Abstract

Wind is an important factor in environment disturbance, and the inhomogeneous distribution of wind velocity leads to random airflow, which severely affects beam propagation. In this paper, numerical and experimental studies have been performed to investigate the behavior of a laser propagating through a random environment induced by wind, and the main focus is the beam deflection evolution under the effect of the wind velocity. The experiment is performed with the wind tunnel, and the beam deviates from the center during propagation, a process in which the average beam deflection presents an increasing trend for the larger wind velocity and the airflow interval. The simulation model of beam propagation through this kind of environment is proposed, and the numerical simulation agrees with the experimental results. With the model, the average beam deflection results are extended into the high-speed region, and the comparison between the airflow and turbulence environment is also presented. The results can find potential applications in optical propagation and communication between two moving platforms with high speed.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Atmospheric turbulence chamber for optical transmission experiment: characterization by thermal method

Hideya Gamo and Arun K. Majumdar
Appl. Opt. 17(23) 3755-3762 (1978)

Holographic Subsonic Flow Visualization

C. J. Reinheimer, C. E. Wiswall, R. A. Schmiege, R. J. Harris, and J. E. Dueker
Appl. Opt. 9(9) 2059-2065 (1970)

Three-dimensional velocity near-wall measurements by digital in-line holography: calibration and results

Daniel Allano, Mokrane Malek, Françoise Walle, Frédéric Corbin, Gilles Godard, Sébastien Coëtmellec, Bertrand Lecordier, Jean-Marc Foucaut, and Denis Lebrun
Appl. Opt. 52(1) A9-A17 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Cicchiello and E. J. Jumper, “Far-field optical degradation due to near-field transmission through a turbulent heated jet,” Appl. Opt. 36, 6441–6452 (1997).
    [Crossref]
  2. C. M. Wyckham and A. J. Smits, “Aero-optic distortion in transonic and hypersonic turbulent boundary layers,” AIAA J. 47, 2158–2168 (2009).
    [Crossref]
  3. E. J. Jumper and S. Gordeyev, “Physics and measurement of aero-optical effects: past and present,” Annu. Rev. Fluid Mech. 49, 419–441 (2017).
    [Crossref]
  4. X. Liu, F. Wang, C. Wei, and Y. Cai, “Experimental study of turbulence-induced beam wander and deformation of a partially coherent beam,” Opt. Lett. 39, 3336–3339 (2014).
    [Crossref] [PubMed]
  5. J. Gao, Y. Zhu, D. L. Wang, Y. X. Zhang, Z. D. Hu, and M. J. Cheng, “Bessel-Gauss photon beams with fractional order vortex propagation in weak non-Kolmogorov turbulence,” Photon. Res. 4, 30–34 (2016).
    [Crossref]
  6. L. Lu, X. L. Ji, and Y. Baykal, “Wave structure function and spatial coherence radius of plane and spherical waves propagating through oceanic turbulence,” Opt. Express 22, 27112–27122 (2014).
    [Crossref] [PubMed]
  7. Y. Wu, Y. Zhang, and Y. Zhu, “Average intensity and directionality of partially coherent model beams propagating in turbulent ocean,” J. Opt. Soc. Am. A 33, 1451–1458 (2016).
    [Crossref]
  8. W. Wen, X. Chu, and Y. Cai, “Dependence of the beam wander of an airy beam on its kurtosis parameter in a turbulent atmosphere,” Opt. Laser Technol. 68, 6–10 (2015).
    [Crossref]
  9. W. Wen and X. Chu, “Beam wander of an airy beam with a spiral phase,” J. Opt. Soc. Am. A 31, 685–690 (2014).
    [Crossref]
  10. Y. Wu, Y. Zhang, Y. Li, and Z. Hu, “Beam wander of Gaussian-Schell model beams propagating through oceanic turbulence,” Opt. Commun. 371, 59–66 (2016).
    [Crossref]
  11. F. Dios, J. A. Rubio, A. Rodríguez, and A. Comerón, “Scintillation and beam-wander analysis in an optical ground station-satellite uplink,” Appl. Opt. 43, 3866–3873 (2004).
    [Crossref] [PubMed]
  12. J. Ding, M. Li, M. Tang, Y. Li, and Y. Song, “BER performance of MSK in ground-to-satellite uplink optical communication under the influence of atmospheric turbulence and detector noise,” Opt. Lett. 38, 3488–3491 (2013).
    [Crossref] [PubMed]
  13. C. Liu, Y. Yao, Y. X. Sun, J. J. Xiao, and X. H. Zhao, “Average capacity optimization in free-space optical communication system over atmospheric turbulence channels with pointing errors,” Opt. Lett. 35, 3171–3173 (2010).
    [Crossref] [PubMed]
  14. M. Cheng, L. Guo, J. Li, and Y. Zhang, “Channel capacity of the OAM-based free-space optical communication links with Bessel-Gauss beams in turbulent ocean,” IEEE Photon. J. 8, 7901411 (2016).
    [Crossref]
  15. S. Prasad, “Spatial statistics of optical beams perturbed by aero-optical turbulence,” J. Opt. Soc. Am. A 34, 2057–2069 (2017).
    [Crossref]
  16. H. Ding, S. Yi, Y. Zhu, and L. He, “Experimental investigation on aero-optics of supersonic turbulent boundary layers,” Appl. Opt. 56, 7604–7610 (2017).
    [Crossref] [PubMed]
  17. Q. Gao, Z. Jiang, S. Yi, and X. Wang, “Statistical characteristics of the tilts of the aero-optical aberration caused by the supersonic turbulent boundary layer,” Opt. Lett. 38, 751–753 (2013).
    [Crossref] [PubMed]
  18. S. Gordeyev, T. E. Hayden, and E. J. Jumper, “Aero-optical and flow measurements over a flat-windowed turret,” AIAA J. 45, 347–357 (2007).
    [Crossref]
  19. S. Gordeyev, E. Jumper, and T. E. Hayden, “Aero-optical effects of supersonic boundary layers,” AIAA J. 50, 682–690 (2012).
    [Crossref]
  20. M. R. Whiteley and S. Gordeyev, “Conformal phased array aero-optical modeling and compensation,” Opt. Eng. 52, 071409 (2013).
    [Crossref]
  21. J. Cress, S. Gordeyev, and E. Jumper, “Aero-optical measurements in a heated, subsonic, turbulent boundary layer,” AIAA P. 434, 1–14 (2010).
  22. A. E. Smith, S. Gordeyev, and E. J. Jumper, “Recent measurements of aero-optical effects caused by subsonic boundary layers,” Opt. Eng. 52, 071404 (2013).
    [Crossref]
  23. J. Tesch and S. Gibson, “Optimal and adaptive control of aero-optical wavefronts for adaptive optics,” J. Opt. Soc. Am. A 29, 1625–1638 (2012).
    [Crossref]
  24. Y. Yuan, T. Lei, Z. Li, Y. Li, S. Gao, Z. Xie, and X. Yuan, “Beam wander relieved orbital angular momentum communication in turbulent atmosphere using Bessel beams,” Sci. Rep. 7, 42276 (2017).
    [Crossref] [PubMed]
  25. J. Ding, M. Li, M. Tang, Y. Li, and Y. Song, “BER performance of MSK in ground-to-satellite uplink optical communication under the influence of atmospheric turbulence and detector noise,” Opt. Lett. 38, 3488–3491 (2013).
    [Crossref] [PubMed]
  26. X. Liu and J. Pu, “Investigation on the scintillation reduction of elliptical vortex beams propagating in atmospheric turbulence,” Opt. Express 19, 26444–26450 (2011).
    [Crossref]
  27. A. Dipankar, R. Marchiano, and P. Sagaut, “Trajectory of an optical vortex in atmospheric turbulence,” Phys. Rev. E 80, 046609 (2009).
    [Crossref]
  28. J. Cress, S. Gordeyev, M. Post, and E. J. Jumper, “Aero-optical measurements in a turbulent, subsonic boundary layer at different elevation angles,” AIAA P. 4214, 1–14 (2008).
  29. Q. Cui, M. Li, and Z. Yu, “Influence of topological charges on random wandering of optical vortex propagating through turbulent atmosphere,” Opt. Commun. 329, 10–14 (2014).
    [Crossref]
  30. G. Xu and Z. Song, “Amplitude fluctuations for optical waves propagation through non-Kolmogorov coronal solar wind turbulence channels,” Opt. Express 26, 8566–8580 (2018).
    [Crossref] [PubMed]
  31. L. Yu, B. Hu, and Y. Zhang, “Intensity of vortex modes carried by Lommel beam in weak-to-strong non-Kolmogorov turbulence,” Opt. Express 25, 19538–19547 (2017).
    [Crossref] [PubMed]

2018 (1)

2017 (5)

2016 (4)

Y. Wu, Y. Zhang, Y. Li, and Z. Hu, “Beam wander of Gaussian-Schell model beams propagating through oceanic turbulence,” Opt. Commun. 371, 59–66 (2016).
[Crossref]

J. Gao, Y. Zhu, D. L. Wang, Y. X. Zhang, Z. D. Hu, and M. J. Cheng, “Bessel-Gauss photon beams with fractional order vortex propagation in weak non-Kolmogorov turbulence,” Photon. Res. 4, 30–34 (2016).
[Crossref]

Y. Wu, Y. Zhang, and Y. Zhu, “Average intensity and directionality of partially coherent model beams propagating in turbulent ocean,” J. Opt. Soc. Am. A 33, 1451–1458 (2016).
[Crossref]

M. Cheng, L. Guo, J. Li, and Y. Zhang, “Channel capacity of the OAM-based free-space optical communication links with Bessel-Gauss beams in turbulent ocean,” IEEE Photon. J. 8, 7901411 (2016).
[Crossref]

2015 (1)

W. Wen, X. Chu, and Y. Cai, “Dependence of the beam wander of an airy beam on its kurtosis parameter in a turbulent atmosphere,” Opt. Laser Technol. 68, 6–10 (2015).
[Crossref]

2014 (4)

2013 (5)

2012 (2)

S. Gordeyev, E. Jumper, and T. E. Hayden, “Aero-optical effects of supersonic boundary layers,” AIAA J. 50, 682–690 (2012).
[Crossref]

J. Tesch and S. Gibson, “Optimal and adaptive control of aero-optical wavefronts for adaptive optics,” J. Opt. Soc. Am. A 29, 1625–1638 (2012).
[Crossref]

2011 (1)

2010 (2)

2009 (2)

C. M. Wyckham and A. J. Smits, “Aero-optic distortion in transonic and hypersonic turbulent boundary layers,” AIAA J. 47, 2158–2168 (2009).
[Crossref]

A. Dipankar, R. Marchiano, and P. Sagaut, “Trajectory of an optical vortex in atmospheric turbulence,” Phys. Rev. E 80, 046609 (2009).
[Crossref]

2008 (1)

J. Cress, S. Gordeyev, M. Post, and E. J. Jumper, “Aero-optical measurements in a turbulent, subsonic boundary layer at different elevation angles,” AIAA P. 4214, 1–14 (2008).

2007 (1)

S. Gordeyev, T. E. Hayden, and E. J. Jumper, “Aero-optical and flow measurements over a flat-windowed turret,” AIAA J. 45, 347–357 (2007).
[Crossref]

2004 (1)

1997 (1)

Baykal, Y.

Cai, Y.

W. Wen, X. Chu, and Y. Cai, “Dependence of the beam wander of an airy beam on its kurtosis parameter in a turbulent atmosphere,” Opt. Laser Technol. 68, 6–10 (2015).
[Crossref]

X. Liu, F. Wang, C. Wei, and Y. Cai, “Experimental study of turbulence-induced beam wander and deformation of a partially coherent beam,” Opt. Lett. 39, 3336–3339 (2014).
[Crossref] [PubMed]

Cheng, M.

M. Cheng, L. Guo, J. Li, and Y. Zhang, “Channel capacity of the OAM-based free-space optical communication links with Bessel-Gauss beams in turbulent ocean,” IEEE Photon. J. 8, 7901411 (2016).
[Crossref]

Cheng, M. J.

Chu, X.

W. Wen, X. Chu, and Y. Cai, “Dependence of the beam wander of an airy beam on its kurtosis parameter in a turbulent atmosphere,” Opt. Laser Technol. 68, 6–10 (2015).
[Crossref]

W. Wen and X. Chu, “Beam wander of an airy beam with a spiral phase,” J. Opt. Soc. Am. A 31, 685–690 (2014).
[Crossref]

Cicchiello, J. M.

Comerón, A.

Cress, J.

J. Cress, S. Gordeyev, and E. Jumper, “Aero-optical measurements in a heated, subsonic, turbulent boundary layer,” AIAA P. 434, 1–14 (2010).

J. Cress, S. Gordeyev, M. Post, and E. J. Jumper, “Aero-optical measurements in a turbulent, subsonic boundary layer at different elevation angles,” AIAA P. 4214, 1–14 (2008).

Cui, Q.

Q. Cui, M. Li, and Z. Yu, “Influence of topological charges on random wandering of optical vortex propagating through turbulent atmosphere,” Opt. Commun. 329, 10–14 (2014).
[Crossref]

Ding, H.

Ding, J.

Dios, F.

Dipankar, A.

A. Dipankar, R. Marchiano, and P. Sagaut, “Trajectory of an optical vortex in atmospheric turbulence,” Phys. Rev. E 80, 046609 (2009).
[Crossref]

Gao, J.

Gao, Q.

Gao, S.

Y. Yuan, T. Lei, Z. Li, Y. Li, S. Gao, Z. Xie, and X. Yuan, “Beam wander relieved orbital angular momentum communication in turbulent atmosphere using Bessel beams,” Sci. Rep. 7, 42276 (2017).
[Crossref] [PubMed]

Gibson, S.

Gordeyev, S.

E. J. Jumper and S. Gordeyev, “Physics and measurement of aero-optical effects: past and present,” Annu. Rev. Fluid Mech. 49, 419–441 (2017).
[Crossref]

M. R. Whiteley and S. Gordeyev, “Conformal phased array aero-optical modeling and compensation,” Opt. Eng. 52, 071409 (2013).
[Crossref]

A. E. Smith, S. Gordeyev, and E. J. Jumper, “Recent measurements of aero-optical effects caused by subsonic boundary layers,” Opt. Eng. 52, 071404 (2013).
[Crossref]

S. Gordeyev, E. Jumper, and T. E. Hayden, “Aero-optical effects of supersonic boundary layers,” AIAA J. 50, 682–690 (2012).
[Crossref]

J. Cress, S. Gordeyev, and E. Jumper, “Aero-optical measurements in a heated, subsonic, turbulent boundary layer,” AIAA P. 434, 1–14 (2010).

J. Cress, S. Gordeyev, M. Post, and E. J. Jumper, “Aero-optical measurements in a turbulent, subsonic boundary layer at different elevation angles,” AIAA P. 4214, 1–14 (2008).

S. Gordeyev, T. E. Hayden, and E. J. Jumper, “Aero-optical and flow measurements over a flat-windowed turret,” AIAA J. 45, 347–357 (2007).
[Crossref]

Guo, L.

M. Cheng, L. Guo, J. Li, and Y. Zhang, “Channel capacity of the OAM-based free-space optical communication links with Bessel-Gauss beams in turbulent ocean,” IEEE Photon. J. 8, 7901411 (2016).
[Crossref]

Hayden, T. E.

S. Gordeyev, E. Jumper, and T. E. Hayden, “Aero-optical effects of supersonic boundary layers,” AIAA J. 50, 682–690 (2012).
[Crossref]

S. Gordeyev, T. E. Hayden, and E. J. Jumper, “Aero-optical and flow measurements over a flat-windowed turret,” AIAA J. 45, 347–357 (2007).
[Crossref]

He, L.

Hu, B.

Hu, Z.

Y. Wu, Y. Zhang, Y. Li, and Z. Hu, “Beam wander of Gaussian-Schell model beams propagating through oceanic turbulence,” Opt. Commun. 371, 59–66 (2016).
[Crossref]

Hu, Z. D.

Ji, X. L.

Jiang, Z.

Jumper, E.

S. Gordeyev, E. Jumper, and T. E. Hayden, “Aero-optical effects of supersonic boundary layers,” AIAA J. 50, 682–690 (2012).
[Crossref]

J. Cress, S. Gordeyev, and E. Jumper, “Aero-optical measurements in a heated, subsonic, turbulent boundary layer,” AIAA P. 434, 1–14 (2010).

Jumper, E. J.

E. J. Jumper and S. Gordeyev, “Physics and measurement of aero-optical effects: past and present,” Annu. Rev. Fluid Mech. 49, 419–441 (2017).
[Crossref]

A. E. Smith, S. Gordeyev, and E. J. Jumper, “Recent measurements of aero-optical effects caused by subsonic boundary layers,” Opt. Eng. 52, 071404 (2013).
[Crossref]

J. Cress, S. Gordeyev, M. Post, and E. J. Jumper, “Aero-optical measurements in a turbulent, subsonic boundary layer at different elevation angles,” AIAA P. 4214, 1–14 (2008).

S. Gordeyev, T. E. Hayden, and E. J. Jumper, “Aero-optical and flow measurements over a flat-windowed turret,” AIAA J. 45, 347–357 (2007).
[Crossref]

J. M. Cicchiello and E. J. Jumper, “Far-field optical degradation due to near-field transmission through a turbulent heated jet,” Appl. Opt. 36, 6441–6452 (1997).
[Crossref]

Lei, T.

Y. Yuan, T. Lei, Z. Li, Y. Li, S. Gao, Z. Xie, and X. Yuan, “Beam wander relieved orbital angular momentum communication in turbulent atmosphere using Bessel beams,” Sci. Rep. 7, 42276 (2017).
[Crossref] [PubMed]

Li, J.

M. Cheng, L. Guo, J. Li, and Y. Zhang, “Channel capacity of the OAM-based free-space optical communication links with Bessel-Gauss beams in turbulent ocean,” IEEE Photon. J. 8, 7901411 (2016).
[Crossref]

Li, M.

Li, Y.

Y. Yuan, T. Lei, Z. Li, Y. Li, S. Gao, Z. Xie, and X. Yuan, “Beam wander relieved orbital angular momentum communication in turbulent atmosphere using Bessel beams,” Sci. Rep. 7, 42276 (2017).
[Crossref] [PubMed]

Y. Wu, Y. Zhang, Y. Li, and Z. Hu, “Beam wander of Gaussian-Schell model beams propagating through oceanic turbulence,” Opt. Commun. 371, 59–66 (2016).
[Crossref]

J. Ding, M. Li, M. Tang, Y. Li, and Y. Song, “BER performance of MSK in ground-to-satellite uplink optical communication under the influence of atmospheric turbulence and detector noise,” Opt. Lett. 38, 3488–3491 (2013).
[Crossref] [PubMed]

J. Ding, M. Li, M. Tang, Y. Li, and Y. Song, “BER performance of MSK in ground-to-satellite uplink optical communication under the influence of atmospheric turbulence and detector noise,” Opt. Lett. 38, 3488–3491 (2013).
[Crossref] [PubMed]

Li, Z.

Y. Yuan, T. Lei, Z. Li, Y. Li, S. Gao, Z. Xie, and X. Yuan, “Beam wander relieved orbital angular momentum communication in turbulent atmosphere using Bessel beams,” Sci. Rep. 7, 42276 (2017).
[Crossref] [PubMed]

Liu, C.

Liu, X.

Lu, L.

Marchiano, R.

A. Dipankar, R. Marchiano, and P. Sagaut, “Trajectory of an optical vortex in atmospheric turbulence,” Phys. Rev. E 80, 046609 (2009).
[Crossref]

Post, M.

J. Cress, S. Gordeyev, M. Post, and E. J. Jumper, “Aero-optical measurements in a turbulent, subsonic boundary layer at different elevation angles,” AIAA P. 4214, 1–14 (2008).

Prasad, S.

Pu, J.

Rodríguez, A.

Rubio, J. A.

Sagaut, P.

A. Dipankar, R. Marchiano, and P. Sagaut, “Trajectory of an optical vortex in atmospheric turbulence,” Phys. Rev. E 80, 046609 (2009).
[Crossref]

Smith, A. E.

A. E. Smith, S. Gordeyev, and E. J. Jumper, “Recent measurements of aero-optical effects caused by subsonic boundary layers,” Opt. Eng. 52, 071404 (2013).
[Crossref]

Smits, A. J.

C. M. Wyckham and A. J. Smits, “Aero-optic distortion in transonic and hypersonic turbulent boundary layers,” AIAA J. 47, 2158–2168 (2009).
[Crossref]

Song, Y.

Song, Z.

Sun, Y. X.

Tang, M.

Tesch, J.

Wang, D. L.

Wang, F.

Wang, X.

Wei, C.

Wen, W.

W. Wen, X. Chu, and Y. Cai, “Dependence of the beam wander of an airy beam on its kurtosis parameter in a turbulent atmosphere,” Opt. Laser Technol. 68, 6–10 (2015).
[Crossref]

W. Wen and X. Chu, “Beam wander of an airy beam with a spiral phase,” J. Opt. Soc. Am. A 31, 685–690 (2014).
[Crossref]

Whiteley, M. R.

M. R. Whiteley and S. Gordeyev, “Conformal phased array aero-optical modeling and compensation,” Opt. Eng. 52, 071409 (2013).
[Crossref]

Wu, Y.

Y. Wu, Y. Zhang, Y. Li, and Z. Hu, “Beam wander of Gaussian-Schell model beams propagating through oceanic turbulence,” Opt. Commun. 371, 59–66 (2016).
[Crossref]

Y. Wu, Y. Zhang, and Y. Zhu, “Average intensity and directionality of partially coherent model beams propagating in turbulent ocean,” J. Opt. Soc. Am. A 33, 1451–1458 (2016).
[Crossref]

Wyckham, C. M.

C. M. Wyckham and A. J. Smits, “Aero-optic distortion in transonic and hypersonic turbulent boundary layers,” AIAA J. 47, 2158–2168 (2009).
[Crossref]

Xiao, J. J.

Xie, Z.

Y. Yuan, T. Lei, Z. Li, Y. Li, S. Gao, Z. Xie, and X. Yuan, “Beam wander relieved orbital angular momentum communication in turbulent atmosphere using Bessel beams,” Sci. Rep. 7, 42276 (2017).
[Crossref] [PubMed]

Xu, G.

Yao, Y.

Yi, S.

Yu, L.

Yu, Z.

Q. Cui, M. Li, and Z. Yu, “Influence of topological charges on random wandering of optical vortex propagating through turbulent atmosphere,” Opt. Commun. 329, 10–14 (2014).
[Crossref]

Yuan, X.

Y. Yuan, T. Lei, Z. Li, Y. Li, S. Gao, Z. Xie, and X. Yuan, “Beam wander relieved orbital angular momentum communication in turbulent atmosphere using Bessel beams,” Sci. Rep. 7, 42276 (2017).
[Crossref] [PubMed]

Yuan, Y.

Y. Yuan, T. Lei, Z. Li, Y. Li, S. Gao, Z. Xie, and X. Yuan, “Beam wander relieved orbital angular momentum communication in turbulent atmosphere using Bessel beams,” Sci. Rep. 7, 42276 (2017).
[Crossref] [PubMed]

Zhang, Y.

L. Yu, B. Hu, and Y. Zhang, “Intensity of vortex modes carried by Lommel beam in weak-to-strong non-Kolmogorov turbulence,” Opt. Express 25, 19538–19547 (2017).
[Crossref] [PubMed]

Y. Wu, Y. Zhang, and Y. Zhu, “Average intensity and directionality of partially coherent model beams propagating in turbulent ocean,” J. Opt. Soc. Am. A 33, 1451–1458 (2016).
[Crossref]

Y. Wu, Y. Zhang, Y. Li, and Z. Hu, “Beam wander of Gaussian-Schell model beams propagating through oceanic turbulence,” Opt. Commun. 371, 59–66 (2016).
[Crossref]

M. Cheng, L. Guo, J. Li, and Y. Zhang, “Channel capacity of the OAM-based free-space optical communication links with Bessel-Gauss beams in turbulent ocean,” IEEE Photon. J. 8, 7901411 (2016).
[Crossref]

Zhang, Y. X.

Zhao, X. H.

Zhu, Y.

AIAA J. (3)

C. M. Wyckham and A. J. Smits, “Aero-optic distortion in transonic and hypersonic turbulent boundary layers,” AIAA J. 47, 2158–2168 (2009).
[Crossref]

S. Gordeyev, T. E. Hayden, and E. J. Jumper, “Aero-optical and flow measurements over a flat-windowed turret,” AIAA J. 45, 347–357 (2007).
[Crossref]

S. Gordeyev, E. Jumper, and T. E. Hayden, “Aero-optical effects of supersonic boundary layers,” AIAA J. 50, 682–690 (2012).
[Crossref]

AIAA P. (2)

J. Cress, S. Gordeyev, and E. Jumper, “Aero-optical measurements in a heated, subsonic, turbulent boundary layer,” AIAA P. 434, 1–14 (2010).

J. Cress, S. Gordeyev, M. Post, and E. J. Jumper, “Aero-optical measurements in a turbulent, subsonic boundary layer at different elevation angles,” AIAA P. 4214, 1–14 (2008).

Annu. Rev. Fluid Mech. (1)

E. J. Jumper and S. Gordeyev, “Physics and measurement of aero-optical effects: past and present,” Annu. Rev. Fluid Mech. 49, 419–441 (2017).
[Crossref]

Appl. Opt. (3)

IEEE Photon. J. (1)

M. Cheng, L. Guo, J. Li, and Y. Zhang, “Channel capacity of the OAM-based free-space optical communication links with Bessel-Gauss beams in turbulent ocean,” IEEE Photon. J. 8, 7901411 (2016).
[Crossref]

J. Opt. Soc. Am. A (4)

Opt. Commun. (2)

Q. Cui, M. Li, and Z. Yu, “Influence of topological charges on random wandering of optical vortex propagating through turbulent atmosphere,” Opt. Commun. 329, 10–14 (2014).
[Crossref]

Y. Wu, Y. Zhang, Y. Li, and Z. Hu, “Beam wander of Gaussian-Schell model beams propagating through oceanic turbulence,” Opt. Commun. 371, 59–66 (2016).
[Crossref]

Opt. Eng. (2)

A. E. Smith, S. Gordeyev, and E. J. Jumper, “Recent measurements of aero-optical effects caused by subsonic boundary layers,” Opt. Eng. 52, 071404 (2013).
[Crossref]

M. R. Whiteley and S. Gordeyev, “Conformal phased array aero-optical modeling and compensation,” Opt. Eng. 52, 071409 (2013).
[Crossref]

Opt. Express (4)

Opt. Laser Technol. (1)

W. Wen, X. Chu, and Y. Cai, “Dependence of the beam wander of an airy beam on its kurtosis parameter in a turbulent atmosphere,” Opt. Laser Technol. 68, 6–10 (2015).
[Crossref]

Opt. Lett. (5)

Photon. Res. (1)

Phys. Rev. E (1)

A. Dipankar, R. Marchiano, and P. Sagaut, “Trajectory of an optical vortex in atmospheric turbulence,” Phys. Rev. E 80, 046609 (2009).
[Crossref]

Sci. Rep. (1)

Y. Yuan, T. Lei, Z. Li, Y. Li, S. Gao, Z. Xie, and X. Yuan, “Beam wander relieved orbital angular momentum communication in turbulent atmosphere using Bessel beams,” Sci. Rep. 7, 42276 (2017).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The experimental schematic of a laser beam propagating through the test section of the wind tunnel, and M2–M5 are mirrors; Light intensity is detected by CCD at the locations of M1, M2 and M3.
Fig. 2
Fig. 2 The data points of the center of gravity at three locations (M1, M2, M3) under different wind velocity cases.
Fig. 3
Fig. 3 The experimental results for beam deflection in airflow environment, (a)–(c) are the absolute beam deflection versus different velocity values at three locations, (d) is the average beam deflection that removes the no wind case.
Fig. 4
Fig. 4 The comparison of the average beam deflection versus wind velocity between the numerical results (the blue curve) and the experimental results (the black diamond symbol with error bar) under different airflow interval values for (a) the length of airflow interval is 0.45m (detection location: M3), (b) the length of airflow interval is 1.38m (detection location: M2) and (c) the length of airflow interval is 2.31m (detection location: M1).
Fig. 5
Fig. 5 Numerical results for the average beam deflection under different propagation length for (a) versus wind velocity and for (b) versus turbulent strength.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

x n = i x i I n ( x i , y i ) i I n ( x i , y i ) , y n = i y i I n ( x i , y i ) i I n ( x i , y i )
x ¯ = 1 N n = 1 N x n , y ¯ = 1 N n = 1 N y n
i A ( x , y , z ) z + 1 2 k 2 A ( x , y , z ) + k n 1 A ( x , y , z ) = 0
A ( x , y , z ) = A diff ( x , y , z ) exp [ i k z z n 1 ( x , y , ξ ) d ξ ] = A diff ( x , y , z ) exp ( i S )
A diff ( x , y , z n ) = exp ( i 2 k Δ z 2 ) A ( x , y , z n 1 )
A ( x , y , z ) = n = 1 M 0 exp ( i 2 k Δ z 2 ) exp [ i S ( x , y , z n ) ] × A ( x , y , z n 1 )
S airflow = 1.7 × 10 5 × 2 π δ * ρ 0 λ sin ( β ) ρ SL M 2

Metrics