Abstract

In a practical light emitted diodes (LEDs)-based visible light communication (VLC) system, high-speed transmission is generally limited by the LED bandwidth. To address the bandwidth limitation, a hybrid digital linear and decision-feedback equalization (DFE) is investigated to improve the transmission performance (or spectral efficiency) in the carrier-less amplitude phase modulation (CAP)-based VLC systems. A real-time CAP-VLC transceiver with the hybrid digital equalization is designed, based on which 200 Mb/s transmission is successfully demonstrated over a 15 m VLC link with the commercial red LEDs (bandwidth: 6.5 MHz). In the real-time CAP-VLC system, the baseline wander (BLW) is observed, due to the removal of the low-frequency components with a direct current (DC) block. The BLW effect can be mitigated by increasing the roll-off factor. However, this roll-off factor affects the equalization performance, due to an increased loss in the signal spectrum beyond the system bandwidth. Optimization of the roll-off factor and filter length is required. Experimental results show that, with the optimized real-time transceiver design, the hybrid Wiener/recursive least squares (RLS) and DFE significantly improves the error vector magnitude (EVM) performance compared with the DFE. In addition, the digital signal processing (DSP) complexity is discussed.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization

Yiguang Wang, Xingxing Huang, Li Tao, Jianyang Shi, and Nan Chi
Opt. Express 23(10) 13626-13633 (2015)

Gigabit NRZ, CAP and optical OFDM systems over POF links using LEDs

J. L. Wei, L. Geng, D.G. Cunningham, R.V. Penty, and I. H. White
Opt. Express 20(20) 22284-22290 (2012)

Memory-controlled deep LSTM neural network post-equalizer used in high-speed PAM VLC system

Xingyu Lu, Chao Lu, Weixiang Yu, Liang Qiao, Shangyu Liang, Alan Pak Tao Lau, and Nan Chi
Opt. Express 27(5) 7822-7833 (2019)

References

  • View by:
  • |
  • |
  • |

  1. H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
    [Crossref]
  2. A. Hussein and J. Elmirghani, “Mobile multi-gigabit visible light communication system in realistic indoor environment,” J. Lightwave Technol. 33(15), 3293–3307 (2015).
    [Crossref]
  3. Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-Based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photonics J. 7(6), 7904507 (2015).
  4. K. Liang, C.-W. Chow, and Y. Liu, “RGB visible light communication using mobile-phone camera and multi-input multi-output,” Opt. Express 24(9), 9383–9388 (2016).
    [Crossref] [PubMed]
  5. K. Werfli, P. Chvojka, Z. Ghassemlooy, N. B. Hassan, S. Zvanovec, A. Burton, P. A. Haigh, and M. R. Bhatnagar, “Experimental demonstration of high-Speed 4 × 4 imaging multi-CAP MIMO visible light communications,” J. Lightwave Technol. 36(10), 1944–1951 (2018).
    [Crossref]
  6. N. Chi, Y. Zhou, S. Liang, F. Wang, J. Li, and Y. Wang, “Enabling technologies for high-speed visible light communication employing CAP modulation,” J. Lightwave Technol. 36(2), 510–518 (2018).
    [Crossref]
  7. F F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, H. T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photonics J. 5(4), 7901507 (2013).
    [Crossref]
  8. G. Stepniak, L. Maksymiuk, and J. Siuzdak, “Experimental comparison of PAM, CAP and DMT modulations in phosphorescent white LED transmission link,” IEEE Photonics J. 7(3), 7901708 (2015).
    [Crossref]
  9. J. L. Wei, C. Sanchez, and E. Giacoumidis, “Fair comparison of complexity between a multi-band CAP and DMT for data center interconnects,” Opt. Lett. 42(19), 1 (2017).
    [Crossref] [PubMed]
  10. P. A. Haigh, A. Burton, K. Werfli, H. L. Minh, E. Bentley, P. Chvojka, W. O. Popoola, I. Papakonstantinou, and S. Zvanovec, “A multi-CAP visible light communications system with 4.85 b/s/Hz spectral efficiency,” J. Sel. Areas Commun. 33(9), 1771–1779 (2015).
    [Crossref]
  11. M. I. Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, S. Popov, and I. T. Monroy, “Multiband carrierless amplitude phase modulation for high capacity optical data links,” J. Lightwave Technol. 32(4), 798–804 (2014).
    [Crossref]
  12. A. Abdolhamid and D. Johns, “A comparison of CAP/QAM architectures,” in Proc. IEEE International Symp. on Circuits and Systems (IEEE, 1998), 316.
  13. S. Gondi and B. Razavi, “Equalization and clock and data recovery techniques for 10-Gb/s CMOS serial-link receivers,” IEEE J. Solid-State Circuits 42(9), 1999–2011 (2007).
    [Crossref]
  14. A. Street, K. Samaras, D. O’Brien, and D. Edwards, “Closed form expressions for baseline wander effects in wireless IR applications,” Electron. Lett. 33(12), 1060–1062 (1997).
    [Crossref]
  15. Z. Ghassemlooy, “Investigation of the baseline wander effect on indoor optical wireless system employing digital pulse interval modulation,” IET Commun. 2(1), 53–60 (2008).
    [Crossref]
  16. F. Waldhauer, “Quantized feedback in an experimental 280-Mb/s digital repeater for coaxial transmission,” IEEE Trans. Commun. 22(1), 1–5 (1974).
    [Crossref]
  17. M. Uysal, Z. Ghassemlooy, A. Bekkali, A. Kadri, and H. Menouar, “Visible light communication for vehicular networking: performance study of a V2V system using a measured headlamp beam pattern model,” IEEE Veh. Technol. Mag. 10(4), 45–53 (2015).
    [Crossref]
  18. Y. Goto, I. Takai, T. Yamazato, H. Okada, T. Fujii, S. Kawahito, S. Arai, T. Yendo, and K. Kamakura, “A new automotive VLC system using optical communication image sensor,” IEEE Photonics J. 8(3), 1 (2016).
    [Crossref]
  19. A. Cailean and M. Dimian, “Current challenges for visible light communications usage in vehicle applications: a survey,” IEEE Comm. Surv. and Tutor. 19(4), 2681–2703 (2017).
    [Crossref]
  20. K. Cui, G. Chen, Z. Xu, and R. Roberts, “Experimental characterization of traffic light to vehicle VLC link performance,” IEEE Globecom Workshops, Houston, TX, USA, 808–812 (2011).
  21. Y. Mao, X. Jin, W. Liu, C. Gong, and Z. Xu, “Demonstration of real-time CAP transceivers with hybrid digital equalization for visible light communication,” in Proc. Asia Commun. and Photonics Conf. (ACP), 2017, paper M1G.4.
    [Crossref]
  22. S. Haykin, Adaptive Filter Theory, 4th Edition (Prentice Hall, 2002).
  23. J. Chen, J. Benesty, Y. Huang, and S. Doclo, “New insights into the noise reduction wiener filter,” IEEE Trans. Audio Speech Lang. Process. 14(4), 1218–1234 (2006).
    [Crossref]
  24. F. Miramirkhani and M. Uysal, “Channel modeling and characterization for visible light communications channel modeling and characterization for visible light communications,” IEEE Photonics J. 7(6), 1 (2015).
    [Crossref]
  25. Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modelling (CRC Press INC, 2012).
  26. F. Xu, M. A. Khalighi, and S. Bourennane, “Impact of different noise sources on the performance of PIN- and APD-based FSO receivers,” in Proc. International Conf. on Telecom. (IEEE, 2011), 211–218.
  27. H. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. Won, “100-Mb/s NRZ Visible Light Communications Using a Postequalized White LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
    [Crossref]
  28. F. Liu, M. Chen, W. Jiang, X. Jin, and Z. Xu, “Effective auto-alignment and tracking of transceivers for visible light communication in data centres,” in Proc. SPIE Photonics West OPTO, San Francisco, California (2019).
  29. R. Yang, X. Jin, M. Jin, and Z. Xu, “Experimental investigation of optical OFDMA for vehicular visible light communication,” in Proc. of European Conf. on Optical Communication (ECOC) (IEEE, 2017), 1–3.
    [Crossref]
  30. L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “Experimental demonstration of 10 Gb/s multi-level carrier-less amplitude and phase modulation for short range optical communication systems,” Opt. Express 21(5), 6459–6465 (2013).
    [Crossref] [PubMed]
  31. T. Nguyen, S. Le, M. Wuilpart, and P. Mégret, “Experimental demonstration of a low-complexity phase noise compensation for CO-OFDM systems,” IEEE Photonics Technol. Lett. 30(16), 1467–1470 (2018).
    [Crossref]
  32. G. Tzimpragos, C. Kachris, I. Djordjevic, M. Cvijetic, D. Soudris, and I. Tomkos, “A survey on FEC codes for 100 G and beyond optical networks,” IEEE Comm. Surv. and Tutor. 18(1), 209–221 (2016).
    [Crossref]

2018 (3)

2017 (2)

A. Cailean and M. Dimian, “Current challenges for visible light communications usage in vehicle applications: a survey,” IEEE Comm. Surv. and Tutor. 19(4), 2681–2703 (2017).
[Crossref]

J. L. Wei, C. Sanchez, and E. Giacoumidis, “Fair comparison of complexity between a multi-band CAP and DMT for data center interconnects,” Opt. Lett. 42(19), 1 (2017).
[Crossref] [PubMed]

2016 (3)

K. Liang, C.-W. Chow, and Y. Liu, “RGB visible light communication using mobile-phone camera and multi-input multi-output,” Opt. Express 24(9), 9383–9388 (2016).
[Crossref] [PubMed]

G. Tzimpragos, C. Kachris, I. Djordjevic, M. Cvijetic, D. Soudris, and I. Tomkos, “A survey on FEC codes for 100 G and beyond optical networks,” IEEE Comm. Surv. and Tutor. 18(1), 209–221 (2016).
[Crossref]

Y. Goto, I. Takai, T. Yamazato, H. Okada, T. Fujii, S. Kawahito, S. Arai, T. Yendo, and K. Kamakura, “A new automotive VLC system using optical communication image sensor,” IEEE Photonics J. 8(3), 1 (2016).
[Crossref]

2015 (6)

F. Miramirkhani and M. Uysal, “Channel modeling and characterization for visible light communications channel modeling and characterization for visible light communications,” IEEE Photonics J. 7(6), 1 (2015).
[Crossref]

A. Hussein and J. Elmirghani, “Mobile multi-gigabit visible light communication system in realistic indoor environment,” J. Lightwave Technol. 33(15), 3293–3307 (2015).
[Crossref]

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-Based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photonics J. 7(6), 7904507 (2015).

P. A. Haigh, A. Burton, K. Werfli, H. L. Minh, E. Bentley, P. Chvojka, W. O. Popoola, I. Papakonstantinou, and S. Zvanovec, “A multi-CAP visible light communications system with 4.85 b/s/Hz spectral efficiency,” J. Sel. Areas Commun. 33(9), 1771–1779 (2015).
[Crossref]

G. Stepniak, L. Maksymiuk, and J. Siuzdak, “Experimental comparison of PAM, CAP and DMT modulations in phosphorescent white LED transmission link,” IEEE Photonics J. 7(3), 7901708 (2015).
[Crossref]

M. Uysal, Z. Ghassemlooy, A. Bekkali, A. Kadri, and H. Menouar, “Visible light communication for vehicular networking: performance study of a V2V system using a measured headlamp beam pattern model,” IEEE Veh. Technol. Mag. 10(4), 45–53 (2015).
[Crossref]

2014 (1)

2013 (2)

F F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, H. T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photonics J. 5(4), 7901507 (2013).
[Crossref]

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “Experimental demonstration of 10 Gb/s multi-level carrier-less amplitude and phase modulation for short range optical communication systems,” Opt. Express 21(5), 6459–6465 (2013).
[Crossref] [PubMed]

2011 (1)

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

2009 (1)

H. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. Won, “100-Mb/s NRZ Visible Light Communications Using a Postequalized White LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

2008 (1)

Z. Ghassemlooy, “Investigation of the baseline wander effect on indoor optical wireless system employing digital pulse interval modulation,” IET Commun. 2(1), 53–60 (2008).
[Crossref]

2007 (1)

S. Gondi and B. Razavi, “Equalization and clock and data recovery techniques for 10-Gb/s CMOS serial-link receivers,” IEEE J. Solid-State Circuits 42(9), 1999–2011 (2007).
[Crossref]

2006 (1)

J. Chen, J. Benesty, Y. Huang, and S. Doclo, “New insights into the noise reduction wiener filter,” IEEE Trans. Audio Speech Lang. Process. 14(4), 1218–1234 (2006).
[Crossref]

1997 (1)

A. Street, K. Samaras, D. O’Brien, and D. Edwards, “Closed form expressions for baseline wander effects in wireless IR applications,” Electron. Lett. 33(12), 1060–1062 (1997).
[Crossref]

1974 (1)

F. Waldhauer, “Quantized feedback in an experimental 280-Mb/s digital repeater for coaxial transmission,” IEEE Trans. Commun. 22(1), 1–5 (1974).
[Crossref]

Abdolhamid, A.

A. Abdolhamid and D. Johns, “A comparison of CAP/QAM architectures,” in Proc. IEEE International Symp. on Circuits and Systems (IEEE, 1998), 316.

Arai, S.

Y. Goto, I. Takai, T. Yamazato, H. Okada, T. Fujii, S. Kawahito, S. Arai, T. Yendo, and K. Kamakura, “A new automotive VLC system using optical communication image sensor,” IEEE Photonics J. 8(3), 1 (2016).
[Crossref]

Bekkali, A.

M. Uysal, Z. Ghassemlooy, A. Bekkali, A. Kadri, and H. Menouar, “Visible light communication for vehicular networking: performance study of a V2V system using a measured headlamp beam pattern model,” IEEE Veh. Technol. Mag. 10(4), 45–53 (2015).
[Crossref]

Benesty, J.

J. Chen, J. Benesty, Y. Huang, and S. Doclo, “New insights into the noise reduction wiener filter,” IEEE Trans. Audio Speech Lang. Process. 14(4), 1218–1234 (2006).
[Crossref]

Bentley, E.

P. A. Haigh, A. Burton, K. Werfli, H. L. Minh, E. Bentley, P. Chvojka, W. O. Popoola, I. Papakonstantinou, and S. Zvanovec, “A multi-CAP visible light communications system with 4.85 b/s/Hz spectral efficiency,” J. Sel. Areas Commun. 33(9), 1771–1779 (2015).
[Crossref]

Bhatnagar, M. R.

Bourennane, S.

F. Xu, M. A. Khalighi, and S. Bourennane, “Impact of different noise sources on the performance of PIN- and APD-based FSO receivers,” in Proc. International Conf. on Telecom. (IEEE, 2011), 211–218.

Burton, A.

K. Werfli, P. Chvojka, Z. Ghassemlooy, N. B. Hassan, S. Zvanovec, A. Burton, P. A. Haigh, and M. R. Bhatnagar, “Experimental demonstration of high-Speed 4 × 4 imaging multi-CAP MIMO visible light communications,” J. Lightwave Technol. 36(10), 1944–1951 (2018).
[Crossref]

P. A. Haigh, A. Burton, K. Werfli, H. L. Minh, E. Bentley, P. Chvojka, W. O. Popoola, I. Papakonstantinou, and S. Zvanovec, “A multi-CAP visible light communications system with 4.85 b/s/Hz spectral efficiency,” J. Sel. Areas Commun. 33(9), 1771–1779 (2015).
[Crossref]

Cailean, A.

A. Cailean and M. Dimian, “Current challenges for visible light communications usage in vehicle applications: a survey,” IEEE Comm. Surv. and Tutor. 19(4), 2681–2703 (2017).
[Crossref]

Chen, C. W.

F F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, H. T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photonics J. 5(4), 7901507 (2013).
[Crossref]

Chen, J.

J. Chen, J. Benesty, Y. Huang, and S. Doclo, “New insights into the noise reduction wiener filter,” IEEE Trans. Audio Speech Lang. Process. 14(4), 1218–1234 (2006).
[Crossref]

Chen, M.

F. Liu, M. Chen, W. Jiang, X. Jin, and Z. Xu, “Effective auto-alignment and tracking of transceivers for visible light communication in data centres,” in Proc. SPIE Photonics West OPTO, San Francisco, California (2019).

Chen, Z. Y.

F F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, H. T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photonics J. 5(4), 7901507 (2013).
[Crossref]

Chi, N.

Chi, S.

F F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, H. T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photonics J. 5(4), 7901507 (2013).
[Crossref]

Chow, C.-W.

Chvojka, P.

K. Werfli, P. Chvojka, Z. Ghassemlooy, N. B. Hassan, S. Zvanovec, A. Burton, P. A. Haigh, and M. R. Bhatnagar, “Experimental demonstration of high-Speed 4 × 4 imaging multi-CAP MIMO visible light communications,” J. Lightwave Technol. 36(10), 1944–1951 (2018).
[Crossref]

P. A. Haigh, A. Burton, K. Werfli, H. L. Minh, E. Bentley, P. Chvojka, W. O. Popoola, I. Papakonstantinou, and S. Zvanovec, “A multi-CAP visible light communications system with 4.85 b/s/Hz spectral efficiency,” J. Sel. Areas Commun. 33(9), 1771–1779 (2015).
[Crossref]

Cvijetic, M.

G. Tzimpragos, C. Kachris, I. Djordjevic, M. Cvijetic, D. Soudris, and I. Tomkos, “A survey on FEC codes for 100 G and beyond optical networks,” IEEE Comm. Surv. and Tutor. 18(1), 209–221 (2016).
[Crossref]

Dimian, M.

A. Cailean and M. Dimian, “Current challenges for visible light communications usage in vehicle applications: a survey,” IEEE Comm. Surv. and Tutor. 19(4), 2681–2703 (2017).
[Crossref]

Djordjevic, I.

G. Tzimpragos, C. Kachris, I. Djordjevic, M. Cvijetic, D. Soudris, and I. Tomkos, “A survey on FEC codes for 100 G and beyond optical networks,” IEEE Comm. Surv. and Tutor. 18(1), 209–221 (2016).
[Crossref]

Doclo, S.

J. Chen, J. Benesty, Y. Huang, and S. Doclo, “New insights into the noise reduction wiener filter,” IEEE Trans. Audio Speech Lang. Process. 14(4), 1218–1234 (2006).
[Crossref]

Edwards, D.

A. Street, K. Samaras, D. O’Brien, and D. Edwards, “Closed form expressions for baseline wander effects in wireless IR applications,” Electron. Lett. 33(12), 1060–1062 (1997).
[Crossref]

Elgala, H.

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

Elmirghani, J.

Faulkner, G.

H. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. Won, “100-Mb/s NRZ Visible Light Communications Using a Postequalized White LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Fujii, T.

Y. Goto, I. Takai, T. Yamazato, H. Okada, T. Fujii, S. Kawahito, S. Arai, T. Yendo, and K. Kamakura, “A new automotive VLC system using optical communication image sensor,” IEEE Photonics J. 8(3), 1 (2016).
[Crossref]

Gao, Y.

Ghassemlooy, Z.

K. Werfli, P. Chvojka, Z. Ghassemlooy, N. B. Hassan, S. Zvanovec, A. Burton, P. A. Haigh, and M. R. Bhatnagar, “Experimental demonstration of high-Speed 4 × 4 imaging multi-CAP MIMO visible light communications,” J. Lightwave Technol. 36(10), 1944–1951 (2018).
[Crossref]

M. Uysal, Z. Ghassemlooy, A. Bekkali, A. Kadri, and H. Menouar, “Visible light communication for vehicular networking: performance study of a V2V system using a measured headlamp beam pattern model,” IEEE Veh. Technol. Mag. 10(4), 45–53 (2015).
[Crossref]

Z. Ghassemlooy, “Investigation of the baseline wander effect on indoor optical wireless system employing digital pulse interval modulation,” IET Commun. 2(1), 53–60 (2008).
[Crossref]

Giacoumidis, E.

Gondi, S.

S. Gondi and B. Razavi, “Equalization and clock and data recovery techniques for 10-Gb/s CMOS serial-link receivers,” IEEE J. Solid-State Circuits 42(9), 1999–2011 (2007).
[Crossref]

Gong, C.

Y. Mao, X. Jin, W. Liu, C. Gong, and Z. Xu, “Demonstration of real-time CAP transceivers with hybrid digital equalization for visible light communication,” in Proc. Asia Commun. and Photonics Conf. (ACP), 2017, paper M1G.4.
[Crossref]

Goto, Y.

Y. Goto, I. Takai, T. Yamazato, H. Okada, T. Fujii, S. Kawahito, S. Arai, T. Yendo, and K. Kamakura, “A new automotive VLC system using optical communication image sensor,” IEEE Photonics J. 8(3), 1 (2016).
[Crossref]

Haas, H.

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

Haigh, P. A.

K. Werfli, P. Chvojka, Z. Ghassemlooy, N. B. Hassan, S. Zvanovec, A. Burton, P. A. Haigh, and M. R. Bhatnagar, “Experimental demonstration of high-Speed 4 × 4 imaging multi-CAP MIMO visible light communications,” J. Lightwave Technol. 36(10), 1944–1951 (2018).
[Crossref]

P. A. Haigh, A. Burton, K. Werfli, H. L. Minh, E. Bentley, P. Chvojka, W. O. Popoola, I. Papakonstantinou, and S. Zvanovec, “A multi-CAP visible light communications system with 4.85 b/s/Hz spectral efficiency,” J. Sel. Areas Commun. 33(9), 1771–1779 (2015).
[Crossref]

Hassan, N. B.

Huang, H. T.

F F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, H. T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photonics J. 5(4), 7901507 (2013).
[Crossref]

Huang, X.

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-Based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photonics J. 7(6), 7904507 (2015).

Huang, Y.

J. Chen, J. Benesty, Y. Huang, and S. Doclo, “New insights into the noise reduction wiener filter,” IEEE Trans. Audio Speech Lang. Process. 14(4), 1218–1234 (2006).
[Crossref]

Hussein, A.

Jensen, J. B.

Jiang, W.

F. Liu, M. Chen, W. Jiang, X. Jin, and Z. Xu, “Effective auto-alignment and tracking of transceivers for visible light communication in data centres,” in Proc. SPIE Photonics West OPTO, San Francisco, California (2019).

Jin, M.

R. Yang, X. Jin, M. Jin, and Z. Xu, “Experimental investigation of optical OFDMA for vehicular visible light communication,” in Proc. of European Conf. on Optical Communication (ECOC) (IEEE, 2017), 1–3.
[Crossref]

Jin, X.

F. Liu, M. Chen, W. Jiang, X. Jin, and Z. Xu, “Effective auto-alignment and tracking of transceivers for visible light communication in data centres,” in Proc. SPIE Photonics West OPTO, San Francisco, California (2019).

Y. Mao, X. Jin, W. Liu, C. Gong, and Z. Xu, “Demonstration of real-time CAP transceivers with hybrid digital equalization for visible light communication,” in Proc. Asia Commun. and Photonics Conf. (ACP), 2017, paper M1G.4.
[Crossref]

R. Yang, X. Jin, M. Jin, and Z. Xu, “Experimental investigation of optical OFDMA for vehicular visible light communication,” in Proc. of European Conf. on Optical Communication (ECOC) (IEEE, 2017), 1–3.
[Crossref]

Johns, D.

A. Abdolhamid and D. Johns, “A comparison of CAP/QAM architectures,” in Proc. IEEE International Symp. on Circuits and Systems (IEEE, 1998), 316.

Jung, D.

H. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. Won, “100-Mb/s NRZ Visible Light Communications Using a Postequalized White LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Kachris, C.

G. Tzimpragos, C. Kachris, I. Djordjevic, M. Cvijetic, D. Soudris, and I. Tomkos, “A survey on FEC codes for 100 G and beyond optical networks,” IEEE Comm. Surv. and Tutor. 18(1), 209–221 (2016).
[Crossref]

Kadri, A.

M. Uysal, Z. Ghassemlooy, A. Bekkali, A. Kadri, and H. Menouar, “Visible light communication for vehicular networking: performance study of a V2V system using a measured headlamp beam pattern model,” IEEE Veh. Technol. Mag. 10(4), 45–53 (2015).
[Crossref]

Kamakura, K.

Y. Goto, I. Takai, T. Yamazato, H. Okada, T. Fujii, S. Kawahito, S. Arai, T. Yendo, and K. Kamakura, “A new automotive VLC system using optical communication image sensor,” IEEE Photonics J. 8(3), 1 (2016).
[Crossref]

Kawahito, S.

Y. Goto, I. Takai, T. Yamazato, H. Okada, T. Fujii, S. Kawahito, S. Arai, T. Yendo, and K. Kamakura, “A new automotive VLC system using optical communication image sensor,” IEEE Photonics J. 8(3), 1 (2016).
[Crossref]

Khalighi, M. A.

F. Xu, M. A. Khalighi, and S. Bourennane, “Impact of different noise sources on the performance of PIN- and APD-based FSO receivers,” in Proc. International Conf. on Telecom. (IEEE, 2011), 211–218.

Lau, A. P. T.

Le, S.

T. Nguyen, S. Le, M. Wuilpart, and P. Mégret, “Experimental demonstration of a low-complexity phase noise compensation for CO-OFDM systems,” IEEE Photonics Technol. Lett. 30(16), 1467–1470 (2018).
[Crossref]

Lee, K.

H. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. Won, “100-Mb/s NRZ Visible Light Communications Using a Postequalized White LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Li, J.

Liang, K.

Liang, S.

Lin, C. T.

F F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, H. T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photonics J. 5(4), 7901507 (2013).
[Crossref]

Liu, F.

F. Liu, M. Chen, W. Jiang, X. Jin, and Z. Xu, “Effective auto-alignment and tracking of transceivers for visible light communication in data centres,” in Proc. SPIE Photonics West OPTO, San Francisco, California (2019).

Liu, W.

Y. Mao, X. Jin, W. Liu, C. Gong, and Z. Xu, “Demonstration of real-time CAP transceivers with hybrid digital equalization for visible light communication,” in Proc. Asia Commun. and Photonics Conf. (ACP), 2017, paper M1G.4.
[Crossref]

Liu, Y.

Lu, C.

Maksymiuk, L.

G. Stepniak, L. Maksymiuk, and J. Siuzdak, “Experimental comparison of PAM, CAP and DMT modulations in phosphorescent white LED transmission link,” IEEE Photonics J. 7(3), 7901708 (2015).
[Crossref]

Mao, Y.

Y. Mao, X. Jin, W. Liu, C. Gong, and Z. Xu, “Demonstration of real-time CAP transceivers with hybrid digital equalization for visible light communication,” in Proc. Asia Commun. and Photonics Conf. (ACP), 2017, paper M1G.4.
[Crossref]

Mégret, P.

T. Nguyen, S. Le, M. Wuilpart, and P. Mégret, “Experimental demonstration of a low-complexity phase noise compensation for CO-OFDM systems,” IEEE Photonics Technol. Lett. 30(16), 1467–1470 (2018).
[Crossref]

Menouar, H.

M. Uysal, Z. Ghassemlooy, A. Bekkali, A. Kadri, and H. Menouar, “Visible light communication for vehicular networking: performance study of a V2V system using a measured headlamp beam pattern model,” IEEE Veh. Technol. Mag. 10(4), 45–53 (2015).
[Crossref]

Mesleh, R.

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

Minh, H.

H. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. Won, “100-Mb/s NRZ Visible Light Communications Using a Postequalized White LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Minh, H. L.

P. A. Haigh, A. Burton, K. Werfli, H. L. Minh, E. Bentley, P. Chvojka, W. O. Popoola, I. Papakonstantinou, and S. Zvanovec, “A multi-CAP visible light communications system with 4.85 b/s/Hz spectral efficiency,” J. Sel. Areas Commun. 33(9), 1771–1779 (2015).
[Crossref]

Miramirkhani, F.

F. Miramirkhani and M. Uysal, “Channel modeling and characterization for visible light communications channel modeling and characterization for visible light communications,” IEEE Photonics J. 7(6), 1 (2015).
[Crossref]

Monroy, I. T.

Nguyen, T.

T. Nguyen, S. Le, M. Wuilpart, and P. Mégret, “Experimental demonstration of a low-complexity phase noise compensation for CO-OFDM systems,” IEEE Photonics Technol. Lett. 30(16), 1467–1470 (2018).
[Crossref]

O’Brien, D.

H. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. Won, “100-Mb/s NRZ Visible Light Communications Using a Postequalized White LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

A. Street, K. Samaras, D. O’Brien, and D. Edwards, “Closed form expressions for baseline wander effects in wireless IR applications,” Electron. Lett. 33(12), 1060–1062 (1997).
[Crossref]

Oh, Y.

H. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. Won, “100-Mb/s NRZ Visible Light Communications Using a Postequalized White LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Okada, H.

Y. Goto, I. Takai, T. Yamazato, H. Okada, T. Fujii, S. Kawahito, S. Arai, T. Yendo, and K. Kamakura, “A new automotive VLC system using optical communication image sensor,” IEEE Photonics J. 8(3), 1 (2016).
[Crossref]

Olmedo, M. I.

Papakonstantinou, I.

P. A. Haigh, A. Burton, K. Werfli, H. L. Minh, E. Bentley, P. Chvojka, W. O. Popoola, I. Papakonstantinou, and S. Zvanovec, “A multi-CAP visible light communications system with 4.85 b/s/Hz spectral efficiency,” J. Sel. Areas Commun. 33(9), 1771–1779 (2015).
[Crossref]

Popoola, W. O.

P. A. Haigh, A. Burton, K. Werfli, H. L. Minh, E. Bentley, P. Chvojka, W. O. Popoola, I. Papakonstantinou, and S. Zvanovec, “A multi-CAP visible light communications system with 4.85 b/s/Hz spectral efficiency,” J. Sel. Areas Commun. 33(9), 1771–1779 (2015).
[Crossref]

Popov, S.

Razavi, B.

S. Gondi and B. Razavi, “Equalization and clock and data recovery techniques for 10-Gb/s CMOS serial-link receivers,” IEEE J. Solid-State Circuits 42(9), 1999–2011 (2007).
[Crossref]

Samaras, K.

A. Street, K. Samaras, D. O’Brien, and D. Edwards, “Closed form expressions for baseline wander effects in wireless IR applications,” Electron. Lett. 33(12), 1060–1062 (1997).
[Crossref]

Sanchez, C.

Shi, J.

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-Based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photonics J. 7(6), 7904507 (2015).

Siuzdak, J.

G. Stepniak, L. Maksymiuk, and J. Siuzdak, “Experimental comparison of PAM, CAP and DMT modulations in phosphorescent white LED transmission link,” IEEE Photonics J. 7(3), 7901708 (2015).
[Crossref]

Soudris, D.

G. Tzimpragos, C. Kachris, I. Djordjevic, M. Cvijetic, D. Soudris, and I. Tomkos, “A survey on FEC codes for 100 G and beyond optical networks,” IEEE Comm. Surv. and Tutor. 18(1), 209–221 (2016).
[Crossref]

Stepniak, G.

G. Stepniak, L. Maksymiuk, and J. Siuzdak, “Experimental comparison of PAM, CAP and DMT modulations in phosphorescent white LED transmission link,” IEEE Photonics J. 7(3), 7901708 (2015).
[Crossref]

Street, A.

A. Street, K. Samaras, D. O’Brien, and D. Edwards, “Closed form expressions for baseline wander effects in wireless IR applications,” Electron. Lett. 33(12), 1060–1062 (1997).
[Crossref]

Takai, I.

Y. Goto, I. Takai, T. Yamazato, H. Okada, T. Fujii, S. Kawahito, S. Arai, T. Yendo, and K. Kamakura, “A new automotive VLC system using optical communication image sensor,” IEEE Photonics J. 8(3), 1 (2016).
[Crossref]

Tao, L.

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-Based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photonics J. 7(6), 7904507 (2015).

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “Experimental demonstration of 10 Gb/s multi-level carrier-less amplitude and phase modulation for short range optical communication systems,” Opt. Express 21(5), 6459–6465 (2013).
[Crossref] [PubMed]

Tomkos, I.

G. Tzimpragos, C. Kachris, I. Djordjevic, M. Cvijetic, D. Soudris, and I. Tomkos, “A survey on FEC codes for 100 G and beyond optical networks,” IEEE Comm. Surv. and Tutor. 18(1), 209–221 (2016).
[Crossref]

Tzimpragos, G.

G. Tzimpragos, C. Kachris, I. Djordjevic, M. Cvijetic, D. Soudris, and I. Tomkos, “A survey on FEC codes for 100 G and beyond optical networks,” IEEE Comm. Surv. and Tutor. 18(1), 209–221 (2016).
[Crossref]

Uysal, M.

M. Uysal, Z. Ghassemlooy, A. Bekkali, A. Kadri, and H. Menouar, “Visible light communication for vehicular networking: performance study of a V2V system using a measured headlamp beam pattern model,” IEEE Veh. Technol. Mag. 10(4), 45–53 (2015).
[Crossref]

F. Miramirkhani and M. Uysal, “Channel modeling and characterization for visible light communications channel modeling and characterization for visible light communications,” IEEE Photonics J. 7(6), 1 (2015).
[Crossref]

Waldhauer, F.

F. Waldhauer, “Quantized feedback in an experimental 280-Mb/s digital repeater for coaxial transmission,” IEEE Trans. Commun. 22(1), 1–5 (1974).
[Crossref]

Wang, F.

Wang, Y.

Wei, C. C.

F F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, H. T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photonics J. 5(4), 7901507 (2013).
[Crossref]

Wei, J. L.

Werfli, K.

K. Werfli, P. Chvojka, Z. Ghassemlooy, N. B. Hassan, S. Zvanovec, A. Burton, P. A. Haigh, and M. R. Bhatnagar, “Experimental demonstration of high-Speed 4 × 4 imaging multi-CAP MIMO visible light communications,” J. Lightwave Technol. 36(10), 1944–1951 (2018).
[Crossref]

P. A. Haigh, A. Burton, K. Werfli, H. L. Minh, E. Bentley, P. Chvojka, W. O. Popoola, I. Papakonstantinou, and S. Zvanovec, “A multi-CAP visible light communications system with 4.85 b/s/Hz spectral efficiency,” J. Sel. Areas Commun. 33(9), 1771–1779 (2015).
[Crossref]

Won, E.

H. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. Won, “100-Mb/s NRZ Visible Light Communications Using a Postequalized White LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Wu, F F. M.

F F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, H. T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photonics J. 5(4), 7901507 (2013).
[Crossref]

Wuilpart, M.

T. Nguyen, S. Le, M. Wuilpart, and P. Mégret, “Experimental demonstration of a low-complexity phase noise compensation for CO-OFDM systems,” IEEE Photonics Technol. Lett. 30(16), 1467–1470 (2018).
[Crossref]

Xu, F.

F. Xu, M. A. Khalighi, and S. Bourennane, “Impact of different noise sources on the performance of PIN- and APD-based FSO receivers,” in Proc. International Conf. on Telecom. (IEEE, 2011), 211–218.

Xu, X.

Xu, Z.

Y. Mao, X. Jin, W. Liu, C. Gong, and Z. Xu, “Demonstration of real-time CAP transceivers with hybrid digital equalization for visible light communication,” in Proc. Asia Commun. and Photonics Conf. (ACP), 2017, paper M1G.4.
[Crossref]

R. Yang, X. Jin, M. Jin, and Z. Xu, “Experimental investigation of optical OFDMA for vehicular visible light communication,” in Proc. of European Conf. on Optical Communication (ECOC) (IEEE, 2017), 1–3.
[Crossref]

F. Liu, M. Chen, W. Jiang, X. Jin, and Z. Xu, “Effective auto-alignment and tracking of transceivers for visible light communication in data centres,” in Proc. SPIE Photonics West OPTO, San Francisco, California (2019).

Yamazato, T.

Y. Goto, I. Takai, T. Yamazato, H. Okada, T. Fujii, S. Kawahito, S. Arai, T. Yendo, and K. Kamakura, “A new automotive VLC system using optical communication image sensor,” IEEE Photonics J. 8(3), 1 (2016).
[Crossref]

Yang, R.

R. Yang, X. Jin, M. Jin, and Z. Xu, “Experimental investigation of optical OFDMA for vehicular visible light communication,” in Proc. of European Conf. on Optical Communication (ECOC) (IEEE, 2017), 1–3.
[Crossref]

Yendo, T.

Y. Goto, I. Takai, T. Yamazato, H. Okada, T. Fujii, S. Kawahito, S. Arai, T. Yendo, and K. Kamakura, “A new automotive VLC system using optical communication image sensor,” IEEE Photonics J. 8(3), 1 (2016).
[Crossref]

Zeng, L.

H. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. Won, “100-Mb/s NRZ Visible Light Communications Using a Postequalized White LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Zhong, Q.

Zhou, Y.

Zuo, T.

Zvanovec, S.

K. Werfli, P. Chvojka, Z. Ghassemlooy, N. B. Hassan, S. Zvanovec, A. Burton, P. A. Haigh, and M. R. Bhatnagar, “Experimental demonstration of high-Speed 4 × 4 imaging multi-CAP MIMO visible light communications,” J. Lightwave Technol. 36(10), 1944–1951 (2018).
[Crossref]

P. A. Haigh, A. Burton, K. Werfli, H. L. Minh, E. Bentley, P. Chvojka, W. O. Popoola, I. Papakonstantinou, and S. Zvanovec, “A multi-CAP visible light communications system with 4.85 b/s/Hz spectral efficiency,” J. Sel. Areas Commun. 33(9), 1771–1779 (2015).
[Crossref]

Electron. Lett. (1)

A. Street, K. Samaras, D. O’Brien, and D. Edwards, “Closed form expressions for baseline wander effects in wireless IR applications,” Electron. Lett. 33(12), 1060–1062 (1997).
[Crossref]

IEEE Comm. Surv. and Tutor. (2)

A. Cailean and M. Dimian, “Current challenges for visible light communications usage in vehicle applications: a survey,” IEEE Comm. Surv. and Tutor. 19(4), 2681–2703 (2017).
[Crossref]

G. Tzimpragos, C. Kachris, I. Djordjevic, M. Cvijetic, D. Soudris, and I. Tomkos, “A survey on FEC codes for 100 G and beyond optical networks,” IEEE Comm. Surv. and Tutor. 18(1), 209–221 (2016).
[Crossref]

IEEE Commun. Mag. (1)

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

IEEE J. Solid-State Circuits (1)

S. Gondi and B. Razavi, “Equalization and clock and data recovery techniques for 10-Gb/s CMOS serial-link receivers,” IEEE J. Solid-State Circuits 42(9), 1999–2011 (2007).
[Crossref]

IEEE Photonics J. (5)

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-Based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photonics J. 7(6), 7904507 (2015).

F F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, H. T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photonics J. 5(4), 7901507 (2013).
[Crossref]

G. Stepniak, L. Maksymiuk, and J. Siuzdak, “Experimental comparison of PAM, CAP and DMT modulations in phosphorescent white LED transmission link,” IEEE Photonics J. 7(3), 7901708 (2015).
[Crossref]

Y. Goto, I. Takai, T. Yamazato, H. Okada, T. Fujii, S. Kawahito, S. Arai, T. Yendo, and K. Kamakura, “A new automotive VLC system using optical communication image sensor,” IEEE Photonics J. 8(3), 1 (2016).
[Crossref]

F. Miramirkhani and M. Uysal, “Channel modeling and characterization for visible light communications channel modeling and characterization for visible light communications,” IEEE Photonics J. 7(6), 1 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (2)

H. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. Won, “100-Mb/s NRZ Visible Light Communications Using a Postequalized White LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

T. Nguyen, S. Le, M. Wuilpart, and P. Mégret, “Experimental demonstration of a low-complexity phase noise compensation for CO-OFDM systems,” IEEE Photonics Technol. Lett. 30(16), 1467–1470 (2018).
[Crossref]

IEEE Trans. Audio Speech Lang. Process. (1)

J. Chen, J. Benesty, Y. Huang, and S. Doclo, “New insights into the noise reduction wiener filter,” IEEE Trans. Audio Speech Lang. Process. 14(4), 1218–1234 (2006).
[Crossref]

IEEE Trans. Commun. (1)

F. Waldhauer, “Quantized feedback in an experimental 280-Mb/s digital repeater for coaxial transmission,” IEEE Trans. Commun. 22(1), 1–5 (1974).
[Crossref]

IEEE Veh. Technol. Mag. (1)

M. Uysal, Z. Ghassemlooy, A. Bekkali, A. Kadri, and H. Menouar, “Visible light communication for vehicular networking: performance study of a V2V system using a measured headlamp beam pattern model,” IEEE Veh. Technol. Mag. 10(4), 45–53 (2015).
[Crossref]

IET Commun. (1)

Z. Ghassemlooy, “Investigation of the baseline wander effect on indoor optical wireless system employing digital pulse interval modulation,” IET Commun. 2(1), 53–60 (2008).
[Crossref]

J. Lightwave Technol. (4)

J. Sel. Areas Commun. (1)

P. A. Haigh, A. Burton, K. Werfli, H. L. Minh, E. Bentley, P. Chvojka, W. O. Popoola, I. Papakonstantinou, and S. Zvanovec, “A multi-CAP visible light communications system with 4.85 b/s/Hz spectral efficiency,” J. Sel. Areas Commun. 33(9), 1771–1779 (2015).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Other (8)

A. Abdolhamid and D. Johns, “A comparison of CAP/QAM architectures,” in Proc. IEEE International Symp. on Circuits and Systems (IEEE, 1998), 316.

F. Liu, M. Chen, W. Jiang, X. Jin, and Z. Xu, “Effective auto-alignment and tracking of transceivers for visible light communication in data centres,” in Proc. SPIE Photonics West OPTO, San Francisco, California (2019).

R. Yang, X. Jin, M. Jin, and Z. Xu, “Experimental investigation of optical OFDMA for vehicular visible light communication,” in Proc. of European Conf. on Optical Communication (ECOC) (IEEE, 2017), 1–3.
[Crossref]

Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modelling (CRC Press INC, 2012).

F. Xu, M. A. Khalighi, and S. Bourennane, “Impact of different noise sources on the performance of PIN- and APD-based FSO receivers,” in Proc. International Conf. on Telecom. (IEEE, 2011), 211–218.

K. Cui, G. Chen, Z. Xu, and R. Roberts, “Experimental characterization of traffic light to vehicle VLC link performance,” IEEE Globecom Workshops, Houston, TX, USA, 808–812 (2011).

Y. Mao, X. Jin, W. Liu, C. Gong, and Z. Xu, “Demonstration of real-time CAP transceivers with hybrid digital equalization for visible light communication,” in Proc. Asia Commun. and Photonics Conf. (ACP), 2017, paper M1G.4.
[Crossref]

S. Haykin, Adaptive Filter Theory, 4th Edition (Prentice Hall, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic diagram of a CAP-VLC system with hybrid digital equalization. EA: electrical amplifier. Sync.: synchronization.
Fig. 2
Fig. 2 Frequency responses of a VLC link and in-phase/quadrature filters.
Fig. 3
Fig. 3 An FPGA-based CAP transceiver with a DAC and an ADC.
Fig. 4
Fig. 4 (a) Measured P-U curve of the LEDs, (b) Frequency response of the VLC link, Vb: 8.2 V.
Fig. 5
Fig. 5 EVM performance versus the roll-off factor in the (a) simulation and (b) experiment. Distance: 3 m.
Fig. 6
Fig. 6 EVM performance at different baud rates in the B2B case. w/o: without.
Fig. 7
Fig. 7 (a) Optimization of bias voltage, Vb, and RMS driving voltage of LEDs (1m), (b) EVM performance for different equalization schemes as a function of number of taps for linear equalization (8m).
Fig. 8
Fig. 8 EVM performance versus number of taps for DFE (a, b) and hybrid Wiener and DFE (c, d). (a, c): SNR = 20 dB, (b, d): SNR: 35 dB (simulation).
Fig. 9
Fig. 9 EVM performance of 200 Mb/s CAP signal versus bit rate at distances of (a) 3 m and (b) 15 m.
Fig. 10
Fig. 10 (a) Electrical spectra of transmitted and received CAP-VLC signals (15 m). (b) Experimental and numerical EVM performance of 200 Mb/s CAP16 signal over a 1 m VLC link.

Tables (2)

Tables Icon

Table 1 Key parameters of the CAP-VLC system

Tables Icon

Table 2 Comparison of DSP complexity

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

x(t)= d I (t) f I (t)+ d Q (t) f Q (t)
f I (t)=g(t)cos(2π f c t)
f Q (t)=g(t)sin(2π f c t)
 g( t )= sin[ π( 1α ) t T s ]+4α t T s cos[ π( 1+α ) t T s ] π t T s [ 1 ( 4α t T s ) 2 ]      
  f c = ( 1+α ) 2 T s
r(t)=η[ x(t)+C ]h(t)+w(t)
s(n)= i=0 D1 r(i) h L (ni)
y(k)= i=0 L a 1 q(ki) a i (k) j=1 L b y(kj) b j (k)
β= R b B L log 2 M
h(t)=η e 2π k L f L t u(t) e 2π k P f P t u(t) h B (t)

Metrics