Abstract

Polarization imaging has become a widely-applied detection technique, due to the capabilities of enhanced image contrast and object recognition. Here, we demonstrate 320 × 256 InGaAs focal plane array (FPA) integrated with superpixel-structured subwavelength aluminum grating. An extinction ratio of up to 19:1 at 1310 nm is realized, which indicates a good capability of near-infrared polarization detection. Theoretical simulation shows a fairly high extinction ratio for such superpixel structure. This difference between the actual extinction ratio and the theoretical extinction ratio is further discussed by analyzing the effects of the alignment deviation and structural parameter deviations induced during the actual process. Moreover, the imaging results show that the fabricated polarimetric InGaAs FPA presents a more obvious profile for artificial objects, compared to the conventional detector. Such FPAs integrated with superpixel-structured grating are very promising for high performance polarization imaging in the short wavelength infrared band.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multi-frame linear regressive filter for the measurement of infrared pixel spatial response and MTF from sparse data

Edouard Huard, Sophie Derelle, Julien Jaeck, Jean Nghiem, Riad Haïdar, and Jérôme Primot
Opt. Express 26(5) 5200-5211 (2018)

Portable Remote Imaging Spectrometer coastal ocean sensor: design, characteristics, and first flight results

Pantazis Mouroulis, Byron Van Gorp, Robert O. Green, Heidi Dierssen, Daniel W. Wilson, Michael Eastwood, Joseph Boardman, Bo-Cai Gao, David Cohen, Brian Franklin, Frank Loya, Sarah Lundeen, Alan Mazer, Ian McCubbin, David Randall, Brandon Richardson, Jose I. Rodriguez, Charles Sarture, Eugenio Urquiza, Rudolph Vargas, Victor White, and Karl Yee
Appl. Opt. 53(7) 1363-1380 (2014)

Video rate nine-band multispectral short-wave infrared sensor

Mary R. Kutteruf, Michael K. Yetzbacher, Michael J. DePrenger, Kyle M. Novak, Corey A. Miller, Trijntje Valerie Downes, and Andrey V. Kanaev
Appl. Opt. 53(13) C45-C53 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. Hong, “Surface roughness and polarization ratio in microwave remote sensing,” Int. J. Remote Sens. 31(10), 2709–2716 (2010).
    [Crossref]
  2. D. K. Beamer, U. Abeywickrema, and P. Banerjee, “Polarization vector signatures for target identification,” Proc. SPIE 10407, 104070T (2017).
  3. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
    [Crossref] [PubMed]
  4. T. V. Thilak Krishna, C. D. Creusere, and D. G. Voelz, “Passive polarimetric imagery-based material classification robust to illumination source position and viewpoint,” IEEE Trans. Image Process. 20(1), 288–292 (2011).
    [Crossref] [PubMed]
  5. M. Sarkar, D. S. S. San Segundo Bello, C. van Hoof, and A. Theuwissen, “Intergrated polarization analyzing CMOS image sensor for material classification,” IEEE Sens. J. 11(8), 1692–1703 (2011).
    [Crossref]
  6. S. L. Jacques, R. Samatham, S. Isenhath, and K. Lee, “Polarized light camera to guidesurgical excision of skin cancers,” Proc. SPIE 6842, 68420I (2008).
    [Crossref]
  7. R. Patel, A. Khan, R. Quinlan, and A. N. Yaroslavsky, “Polarization-Sensitive Multimodal Imaging for Detecting Breast Cancer,” Cancer Res. 74(17), 4685–4693 (2014).
    [Crossref] [PubMed]
  8. S. S. Lin, K. M. Yemelyanov, E. N. Pugh, and N. Engheta, “Polarization-based and specular-reflection-based noncontact latent fingerprint imaging and lifting,” J. Opt. Soc. Am. A 23(9), 2137–2153 (2006).
    [Crossref] [PubMed]
  9. L. Zhang, H. W. Yuan, and X. M. Li, “Active polarization imaging method for latent fingerprint detection,” Opt. Quantum Electron. 50(9), 353 (2018).
    [Crossref]
  10. D. Li, N. Zeng, Y. F. Wang, D. S. Chen, Y. R. Chen, and H. Ma, “Study on Polarization features of carbonaceous particles in atmosphere pollutants,” Proc. SPIE 9979, 99790H (2016).
  11. C. L. Li, W. J. Lu, S. Xue, Y. C. Shi, and X. N. Sun, “Quality Assessment of Polarization Analysis Images in Foggy Conditions,” in Proceedings of IEEE Conference on Image Processing (IEEE, 2014), pp. 551–555.
    [Crossref]
  12. A. Sohaib, A. R. Farooq, J. Ahmed, L. N. Smith, and M. L. Smith, “3D reconstruction of concave surfaces using polarisation imaging,” J. Mod. Opt. 62(11), 927–932 (2015).
    [Crossref]
  13. V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18(18), 19087–19094 (2010).
    [Crossref] [PubMed]
  14. E. Gilboa, J. P. Cunningham, A. Nehorai, and V. Gruev, “Image interpolation and denoising for division of focal plane sensors using Gaussian processes,” Opt. Express 22(12), 15277–15291 (2014).
    [Crossref] [PubMed]
  15. D. Vorobiev and Z. Ninkov, “Design, fabrication and characterization of a polarization-sensitvie focal plane array,” Proc. SPIE 9403, 94030A (2015).
  16. A. Abubakar, X. J. Zhao, S. T. Li, M. Takruri, E. Bastaki, and A. Bermak, “A Block-Matching and 3-D Filtering Algorithm for Gaussian Noise in DoFP Polarization Images,” IEEE Sens. J. 18(18), 7429–7435 (2018).
    [Crossref]
  17. T. York and V. Gruev, “Characterization of a visible spectrum division-of-focal-plane polarimeter,” Appl. Opt. 51(22), 5392–5400 (2012).
    [Crossref] [PubMed]
  18. X. Y. Hu, X. Wang, Z. Y. Ding, X. Lin, D. L. Zhang, and W. P. Wang, “Research Progress in Integrated Polarization Infrared Detector and Image Processing,” Proc. SPIE 10697, 106974I (2018).
  19. G. Baker, M. Wilson, and P. Coulter, “Development and results of NIR polarization camera,” Proc. SPIE 6567, 65671L (2007).
    [Crossref]
  20. S. Ikeda, E. Higurashi, T. Suga, and T. Oguchi, “Miniaturized polarization sensors integrated with wire-grid polarizers,” in Proceedings of IEEE Conference on Electronics Packaging (IEEE, 2014), pp. 376–379.
    [Crossref]
  21. R. Wang, T. Li, X. Shao, X. Li, X. Huang, J. Shao, Y. Chen, and H. Gong, “Subwavelength Gold Grating as Polarizers Integrated with InP-Based InGaAs Sensors,” ACS Appl. Mater. Interfaces 7(26), 14471–14476 (2015).
    [Crossref] [PubMed]
  22. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  23. F. Huang, F. M. Li, S. Y. Wang, C. S. Chen, and Y. B. Shi, “Calibration method for NIR polarization detector,” Hongwai Yu Haomibo Xuebao 37(3), 302–306 (2018).

2018 (4)

L. Zhang, H. W. Yuan, and X. M. Li, “Active polarization imaging method for latent fingerprint detection,” Opt. Quantum Electron. 50(9), 353 (2018).
[Crossref]

A. Abubakar, X. J. Zhao, S. T. Li, M. Takruri, E. Bastaki, and A. Bermak, “A Block-Matching and 3-D Filtering Algorithm for Gaussian Noise in DoFP Polarization Images,” IEEE Sens. J. 18(18), 7429–7435 (2018).
[Crossref]

X. Y. Hu, X. Wang, Z. Y. Ding, X. Lin, D. L. Zhang, and W. P. Wang, “Research Progress in Integrated Polarization Infrared Detector and Image Processing,” Proc. SPIE 10697, 106974I (2018).

F. Huang, F. M. Li, S. Y. Wang, C. S. Chen, and Y. B. Shi, “Calibration method for NIR polarization detector,” Hongwai Yu Haomibo Xuebao 37(3), 302–306 (2018).

2017 (1)

D. K. Beamer, U. Abeywickrema, and P. Banerjee, “Polarization vector signatures for target identification,” Proc. SPIE 10407, 104070T (2017).

2016 (1)

D. Li, N. Zeng, Y. F. Wang, D. S. Chen, Y. R. Chen, and H. Ma, “Study on Polarization features of carbonaceous particles in atmosphere pollutants,” Proc. SPIE 9979, 99790H (2016).

2015 (3)

A. Sohaib, A. R. Farooq, J. Ahmed, L. N. Smith, and M. L. Smith, “3D reconstruction of concave surfaces using polarisation imaging,” J. Mod. Opt. 62(11), 927–932 (2015).
[Crossref]

D. Vorobiev and Z. Ninkov, “Design, fabrication and characterization of a polarization-sensitvie focal plane array,” Proc. SPIE 9403, 94030A (2015).

R. Wang, T. Li, X. Shao, X. Li, X. Huang, J. Shao, Y. Chen, and H. Gong, “Subwavelength Gold Grating as Polarizers Integrated with InP-Based InGaAs Sensors,” ACS Appl. Mater. Interfaces 7(26), 14471–14476 (2015).
[Crossref] [PubMed]

2014 (2)

R. Patel, A. Khan, R. Quinlan, and A. N. Yaroslavsky, “Polarization-Sensitive Multimodal Imaging for Detecting Breast Cancer,” Cancer Res. 74(17), 4685–4693 (2014).
[Crossref] [PubMed]

E. Gilboa, J. P. Cunningham, A. Nehorai, and V. Gruev, “Image interpolation and denoising for division of focal plane sensors using Gaussian processes,” Opt. Express 22(12), 15277–15291 (2014).
[Crossref] [PubMed]

2012 (1)

2011 (2)

T. V. Thilak Krishna, C. D. Creusere, and D. G. Voelz, “Passive polarimetric imagery-based material classification robust to illumination source position and viewpoint,” IEEE Trans. Image Process. 20(1), 288–292 (2011).
[Crossref] [PubMed]

M. Sarkar, D. S. S. San Segundo Bello, C. van Hoof, and A. Theuwissen, “Intergrated polarization analyzing CMOS image sensor for material classification,” IEEE Sens. J. 11(8), 1692–1703 (2011).
[Crossref]

2010 (2)

V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18(18), 19087–19094 (2010).
[Crossref] [PubMed]

S. Hong, “Surface roughness and polarization ratio in microwave remote sensing,” Int. J. Remote Sens. 31(10), 2709–2716 (2010).
[Crossref]

2008 (1)

S. L. Jacques, R. Samatham, S. Isenhath, and K. Lee, “Polarized light camera to guidesurgical excision of skin cancers,” Proc. SPIE 6842, 68420I (2008).
[Crossref]

2007 (1)

G. Baker, M. Wilson, and P. Coulter, “Development and results of NIR polarization camera,” Proc. SPIE 6567, 65671L (2007).
[Crossref]

2006 (2)

Abeywickrema, U.

D. K. Beamer, U. Abeywickrema, and P. Banerjee, “Polarization vector signatures for target identification,” Proc. SPIE 10407, 104070T (2017).

Abubakar, A.

A. Abubakar, X. J. Zhao, S. T. Li, M. Takruri, E. Bastaki, and A. Bermak, “A Block-Matching and 3-D Filtering Algorithm for Gaussian Noise in DoFP Polarization Images,” IEEE Sens. J. 18(18), 7429–7435 (2018).
[Crossref]

Ahmed, J.

A. Sohaib, A. R. Farooq, J. Ahmed, L. N. Smith, and M. L. Smith, “3D reconstruction of concave surfaces using polarisation imaging,” J. Mod. Opt. 62(11), 927–932 (2015).
[Crossref]

Baker, G.

G. Baker, M. Wilson, and P. Coulter, “Development and results of NIR polarization camera,” Proc. SPIE 6567, 65671L (2007).
[Crossref]

Banerjee, P.

D. K. Beamer, U. Abeywickrema, and P. Banerjee, “Polarization vector signatures for target identification,” Proc. SPIE 10407, 104070T (2017).

Bastaki, E.

A. Abubakar, X. J. Zhao, S. T. Li, M. Takruri, E. Bastaki, and A. Bermak, “A Block-Matching and 3-D Filtering Algorithm for Gaussian Noise in DoFP Polarization Images,” IEEE Sens. J. 18(18), 7429–7435 (2018).
[Crossref]

Beamer, D. K.

D. K. Beamer, U. Abeywickrema, and P. Banerjee, “Polarization vector signatures for target identification,” Proc. SPIE 10407, 104070T (2017).

Bermak, A.

A. Abubakar, X. J. Zhao, S. T. Li, M. Takruri, E. Bastaki, and A. Bermak, “A Block-Matching and 3-D Filtering Algorithm for Gaussian Noise in DoFP Polarization Images,” IEEE Sens. J. 18(18), 7429–7435 (2018).
[Crossref]

Chen, C. S.

F. Huang, F. M. Li, S. Y. Wang, C. S. Chen, and Y. B. Shi, “Calibration method for NIR polarization detector,” Hongwai Yu Haomibo Xuebao 37(3), 302–306 (2018).

Chen, D. S.

D. Li, N. Zeng, Y. F. Wang, D. S. Chen, Y. R. Chen, and H. Ma, “Study on Polarization features of carbonaceous particles in atmosphere pollutants,” Proc. SPIE 9979, 99790H (2016).

Chen, Y.

R. Wang, T. Li, X. Shao, X. Li, X. Huang, J. Shao, Y. Chen, and H. Gong, “Subwavelength Gold Grating as Polarizers Integrated with InP-Based InGaAs Sensors,” ACS Appl. Mater. Interfaces 7(26), 14471–14476 (2015).
[Crossref] [PubMed]

Chen, Y. R.

D. Li, N. Zeng, Y. F. Wang, D. S. Chen, Y. R. Chen, and H. Ma, “Study on Polarization features of carbonaceous particles in atmosphere pollutants,” Proc. SPIE 9979, 99790H (2016).

Chenault, D. B.

Coulter, P.

G. Baker, M. Wilson, and P. Coulter, “Development and results of NIR polarization camera,” Proc. SPIE 6567, 65671L (2007).
[Crossref]

Creusere, C. D.

T. V. Thilak Krishna, C. D. Creusere, and D. G. Voelz, “Passive polarimetric imagery-based material classification robust to illumination source position and viewpoint,” IEEE Trans. Image Process. 20(1), 288–292 (2011).
[Crossref] [PubMed]

Cunningham, J. P.

Ding, Z. Y.

X. Y. Hu, X. Wang, Z. Y. Ding, X. Lin, D. L. Zhang, and W. P. Wang, “Research Progress in Integrated Polarization Infrared Detector and Image Processing,” Proc. SPIE 10697, 106974I (2018).

Engheta, N.

Farooq, A. R.

A. Sohaib, A. R. Farooq, J. Ahmed, L. N. Smith, and M. L. Smith, “3D reconstruction of concave surfaces using polarisation imaging,” J. Mod. Opt. 62(11), 927–932 (2015).
[Crossref]

Gilboa, E.

Goldstein, D. L.

Gong, H.

R. Wang, T. Li, X. Shao, X. Li, X. Huang, J. Shao, Y. Chen, and H. Gong, “Subwavelength Gold Grating as Polarizers Integrated with InP-Based InGaAs Sensors,” ACS Appl. Mater. Interfaces 7(26), 14471–14476 (2015).
[Crossref] [PubMed]

Gruev, V.

Higurashi, E.

S. Ikeda, E. Higurashi, T. Suga, and T. Oguchi, “Miniaturized polarization sensors integrated with wire-grid polarizers,” in Proceedings of IEEE Conference on Electronics Packaging (IEEE, 2014), pp. 376–379.
[Crossref]

Hong, S.

S. Hong, “Surface roughness and polarization ratio in microwave remote sensing,” Int. J. Remote Sens. 31(10), 2709–2716 (2010).
[Crossref]

Hu, X. Y.

X. Y. Hu, X. Wang, Z. Y. Ding, X. Lin, D. L. Zhang, and W. P. Wang, “Research Progress in Integrated Polarization Infrared Detector and Image Processing,” Proc. SPIE 10697, 106974I (2018).

Huang, F.

F. Huang, F. M. Li, S. Y. Wang, C. S. Chen, and Y. B. Shi, “Calibration method for NIR polarization detector,” Hongwai Yu Haomibo Xuebao 37(3), 302–306 (2018).

Huang, X.

R. Wang, T. Li, X. Shao, X. Li, X. Huang, J. Shao, Y. Chen, and H. Gong, “Subwavelength Gold Grating as Polarizers Integrated with InP-Based InGaAs Sensors,” ACS Appl. Mater. Interfaces 7(26), 14471–14476 (2015).
[Crossref] [PubMed]

Ikeda, S.

S. Ikeda, E. Higurashi, T. Suga, and T. Oguchi, “Miniaturized polarization sensors integrated with wire-grid polarizers,” in Proceedings of IEEE Conference on Electronics Packaging (IEEE, 2014), pp. 376–379.
[Crossref]

Isenhath, S.

S. L. Jacques, R. Samatham, S. Isenhath, and K. Lee, “Polarized light camera to guidesurgical excision of skin cancers,” Proc. SPIE 6842, 68420I (2008).
[Crossref]

Jacques, S. L.

S. L. Jacques, R. Samatham, S. Isenhath, and K. Lee, “Polarized light camera to guidesurgical excision of skin cancers,” Proc. SPIE 6842, 68420I (2008).
[Crossref]

Khan, A.

R. Patel, A. Khan, R. Quinlan, and A. N. Yaroslavsky, “Polarization-Sensitive Multimodal Imaging for Detecting Breast Cancer,” Cancer Res. 74(17), 4685–4693 (2014).
[Crossref] [PubMed]

Lee, K.

S. L. Jacques, R. Samatham, S. Isenhath, and K. Lee, “Polarized light camera to guidesurgical excision of skin cancers,” Proc. SPIE 6842, 68420I (2008).
[Crossref]

Li, C. L.

C. L. Li, W. J. Lu, S. Xue, Y. C. Shi, and X. N. Sun, “Quality Assessment of Polarization Analysis Images in Foggy Conditions,” in Proceedings of IEEE Conference on Image Processing (IEEE, 2014), pp. 551–555.
[Crossref]

Li, D.

D. Li, N. Zeng, Y. F. Wang, D. S. Chen, Y. R. Chen, and H. Ma, “Study on Polarization features of carbonaceous particles in atmosphere pollutants,” Proc. SPIE 9979, 99790H (2016).

Li, F. M.

F. Huang, F. M. Li, S. Y. Wang, C. S. Chen, and Y. B. Shi, “Calibration method for NIR polarization detector,” Hongwai Yu Haomibo Xuebao 37(3), 302–306 (2018).

Li, S. T.

A. Abubakar, X. J. Zhao, S. T. Li, M. Takruri, E. Bastaki, and A. Bermak, “A Block-Matching and 3-D Filtering Algorithm for Gaussian Noise in DoFP Polarization Images,” IEEE Sens. J. 18(18), 7429–7435 (2018).
[Crossref]

Li, T.

R. Wang, T. Li, X. Shao, X. Li, X. Huang, J. Shao, Y. Chen, and H. Gong, “Subwavelength Gold Grating as Polarizers Integrated with InP-Based InGaAs Sensors,” ACS Appl. Mater. Interfaces 7(26), 14471–14476 (2015).
[Crossref] [PubMed]

Li, X.

R. Wang, T. Li, X. Shao, X. Li, X. Huang, J. Shao, Y. Chen, and H. Gong, “Subwavelength Gold Grating as Polarizers Integrated with InP-Based InGaAs Sensors,” ACS Appl. Mater. Interfaces 7(26), 14471–14476 (2015).
[Crossref] [PubMed]

Li, X. M.

L. Zhang, H. W. Yuan, and X. M. Li, “Active polarization imaging method for latent fingerprint detection,” Opt. Quantum Electron. 50(9), 353 (2018).
[Crossref]

Lin, S. S.

Lin, X.

X. Y. Hu, X. Wang, Z. Y. Ding, X. Lin, D. L. Zhang, and W. P. Wang, “Research Progress in Integrated Polarization Infrared Detector and Image Processing,” Proc. SPIE 10697, 106974I (2018).

Lu, W. J.

C. L. Li, W. J. Lu, S. Xue, Y. C. Shi, and X. N. Sun, “Quality Assessment of Polarization Analysis Images in Foggy Conditions,” in Proceedings of IEEE Conference on Image Processing (IEEE, 2014), pp. 551–555.
[Crossref]

Ma, H.

D. Li, N. Zeng, Y. F. Wang, D. S. Chen, Y. R. Chen, and H. Ma, “Study on Polarization features of carbonaceous particles in atmosphere pollutants,” Proc. SPIE 9979, 99790H (2016).

Nehorai, A.

Ninkov, Z.

D. Vorobiev and Z. Ninkov, “Design, fabrication and characterization of a polarization-sensitvie focal plane array,” Proc. SPIE 9403, 94030A (2015).

Oguchi, T.

S. Ikeda, E. Higurashi, T. Suga, and T. Oguchi, “Miniaturized polarization sensors integrated with wire-grid polarizers,” in Proceedings of IEEE Conference on Electronics Packaging (IEEE, 2014), pp. 376–379.
[Crossref]

Patel, R.

R. Patel, A. Khan, R. Quinlan, and A. N. Yaroslavsky, “Polarization-Sensitive Multimodal Imaging for Detecting Breast Cancer,” Cancer Res. 74(17), 4685–4693 (2014).
[Crossref] [PubMed]

Perkins, R.

Pugh, E. N.

Quinlan, R.

R. Patel, A. Khan, R. Quinlan, and A. N. Yaroslavsky, “Polarization-Sensitive Multimodal Imaging for Detecting Breast Cancer,” Cancer Res. 74(17), 4685–4693 (2014).
[Crossref] [PubMed]

Samatham, R.

S. L. Jacques, R. Samatham, S. Isenhath, and K. Lee, “Polarized light camera to guidesurgical excision of skin cancers,” Proc. SPIE 6842, 68420I (2008).
[Crossref]

San Segundo Bello, D. S. S.

M. Sarkar, D. S. S. San Segundo Bello, C. van Hoof, and A. Theuwissen, “Intergrated polarization analyzing CMOS image sensor for material classification,” IEEE Sens. J. 11(8), 1692–1703 (2011).
[Crossref]

Sarkar, M.

M. Sarkar, D. S. S. San Segundo Bello, C. van Hoof, and A. Theuwissen, “Intergrated polarization analyzing CMOS image sensor for material classification,” IEEE Sens. J. 11(8), 1692–1703 (2011).
[Crossref]

Shao, J.

R. Wang, T. Li, X. Shao, X. Li, X. Huang, J. Shao, Y. Chen, and H. Gong, “Subwavelength Gold Grating as Polarizers Integrated with InP-Based InGaAs Sensors,” ACS Appl. Mater. Interfaces 7(26), 14471–14476 (2015).
[Crossref] [PubMed]

Shao, X.

R. Wang, T. Li, X. Shao, X. Li, X. Huang, J. Shao, Y. Chen, and H. Gong, “Subwavelength Gold Grating as Polarizers Integrated with InP-Based InGaAs Sensors,” ACS Appl. Mater. Interfaces 7(26), 14471–14476 (2015).
[Crossref] [PubMed]

Shaw, J. A.

Shi, Y. B.

F. Huang, F. M. Li, S. Y. Wang, C. S. Chen, and Y. B. Shi, “Calibration method for NIR polarization detector,” Hongwai Yu Haomibo Xuebao 37(3), 302–306 (2018).

Shi, Y. C.

C. L. Li, W. J. Lu, S. Xue, Y. C. Shi, and X. N. Sun, “Quality Assessment of Polarization Analysis Images in Foggy Conditions,” in Proceedings of IEEE Conference on Image Processing (IEEE, 2014), pp. 551–555.
[Crossref]

Smith, L. N.

A. Sohaib, A. R. Farooq, J. Ahmed, L. N. Smith, and M. L. Smith, “3D reconstruction of concave surfaces using polarisation imaging,” J. Mod. Opt. 62(11), 927–932 (2015).
[Crossref]

Smith, M. L.

A. Sohaib, A. R. Farooq, J. Ahmed, L. N. Smith, and M. L. Smith, “3D reconstruction of concave surfaces using polarisation imaging,” J. Mod. Opt. 62(11), 927–932 (2015).
[Crossref]

Sohaib, A.

A. Sohaib, A. R. Farooq, J. Ahmed, L. N. Smith, and M. L. Smith, “3D reconstruction of concave surfaces using polarisation imaging,” J. Mod. Opt. 62(11), 927–932 (2015).
[Crossref]

Suga, T.

S. Ikeda, E. Higurashi, T. Suga, and T. Oguchi, “Miniaturized polarization sensors integrated with wire-grid polarizers,” in Proceedings of IEEE Conference on Electronics Packaging (IEEE, 2014), pp. 376–379.
[Crossref]

Sun, X. N.

C. L. Li, W. J. Lu, S. Xue, Y. C. Shi, and X. N. Sun, “Quality Assessment of Polarization Analysis Images in Foggy Conditions,” in Proceedings of IEEE Conference on Image Processing (IEEE, 2014), pp. 551–555.
[Crossref]

Takruri, M.

A. Abubakar, X. J. Zhao, S. T. Li, M. Takruri, E. Bastaki, and A. Bermak, “A Block-Matching and 3-D Filtering Algorithm for Gaussian Noise in DoFP Polarization Images,” IEEE Sens. J. 18(18), 7429–7435 (2018).
[Crossref]

Theuwissen, A.

M. Sarkar, D. S. S. San Segundo Bello, C. van Hoof, and A. Theuwissen, “Intergrated polarization analyzing CMOS image sensor for material classification,” IEEE Sens. J. 11(8), 1692–1703 (2011).
[Crossref]

Thilak Krishna, T. V.

T. V. Thilak Krishna, C. D. Creusere, and D. G. Voelz, “Passive polarimetric imagery-based material classification robust to illumination source position and viewpoint,” IEEE Trans. Image Process. 20(1), 288–292 (2011).
[Crossref] [PubMed]

Tyo, J. S.

van Hoof, C.

M. Sarkar, D. S. S. San Segundo Bello, C. van Hoof, and A. Theuwissen, “Intergrated polarization analyzing CMOS image sensor for material classification,” IEEE Sens. J. 11(8), 1692–1703 (2011).
[Crossref]

Voelz, D. G.

T. V. Thilak Krishna, C. D. Creusere, and D. G. Voelz, “Passive polarimetric imagery-based material classification robust to illumination source position and viewpoint,” IEEE Trans. Image Process. 20(1), 288–292 (2011).
[Crossref] [PubMed]

Vorobiev, D.

D. Vorobiev and Z. Ninkov, “Design, fabrication and characterization of a polarization-sensitvie focal plane array,” Proc. SPIE 9403, 94030A (2015).

Wang, R.

R. Wang, T. Li, X. Shao, X. Li, X. Huang, J. Shao, Y. Chen, and H. Gong, “Subwavelength Gold Grating as Polarizers Integrated with InP-Based InGaAs Sensors,” ACS Appl. Mater. Interfaces 7(26), 14471–14476 (2015).
[Crossref] [PubMed]

Wang, S. Y.

F. Huang, F. M. Li, S. Y. Wang, C. S. Chen, and Y. B. Shi, “Calibration method for NIR polarization detector,” Hongwai Yu Haomibo Xuebao 37(3), 302–306 (2018).

Wang, W. P.

X. Y. Hu, X. Wang, Z. Y. Ding, X. Lin, D. L. Zhang, and W. P. Wang, “Research Progress in Integrated Polarization Infrared Detector and Image Processing,” Proc. SPIE 10697, 106974I (2018).

Wang, X.

X. Y. Hu, X. Wang, Z. Y. Ding, X. Lin, D. L. Zhang, and W. P. Wang, “Research Progress in Integrated Polarization Infrared Detector and Image Processing,” Proc. SPIE 10697, 106974I (2018).

Wang, Y. F.

D. Li, N. Zeng, Y. F. Wang, D. S. Chen, Y. R. Chen, and H. Ma, “Study on Polarization features of carbonaceous particles in atmosphere pollutants,” Proc. SPIE 9979, 99790H (2016).

Wilson, M.

G. Baker, M. Wilson, and P. Coulter, “Development and results of NIR polarization camera,” Proc. SPIE 6567, 65671L (2007).
[Crossref]

Xue, S.

C. L. Li, W. J. Lu, S. Xue, Y. C. Shi, and X. N. Sun, “Quality Assessment of Polarization Analysis Images in Foggy Conditions,” in Proceedings of IEEE Conference on Image Processing (IEEE, 2014), pp. 551–555.
[Crossref]

Yaroslavsky, A. N.

R. Patel, A. Khan, R. Quinlan, and A. N. Yaroslavsky, “Polarization-Sensitive Multimodal Imaging for Detecting Breast Cancer,” Cancer Res. 74(17), 4685–4693 (2014).
[Crossref] [PubMed]

Yemelyanov, K. M.

York, T.

Yuan, H. W.

L. Zhang, H. W. Yuan, and X. M. Li, “Active polarization imaging method for latent fingerprint detection,” Opt. Quantum Electron. 50(9), 353 (2018).
[Crossref]

Zeng, N.

D. Li, N. Zeng, Y. F. Wang, D. S. Chen, Y. R. Chen, and H. Ma, “Study on Polarization features of carbonaceous particles in atmosphere pollutants,” Proc. SPIE 9979, 99790H (2016).

Zhang, D. L.

X. Y. Hu, X. Wang, Z. Y. Ding, X. Lin, D. L. Zhang, and W. P. Wang, “Research Progress in Integrated Polarization Infrared Detector and Image Processing,” Proc. SPIE 10697, 106974I (2018).

Zhang, L.

L. Zhang, H. W. Yuan, and X. M. Li, “Active polarization imaging method for latent fingerprint detection,” Opt. Quantum Electron. 50(9), 353 (2018).
[Crossref]

Zhao, X. J.

A. Abubakar, X. J. Zhao, S. T. Li, M. Takruri, E. Bastaki, and A. Bermak, “A Block-Matching and 3-D Filtering Algorithm for Gaussian Noise in DoFP Polarization Images,” IEEE Sens. J. 18(18), 7429–7435 (2018).
[Crossref]

ACS Appl. Mater. Interfaces (1)

R. Wang, T. Li, X. Shao, X. Li, X. Huang, J. Shao, Y. Chen, and H. Gong, “Subwavelength Gold Grating as Polarizers Integrated with InP-Based InGaAs Sensors,” ACS Appl. Mater. Interfaces 7(26), 14471–14476 (2015).
[Crossref] [PubMed]

Appl. Opt. (2)

Cancer Res. (1)

R. Patel, A. Khan, R. Quinlan, and A. N. Yaroslavsky, “Polarization-Sensitive Multimodal Imaging for Detecting Breast Cancer,” Cancer Res. 74(17), 4685–4693 (2014).
[Crossref] [PubMed]

Hongwai Yu Haomibo Xuebao (1)

F. Huang, F. M. Li, S. Y. Wang, C. S. Chen, and Y. B. Shi, “Calibration method for NIR polarization detector,” Hongwai Yu Haomibo Xuebao 37(3), 302–306 (2018).

IEEE Sens. J. (2)

A. Abubakar, X. J. Zhao, S. T. Li, M. Takruri, E. Bastaki, and A. Bermak, “A Block-Matching and 3-D Filtering Algorithm for Gaussian Noise in DoFP Polarization Images,” IEEE Sens. J. 18(18), 7429–7435 (2018).
[Crossref]

M. Sarkar, D. S. S. San Segundo Bello, C. van Hoof, and A. Theuwissen, “Intergrated polarization analyzing CMOS image sensor for material classification,” IEEE Sens. J. 11(8), 1692–1703 (2011).
[Crossref]

IEEE Trans. Image Process. (1)

T. V. Thilak Krishna, C. D. Creusere, and D. G. Voelz, “Passive polarimetric imagery-based material classification robust to illumination source position and viewpoint,” IEEE Trans. Image Process. 20(1), 288–292 (2011).
[Crossref] [PubMed]

Int. J. Remote Sens. (1)

S. Hong, “Surface roughness and polarization ratio in microwave remote sensing,” Int. J. Remote Sens. 31(10), 2709–2716 (2010).
[Crossref]

J. Mod. Opt. (1)

A. Sohaib, A. R. Farooq, J. Ahmed, L. N. Smith, and M. L. Smith, “3D reconstruction of concave surfaces using polarisation imaging,” J. Mod. Opt. 62(11), 927–932 (2015).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Express (2)

Opt. Quantum Electron. (1)

L. Zhang, H. W. Yuan, and X. M. Li, “Active polarization imaging method for latent fingerprint detection,” Opt. Quantum Electron. 50(9), 353 (2018).
[Crossref]

Proc. SPIE (6)

D. Li, N. Zeng, Y. F. Wang, D. S. Chen, Y. R. Chen, and H. Ma, “Study on Polarization features of carbonaceous particles in atmosphere pollutants,” Proc. SPIE 9979, 99790H (2016).

D. K. Beamer, U. Abeywickrema, and P. Banerjee, “Polarization vector signatures for target identification,” Proc. SPIE 10407, 104070T (2017).

D. Vorobiev and Z. Ninkov, “Design, fabrication and characterization of a polarization-sensitvie focal plane array,” Proc. SPIE 9403, 94030A (2015).

X. Y. Hu, X. Wang, Z. Y. Ding, X. Lin, D. L. Zhang, and W. P. Wang, “Research Progress in Integrated Polarization Infrared Detector and Image Processing,” Proc. SPIE 10697, 106974I (2018).

G. Baker, M. Wilson, and P. Coulter, “Development and results of NIR polarization camera,” Proc. SPIE 6567, 65671L (2007).
[Crossref]

S. L. Jacques, R. Samatham, S. Isenhath, and K. Lee, “Polarized light camera to guidesurgical excision of skin cancers,” Proc. SPIE 6842, 68420I (2008).
[Crossref]

Other (3)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

S. Ikeda, E. Higurashi, T. Suga, and T. Oguchi, “Miniaturized polarization sensors integrated with wire-grid polarizers,” in Proceedings of IEEE Conference on Electronics Packaging (IEEE, 2014), pp. 376–379.
[Crossref]

C. L. Li, W. J. Lu, S. Xue, Y. C. Shi, and X. N. Sun, “Quality Assessment of Polarization Analysis Images in Foggy Conditions,” in Proceedings of IEEE Conference on Image Processing (IEEE, 2014), pp. 551–555.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Block diagram of the polarimetric InGaAs FPA. The region bounded by the dotted purple line represents a superpixel. (b) Structure of the polarimetric InGaAs FPA. (c) SEM image of the superpixel-structured aluminum grating.
Fig. 2
Fig. 2 Schematic diagram of polarization performance test system.
Fig. 3
Fig. 3 Response spectrum of polarimetric InGaAs FPA. (b) Electrical signals collected by four neighboring pixels as a function of different angles of linearly polarized light at 1310 nm. (c) Intensity response of polarimetric InGaAs FPA for a certain incident angle of linearly polarized light.
Fig. 4
Fig. 4 The sketch of positional relation between polarization grating and photosensitive area.
Fig. 5
Fig. 5 The electrical signal Ip for (a) θ = 90° and (b) θ = 0° as a function of alignment deviation between the photosensitive elements and the polarization gratings.
Fig. 6
Fig. 6 The relationships between polarization performance and (a) height deviation, (b) angular deviation, (c) pitch deviation, and (d) duty cycle deviation. The first column on the left is the sketch for simulation, the second column and the third column are the extinction ratio and the transmittance, respectively.
Fig. 7
Fig. 7 Electric field distribution (upper part) and Poynting vector distribution (lower part) for TE wave at 1550nm for (a) designed structure, (b) duty cycle = 0.45, and (c) pitch = 440nm.
Fig. 8
Fig. 8 The relationships between polarization performance and (a) height of the curved top and (b) bottom width of grating. The first column on the left is the sketch for simulation, the second column and the third column are the extinction ratio and the transmittance, respectively.
Fig. 9
Fig. 9 (a) Sketch for simulation of thickness deviation of SiO2 layer. The relationships between thickness deviation of SiO2 layer and (b) the extinction ratio and (c) the transmittance.
Fig. 10
Fig. 10 Sample images recorded from (a) CMOS imaging sensor, (b) conventional InGaAs FPA, and (c) fabricated InGaAs FPA with superpixel-structured grating.

Tables (1)

Tables Icon

Table 1 Actual Thickness of SiO2 Dielectric Layer

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I tolb = I tola = I unp + I p = I unp + I 0 =I× S unp S +I× T 0 × S p S
I tolc = I unp +( I 0 + I 135 )=I× S unp S +I×( T 0 × S 0 S + T 135 × S 135 S )
I told = I unp +( I 0 + I 45 )=I× S unp S +I×( T 0 × S 0 S + T 45 × S 45 S )
I tole = I unp +( I 0 + I 45 + I 135 )=I× S unp S +I×( T 0 × S 0 S + T 45 × S 45 S + T 135 × S 135 S )

Metrics