Abstract

We present a short-coherence infrared digital holographic interferometry (IRDHI) to quantitatively measure the weak thermal effect in silicon wafer under visible laser pumping. In IRDHI, a superluminescent diode and a narrow-band filter are introduced to eliminate the self-interference fringes and suppress the noise. The effect of coherence length of the detection light source is analyzed and the optimal coherence length range in the proposed configuration is given. Meanwhile, we measure the weak thermal effect in silicon pumped by two different approaches of a continuous visible laser with different powers. The proposed configuration, which shows high stability and sensitivity, can be easily adapted and improved to measure the variation of thermal effect or refractive index in other near infrared transparent materials.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Phase-shifting infrared digital holographic microscopy based on an all-fiber variable phase shifter

Teli Xi, Jianglei Di, Xiaofeng Guan, Ying Li, Chaojie Ma, Jiwei Zhang, and Jianlin Zhao
Appl. Opt. 56(10) 2686-2690 (2017)

High-speed combined NIR low-coherence interferometry for wafer metrology

Hyo Mi Park and Ki-Nam Joo
Appl. Opt. 56(31) 8592-8597 (2017)

Nondestructive testing by using long-wave infrared interferometric techniques with CO2 lasers and microbolometer arrays

Igor Alexeenko, Jean-François Vandenrijt, Giancarlo Pedrini, Cédric Thizy, Birgit Vollheim, Wolfgang Osten, and Marc P. Georges
Appl. Opt. 52(1) A56-A67 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97(7), 1216–1238 (2009).
    [Crossref]
  2. X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4(8), 557–560 (2010).
    [Crossref]
  3. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
    [Crossref]
  4. A. D. Neira, G. A. Wurtz, and A. V. Zayats, “All-optical switching in silicon photonic waveguides with an epsilon-near-zero resonant cavity,” Photon. Res. 6(5), B1–B5 (2018).
    [Crossref]
  5. T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 605–609 (2012).
    [Crossref]
  6. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
    [Crossref] [PubMed]
  7. M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov, K. E. Chong, D. Y. Choi, I. Staude, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15(10), 6985–6990 (2015).
    [Crossref] [PubMed]
  8. H. Koyama and P. M. Fauchet, “Laser-induced thermal effects on the optical properties of free-standing porous silicon films,” J. Appl. Phys. 87(4), 1788–1794 (2000).
    [Crossref]
  9. P. Ji and Y. Zhang, “Melting and thermal ablation of a silver film induced by femtosecond laser heating: a multiscale modeling approach,” Appl. Phys., A Mater. Sci. Process. 123(10), 671 (2017).
    [Crossref]
  10. E. M. L. D. de Jong, H. Rutjes, J. Valenta, M. T. Trinh, A. N. Poddubny, I. N. Yassievich, A. Capretti, and T. Gregorkiewicz, “Thermally stimulated exciton emission in Si nanocrystals,” Light Sci. Appl. 7(1), 17133 (2018).
    [Crossref] [PubMed]
  11. G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5μm in silicon etalon,” Electron. Lett. 28(1), 83–85 (1992).
    [Crossref]
  12. B. Wu, J. Zhao, J. Wang, J. Di, X. Chen, and J. Liu, “Visual investigation on the heat dissipation process of a heat sink by using digital holographic interferometry,” J. Appl. Phys. 114(19), 193103 (2013).
    [Crossref]
  13. J. Di, Y. Yu, Z. Wang, W. Qu, C. Y. Cheng, and J. Zhao, “Quantitative measurement of thermal lensing in diode-side-pumped Nd:YAG laser by use of digital holographic interferometry,” Opt. Express 24(25), 28185–28193 (2016).
    [Crossref] [PubMed]
  14. P. Xia, S. Ri, Q. Wang, and H. Tsuda, “Nanometer-order thermal deformation measurement by a calibrated phase-shifting digital holography system,” Opt. Express 26(10), 12594–12604 (2018).
    [Crossref] [PubMed]
  15. M. Zakerin, A. Novak, M. Toda, Y. Emery, F. Natalio, H. J. Butt, and R. Berger, “Thermal characterization of dynamic silicon cantilever array sensors by digital holographic microscopy,” Sensors (Basel) 17(6), 1191 (2017).
    [Crossref] [PubMed]
  16. B. Joshi, I. Barman, N. C. Dingari, N. Cardenas, J. S. Soares, R. R. Dasari, and S. Mohanty, “Label-free route to rapid, nanoscale characterization of cellular structure and dynamics through opaque media,” Sci. Rep. 3(1), 2822 (2013).
    [Crossref] [PubMed]
  17. M. Schnell, P. S. Carney, and R. Hillenbrand, “Synthetic optical holography for rapid nanoimaging,” Nat. Commun. 5(1), 3499 (2014).
    [Crossref] [PubMed]
  18. L. Repetto, R. Chittofrati, E. Piano, and C. Pontiggia, “Infrared lensless holographic microscope with a vidicon camera for inspection of metallic evaporations on silicon wafers,” Opt. Commun. 251(1–3), 44–50 (2005).
    [Crossref]
  19. M. Finkeldey, L. Göring, C. Brenner, M. Hofmann, and N. C. Gerhardt, “Depth-filtering in common-path digital holographic microscopy,” Opt. Express 25(16), 19398–19407 (2017).
    [Crossref] [PubMed]
  20. T. Xi, J. Dou, J. Di, Y. Li, J. Zhang, C. Ma, and J. Zhao, “Short-coherence in-line phase-shifting infrared digital holographic microscopy for measurement of internal structure in silicon,” Proc. SPIE 10449, 104491F (2017).
    [Crossref]
  21. T. Xi, J. Di, X. Guan, Y. Li, C. Ma, J. Zhang, and J. Zhao, “Phase-shifting infrared digital holographic microscopy based on an all-fiber variable phase shifter,” Appl. Opt. 56(10), 2686–2690 (2017).
    [Crossref] [PubMed]
  22. H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
    [Crossref]
  23. C. Ma, Y. Li, J. Zhang, P. Li, T. Xi, J. Di, and J. Zhao, “Lateral shearing common-path digital holographic microscopy based on a slightly trapezoid Sagnac interferometer,” Opt. Express 25(12), 13659–13667 (2017).
    [Crossref] [PubMed]
  24. T. Xi, J. Di, Y. Li, S. Dai, C. Ma, and J. Zhao, “Measurement of ultrafast combustion process of premixed ethylene/oxygen flames in narrow channel with digital holographic interferometry,” Opt. Express 26(22), 28497–28504 (2018).
    [Crossref] [PubMed]
  25. J. Zhang, C. Ma, S. Dai, J. Di, Y. Li, T. Xi, and J. Zhao, “Transmission and total internal reflection integrated digital holographic microscopy,” Opt. Lett. 41(16), 3844–3847 (2016).
    [Crossref] [PubMed]
  26. J. Di, Y. Li, M. Xie, J. Zhang, C. Ma, T. Xi, E. Li, and J. Zhao, “Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging based on lateral shearing interferometry,” Appl. Opt. 55(26), 7287–7293 (2016).
    [Crossref] [PubMed]

2018 (4)

2017 (6)

P. Ji and Y. Zhang, “Melting and thermal ablation of a silver film induced by femtosecond laser heating: a multiscale modeling approach,” Appl. Phys., A Mater. Sci. Process. 123(10), 671 (2017).
[Crossref]

T. Xi, J. Di, X. Guan, Y. Li, C. Ma, J. Zhang, and J. Zhao, “Phase-shifting infrared digital holographic microscopy based on an all-fiber variable phase shifter,” Appl. Opt. 56(10), 2686–2690 (2017).
[Crossref] [PubMed]

C. Ma, Y. Li, J. Zhang, P. Li, T. Xi, J. Di, and J. Zhao, “Lateral shearing common-path digital holographic microscopy based on a slightly trapezoid Sagnac interferometer,” Opt. Express 25(12), 13659–13667 (2017).
[Crossref] [PubMed]

M. Finkeldey, L. Göring, C. Brenner, M. Hofmann, and N. C. Gerhardt, “Depth-filtering in common-path digital holographic microscopy,” Opt. Express 25(16), 19398–19407 (2017).
[Crossref] [PubMed]

M. Zakerin, A. Novak, M. Toda, Y. Emery, F. Natalio, H. J. Butt, and R. Berger, “Thermal characterization of dynamic silicon cantilever array sensors by digital holographic microscopy,” Sensors (Basel) 17(6), 1191 (2017).
[Crossref] [PubMed]

T. Xi, J. Dou, J. Di, Y. Li, J. Zhang, C. Ma, and J. Zhao, “Short-coherence in-line phase-shifting infrared digital holographic microscopy for measurement of internal structure in silicon,” Proc. SPIE 10449, 104491F (2017).
[Crossref]

2016 (3)

2015 (1)

M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov, K. E. Chong, D. Y. Choi, I. Staude, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15(10), 6985–6990 (2015).
[Crossref] [PubMed]

2014 (1)

M. Schnell, P. S. Carney, and R. Hillenbrand, “Synthetic optical holography for rapid nanoimaging,” Nat. Commun. 5(1), 3499 (2014).
[Crossref] [PubMed]

2013 (2)

B. Joshi, I. Barman, N. C. Dingari, N. Cardenas, J. S. Soares, R. R. Dasari, and S. Mohanty, “Label-free route to rapid, nanoscale characterization of cellular structure and dynamics through opaque media,” Sci. Rep. 3(1), 2822 (2013).
[Crossref] [PubMed]

B. Wu, J. Zhao, J. Wang, J. Di, X. Chen, and J. Liu, “Visual investigation on the heat dissipation process of a heat sink by using digital holographic interferometry,” J. Appl. Phys. 114(19), 193103 (2013).
[Crossref]

2012 (1)

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 605–609 (2012).
[Crossref]

2010 (2)

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4(8), 557–560 (2010).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

2009 (1)

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97(7), 1216–1238 (2009).
[Crossref]

2005 (1)

L. Repetto, R. Chittofrati, E. Piano, and C. Pontiggia, “Infrared lensless holographic microscope with a vidicon camera for inspection of metallic evaporations on silicon wafers,” Opt. Commun. 251(1–3), 44–50 (2005).
[Crossref]

2004 (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

2000 (1)

H. Koyama and P. M. Fauchet, “Laser-induced thermal effects on the optical properties of free-standing porous silicon films,” J. Appl. Phys. 87(4), 1788–1794 (2000).
[Crossref]

1992 (1)

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5μm in silicon etalon,” Electron. Lett. 28(1), 83–85 (1992).
[Crossref]

1980 (1)

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
[Crossref]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Badolato, A.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 605–609 (2012).
[Crossref]

Barman, I.

B. Joshi, I. Barman, N. C. Dingari, N. Cardenas, J. S. Soares, R. R. Dasari, and S. Mohanty, “Label-free route to rapid, nanoscale characterization of cellular structure and dynamics through opaque media,” Sci. Rep. 3(1), 2822 (2013).
[Crossref] [PubMed]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Berger, R.

M. Zakerin, A. Novak, M. Toda, Y. Emery, F. Natalio, H. J. Butt, and R. Berger, “Thermal characterization of dynamic silicon cantilever array sensors by digital holographic microscopy,” Sensors (Basel) 17(6), 1191 (2017).
[Crossref] [PubMed]

Brenner, C.

Butt, H. J.

M. Zakerin, A. Novak, M. Toda, Y. Emery, F. Natalio, H. J. Butt, and R. Berger, “Thermal characterization of dynamic silicon cantilever array sensors by digital holographic microscopy,” Sensors (Basel) 17(6), 1191 (2017).
[Crossref] [PubMed]

Capretti, A.

E. M. L. D. de Jong, H. Rutjes, J. Valenta, M. T. Trinh, A. N. Poddubny, I. N. Yassievich, A. Capretti, and T. Gregorkiewicz, “Thermally stimulated exciton emission in Si nanocrystals,” Light Sci. Appl. 7(1), 17133 (2018).
[Crossref] [PubMed]

Cardenas, N.

B. Joshi, I. Barman, N. C. Dingari, N. Cardenas, J. S. Soares, R. R. Dasari, and S. Mohanty, “Label-free route to rapid, nanoscale characterization of cellular structure and dynamics through opaque media,” Sci. Rep. 3(1), 2822 (2013).
[Crossref] [PubMed]

Carney, P. S.

M. Schnell, P. S. Carney, and R. Hillenbrand, “Synthetic optical holography for rapid nanoimaging,” Nat. Commun. 5(1), 3499 (2014).
[Crossref] [PubMed]

Chen, H.

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97(7), 1216–1238 (2009).
[Crossref]

Chen, X.

B. Wu, J. Zhao, J. Wang, J. Di, X. Chen, and J. Liu, “Visual investigation on the heat dissipation process of a heat sink by using digital holographic interferometry,” J. Appl. Phys. 114(19), 193103 (2013).
[Crossref]

Cheng, C. Y.

Chittofrati, R.

L. Repetto, R. Chittofrati, E. Piano, and C. Pontiggia, “Infrared lensless holographic microscope with a vidicon camera for inspection of metallic evaporations on silicon wafers,” Opt. Commun. 251(1–3), 44–50 (2005).
[Crossref]

Choi, D. Y.

M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov, K. E. Chong, D. Y. Choi, I. Staude, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15(10), 6985–6990 (2015).
[Crossref] [PubMed]

Chong, K. E.

M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov, K. E. Chong, D. Y. Choi, I. Staude, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15(10), 6985–6990 (2015).
[Crossref] [PubMed]

Cocorullo, G.

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5μm in silicon etalon,” Electron. Lett. 28(1), 83–85 (1992).
[Crossref]

Dai, S.

Dasari, R. R.

B. Joshi, I. Barman, N. C. Dingari, N. Cardenas, J. S. Soares, R. R. Dasari, and S. Mohanty, “Label-free route to rapid, nanoscale characterization of cellular structure and dynamics through opaque media,” Sci. Rep. 3(1), 2822 (2013).
[Crossref] [PubMed]

de Jong, E. M. L. D.

E. M. L. D. de Jong, H. Rutjes, J. Valenta, M. T. Trinh, A. N. Poddubny, I. N. Yassievich, A. Capretti, and T. Gregorkiewicz, “Thermally stimulated exciton emission in Si nanocrystals,” Light Sci. Appl. 7(1), 17133 (2018).
[Crossref] [PubMed]

Di, J.

T. Xi, J. Di, Y. Li, S. Dai, C. Ma, and J. Zhao, “Measurement of ultrafast combustion process of premixed ethylene/oxygen flames in narrow channel with digital holographic interferometry,” Opt. Express 26(22), 28497–28504 (2018).
[Crossref] [PubMed]

C. Ma, Y. Li, J. Zhang, P. Li, T. Xi, J. Di, and J. Zhao, “Lateral shearing common-path digital holographic microscopy based on a slightly trapezoid Sagnac interferometer,” Opt. Express 25(12), 13659–13667 (2017).
[Crossref] [PubMed]

T. Xi, J. Dou, J. Di, Y. Li, J. Zhang, C. Ma, and J. Zhao, “Short-coherence in-line phase-shifting infrared digital holographic microscopy for measurement of internal structure in silicon,” Proc. SPIE 10449, 104491F (2017).
[Crossref]

T. Xi, J. Di, X. Guan, Y. Li, C. Ma, J. Zhang, and J. Zhao, “Phase-shifting infrared digital holographic microscopy based on an all-fiber variable phase shifter,” Appl. Opt. 56(10), 2686–2690 (2017).
[Crossref] [PubMed]

J. Di, Y. Yu, Z. Wang, W. Qu, C. Y. Cheng, and J. Zhao, “Quantitative measurement of thermal lensing in diode-side-pumped Nd:YAG laser by use of digital holographic interferometry,” Opt. Express 24(25), 28185–28193 (2016).
[Crossref] [PubMed]

J. Zhang, C. Ma, S. Dai, J. Di, Y. Li, T. Xi, and J. Zhao, “Transmission and total internal reflection integrated digital holographic microscopy,” Opt. Lett. 41(16), 3844–3847 (2016).
[Crossref] [PubMed]

J. Di, Y. Li, M. Xie, J. Zhang, C. Ma, T. Xi, E. Li, and J. Zhao, “Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging based on lateral shearing interferometry,” Appl. Opt. 55(26), 7287–7293 (2016).
[Crossref] [PubMed]

B. Wu, J. Zhao, J. Wang, J. Di, X. Chen, and J. Liu, “Visual investigation on the heat dissipation process of a heat sink by using digital holographic interferometry,” J. Appl. Phys. 114(19), 193103 (2013).
[Crossref]

Dingari, N. C.

B. Joshi, I. Barman, N. C. Dingari, N. Cardenas, J. S. Soares, R. R. Dasari, and S. Mohanty, “Label-free route to rapid, nanoscale characterization of cellular structure and dynamics through opaque media,” Sci. Rep. 3(1), 2822 (2013).
[Crossref] [PubMed]

Dou, J.

T. Xi, J. Dou, J. Di, Y. Li, J. Zhang, C. Ma, and J. Zhao, “Short-coherence in-line phase-shifting infrared digital holographic microscopy for measurement of internal structure in silicon,” Proc. SPIE 10449, 104491F (2017).
[Crossref]

Emery, Y.

M. Zakerin, A. Novak, M. Toda, Y. Emery, F. Natalio, H. J. Butt, and R. Berger, “Thermal characterization of dynamic silicon cantilever array sensors by digital holographic microscopy,” Sensors (Basel) 17(6), 1191 (2017).
[Crossref] [PubMed]

Fauchet, P. M.

H. Koyama and P. M. Fauchet, “Laser-induced thermal effects on the optical properties of free-standing porous silicon films,” J. Appl. Phys. 87(4), 1788–1794 (2000).
[Crossref]

Fedyanin, A. A.

M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov, K. E. Chong, D. Y. Choi, I. Staude, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15(10), 6985–6990 (2015).
[Crossref] [PubMed]

Finkeldey, M.

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Gerhardt, N. C.

Göring, L.

Green, W. M. J.

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4(8), 557–560 (2010).
[Crossref]

Gregorkiewicz, T.

E. M. L. D. de Jong, H. Rutjes, J. Valenta, M. T. Trinh, A. N. Poddubny, I. N. Yassievich, A. Capretti, and T. Gregorkiewicz, “Thermally stimulated exciton emission in Si nanocrystals,” Light Sci. Appl. 7(1), 17133 (2018).
[Crossref] [PubMed]

Guan, X.

Hennessy, K. J.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 605–609 (2012).
[Crossref]

Hillenbrand, R.

M. Schnell, P. S. Carney, and R. Hillenbrand, “Synthetic optical holography for rapid nanoimaging,” Nat. Commun. 5(1), 3499 (2014).
[Crossref] [PubMed]

Hofmann, M.

Hu, E. L.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 605–609 (2012).
[Crossref]

Imamoglu, A.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 605–609 (2012).
[Crossref]

Ji, P.

P. Ji and Y. Zhang, “Melting and thermal ablation of a silver film induced by femtosecond laser heating: a multiscale modeling approach,” Appl. Phys., A Mater. Sci. Process. 123(10), 671 (2017).
[Crossref]

Joshi, B.

B. Joshi, I. Barman, N. C. Dingari, N. Cardenas, J. S. Soares, R. R. Dasari, and S. Mohanty, “Label-free route to rapid, nanoscale characterization of cellular structure and dynamics through opaque media,” Sci. Rep. 3(1), 2822 (2013).
[Crossref] [PubMed]

Kivshar, Y. S.

M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov, K. E. Chong, D. Y. Choi, I. Staude, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15(10), 6985–6990 (2015).
[Crossref] [PubMed]

Koyama, H.

H. Koyama and P. M. Fauchet, “Laser-induced thermal effects on the optical properties of free-standing porous silicon films,” J. Appl. Phys. 87(4), 1788–1794 (2000).
[Crossref]

Li, E.

Li, H. H.

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
[Crossref]

Li, P.

Li, Y.

Lipson, M.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Liu, J.

B. Wu, J. Zhao, J. Wang, J. Di, X. Chen, and J. Liu, “Visual investigation on the heat dissipation process of a heat sink by using digital holographic interferometry,” J. Appl. Phys. 114(19), 193103 (2013).
[Crossref]

Liu, X.

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4(8), 557–560 (2010).
[Crossref]

Luo, X.

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97(7), 1216–1238 (2009).
[Crossref]

Ma, C.

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Miroshnichenko, A. E.

M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov, K. E. Chong, D. Y. Choi, I. Staude, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15(10), 6985–6990 (2015).
[Crossref] [PubMed]

Mohanty, S.

B. Joshi, I. Barman, N. C. Dingari, N. Cardenas, J. S. Soares, R. R. Dasari, and S. Mohanty, “Label-free route to rapid, nanoscale characterization of cellular structure and dynamics through opaque media,” Sci. Rep. 3(1), 2822 (2013).
[Crossref] [PubMed]

Natalio, F.

M. Zakerin, A. Novak, M. Toda, Y. Emery, F. Natalio, H. J. Butt, and R. Berger, “Thermal characterization of dynamic silicon cantilever array sensors by digital holographic microscopy,” Sensors (Basel) 17(6), 1191 (2017).
[Crossref] [PubMed]

Neira, A. D.

Neshev, D. N.

M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov, K. E. Chong, D. Y. Choi, I. Staude, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15(10), 6985–6990 (2015).
[Crossref] [PubMed]

Novak, A.

M. Zakerin, A. Novak, M. Toda, Y. Emery, F. Natalio, H. J. Butt, and R. Berger, “Thermal characterization of dynamic silicon cantilever array sensors by digital holographic microscopy,” Sensors (Basel) 17(6), 1191 (2017).
[Crossref] [PubMed]

Osgood, R. M.

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4(8), 557–560 (2010).
[Crossref]

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Piano, E.

L. Repetto, R. Chittofrati, E. Piano, and C. Pontiggia, “Infrared lensless holographic microscope with a vidicon camera for inspection of metallic evaporations on silicon wafers,” Opt. Commun. 251(1–3), 44–50 (2005).
[Crossref]

Poddubny, A. N.

E. M. L. D. de Jong, H. Rutjes, J. Valenta, M. T. Trinh, A. N. Poddubny, I. N. Yassievich, A. Capretti, and T. Gregorkiewicz, “Thermally stimulated exciton emission in Si nanocrystals,” Light Sci. Appl. 7(1), 17133 (2018).
[Crossref] [PubMed]

Pontiggia, C.

L. Repetto, R. Chittofrati, E. Piano, and C. Pontiggia, “Infrared lensless holographic microscope with a vidicon camera for inspection of metallic evaporations on silicon wafers,” Opt. Commun. 251(1–3), 44–50 (2005).
[Crossref]

Poon, A. W.

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97(7), 1216–1238 (2009).
[Crossref]

Qu, W.

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Reinhard, A.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 605–609 (2012).
[Crossref]

Rendina, I.

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5μm in silicon etalon,” Electron. Lett. 28(1), 83–85 (1992).
[Crossref]

Repetto, L.

L. Repetto, R. Chittofrati, E. Piano, and C. Pontiggia, “Infrared lensless holographic microscope with a vidicon camera for inspection of metallic evaporations on silicon wafers,” Opt. Commun. 251(1–3), 44–50 (2005).
[Crossref]

Ri, S.

Rutjes, H.

E. M. L. D. de Jong, H. Rutjes, J. Valenta, M. T. Trinh, A. N. Poddubny, I. N. Yassievich, A. Capretti, and T. Gregorkiewicz, “Thermally stimulated exciton emission in Si nanocrystals,” Light Sci. Appl. 7(1), 17133 (2018).
[Crossref] [PubMed]

Schnell, M.

M. Schnell, P. S. Carney, and R. Hillenbrand, “Synthetic optical holography for rapid nanoimaging,” Nat. Commun. 5(1), 3499 (2014).
[Crossref] [PubMed]

Shcherbakov, M. R.

M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov, K. E. Chong, D. Y. Choi, I. Staude, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15(10), 6985–6990 (2015).
[Crossref] [PubMed]

Shorokhov, A. S.

M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov, K. E. Chong, D. Y. Choi, I. Staude, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15(10), 6985–6990 (2015).
[Crossref] [PubMed]

Soares, J. S.

B. Joshi, I. Barman, N. C. Dingari, N. Cardenas, J. S. Soares, R. R. Dasari, and S. Mohanty, “Label-free route to rapid, nanoscale characterization of cellular structure and dynamics through opaque media,” Sci. Rep. 3(1), 2822 (2013).
[Crossref] [PubMed]

Staude, I.

M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov, K. E. Chong, D. Y. Choi, I. Staude, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15(10), 6985–6990 (2015).
[Crossref] [PubMed]

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Toda, M.

M. Zakerin, A. Novak, M. Toda, Y. Emery, F. Natalio, H. J. Butt, and R. Berger, “Thermal characterization of dynamic silicon cantilever array sensors by digital holographic microscopy,” Sensors (Basel) 17(6), 1191 (2017).
[Crossref] [PubMed]

Trinh, M. T.

E. M. L. D. de Jong, H. Rutjes, J. Valenta, M. T. Trinh, A. N. Poddubny, I. N. Yassievich, A. Capretti, and T. Gregorkiewicz, “Thermally stimulated exciton emission in Si nanocrystals,” Light Sci. Appl. 7(1), 17133 (2018).
[Crossref] [PubMed]

Tsuda, H.

Vabishchevich, P. P.

M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov, K. E. Chong, D. Y. Choi, I. Staude, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15(10), 6985–6990 (2015).
[Crossref] [PubMed]

Valenta, J.

E. M. L. D. de Jong, H. Rutjes, J. Valenta, M. T. Trinh, A. N. Poddubny, I. N. Yassievich, A. Capretti, and T. Gregorkiewicz, “Thermally stimulated exciton emission in Si nanocrystals,” Light Sci. Appl. 7(1), 17133 (2018).
[Crossref] [PubMed]

Vlasov, Y. A.

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4(8), 557–560 (2010).
[Crossref]

Volz, T.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 605–609 (2012).
[Crossref]

Wang, J.

B. Wu, J. Zhao, J. Wang, J. Di, X. Chen, and J. Liu, “Visual investigation on the heat dissipation process of a heat sink by using digital holographic interferometry,” J. Appl. Phys. 114(19), 193103 (2013).
[Crossref]

Wang, Q.

Wang, Z.

Winger, M.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 605–609 (2012).
[Crossref]

Wu, B.

B. Wu, J. Zhao, J. Wang, J. Di, X. Chen, and J. Liu, “Visual investigation on the heat dissipation process of a heat sink by using digital holographic interferometry,” J. Appl. Phys. 114(19), 193103 (2013).
[Crossref]

Wurtz, G. A.

Xi, T.

Xia, P.

Xie, M.

Xu, F.

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97(7), 1216–1238 (2009).
[Crossref]

Yassievich, I. N.

E. M. L. D. de Jong, H. Rutjes, J. Valenta, M. T. Trinh, A. N. Poddubny, I. N. Yassievich, A. Capretti, and T. Gregorkiewicz, “Thermally stimulated exciton emission in Si nanocrystals,” Light Sci. Appl. 7(1), 17133 (2018).
[Crossref] [PubMed]

Yu, Y.

Zakerin, M.

M. Zakerin, A. Novak, M. Toda, Y. Emery, F. Natalio, H. J. Butt, and R. Berger, “Thermal characterization of dynamic silicon cantilever array sensors by digital holographic microscopy,” Sensors (Basel) 17(6), 1191 (2017).
[Crossref] [PubMed]

Zayats, A. V.

Zhang, J.

Zhang, Y.

P. Ji and Y. Zhang, “Melting and thermal ablation of a silver film induced by femtosecond laser heating: a multiscale modeling approach,” Appl. Phys., A Mater. Sci. Process. 123(10), 671 (2017).
[Crossref]

Zhao, J.

T. Xi, J. Di, Y. Li, S. Dai, C. Ma, and J. Zhao, “Measurement of ultrafast combustion process of premixed ethylene/oxygen flames in narrow channel with digital holographic interferometry,” Opt. Express 26(22), 28497–28504 (2018).
[Crossref] [PubMed]

C. Ma, Y. Li, J. Zhang, P. Li, T. Xi, J. Di, and J. Zhao, “Lateral shearing common-path digital holographic microscopy based on a slightly trapezoid Sagnac interferometer,” Opt. Express 25(12), 13659–13667 (2017).
[Crossref] [PubMed]

T. Xi, J. Dou, J. Di, Y. Li, J. Zhang, C. Ma, and J. Zhao, “Short-coherence in-line phase-shifting infrared digital holographic microscopy for measurement of internal structure in silicon,” Proc. SPIE 10449, 104491F (2017).
[Crossref]

T. Xi, J. Di, X. Guan, Y. Li, C. Ma, J. Zhang, and J. Zhao, “Phase-shifting infrared digital holographic microscopy based on an all-fiber variable phase shifter,” Appl. Opt. 56(10), 2686–2690 (2017).
[Crossref] [PubMed]

J. Di, Y. Yu, Z. Wang, W. Qu, C. Y. Cheng, and J. Zhao, “Quantitative measurement of thermal lensing in diode-side-pumped Nd:YAG laser by use of digital holographic interferometry,” Opt. Express 24(25), 28185–28193 (2016).
[Crossref] [PubMed]

J. Di, Y. Li, M. Xie, J. Zhang, C. Ma, T. Xi, E. Li, and J. Zhao, “Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging based on lateral shearing interferometry,” Appl. Opt. 55(26), 7287–7293 (2016).
[Crossref] [PubMed]

J. Zhang, C. Ma, S. Dai, J. Di, Y. Li, T. Xi, and J. Zhao, “Transmission and total internal reflection integrated digital holographic microscopy,” Opt. Lett. 41(16), 3844–3847 (2016).
[Crossref] [PubMed]

B. Wu, J. Zhao, J. Wang, J. Di, X. Chen, and J. Liu, “Visual investigation on the heat dissipation process of a heat sink by using digital holographic interferometry,” J. Appl. Phys. 114(19), 193103 (2013).
[Crossref]

Appl. Opt. (2)

Appl. Phys., A Mater. Sci. Process. (1)

P. Ji and Y. Zhang, “Melting and thermal ablation of a silver film induced by femtosecond laser heating: a multiscale modeling approach,” Appl. Phys., A Mater. Sci. Process. 123(10), 671 (2017).
[Crossref]

Electron. Lett. (1)

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5μm in silicon etalon,” Electron. Lett. 28(1), 83–85 (1992).
[Crossref]

J. Appl. Phys. (2)

B. Wu, J. Zhao, J. Wang, J. Di, X. Chen, and J. Liu, “Visual investigation on the heat dissipation process of a heat sink by using digital holographic interferometry,” J. Appl. Phys. 114(19), 193103 (2013).
[Crossref]

H. Koyama and P. M. Fauchet, “Laser-induced thermal effects on the optical properties of free-standing porous silicon films,” J. Appl. Phys. 87(4), 1788–1794 (2000).
[Crossref]

J. Phys. Chem. Ref. Data (1)

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
[Crossref]

Light Sci. Appl. (1)

E. M. L. D. de Jong, H. Rutjes, J. Valenta, M. T. Trinh, A. N. Poddubny, I. N. Yassievich, A. Capretti, and T. Gregorkiewicz, “Thermally stimulated exciton emission in Si nanocrystals,” Light Sci. Appl. 7(1), 17133 (2018).
[Crossref] [PubMed]

Nano Lett. (1)

M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov, K. E. Chong, D. Y. Choi, I. Staude, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15(10), 6985–6990 (2015).
[Crossref] [PubMed]

Nat. Commun. (1)

M. Schnell, P. S. Carney, and R. Hillenbrand, “Synthetic optical holography for rapid nanoimaging,” Nat. Commun. 5(1), 3499 (2014).
[Crossref] [PubMed]

Nat. Photonics (3)

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4(8), 557–560 (2010).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 605–609 (2012).
[Crossref]

Nature (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Opt. Commun. (1)

L. Repetto, R. Chittofrati, E. Piano, and C. Pontiggia, “Infrared lensless holographic microscope with a vidicon camera for inspection of metallic evaporations on silicon wafers,” Opt. Commun. 251(1–3), 44–50 (2005).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Photon. Res. (1)

Proc. IEEE (1)

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97(7), 1216–1238 (2009).
[Crossref]

Proc. SPIE (1)

T. Xi, J. Dou, J. Di, Y. Li, J. Zhang, C. Ma, and J. Zhao, “Short-coherence in-line phase-shifting infrared digital holographic microscopy for measurement of internal structure in silicon,” Proc. SPIE 10449, 104491F (2017).
[Crossref]

Sci. Rep. (1)

B. Joshi, I. Barman, N. C. Dingari, N. Cardenas, J. S. Soares, R. R. Dasari, and S. Mohanty, “Label-free route to rapid, nanoscale characterization of cellular structure and dynamics through opaque media,” Sci. Rep. 3(1), 2822 (2013).
[Crossref] [PubMed]

Sensors (Basel) (1)

M. Zakerin, A. Novak, M. Toda, Y. Emery, F. Natalio, H. J. Butt, and R. Berger, “Thermal characterization of dynamic silicon cantilever array sensors by digital holographic microscopy,” Sensors (Basel) 17(6), 1191 (2017).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Experimental setup for IRDHI. SLD: superluminescent diode; C: fiber coupler; SMF: single mode fiber; FC1 and FC2: fiber connectors; L1 and L2: lenses; BS: beam splitter; F: narrow-band filter; P: polarizer; ND: neutral density filter; MO: microscope objective. (b) Frontal pumping. (c) Lateral pumping.
Fig. 2
Fig. 2 (a), (b) Formation of the hologram in xy and yz planes, respectively. (c) Hologram recorded by the proposed configuration. (d) Spatial spectrum of (c).
Fig. 3
Fig. 3 (a)-(d) Phase images at different times under the pumping laser power of 50 mW. (e) Δn and ΔT along the white lines in (a)-(d). (f) The maximum Δn and ΔT with time under different pumping laser powers.
Fig. 4
Fig. 4 (a)-(d) Phase images under the pumping laser power of 50 mW at 0.15 s, 0.16 s, 0.17 s and 0.18 s, respectively. (e) Δn and ΔT along the white lines in (a)-(d). (f) The maximum Δn and ΔT with time under different pumping laser powers.
Fig. 5
Fig. 5 Temporal stability of the proposed setup.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

n T =1.86× 10 4 K 1 .
I(x,y)=|O(x,y) | 2 +|R(x,y) | 2 +O(x,y)R*(x,y)+O*(x,y)R(x,y).
O(x,y)=F T 1 { FT(I(x,y)C)exp[ i 2πd λ 1 (λ f x ) 2 (λ f y ) 2 ] }.
Δn( x,y )= λ 2πL Δϕ( x,y ).
λ 2sin θ 2 2Δx,
θarcsin( 3λ 8Δx ).
sinθ= Δ l max l o o 1 .

Metrics