).
[PubMed]

Qinghua, H.

L. Dongmei, G. Tian, H. Yonghong, H. Qinghua, Z. Yilong, W. Xiangnan, S. Zhiyuan, Y. Yuxuan, Q. Zhen, and J. Yanhong, “A differential weak measurement system based on Sagnac interferometer for self-referencing biomolecule detection,” Appl. Phys. Lett. 50, 49LT01 (2017).

Qiu, L.

L. Zhang, G. Wang, C. Xiong, L. Zheng, J. He, Y. Ding, H. Lu, G. Zhang, K. Cho, and L. Qiu, “Chirality detection of amino acid enantiomers by organic electrochemical transistor,” Biosens. Bioelectron. 105, 121–128 (2018).
[Crossref] [PubMed]

Ralph, T. C.

G. J. Pryde, J. L. O’Brien, A. G. White, T. C. Ralph, and H. M. Wiseman, “Measurement of quantum weak values of photon polarization,” Phys. Rev. Lett. 94(22), 220405 (2005).
[Crossref] [PubMed]

Ranjbar, B.

B. Ranjbar and P. Gill, “Circular dichroism techniques: biomolecular and nanostructural analyses- a review,” Chem. Biol. Drug Des. 74(2), 101–120 (2009).
[Crossref] [PubMed]

Ritchie, N. W.

N. W. Ritchie, J. G. Story, and R. G. Hulet, “Realization of a measurement of a “weak value”,” Phys. Rev. Lett. 66(9), 1107–1110 (1991).
[Crossref] [PubMed]

Rozema, L. A.

L. A. Rozema, A. Darabi, D. H. Mahler, A. Hayat, Y. Soudagar, and A. M. Steinberg, “Violation of Heisenberg’s measurement-disturbance relationship by weak measurements,” Phys. Rev. Lett. 109(10), 100404 (2012).
[Crossref] [PubMed]

Salazar-Serrano, L. J.

Schatzlein, D.

V. Thomsen, D. Schatzlein, and D. Mercuro, “Limit of Detection in Spectroscopy,” Spectroscopy (Springf.) 18(12), 112–114 (2003).

Shen, Z.

D. Li, T. Guan, Y. He, F. Liu, A. Yang, Q. He, Z. Shen, and M. Xin, “A chiral sensor based on weak measurement for the determination of Proline enantiomers in diverse measuring circumstances,” Biosens. Bioelectron. 110, 103–109 (2018).
[Crossref] [PubMed]

D. Li, T. Guan, F. Liu, A. Yang, Y. He, Q. He, Z. Shen, and M. Xin, “Optical rotation based chirality detection of enantiomers via weak measurement in frequency domain,” Appl. Phys. Lett. 112(21), 213701 (2018).
[Crossref]

D. Li, Q. He, Y. He, M. Xin, Y. Zhang, and Z. Shen, “Molecular imprinting sensor based on quantum weak measurement,” Biosens. Bioelectron. 94, 328–334 (2017).
[Crossref] [PubMed]

D. Li, Z. Shen, Y. He, Y. Zhang, Z. Chen, and H. Ma, “Application of quantum weak measurement for glucose concentration detection,” Appl. Opt. 55(7), 1697–1702 (2016).
[Crossref] [PubMed]

Y. Zhang, D. Li, Y. He, Z. Shen, and Q. He, “Optical weak measurement system with common path implementation for label-free biomolecule sensing,” Opt. Lett. 41(22), 5409–5412 (2016).
[Crossref] [PubMed]

Shi, J.

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8, 14180 (2017).
[Crossref] [PubMed]

Shi, L.

Shi, Y.

Y. Shi, C. Zheng, J. Li, L. Yang, Z. Wang, and R. Wang, “Separation and Quantification of Four Main Chiral Glucosinolates in Radix Isatidis and Its Granules Using High-Performance Liquid Chromatography/Diode Array Detector Coupled with Circular Dichroism Detection,” Molecules 23(6), E1305 (2018).
[Crossref] [PubMed]

Shundo, A.

J. Labuta, S. Ishihara, T. Šikorský, Z. Futera, A. Shundo, L. Hanyková, J. V. Burda, K. Ariga, and J. P. Hill, “NMR spectroscopic detection of chirality and enantiopurity in referenced systems without formation of diastereomers,” Nat. Commun. 4, 2188 (2013).
[Crossref] [PubMed]

Šikorský, T.

J. Labuta, S. Ishihara, T. Šikorský, Z. Futera, A. Shundo, L. Hanyková, J. V. Burda, K. Ariga, and J. P. Hill, “NMR spectroscopic detection of chirality and enantiopurity in referenced systems without formation of diastereomers,” Nat. Commun. 4, 2188 (2013).
[Crossref] [PubMed]

Singh, P.

P. Singh, S. K. Kumar, V. K. Maurya, B. K. Mehta, H. Ahmad, A. K. Dwivedi, V. Chaturvedi, T. S. Thakur, and S. Sinha, “S-Enantiomer of the Antitubercular Compound S006-830 Complements Activity of Frontline TB Drugs and Targets Biogenesis of Mycobacterium tuberculosis Cell Envelope,” ACS Omega 2(11), 8453–8465 (2017).
[Crossref] [PubMed]

Sinha, S.

P. Singh, S. K. Kumar, V. K. Maurya, B. K. Mehta, H. Ahmad, A. K. Dwivedi, V. Chaturvedi, T. S. Thakur, and S. Sinha, “S-Enantiomer of the Antitubercular Compound S006-830 Complements Activity of Frontline TB Drugs and Targets Biogenesis of Mycobacterium tuberculosis Cell Envelope,” ACS Omega 2(11), 8453–8465 (2017).
[Crossref] [PubMed]

Soudagar, Y.

L. A. Rozema, A. Darabi, D. H. Mahler, A. Hayat, Y. Soudagar, and A. M. Steinberg, “Violation of Heisenberg’s measurement-disturbance relationship by weak measurements,” Phys. Rev. Lett. 109(10), 100404 (2012).
[Crossref] [PubMed]

Steinberg, A. M.

L. A. Rozema, A. Darabi, D. H. Mahler, A. Hayat, Y. Soudagar, and A. M. Steinberg, “Violation of Heisenberg’s measurement-disturbance relationship by weak measurements,” Phys. Rev. Lett. 109(10), 100404 (2012).
[Crossref] [PubMed]

Stevenson, P. M.

I. M. Duck, P. M. Stevenson, and E. C. Sudarshan, “The sense in which a “weak measurement” of a spin-(1/2 particle’s spin component yields a value 100,” Phys. Rev. D Part. Fields 40(6), 2112–2117 (1989).
[Crossref] [PubMed]

Story, J. G.

N. W. Ritchie, J. G. Story, and R. G. Hulet, “Realization of a measurement of a “weak value”,” Phys. Rev. Lett. 66(9), 1107–1110 (1991).
[Crossref] [PubMed]

Sudarshan, E. C.

I. M. Duck, P. M. Stevenson, and E. C. Sudarshan, “The sense in which a “weak measurement” of a spin-(1/2 particle’s spin component yields a value 100,” Phys. Rev. D Part. Fields 40(6), 2112–2117 (1989).
[Crossref] [PubMed]

Sun, L.

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8, 14180 (2017).
[Crossref] [PubMed]

Sun, Y.

W. Liu, F. Ding, and Y. Sun, “Characterization of Phenosafranine–Hemoglobin Interactions in Aqueous Solution,” J. Solution Chem. 40(2), 231–246 (2011).
[Crossref]

Thakur, T. S.

P. Singh, S. K. Kumar, V. K. Maurya, B. K. Mehta, H. Ahmad, A. K. Dwivedi, V. Chaturvedi, T. S. Thakur, and S. Sinha, “S-Enantiomer of the Antitubercular Compound S006-830 Complements Activity of Frontline TB Drugs and Targets Biogenesis of Mycobacterium tuberculosis Cell Envelope,” ACS Omega 2(11), 8453–8465 (2017).
[Crossref] [PubMed]

Thomsen, V.

V. Thomsen, D. Schatzlein, and D. Mercuro, “Limit of Detection in Spectroscopy,” Spectroscopy (Springf.) 18(12), 112–114 (2003).

Tian, G.

L. Dongmei, G. Tian, H. Yonghong, H. Qinghua, Z. Yilong, W. Xiangnan, S. Zhiyuan, Y. Yuxuan, Q. Zhen, and J. Yanhong, “A differential weak measurement system based on Sagnac interferometer for self-referencing biomolecule detection,” Appl. Phys. Lett. 50, 49LT01 (2017).

Torres, J. P.

Vaidman, L.

L. Vaidman, “Evolution stopped in its tracks,” Nature 451(7175), 137–138 (2008).
[Crossref] [PubMed]

Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the Result of a Measurement of a Component of the Spin of a Spin-1/2 Particle Can Turn Out to be 100,” Phys. Rev. Lett. 60(14), 1351–1354 (1988).
[Crossref] [PubMed]

Valencia, A.

Varnholt, B.

I. Dolamic, B. Varnholt, and T. Bürgi, “Chirality transfer from gold nanocluster to adsorbate evidenced by vibrational circular dichroism,” Nat. Commun. 6, 7117 (2015).
[Crossref] [PubMed]

Waksmundzka-Hajnos, M.

A. Petruczynik and M. Waksmundzka-Hajnos, “Analysis of basic psychotropic drugs in biological fluids and tissues by reversed- phase high performance liquid chromatography,” Acta Pol. Pharm. 74(2), 331–346 (2017).
[PubMed]

Wang, G.

L. Zhang, G. Wang, C. Xiong, L. Zheng, J. He, Y. Ding, H. Lu, G. Zhang, K. Cho, and L. Qiu, “Chirality detection of amino acid enantiomers by organic electrochemical transistor,” Biosens. Bioelectron. 105, 121–128 (2018).
[Crossref] [PubMed]

Wang, J.

L. Ma, X. Zhao, H. Liu, H. Zhu, W. Yang, Y. Qian, J. Wang, M. Feng, and Y. Li, “Antidepression medication improves quality of life in elderly patients with benign prostatic hyperplasia and depression,” Int. J. Clin. Exp. Med. 8(3), 4031–4037 (2015).
[PubMed]

Wang, R.

Y. Shi, C. Zheng, J. Li, L. Yang, Z. Wang, and R. Wang, “Separation and Quantification of Four Main Chiral Glucosinolates in Radix Isatidis and Its Granules Using High-Performance Liquid Chromatography/Diode Array Detector Coupled with Circular Dichroism Detection,” Molecules 23(6), E1305 (2018).
[Crossref] [PubMed]

Wang, X.

Wang, Z.

Y. Shi, C. Zheng, J. Li, L. Yang, Z. Wang, and R. Wang, “Separation and Quantification of Four Main Chiral Glucosinolates in Radix Isatidis and Its Granules Using High-Performance Liquid Chromatography/Diode Array Detector Coupled with Circular Dichroism Detection,” Molecules 23(6), E1305 (2018).
[Crossref] [PubMed]

White, A. G.

G. J. Pryde, J. L. O’Brien, A. G. White, T. C. Ralph, and H. M. Wiseman, “Measurement of quantum weak values of photon polarization,” Phys. Rev. Lett. 94(22), 220405 (2005).
[Crossref] [PubMed]

William, A. M.

L. H. Ayman, N. Naumovski, A. M. William, and G. Ashraf, “Application of Carbon Nanotubes in Chiral and Achiral Separations of Pharmaceuticals,” Biologics Chem. Nanomaterials 7(186), 1–32 (2017).

Wiseman, H. M.

G. J. Pryde, J. L. O’Brien, A. G. White, T. C. Ralph, and H. M. Wiseman, “Measurement of quantum weak values of photon polarization,” Phys. Rev. Lett. 94(22), 220405 (2005).
[Crossref] [PubMed]

Xiangnan, W.

L. Dongmei, G. Tian, H. Yonghong, H. Qinghua, Z. Yilong, W. Xiangnan, S. Zhiyuan, Y. Yuxuan, Q. Zhen, and J. Yanhong, “A differential weak measurement system based on Sagnac interferometer for self-referencing biomolecule detection,” Appl. Phys. Lett. 50, 49LT01 (2017).

Xie, L.

Xie, W.

Xin, M.

D. Li, T. Guan, F. Liu, A. Yang, Y. He, Q. He, Z. Shen, and M. Xin, “Optical rotation based chirality detection of enantiomers via weak measurement in frequency domain,” Appl. Phys. Lett. 112(21), 213701 (2018).
[Crossref]

D. Li, T. Guan, Y. He, F. Liu, A. Yang, Q. He, Z. Shen, and M. Xin, “A chiral sensor based on weak measurement for the determination of Proline enantiomers in diverse measuring circumstances,” Biosens. Bioelectron. 110, 103–109 (2018).
[Crossref] [PubMed]

D. Li, Q. He, Y. He, M. Xin, Y. Zhang, and Z. Shen, “Molecular imprinting sensor based on quantum weak measurement,” Biosens. Bioelectron. 94, 328–334 (2017).
[Crossref] [PubMed]

Xiong, C.

L. Zhang, G. Wang, C. Xiong, L. Zheng, J. He, Y. Ding, H. Lu, G. Zhang, K. Cho, and L. Qiu, “Chirality detection of amino acid enantiomers by organic electrochemical transistor,” Biosens. Bioelectron. 105, 121–128 (2018).
[Crossref] [PubMed]

Xu, Y.

Yang, A.

D. Li, T. Guan, Y. He, F. Liu, A. Yang, Q. He, Z. Shen, and M. Xin, “A chiral sensor based on weak measurement for the determination of Proline enantiomers in diverse measuring circumstances,” Biosens. Bioelectron. 110, 103–109 (2018).
[Crossref] [PubMed]

D. Li, T. Guan, F. Liu, A. Yang, Y. He, Q. He, Z. Shen, and M. Xin, “Optical rotation based chirality detection of enantiomers via weak measurement in frequency domain,” Appl. Phys. Lett. 112(21), 213701 (2018).
[Crossref]

Yang, L.

Y. Shi, C. Zheng, J. Li, L. Yang, Z. Wang, and R. Wang, “Separation and Quantification of Four Main Chiral Glucosinolates in Radix Isatidis and Its Granules Using High-Performance Liquid Chromatography/Diode Array Detector Coupled with Circular Dichroism Detection,” Molecules 23(6), E1305 (2018).
[Crossref] [PubMed]

Yang, W.

L. Ma, X. Zhao, H. Liu, H. Zhu, W. Yang, Y. Qian, J. Wang, M. Feng, and Y. Li, “Antidepression medication improves quality of life in elderly patients with benign prostatic hyperplasia and depression,” Int. J. Clin. Exp. Med. 8(3), 4031–4037 (2015).
[PubMed]

Yang, Y.

Yanhong, J.

L. Dongmei, G. Tian, H. Yonghong, H. Qinghua, Z. Yilong, W. Xiangnan, S. Zhiyuan, Y. Yuxuan, Q. Zhen, and J. Yanhong, “A differential weak measurement system based on Sagnac interferometer for self-referencing biomolecule detection,” Appl. Phys. Lett. 50, 49LT01 (2017).

Yilong, Z.

L. Dongmei, G. Tian, H. Yonghong, H. Qinghua, Z. Yilong, W. Xiangnan, S. Zhiyuan, Y. Yuxuan, Q. Zhen, and J. Yanhong, “A differential weak measurement system based on Sagnac interferometer for self-referencing biomolecule detection,” Appl. Phys. Lett. 50, 49LT01 (2017).

Yonghong, H.

L. Dongmei, G. Tian, H. Yonghong, H. Qinghua, Z. Yilong, W. Xiangnan, S. Zhiyuan, Y. Yuxuan, Q. Zhen, and J. Yanhong, “A differential weak measurement system based on Sagnac interferometer for self-referencing biomolecule detection,” Appl. Phys. Lett. 50, 49LT01 (2017).

Yuxuan, Y.

L. Dongmei, G. Tian, H. Yonghong, H. Qinghua, Z. Yilong, W. Xiangnan, S. Zhiyuan, Y. Yuxuan, Q. Zhen, and J. Yanhong, “A differential weak measurement system based on Sagnac interferometer for self-referencing biomolecule detection,” Appl. Phys. Lett. 50, 49LT01 (2017).

Zhang, G.

L. Zhang, G. Wang, C. Xiong, L. Zheng, J. He, Y. Ding, H. Lu, G. Zhang, K. Cho, and L. Qiu, “Chirality detection of amino acid enantiomers by organic electrochemical transistor,” Biosens. Bioelectron. 105, 121–128 (2018).
[Crossref] [PubMed]

Zhang, L.

L. Zhang, G. Wang, C. Xiong, L. Zheng, J. He, Y. Ding, H. Lu, G. Zhang, K. Cho, and L. Qiu, “Chirality detection of amino acid enantiomers by organic electrochemical transistor,” Biosens. Bioelectron. 105, 121–128 (2018).
[Crossref] [PubMed]

Zhang, Y.

Zhao, X.

L. Ma, X. Zhao, H. Liu, H. Zhu, W. Yang, Y. Qian, J. Wang, M. Feng, and Y. Li, “Antidepression medication improves quality of life in elderly patients with benign prostatic hyperplasia and depression,” Int. J. Clin. Exp. Med. 8(3), 4031–4037 (2015).
[PubMed]

Zhao, Y.

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8, 14180 (2017).
[Crossref] [PubMed]

Zhen, Q.

L. Dongmei, G. Tian, H. Yonghong, H. Qinghua, Z. Yilong, W. Xiangnan, S. Zhiyuan, Y. Yuxuan, Q. Zhen, and J. Yanhong, “A differential weak measurement system based on Sagnac interferometer for self-referencing biomolecule detection,” Appl. Phys. Lett. 50, 49LT01 (2017).

Zheng, C.

Y. Shi, C. Zheng, J. Li, L. Yang, Z. Wang, and R. Wang, “Separation and Quantification of Four Main Chiral Glucosinolates in Radix Isatidis and Its Granules Using High-Performance Liquid Chromatography/Diode Array Detector Coupled with Circular Dichroism Detection,” Molecules 23(6), E1305 (2018).
[Crossref] [PubMed]

Zheng, L.

L. Zhang, G. Wang, C. Xiong, L. Zheng, J. He, Y. Ding, H. Lu, G. Zhang, K. Cho, and L. Qiu, “Chirality detection of amino acid enantiomers by organic electrochemical transistor,” Biosens. Bioelectron. 105, 121–128 (2018).
[Crossref] [PubMed]

Zhiyuan, S.

L. Dongmei, G. Tian, H. Yonghong, H. Qinghua, Z. Yilong, W. Xiangnan, S. Zhiyuan, Y. Yuxuan, Q. Zhen, and J. Yanhong, “A differential weak measurement system based on Sagnac interferometer for self-referencing biomolecule detection,” Appl. Phys. Lett. 50, 49LT01 (2017).

Zhu, H.

L. Ma, X. Zhao, H. Liu, H. Zhu, W. Yang, Y. Qian, J. Wang, M. Feng, and Y. Li, “Antidepression medication improves quality of life in elderly patients with benign prostatic hyperplasia and depression,” Int. J. Clin. Exp. Med. 8(3), 4031–4037 (2015).
[PubMed]

ACS Omega (1)

P. Singh, S. K. Kumar, V. K. Maurya, B. K. Mehta, H. Ahmad, A. K. Dwivedi, V. Chaturvedi, T. S. Thakur, and S. Sinha, “S-Enantiomer of the Antitubercular Compound S006-830 Complements Activity of Frontline TB Drugs and Targets Biogenesis of Mycobacterium tuberculosis Cell Envelope,” ACS Omega 2(11), 8453–8465 (2017).
[Crossref] [PubMed]

Acta Pol. Pharm. (1)

A. Petruczynik and M. Waksmundzka-Hajnos, “Analysis of basic psychotropic drugs in biological fluids and tissues by reversed- phase high performance liquid chromatography,” Acta Pol. Pharm. 74(2), 331–346 (2017).
[PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

D. Li, T. Guan, F. Liu, A. Yang, Y. He, Q. He, Z. Shen, and M. Xin, “Optical rotation based chirality detection of enantiomers via weak measurement in frequency domain,” Appl. Phys. Lett. 112(21), 213701 (2018).
[Crossref]

L. Dongmei, G. Tian, H. Yonghong, H. Qinghua, Z. Yilong, W. Xiangnan, S. Zhiyuan, Y. Yuxuan, Q. Zhen, and J. Yanhong, “A differential weak measurement system based on Sagnac interferometer for self-referencing biomolecule detection,” Appl. Phys. Lett. 50, 49LT01 (2017).

Arch. Gynecol. Obstet. (1)

V. Dochez and G. Ducarme, “Primary hyperparathyroidism during pregnancy,” Arch. Gynecol. Obstet. 291(2), 259–263 (2015).
[Crossref] [PubMed]

Biologics Chem. Nanomaterials (1)

L. H. Ayman, N. Naumovski, A. M. William, and G. Ashraf, “Application of Carbon Nanotubes in Chiral and Achiral Separations of Pharmaceuticals,” Biologics Chem. Nanomaterials 7(186), 1–32 (2017).

Biosens. Bioelectron. (3)

L. Zhang, G. Wang, C. Xiong, L. Zheng, J. He, Y. Ding, H. Lu, G. Zhang, K. Cho, and L. Qiu, “Chirality detection of amino acid enantiomers by organic electrochemical transistor,” Biosens. Bioelectron. 105, 121–128 (2018).
[Crossref] [PubMed]

D. Li, Q. He, Y. He, M. Xin, Y. Zhang, and Z. Shen, “Molecular imprinting sensor based on quantum weak measurement,” Biosens. Bioelectron. 94, 328–334 (2017).
[Crossref] [PubMed]

D. Li, T. Guan, Y. He, F. Liu, A. Yang, Q. He, Z. Shen, and M. Xin, “A chiral sensor based on weak measurement for the determination of Proline enantiomers in diverse measuring circumstances,” Biosens. Bioelectron. 110, 103–109 (2018).
[Crossref] [PubMed]

Chem. Biol. Drug Des. (1)

B. Ranjbar and P. Gill, “Circular dichroism techniques: biomolecular and nanostructural analyses- a review,” Chem. Biol. Drug Des. 74(2), 101–120 (2009).
[Crossref] [PubMed]

Curr. Ther. Res. Clin. Exp. (1)

S. di Somma, V. Liguori, M. Petitto, P. Galletti, and O. de Divitiis, “The hemodynamic effect of etozolin in the treatment of hypertension,” Curr. Ther. Res. Clin. Exp. 48, 1044–1052 (1990).

Int. J. Clin. Exp. Med. (1)

L. Ma, X. Zhao, H. Liu, H. Zhu, W. Yang, Y. Qian, J. Wang, M. Feng, and Y. Li, “Antidepression medication improves quality of life in elderly patients with benign prostatic hyperplasia and depression,” Int. J. Clin. Exp. Med. 8(3), 4031–4037 (2015).
[PubMed]

J. Braz. Chem. Soc. (1)

P. S. Bonato and F. O. Paias, “Enantioselective Analysis of Omeprazole in Pharmaceutical Formulations by Chiral High-Performance Liquid Chromatography and Capillary Electrophoresis,” J. Braz. Chem. Soc. 15(2), 318–323 (2004).
[Crossref]

J. Solution Chem. (1)

W. Liu, F. Ding, and Y. Sun, “Characterization of Phenosafranine–Hemoglobin Interactions in Aqueous Solution,” J. Solution Chem. 40(2), 231–246 (2011).
[Crossref]

Lat. Am. Appl. Res. (1)

K. Huang, F. Jiao, S. Liu, X. Li, and D. Huang, “Enantioselective extration of ketoprofen enantiomers using ester alcohol R,R-DI-Tartarates or S,S-DI-Tartarates as chiral selector,” Lat. Am. Appl. Res. 36, 187–191 (2006).

Metabolites (1)

F. Kirsch and A. Buettner, “Characterisation of the metabolites of 1,8-cineole transferred into human milk: concentrations and ratio of enantiomers,” Metabolites 3(1), 47–71 (2013).
[Crossref] [PubMed]

Molecules (2)

A. N. L. Batista, F. M. Dos Santos, J. M. Batista, and Q. B. Cass, “Enantiomeric Mixtures in Natural Product Chemistry: Separation and Absolute Configuration Assignment,” Molecules 23(2), 1–18 (2018).
[Crossref] [PubMed]

Y. Shi, C. Zheng, J. Li, L. Yang, Z. Wang, and R. Wang, “Separation and Quantification of Four Main Chiral Glucosinolates in Radix Isatidis and Its Granules Using High-Performance Liquid Chromatography/Diode Array Detector Coupled with Circular Dichroism Detection,” Molecules 23(6), E1305 (2018).
[Crossref] [PubMed]

Nat. Commun. (3)

I. Dolamic, B. Varnholt, and T. Bürgi, “Chirality transfer from gold nanocluster to adsorbate evidenced by vibrational circular dichroism,” Nat. Commun. 6, 7117 (2015).
[Crossref] [PubMed]

J. Labuta, S. Ishihara, T. Šikorský, Z. Futera, A. Shundo, L. Hanyková, J. V. Burda, K. Ariga, and J. P. Hill, “NMR spectroscopic detection of chirality and enantiopurity in referenced systems without formation of diastereomers,” Nat. Commun. 4, 2188 (2013).
[Crossref] [PubMed]

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8, 14180 (2017).
[Crossref] [PubMed]

Nature (1)

L. Vaidman, “Evolution stopped in its tracks,” Nature 451(7175), 137–138 (2008).
[Crossref] [PubMed]

Opt. Eng. (1)

D. Li, T. Guan, J. Jiang, and Y. He, “Nondisturbing transverse acoustic sensor based on weak measurement in Mach-Zehnder interferometer,” Opt. Eng. 56(3), 034107 (2017).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. B Condens. Matter Mater. Phys. (1)

A. N. Korotkov and D. V. Averin, “Continuous weak measurement of quantum coherent oscillations,” Phys. Rev. B Condens. Matter Mater. Phys. 64(16), 165310 (2001).
[Crossref]

Phys. Rev. D Part. Fields (1)

I. M. Duck, P. M. Stevenson, and E. C. Sudarshan, “The sense in which a “weak measurement” of a spin-(1/2 particle’s spin component yields a value 100,” Phys. Rev. D Part. Fields 40(6), 2112–2117 (1989).
[Crossref] [PubMed]

Phys. Rev. Lett. (5)

N. W. Ritchie, J. G. Story, and R. G. Hulet, “Realization of a measurement of a “weak value”,” Phys. Rev. Lett. 66(9), 1107–1110 (1991).
[Crossref] [PubMed]

G. J. Pryde, J. L. O’Brien, A. G. White, T. C. Ralph, and H. M. Wiseman, “Measurement of quantum weak values of photon polarization,” Phys. Rev. Lett. 94(22), 220405 (2005).
[Crossref] [PubMed]

L. A. Rozema, A. Darabi, D. H. Mahler, A. Hayat, Y. Soudagar, and A. M. Steinberg, “Violation of Heisenberg’s measurement-disturbance relationship by weak measurements,” Phys. Rev. Lett. 109(10), 100404 (2012).
[Crossref] [PubMed]

Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the Result of a Measurement of a Component of the Spin of a Spin-1/2 Particle Can Turn Out to be 100,” Phys. Rev. Lett. 60(14), 1351–1354 (1988).
[Crossref] [PubMed]

J. S. Lundeen and C. Bamber, “Procedure for Direct Measurement of General Quantum States Using Weak Measurement,” Phys. Rev. Lett. 108(7), 070402 (2012).
[Crossref] [PubMed]

Quant. Phys. (1)

R. Jozsa, “Complex weak values in quantum measurement,” Quant. Phys. 76(044103), 1–5 (2007).

Spectroscopy (Springf.) (1)

V. Thomsen, D. Schatzlein, and D. Mercuro, “Limit of Detection in Spectroscopy,” Spectroscopy (Springf.) 18(12), 112–114 (2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The experimental setup of chiral amino acid detection. SLD: Super-luminescent diode. QWP: quarter wave plate. P1: first linear polarizer. P2: second linear polarizer. SC: sample cuvette.
Fig. 2
Fig. 2 The response curve of the central wavelength shift with the change ofαby the theoretical simulation  (β=0.02π).
Fig. 3
Fig. 3 (a) UV absorption intensity distribution of five groups Proline enantiomers mixture solutions. The left-to-right ratio of five groups of solutions from 1 to 5 are 4:0, 3:1, 2:2, 1:3 0:4 respectively, and each group contains four total concentration gradients: 0.5 g/L, 1 g/L, 2 g/L, 4g/L. Figure 3(b) The response curve of the ultraviolet absorption intensity of group 5 (D-Proline) to the change of concentration.
Fig. 4
Fig. 4 (a) The real time collection of central wavelength for the Proline enantiomers mixture, whose total concentration is 4g/L with different proportions. The ratios of Proline enantiomers solution from (1) to (5) are 0:4, 1:3, 2:2, 3:1 and 4:0 respectively. Figure 4(b) The real time collection of central wavelength for the corresponding Proline solution in Fig. 4(a) by smoothing and de-noising. Figure 4(c) The response of output spectra shape to the different enantiopurities of Proline solution. (1) to (5) in Fig. 4(c) corresponds to the solution of (1) to (5) in Fig. 4 (a), (6) in Fig. 4(c) is output spectra shape to the deionized water.
Fig. 5
Fig. 5 The response curve of the center wavelength shift of Proline enantiomers solution corresponding to the concentration.
Fig. 6
Fig. 6 Time stability measurement of system, data was collected with sample water within 10 seconds.
Fig. 7
Fig. 7 The concentration of L-Proline detected by traditional polarimeter.
Fig. 8
Fig. 8 The response curve of the center wavelength shifts of Proline enantiomers solution to ultraviolet absorption intensity of corresponding samples.
Fig. 9
Fig. 9 The plot of enantiopurity varying with corresponding slope K. K comes from linear fitting in Fig. 8.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

H=g(t)PA
exp(iHdt)| Ψ pre | Φ in =dPexp[Δ P 2 (P P 0 ) 2 ] | Ψ pre |P
| Ψ pre = 2 2 |L+ 2 2 |R
|Ψ= 2 2 [ e iα |L+ e iα |R]
| Φ post = 2 2 |L 2 2 |R
|Φ=sin(β π 4 )|L+cos(β π 4 )|R
A=|RR||LL|
A ω sin(β π 4 )cos(β π 4 ) e i2α sin(β π 4 )+cos(β π 4 ) e i2α , I m A ω γsin(2α) 1+ γ 2 +2γcos(2α)
δP=2k (ΔP) 2 I m A ω
δλ= 4π (Δλ) 2 λ 0 I m A ω = 2π (Δλ) 2 γsin(2α) 1+ γ 2 +2γcos(2α) λ 0
[α]=100α/LC
α= (2a-1) C T L[α] 100
2a-1= [α] mix [α] pure
σ=3 σ so /S
ee= C L C D C L + C D ×100%= ΔC C T ×100%
σ ee = σ c C T ×100%= σ [α]L C T ×100%

Metrics