Abstract

In this contribution, we investigate the properties of antireflective coatings on iodine-filled absorption cell windows. These coatings are subject to high temperatures during the cell production process and are in direct contact with the absorption medium, which influences their optical performance. We tested the thermal resistance of TiO2- and Ta2O5- based coatings produced using conventional electron beam evaporation (e-beam) and ion-assisted deposition (PIAD). We prepared a set of iodine-filled absorption cells that were used to test the coatings’ resistance to iodine vapors. We show that the choice of coating materials, coating methods, and a well-chosen bakeout procedure can mitigate any unwanted effects, such as temperature-induced spectral shifts and optical losses inhomogeneities or settling of the absorption medium in the coating.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Spectral properties of molecular iodine in absorption cells filled to specified saturation pressure

Jan Hrabina, Martin Šarbort, Ouali Acef, Frédéric Du Burck, Nicola Chiodo, Miroslava Holá, Ondřej Číp, and Josef Lazar
Appl. Opt. 53(31) 7435-7441 (2014)

Argon plasma etching of fused silica substrates for manufacturing high laser damage resistance optical interference coatings

Kęstutis Juškevičius, Rytis Buzelis, Giedrius Abromavičius, Romanas Samuilovas, Saulė Abbas, Alexandr Belosludtsev, Ramutis Drazdys, and Simonas Kičas
Opt. Mater. Express 7(10) 3598-3607 (2017)

Optical coatings deposited by reactive ion plating

Allan J. Waldorf, J. A. Dobrowolski, Brian T. Sullivan, and L. M. Plante
Appl. Opt. 32(28) 5583-5593 (1993)

References

  • View by:
  • |
  • |
  • |

  1. H. A. Macleod, “Recent developments in deposition techniques for optical thin films and coatings,” in Optical Thin Films and Coatings - From Materials to Applications, A. Piegari and F. Flory, eds. (Woodhead Publishing Limited, 2013), pp. 3–25.
  2. G. Atanassov, J. Turlo, J. K. Fu, and Y. S. Dai, “Mechanical, optical and structural properties of TiO2 and MgF2 thin films deposited by plasma ion assisted deposition,” Thin Solid Films 342(1-2), 83–92 (1999).
    [Crossref]
  3. M. Zucco, L. Robertsson, and J. P. Wallerand, “Laser-induced fluorescence as a tool to verify the reproducibility of iodine-based laser standards: a study of 96 iodine cells,” Metrologia 50(4), 402–408 (2013).
    [Crossref]
  4. J. Hrabina, M. Zucco, C. Philippe, T. M. Pham, M. Holá, O. Acef, J. Lazar, and O. Číp, “Iodine absorption cells purity testing,” Sensors (Basel) 17(1), 102–114 (2017).
    [Crossref] [PubMed]
  5. J. Lazar, J. Hrabina, P. Jedlicka, and O. Cip, “Absolute frequency shifts of iodine cells for laser stabilization,” Metrologia 46(5), 450–456 (2009).
    [Crossref]
  6. G. D. Rovera, F. Ducos, J. J. Zondy, O. Acef, J. P. Wallerand, J. C. Knight, and P. S. Russell, “Absolute frequency measurement of an I-2 stabilized Nd: YAG optical frequency standard,” Meas. Sci. Technol. 13(6), 918–922 (2002).
    [Crossref]
  7. R. Holzwarth, A. Y. Nevsky, M. Zimmermann, T. Udem, T. W. Hansch, J. Von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, M. N. Skvortsov, and S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73(3), 269–271 (2001).
    [Crossref]
  8. P. Balling, M. Fischer, P. Kubina, and R. Holzwarth, “Absolute frequency measurement of wavelength standard at 1542nm: acetylene stabilized DFB laser,” Opt. Express 13(23), 9196–9201 (2005).
    [Crossref] [PubMed]
  9. J. Hald, L. Nielsen, J. C. Petersen, P. Varming, and J. E. Pedersen, “Fiber laser optical frequency standard at 1.54 μm,” Opt. Express 19(3), 2052–2063 (2011).
    [Crossref] [PubMed]
  10. C. Philippe, R. Le Targat, D. Holleville, M. Lours, T. Minh-Pham, J. Hrabina, F. Du Burck, P. Wolf, and O. Acef, “Frequency tripled 1.5 µm telecom laser diode stabilized to iodine hyperfine line in the 10-15 range,” Eur. Freq. Time Forum 1, 7477827 (2016).
  11. J. Hrabina, M. Šarbort, O. Acef, F. D. Burck, N. Chiodo, M. Holá, O. Číp, and J. Lazar, “Spectral properties of molecular iodine in absorption cells filled to specified saturation pressure,” Appl. Opt. 53(31), 7435–7441 (2014).
    [Crossref] [PubMed]
  12. R. Straessle, M. Pellaton, C. Affolderbach, Y. Petremand, D. Briand, G. Mileti, and N. F. de Rooij, “Microfabricated alkali vapor cell with anti-relaxation wall coating,” Appl. Phys. Lett. 105(4), 043502 (2014).
    [Crossref]
  13. W. H. Li, M. Balabas, X. Peng, S. Pustelny, A. Wickenbrock, H. Guo, and D. Budker, “Characterization of high-temperature performance of cesium vapor cells with anti-relaxation coating,” J. Appl. Phys. 121(6), 063104 (2017).
    [Crossref]
  14. A. Lurie, P. S. Light, J. Anstie, T. M. Stace, P. C. Abbott, F. Benabid, and A. N. Luiten, “Saturation spectroscopy of iodine in hollow-core optical fiber,” Opt. Express 20(11), 11906–11917 (2012).
    [Crossref] [PubMed]
  15. P. T. Marty, J. Morel, and T. Feurer, “All-fiber multi-purpose gas cells and their applications in spectroscopy,” J. Lightwave Technol. 28(8), 1236–1240 (2010).
    [Crossref]
  16. M. Triches, M. Michieletto, J. Hald, J. K. Lyngsø, J. Lægsgaard, and O. Bang, “Optical frequency standard using acetylene-filled hollow-core photonic crystal fibers,” Opt. Express 23(9), 11227–11241 (2015).
    [Crossref] [PubMed]
  17. T. Talvard, P. G. Westergaard, M. V. DePalatis, N. F. Mortensen, M. Drewsen, B. Gøth, and J. Hald, “Enhancement of the performance of a fiber-based frequency comb by referencing to an acetylene-stabilized fiber laser,” Opt. Express 25(3), 2259–2269 (2017).
    [Crossref] [PubMed]
  18. J. Seppa, M. Merimaa, A. Manninen, M. Triches, J. Hald, and A. Lassila, “Interference cancellation for hollow-core fiber reference cells,” IEEE Trans. Instrum. Meas. 64, 1595–1599 (2015).
    [Crossref]
  19. T. Schuldt, K. Doringshoff, A. Milke, J. Sanjuan, M. Gohlke, E. V. Kovalchuk, N. Gurlebeck, A. Peters, and C. Braxmaier, “High-performance optical frequency references for space,” J. Phys.: Conf. Ser. 723, 012047 (2016).
  20. M. S. Farhan, E. Zalnezhad, and A. R. Bushroa, “Properties of Ta2O5 thin films prepared by ion-assisted deposition,” Mater. Res. Bull. 48(10), 4206–4209 (2013).
    [Crossref]
  21. S. H. Woo, C. K. Hwangbo, Y. B. Son, I. C. Moon, and G. M. Kang, “Optical properties of Ta2O5 thin films deposited by plasma ion-assisted deposition,” J. Korean Phys. Soc. 46, S187–S191 (2005).
  22. S. Fredin-Picard, “A study of contamination in I-127(2) cells using laser-induced fluorescence,” Metrologia 26(4), 235–244 (1989).
    [Crossref]

2017 (3)

J. Hrabina, M. Zucco, C. Philippe, T. M. Pham, M. Holá, O. Acef, J. Lazar, and O. Číp, “Iodine absorption cells purity testing,” Sensors (Basel) 17(1), 102–114 (2017).
[Crossref] [PubMed]

W. H. Li, M. Balabas, X. Peng, S. Pustelny, A. Wickenbrock, H. Guo, and D. Budker, “Characterization of high-temperature performance of cesium vapor cells with anti-relaxation coating,” J. Appl. Phys. 121(6), 063104 (2017).
[Crossref]

T. Talvard, P. G. Westergaard, M. V. DePalatis, N. F. Mortensen, M. Drewsen, B. Gøth, and J. Hald, “Enhancement of the performance of a fiber-based frequency comb by referencing to an acetylene-stabilized fiber laser,” Opt. Express 25(3), 2259–2269 (2017).
[Crossref] [PubMed]

2016 (2)

C. Philippe, R. Le Targat, D. Holleville, M. Lours, T. Minh-Pham, J. Hrabina, F. Du Burck, P. Wolf, and O. Acef, “Frequency tripled 1.5 µm telecom laser diode stabilized to iodine hyperfine line in the 10-15 range,” Eur. Freq. Time Forum 1, 7477827 (2016).

T. Schuldt, K. Doringshoff, A. Milke, J. Sanjuan, M. Gohlke, E. V. Kovalchuk, N. Gurlebeck, A. Peters, and C. Braxmaier, “High-performance optical frequency references for space,” J. Phys.: Conf. Ser. 723, 012047 (2016).

2015 (2)

J. Seppa, M. Merimaa, A. Manninen, M. Triches, J. Hald, and A. Lassila, “Interference cancellation for hollow-core fiber reference cells,” IEEE Trans. Instrum. Meas. 64, 1595–1599 (2015).
[Crossref]

M. Triches, M. Michieletto, J. Hald, J. K. Lyngsø, J. Lægsgaard, and O. Bang, “Optical frequency standard using acetylene-filled hollow-core photonic crystal fibers,” Opt. Express 23(9), 11227–11241 (2015).
[Crossref] [PubMed]

2014 (2)

J. Hrabina, M. Šarbort, O. Acef, F. D. Burck, N. Chiodo, M. Holá, O. Číp, and J. Lazar, “Spectral properties of molecular iodine in absorption cells filled to specified saturation pressure,” Appl. Opt. 53(31), 7435–7441 (2014).
[Crossref] [PubMed]

R. Straessle, M. Pellaton, C. Affolderbach, Y. Petremand, D. Briand, G. Mileti, and N. F. de Rooij, “Microfabricated alkali vapor cell with anti-relaxation wall coating,” Appl. Phys. Lett. 105(4), 043502 (2014).
[Crossref]

2013 (2)

M. S. Farhan, E. Zalnezhad, and A. R. Bushroa, “Properties of Ta2O5 thin films prepared by ion-assisted deposition,” Mater. Res. Bull. 48(10), 4206–4209 (2013).
[Crossref]

M. Zucco, L. Robertsson, and J. P. Wallerand, “Laser-induced fluorescence as a tool to verify the reproducibility of iodine-based laser standards: a study of 96 iodine cells,” Metrologia 50(4), 402–408 (2013).
[Crossref]

2012 (1)

2011 (1)

2010 (1)

2009 (1)

J. Lazar, J. Hrabina, P. Jedlicka, and O. Cip, “Absolute frequency shifts of iodine cells for laser stabilization,” Metrologia 46(5), 450–456 (2009).
[Crossref]

2005 (2)

P. Balling, M. Fischer, P. Kubina, and R. Holzwarth, “Absolute frequency measurement of wavelength standard at 1542nm: acetylene stabilized DFB laser,” Opt. Express 13(23), 9196–9201 (2005).
[Crossref] [PubMed]

S. H. Woo, C. K. Hwangbo, Y. B. Son, I. C. Moon, and G. M. Kang, “Optical properties of Ta2O5 thin films deposited by plasma ion-assisted deposition,” J. Korean Phys. Soc. 46, S187–S191 (2005).

2002 (1)

G. D. Rovera, F. Ducos, J. J. Zondy, O. Acef, J. P. Wallerand, J. C. Knight, and P. S. Russell, “Absolute frequency measurement of an I-2 stabilized Nd: YAG optical frequency standard,” Meas. Sci. Technol. 13(6), 918–922 (2002).
[Crossref]

2001 (1)

R. Holzwarth, A. Y. Nevsky, M. Zimmermann, T. Udem, T. W. Hansch, J. Von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, M. N. Skvortsov, and S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73(3), 269–271 (2001).
[Crossref]

1999 (1)

G. Atanassov, J. Turlo, J. K. Fu, and Y. S. Dai, “Mechanical, optical and structural properties of TiO2 and MgF2 thin films deposited by plasma ion assisted deposition,” Thin Solid Films 342(1-2), 83–92 (1999).
[Crossref]

1989 (1)

S. Fredin-Picard, “A study of contamination in I-127(2) cells using laser-induced fluorescence,” Metrologia 26(4), 235–244 (1989).
[Crossref]

Abbott, P. C.

Acef, O.

J. Hrabina, M. Zucco, C. Philippe, T. M. Pham, M. Holá, O. Acef, J. Lazar, and O. Číp, “Iodine absorption cells purity testing,” Sensors (Basel) 17(1), 102–114 (2017).
[Crossref] [PubMed]

C. Philippe, R. Le Targat, D. Holleville, M. Lours, T. Minh-Pham, J. Hrabina, F. Du Burck, P. Wolf, and O. Acef, “Frequency tripled 1.5 µm telecom laser diode stabilized to iodine hyperfine line in the 10-15 range,” Eur. Freq. Time Forum 1, 7477827 (2016).

J. Hrabina, M. Šarbort, O. Acef, F. D. Burck, N. Chiodo, M. Holá, O. Číp, and J. Lazar, “Spectral properties of molecular iodine in absorption cells filled to specified saturation pressure,” Appl. Opt. 53(31), 7435–7441 (2014).
[Crossref] [PubMed]

G. D. Rovera, F. Ducos, J. J. Zondy, O. Acef, J. P. Wallerand, J. C. Knight, and P. S. Russell, “Absolute frequency measurement of an I-2 stabilized Nd: YAG optical frequency standard,” Meas. Sci. Technol. 13(6), 918–922 (2002).
[Crossref]

Affolderbach, C.

R. Straessle, M. Pellaton, C. Affolderbach, Y. Petremand, D. Briand, G. Mileti, and N. F. de Rooij, “Microfabricated alkali vapor cell with anti-relaxation wall coating,” Appl. Phys. Lett. 105(4), 043502 (2014).
[Crossref]

Anstie, J.

Atanassov, G.

G. Atanassov, J. Turlo, J. K. Fu, and Y. S. Dai, “Mechanical, optical and structural properties of TiO2 and MgF2 thin films deposited by plasma ion assisted deposition,” Thin Solid Films 342(1-2), 83–92 (1999).
[Crossref]

Bagayev, S. N.

R. Holzwarth, A. Y. Nevsky, M. Zimmermann, T. Udem, T. W. Hansch, J. Von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, M. N. Skvortsov, and S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73(3), 269–271 (2001).
[Crossref]

Balabas, M.

W. H. Li, M. Balabas, X. Peng, S. Pustelny, A. Wickenbrock, H. Guo, and D. Budker, “Characterization of high-temperature performance of cesium vapor cells with anti-relaxation coating,” J. Appl. Phys. 121(6), 063104 (2017).
[Crossref]

Balling, P.

Bang, O.

Benabid, F.

Braxmaier, C.

T. Schuldt, K. Doringshoff, A. Milke, J. Sanjuan, M. Gohlke, E. V. Kovalchuk, N. Gurlebeck, A. Peters, and C. Braxmaier, “High-performance optical frequency references for space,” J. Phys.: Conf. Ser. 723, 012047 (2016).

Briand, D.

R. Straessle, M. Pellaton, C. Affolderbach, Y. Petremand, D. Briand, G. Mileti, and N. F. de Rooij, “Microfabricated alkali vapor cell with anti-relaxation wall coating,” Appl. Phys. Lett. 105(4), 043502 (2014).
[Crossref]

Budker, D.

W. H. Li, M. Balabas, X. Peng, S. Pustelny, A. Wickenbrock, H. Guo, and D. Budker, “Characterization of high-temperature performance of cesium vapor cells with anti-relaxation coating,” J. Appl. Phys. 121(6), 063104 (2017).
[Crossref]

Burck, F. D.

Bushroa, A. R.

M. S. Farhan, E. Zalnezhad, and A. R. Bushroa, “Properties of Ta2O5 thin films prepared by ion-assisted deposition,” Mater. Res. Bull. 48(10), 4206–4209 (2013).
[Crossref]

Chiodo, N.

Cip, O.

J. Lazar, J. Hrabina, P. Jedlicka, and O. Cip, “Absolute frequency shifts of iodine cells for laser stabilization,” Metrologia 46(5), 450–456 (2009).
[Crossref]

Cíp, O.

Dai, Y. S.

G. Atanassov, J. Turlo, J. K. Fu, and Y. S. Dai, “Mechanical, optical and structural properties of TiO2 and MgF2 thin films deposited by plasma ion assisted deposition,” Thin Solid Films 342(1-2), 83–92 (1999).
[Crossref]

de Rooij, N. F.

R. Straessle, M. Pellaton, C. Affolderbach, Y. Petremand, D. Briand, G. Mileti, and N. F. de Rooij, “Microfabricated alkali vapor cell with anti-relaxation wall coating,” Appl. Phys. Lett. 105(4), 043502 (2014).
[Crossref]

DePalatis, M. V.

Doringshoff, K.

T. Schuldt, K. Doringshoff, A. Milke, J. Sanjuan, M. Gohlke, E. V. Kovalchuk, N. Gurlebeck, A. Peters, and C. Braxmaier, “High-performance optical frequency references for space,” J. Phys.: Conf. Ser. 723, 012047 (2016).

Drewsen, M.

Du Burck, F.

C. Philippe, R. Le Targat, D. Holleville, M. Lours, T. Minh-Pham, J. Hrabina, F. Du Burck, P. Wolf, and O. Acef, “Frequency tripled 1.5 µm telecom laser diode stabilized to iodine hyperfine line in the 10-15 range,” Eur. Freq. Time Forum 1, 7477827 (2016).

Ducos, F.

G. D. Rovera, F. Ducos, J. J. Zondy, O. Acef, J. P. Wallerand, J. C. Knight, and P. S. Russell, “Absolute frequency measurement of an I-2 stabilized Nd: YAG optical frequency standard,” Meas. Sci. Technol. 13(6), 918–922 (2002).
[Crossref]

Farhan, M. S.

M. S. Farhan, E. Zalnezhad, and A. R. Bushroa, “Properties of Ta2O5 thin films prepared by ion-assisted deposition,” Mater. Res. Bull. 48(10), 4206–4209 (2013).
[Crossref]

Feurer, T.

Fischer, M.

Fredin-Picard, S.

S. Fredin-Picard, “A study of contamination in I-127(2) cells using laser-induced fluorescence,” Metrologia 26(4), 235–244 (1989).
[Crossref]

Fu, J. K.

G. Atanassov, J. Turlo, J. K. Fu, and Y. S. Dai, “Mechanical, optical and structural properties of TiO2 and MgF2 thin films deposited by plasma ion assisted deposition,” Thin Solid Films 342(1-2), 83–92 (1999).
[Crossref]

Gohlke, M.

T. Schuldt, K. Doringshoff, A. Milke, J. Sanjuan, M. Gohlke, E. V. Kovalchuk, N. Gurlebeck, A. Peters, and C. Braxmaier, “High-performance optical frequency references for space,” J. Phys.: Conf. Ser. 723, 012047 (2016).

Gøth, B.

Guo, H.

W. H. Li, M. Balabas, X. Peng, S. Pustelny, A. Wickenbrock, H. Guo, and D. Budker, “Characterization of high-temperature performance of cesium vapor cells with anti-relaxation coating,” J. Appl. Phys. 121(6), 063104 (2017).
[Crossref]

Gurlebeck, N.

T. Schuldt, K. Doringshoff, A. Milke, J. Sanjuan, M. Gohlke, E. V. Kovalchuk, N. Gurlebeck, A. Peters, and C. Braxmaier, “High-performance optical frequency references for space,” J. Phys.: Conf. Ser. 723, 012047 (2016).

Hald, J.

Hansch, T. W.

R. Holzwarth, A. Y. Nevsky, M. Zimmermann, T. Udem, T. W. Hansch, J. Von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, M. N. Skvortsov, and S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73(3), 269–271 (2001).
[Crossref]

Holá, M.

Holleville, D.

C. Philippe, R. Le Targat, D. Holleville, M. Lours, T. Minh-Pham, J. Hrabina, F. Du Burck, P. Wolf, and O. Acef, “Frequency tripled 1.5 µm telecom laser diode stabilized to iodine hyperfine line in the 10-15 range,” Eur. Freq. Time Forum 1, 7477827 (2016).

Holzwarth, R.

P. Balling, M. Fischer, P. Kubina, and R. Holzwarth, “Absolute frequency measurement of wavelength standard at 1542nm: acetylene stabilized DFB laser,” Opt. Express 13(23), 9196–9201 (2005).
[Crossref] [PubMed]

R. Holzwarth, A. Y. Nevsky, M. Zimmermann, T. Udem, T. W. Hansch, J. Von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, M. N. Skvortsov, and S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73(3), 269–271 (2001).
[Crossref]

Hrabina, J.

J. Hrabina, M. Zucco, C. Philippe, T. M. Pham, M. Holá, O. Acef, J. Lazar, and O. Číp, “Iodine absorption cells purity testing,” Sensors (Basel) 17(1), 102–114 (2017).
[Crossref] [PubMed]

C. Philippe, R. Le Targat, D. Holleville, M. Lours, T. Minh-Pham, J. Hrabina, F. Du Burck, P. Wolf, and O. Acef, “Frequency tripled 1.5 µm telecom laser diode stabilized to iodine hyperfine line in the 10-15 range,” Eur. Freq. Time Forum 1, 7477827 (2016).

J. Hrabina, M. Šarbort, O. Acef, F. D. Burck, N. Chiodo, M. Holá, O. Číp, and J. Lazar, “Spectral properties of molecular iodine in absorption cells filled to specified saturation pressure,” Appl. Opt. 53(31), 7435–7441 (2014).
[Crossref] [PubMed]

J. Lazar, J. Hrabina, P. Jedlicka, and O. Cip, “Absolute frequency shifts of iodine cells for laser stabilization,” Metrologia 46(5), 450–456 (2009).
[Crossref]

Hwangbo, C. K.

S. H. Woo, C. K. Hwangbo, Y. B. Son, I. C. Moon, and G. M. Kang, “Optical properties of Ta2O5 thin films deposited by plasma ion-assisted deposition,” J. Korean Phys. Soc. 46, S187–S191 (2005).

Jedlicka, P.

J. Lazar, J. Hrabina, P. Jedlicka, and O. Cip, “Absolute frequency shifts of iodine cells for laser stabilization,” Metrologia 46(5), 450–456 (2009).
[Crossref]

Kang, G. M.

S. H. Woo, C. K. Hwangbo, Y. B. Son, I. C. Moon, and G. M. Kang, “Optical properties of Ta2O5 thin films deposited by plasma ion-assisted deposition,” J. Korean Phys. Soc. 46, S187–S191 (2005).

Knight, J. C.

G. D. Rovera, F. Ducos, J. J. Zondy, O. Acef, J. P. Wallerand, J. C. Knight, and P. S. Russell, “Absolute frequency measurement of an I-2 stabilized Nd: YAG optical frequency standard,” Meas. Sci. Technol. 13(6), 918–922 (2002).
[Crossref]

R. Holzwarth, A. Y. Nevsky, M. Zimmermann, T. Udem, T. W. Hansch, J. Von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, M. N. Skvortsov, and S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73(3), 269–271 (2001).
[Crossref]

Kovalchuk, E. V.

T. Schuldt, K. Doringshoff, A. Milke, J. Sanjuan, M. Gohlke, E. V. Kovalchuk, N. Gurlebeck, A. Peters, and C. Braxmaier, “High-performance optical frequency references for space,” J. Phys.: Conf. Ser. 723, 012047 (2016).

Kubina, P.

Lægsgaard, J.

Lassila, A.

J. Seppa, M. Merimaa, A. Manninen, M. Triches, J. Hald, and A. Lassila, “Interference cancellation for hollow-core fiber reference cells,” IEEE Trans. Instrum. Meas. 64, 1595–1599 (2015).
[Crossref]

Lazar, J.

J. Hrabina, M. Zucco, C. Philippe, T. M. Pham, M. Holá, O. Acef, J. Lazar, and O. Číp, “Iodine absorption cells purity testing,” Sensors (Basel) 17(1), 102–114 (2017).
[Crossref] [PubMed]

J. Hrabina, M. Šarbort, O. Acef, F. D. Burck, N. Chiodo, M. Holá, O. Číp, and J. Lazar, “Spectral properties of molecular iodine in absorption cells filled to specified saturation pressure,” Appl. Opt. 53(31), 7435–7441 (2014).
[Crossref] [PubMed]

J. Lazar, J. Hrabina, P. Jedlicka, and O. Cip, “Absolute frequency shifts of iodine cells for laser stabilization,” Metrologia 46(5), 450–456 (2009).
[Crossref]

Le Targat, R.

C. Philippe, R. Le Targat, D. Holleville, M. Lours, T. Minh-Pham, J. Hrabina, F. Du Burck, P. Wolf, and O. Acef, “Frequency tripled 1.5 µm telecom laser diode stabilized to iodine hyperfine line in the 10-15 range,” Eur. Freq. Time Forum 1, 7477827 (2016).

Li, W. H.

W. H. Li, M. Balabas, X. Peng, S. Pustelny, A. Wickenbrock, H. Guo, and D. Budker, “Characterization of high-temperature performance of cesium vapor cells with anti-relaxation coating,” J. Appl. Phys. 121(6), 063104 (2017).
[Crossref]

Light, P. S.

Lours, M.

C. Philippe, R. Le Targat, D. Holleville, M. Lours, T. Minh-Pham, J. Hrabina, F. Du Burck, P. Wolf, and O. Acef, “Frequency tripled 1.5 µm telecom laser diode stabilized to iodine hyperfine line in the 10-15 range,” Eur. Freq. Time Forum 1, 7477827 (2016).

Luiten, A. N.

Lurie, A.

Lyngsø, J. K.

Manninen, A.

J. Seppa, M. Merimaa, A. Manninen, M. Triches, J. Hald, and A. Lassila, “Interference cancellation for hollow-core fiber reference cells,” IEEE Trans. Instrum. Meas. 64, 1595–1599 (2015).
[Crossref]

Marty, P. T.

Merimaa, M.

J. Seppa, M. Merimaa, A. Manninen, M. Triches, J. Hald, and A. Lassila, “Interference cancellation for hollow-core fiber reference cells,” IEEE Trans. Instrum. Meas. 64, 1595–1599 (2015).
[Crossref]

Michieletto, M.

Mileti, G.

R. Straessle, M. Pellaton, C. Affolderbach, Y. Petremand, D. Briand, G. Mileti, and N. F. de Rooij, “Microfabricated alkali vapor cell with anti-relaxation wall coating,” Appl. Phys. Lett. 105(4), 043502 (2014).
[Crossref]

Milke, A.

T. Schuldt, K. Doringshoff, A. Milke, J. Sanjuan, M. Gohlke, E. V. Kovalchuk, N. Gurlebeck, A. Peters, and C. Braxmaier, “High-performance optical frequency references for space,” J. Phys.: Conf. Ser. 723, 012047 (2016).

Minh-Pham, T.

C. Philippe, R. Le Targat, D. Holleville, M. Lours, T. Minh-Pham, J. Hrabina, F. Du Burck, P. Wolf, and O. Acef, “Frequency tripled 1.5 µm telecom laser diode stabilized to iodine hyperfine line in the 10-15 range,” Eur. Freq. Time Forum 1, 7477827 (2016).

Moon, I. C.

S. H. Woo, C. K. Hwangbo, Y. B. Son, I. C. Moon, and G. M. Kang, “Optical properties of Ta2O5 thin films deposited by plasma ion-assisted deposition,” J. Korean Phys. Soc. 46, S187–S191 (2005).

Morel, J.

Mortensen, N. F.

Nevsky, A. Y.

R. Holzwarth, A. Y. Nevsky, M. Zimmermann, T. Udem, T. W. Hansch, J. Von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, M. N. Skvortsov, and S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73(3), 269–271 (2001).
[Crossref]

Nielsen, L.

Pedersen, J. E.

Pellaton, M.

R. Straessle, M. Pellaton, C. Affolderbach, Y. Petremand, D. Briand, G. Mileti, and N. F. de Rooij, “Microfabricated alkali vapor cell with anti-relaxation wall coating,” Appl. Phys. Lett. 105(4), 043502 (2014).
[Crossref]

Peng, X.

W. H. Li, M. Balabas, X. Peng, S. Pustelny, A. Wickenbrock, H. Guo, and D. Budker, “Characterization of high-temperature performance of cesium vapor cells with anti-relaxation coating,” J. Appl. Phys. 121(6), 063104 (2017).
[Crossref]

Peters, A.

T. Schuldt, K. Doringshoff, A. Milke, J. Sanjuan, M. Gohlke, E. V. Kovalchuk, N. Gurlebeck, A. Peters, and C. Braxmaier, “High-performance optical frequency references for space,” J. Phys.: Conf. Ser. 723, 012047 (2016).

Petersen, J. C.

Petremand, Y.

R. Straessle, M. Pellaton, C. Affolderbach, Y. Petremand, D. Briand, G. Mileti, and N. F. de Rooij, “Microfabricated alkali vapor cell with anti-relaxation wall coating,” Appl. Phys. Lett. 105(4), 043502 (2014).
[Crossref]

Pham, T. M.

J. Hrabina, M. Zucco, C. Philippe, T. M. Pham, M. Holá, O. Acef, J. Lazar, and O. Číp, “Iodine absorption cells purity testing,” Sensors (Basel) 17(1), 102–114 (2017).
[Crossref] [PubMed]

Philippe, C.

J. Hrabina, M. Zucco, C. Philippe, T. M. Pham, M. Holá, O. Acef, J. Lazar, and O. Číp, “Iodine absorption cells purity testing,” Sensors (Basel) 17(1), 102–114 (2017).
[Crossref] [PubMed]

C. Philippe, R. Le Targat, D. Holleville, M. Lours, T. Minh-Pham, J. Hrabina, F. Du Burck, P. Wolf, and O. Acef, “Frequency tripled 1.5 µm telecom laser diode stabilized to iodine hyperfine line in the 10-15 range,” Eur. Freq. Time Forum 1, 7477827 (2016).

Pustelny, S.

W. H. Li, M. Balabas, X. Peng, S. Pustelny, A. Wickenbrock, H. Guo, and D. Budker, “Characterization of high-temperature performance of cesium vapor cells with anti-relaxation coating,” J. Appl. Phys. 121(6), 063104 (2017).
[Crossref]

Robertsson, L.

M. Zucco, L. Robertsson, and J. P. Wallerand, “Laser-induced fluorescence as a tool to verify the reproducibility of iodine-based laser standards: a study of 96 iodine cells,” Metrologia 50(4), 402–408 (2013).
[Crossref]

Rovera, G. D.

G. D. Rovera, F. Ducos, J. J. Zondy, O. Acef, J. P. Wallerand, J. C. Knight, and P. S. Russell, “Absolute frequency measurement of an I-2 stabilized Nd: YAG optical frequency standard,” Meas. Sci. Technol. 13(6), 918–922 (2002).
[Crossref]

Russell, P. S.

G. D. Rovera, F. Ducos, J. J. Zondy, O. Acef, J. P. Wallerand, J. C. Knight, and P. S. Russell, “Absolute frequency measurement of an I-2 stabilized Nd: YAG optical frequency standard,” Meas. Sci. Technol. 13(6), 918–922 (2002).
[Crossref]

Russell, P. S. J.

R. Holzwarth, A. Y. Nevsky, M. Zimmermann, T. Udem, T. W. Hansch, J. Von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, M. N. Skvortsov, and S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73(3), 269–271 (2001).
[Crossref]

Sanjuan, J.

T. Schuldt, K. Doringshoff, A. Milke, J. Sanjuan, M. Gohlke, E. V. Kovalchuk, N. Gurlebeck, A. Peters, and C. Braxmaier, “High-performance optical frequency references for space,” J. Phys.: Conf. Ser. 723, 012047 (2016).

Šarbort, M.

Schuldt, T.

T. Schuldt, K. Doringshoff, A. Milke, J. Sanjuan, M. Gohlke, E. V. Kovalchuk, N. Gurlebeck, A. Peters, and C. Braxmaier, “High-performance optical frequency references for space,” J. Phys.: Conf. Ser. 723, 012047 (2016).

Seppa, J.

J. Seppa, M. Merimaa, A. Manninen, M. Triches, J. Hald, and A. Lassila, “Interference cancellation for hollow-core fiber reference cells,” IEEE Trans. Instrum. Meas. 64, 1595–1599 (2015).
[Crossref]

Skvortsov, M. N.

R. Holzwarth, A. Y. Nevsky, M. Zimmermann, T. Udem, T. W. Hansch, J. Von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, M. N. Skvortsov, and S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73(3), 269–271 (2001).
[Crossref]

Son, Y. B.

S. H. Woo, C. K. Hwangbo, Y. B. Son, I. C. Moon, and G. M. Kang, “Optical properties of Ta2O5 thin films deposited by plasma ion-assisted deposition,” J. Korean Phys. Soc. 46, S187–S191 (2005).

Stace, T. M.

Straessle, R.

R. Straessle, M. Pellaton, C. Affolderbach, Y. Petremand, D. Briand, G. Mileti, and N. F. de Rooij, “Microfabricated alkali vapor cell with anti-relaxation wall coating,” Appl. Phys. Lett. 105(4), 043502 (2014).
[Crossref]

Talvard, T.

Triches, M.

M. Triches, M. Michieletto, J. Hald, J. K. Lyngsø, J. Lægsgaard, and O. Bang, “Optical frequency standard using acetylene-filled hollow-core photonic crystal fibers,” Opt. Express 23(9), 11227–11241 (2015).
[Crossref] [PubMed]

J. Seppa, M. Merimaa, A. Manninen, M. Triches, J. Hald, and A. Lassila, “Interference cancellation for hollow-core fiber reference cells,” IEEE Trans. Instrum. Meas. 64, 1595–1599 (2015).
[Crossref]

Turlo, J.

G. Atanassov, J. Turlo, J. K. Fu, and Y. S. Dai, “Mechanical, optical and structural properties of TiO2 and MgF2 thin films deposited by plasma ion assisted deposition,” Thin Solid Films 342(1-2), 83–92 (1999).
[Crossref]

Udem, T.

R. Holzwarth, A. Y. Nevsky, M. Zimmermann, T. Udem, T. W. Hansch, J. Von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, M. N. Skvortsov, and S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73(3), 269–271 (2001).
[Crossref]

Varming, P.

Von Zanthier, J.

R. Holzwarth, A. Y. Nevsky, M. Zimmermann, T. Udem, T. W. Hansch, J. Von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, M. N. Skvortsov, and S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73(3), 269–271 (2001).
[Crossref]

Wadsworth, W. J.

R. Holzwarth, A. Y. Nevsky, M. Zimmermann, T. Udem, T. W. Hansch, J. Von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, M. N. Skvortsov, and S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73(3), 269–271 (2001).
[Crossref]

Wallerand, J. P.

M. Zucco, L. Robertsson, and J. P. Wallerand, “Laser-induced fluorescence as a tool to verify the reproducibility of iodine-based laser standards: a study of 96 iodine cells,” Metrologia 50(4), 402–408 (2013).
[Crossref]

G. D. Rovera, F. Ducos, J. J. Zondy, O. Acef, J. P. Wallerand, J. C. Knight, and P. S. Russell, “Absolute frequency measurement of an I-2 stabilized Nd: YAG optical frequency standard,” Meas. Sci. Technol. 13(6), 918–922 (2002).
[Crossref]

Walther, H.

R. Holzwarth, A. Y. Nevsky, M. Zimmermann, T. Udem, T. W. Hansch, J. Von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, M. N. Skvortsov, and S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73(3), 269–271 (2001).
[Crossref]

Westergaard, P. G.

Wickenbrock, A.

W. H. Li, M. Balabas, X. Peng, S. Pustelny, A. Wickenbrock, H. Guo, and D. Budker, “Characterization of high-temperature performance of cesium vapor cells with anti-relaxation coating,” J. Appl. Phys. 121(6), 063104 (2017).
[Crossref]

Wolf, P.

C. Philippe, R. Le Targat, D. Holleville, M. Lours, T. Minh-Pham, J. Hrabina, F. Du Burck, P. Wolf, and O. Acef, “Frequency tripled 1.5 µm telecom laser diode stabilized to iodine hyperfine line in the 10-15 range,” Eur. Freq. Time Forum 1, 7477827 (2016).

Woo, S. H.

S. H. Woo, C. K. Hwangbo, Y. B. Son, I. C. Moon, and G. M. Kang, “Optical properties of Ta2O5 thin films deposited by plasma ion-assisted deposition,” J. Korean Phys. Soc. 46, S187–S191 (2005).

Zalnezhad, E.

M. S. Farhan, E. Zalnezhad, and A. R. Bushroa, “Properties of Ta2O5 thin films prepared by ion-assisted deposition,” Mater. Res. Bull. 48(10), 4206–4209 (2013).
[Crossref]

Zimmermann, M.

R. Holzwarth, A. Y. Nevsky, M. Zimmermann, T. Udem, T. W. Hansch, J. Von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, M. N. Skvortsov, and S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73(3), 269–271 (2001).
[Crossref]

Zondy, J. J.

G. D. Rovera, F. Ducos, J. J. Zondy, O. Acef, J. P. Wallerand, J. C. Knight, and P. S. Russell, “Absolute frequency measurement of an I-2 stabilized Nd: YAG optical frequency standard,” Meas. Sci. Technol. 13(6), 918–922 (2002).
[Crossref]

Zucco, M.

J. Hrabina, M. Zucco, C. Philippe, T. M. Pham, M. Holá, O. Acef, J. Lazar, and O. Číp, “Iodine absorption cells purity testing,” Sensors (Basel) 17(1), 102–114 (2017).
[Crossref] [PubMed]

M. Zucco, L. Robertsson, and J. P. Wallerand, “Laser-induced fluorescence as a tool to verify the reproducibility of iodine-based laser standards: a study of 96 iodine cells,” Metrologia 50(4), 402–408 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

R. Holzwarth, A. Y. Nevsky, M. Zimmermann, T. Udem, T. W. Hansch, J. Von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, M. N. Skvortsov, and S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73(3), 269–271 (2001).
[Crossref]

Appl. Phys. Lett. (1)

R. Straessle, M. Pellaton, C. Affolderbach, Y. Petremand, D. Briand, G. Mileti, and N. F. de Rooij, “Microfabricated alkali vapor cell with anti-relaxation wall coating,” Appl. Phys. Lett. 105(4), 043502 (2014).
[Crossref]

Eur. Freq. Time Forum (1)

C. Philippe, R. Le Targat, D. Holleville, M. Lours, T. Minh-Pham, J. Hrabina, F. Du Burck, P. Wolf, and O. Acef, “Frequency tripled 1.5 µm telecom laser diode stabilized to iodine hyperfine line in the 10-15 range,” Eur. Freq. Time Forum 1, 7477827 (2016).

IEEE Trans. Instrum. Meas. (1)

J. Seppa, M. Merimaa, A. Manninen, M. Triches, J. Hald, and A. Lassila, “Interference cancellation for hollow-core fiber reference cells,” IEEE Trans. Instrum. Meas. 64, 1595–1599 (2015).
[Crossref]

J. Appl. Phys. (1)

W. H. Li, M. Balabas, X. Peng, S. Pustelny, A. Wickenbrock, H. Guo, and D. Budker, “Characterization of high-temperature performance of cesium vapor cells with anti-relaxation coating,” J. Appl. Phys. 121(6), 063104 (2017).
[Crossref]

J. Korean Phys. Soc. (1)

S. H. Woo, C. K. Hwangbo, Y. B. Son, I. C. Moon, and G. M. Kang, “Optical properties of Ta2O5 thin films deposited by plasma ion-assisted deposition,” J. Korean Phys. Soc. 46, S187–S191 (2005).

J. Lightwave Technol. (1)

J. Phys.: Conf. Ser. (1)

T. Schuldt, K. Doringshoff, A. Milke, J. Sanjuan, M. Gohlke, E. V. Kovalchuk, N. Gurlebeck, A. Peters, and C. Braxmaier, “High-performance optical frequency references for space,” J. Phys.: Conf. Ser. 723, 012047 (2016).

Mater. Res. Bull. (1)

M. S. Farhan, E. Zalnezhad, and A. R. Bushroa, “Properties of Ta2O5 thin films prepared by ion-assisted deposition,” Mater. Res. Bull. 48(10), 4206–4209 (2013).
[Crossref]

Meas. Sci. Technol. (1)

G. D. Rovera, F. Ducos, J. J. Zondy, O. Acef, J. P. Wallerand, J. C. Knight, and P. S. Russell, “Absolute frequency measurement of an I-2 stabilized Nd: YAG optical frequency standard,” Meas. Sci. Technol. 13(6), 918–922 (2002).
[Crossref]

Metrologia (3)

J. Lazar, J. Hrabina, P. Jedlicka, and O. Cip, “Absolute frequency shifts of iodine cells for laser stabilization,” Metrologia 46(5), 450–456 (2009).
[Crossref]

M. Zucco, L. Robertsson, and J. P. Wallerand, “Laser-induced fluorescence as a tool to verify the reproducibility of iodine-based laser standards: a study of 96 iodine cells,” Metrologia 50(4), 402–408 (2013).
[Crossref]

S. Fredin-Picard, “A study of contamination in I-127(2) cells using laser-induced fluorescence,” Metrologia 26(4), 235–244 (1989).
[Crossref]

Opt. Express (5)

Sensors (Basel) (1)

J. Hrabina, M. Zucco, C. Philippe, T. M. Pham, M. Holá, O. Acef, J. Lazar, and O. Číp, “Iodine absorption cells purity testing,” Sensors (Basel) 17(1), 102–114 (2017).
[Crossref] [PubMed]

Thin Solid Films (1)

G. Atanassov, J. Turlo, J. K. Fu, and Y. S. Dai, “Mechanical, optical and structural properties of TiO2 and MgF2 thin films deposited by plasma ion assisted deposition,” Thin Solid Films 342(1-2), 83–92 (1999).
[Crossref]

Other (1)

H. A. Macleod, “Recent developments in deposition techniques for optical thin films and coatings,” in Optical Thin Films and Coatings - From Materials to Applications, A. Piegari and F. Flory, eds. (Woodhead Publishing Limited, 2013), pp. 3–25.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Drawing of one half of the absorption cell with depicted welding areas and window outer and inner surfaces. A pair of windows is used for each cell. The window inner surface is AR coated before the welding process, the window outer surface is coated after. The inner surfaces of both the windows are baked out as they are the ones thermally influenced.
Fig. 2
Fig. 2 Spectral profiles comparison of the TiO2/SiO2 and Ta2O5/SiO2 coatings deposited by PIAD and e-beam techniques respectively.
Fig. 3
Fig. 3 Bakeout procedure induced spectral shifts of the antireflection coatings deposited by different methods (e-beam/PIAD) and using TiO2,Ta2O5 as high refractive index materials – overall visible spectral range.
Fig. 4
Fig. 4 Bakeout procedure induced spectral shifts of the antireflection coatings deposited by different methods (e-beam/PIAD) and using TiO2,Ta2O5 as high refractive index materials – details on desired AR coating wavelengths 532 and 633 nm. Red crosses: TiO2/PIAD, yellow circles: TiO2/e-beam, purple stars: Ta2O5/e-beam, blue squares: Ta2O5/PIAD.
Fig. 5
Fig. 5 Residual reflectance of the deposited windows (inner coatings baked out), averaged over the pair of windows and inner/outer surface measurement.
Fig. 6
Fig. 6 Transmittance through the whole cells before their filling with iodine absorption media (blue lines) and after their filling with iodine absorption media (red lines). The iodine molecules were stored in liquid nitrogen trap.
Fig. 7
Fig. 7 Measurement of the coatings optical losses homogeneity at different windows locations (total optical losses at 532 nm wavelength over 1 cell pass = 4 interfaces coatings/environment).

Tables (3)

Tables Icon

Table 1 Optical Coating Designsa,b

Tables Icon

Table 2 Deposition Parameters

Tables Icon

Table 3 Stern-Volmer Coefficients of the Tested Iodine Cells

Metrics