Abstract

Photomixers at THz frequencies offer an attractive solution to fill the THz gap; however, conventional photomixer designs result in low output powers, on the order of microwatts, before thermal failure. We propose an alternative photomixer design capable of orders of magnitude enhancement of continuous-wave THz generation using a metamaterial approach. By forming a metal-semiconductor-metal (MSM) cavity through layering an ultrafast semiconductor material between subwavelength metal-dielectric gratings, tailored resonance can achieve ultrathin absorbing regions and efficient heat sinking. When mounted to a tunable E-patch antenna, gratings also act as vertically biased electrodes, further enhancing photoconductive gain by reducing the carrier path length to nanoscales. Thus, through these multiplicative enhancements, the metamaterial-enhanced photomixer is projected to generate THz powers in the milliwatt range and exceed the Manley-Rowe limit for frequencies less than 2 THz.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Bias-free and antenna-coupled CW terahertz array emitter with anomalous Schottky barriers

Mohammad Javad Mohammad-Zamani, Morteza Fathipour, Mohammad Neshat, Fakhroddin Nazari, and Mahdi Ghaemi
J. Opt. Soc. Am. B 34(9) 1771-1779 (2017)

Computational modeling of plasmonic thin-film terahertz photoconductive antennas

Nathan Burford and Magda El-Shenawee
J. Opt. Soc. Am. B 33(4) 748-759 (2016)

A hybrid analysis method for plasmonic enhanced terahertz photomixer sources

Saman Jafarlou, Mohammad Neshat, and Safieddin Safavi-Naeini
Opt. Express 21(9) 11115-11124 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications, explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
    [Crossref]
  2. P. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microwave Theory Tech. 52, 2438–2447 (2004).
    [Crossref]
  3. P. Y. Han, G. C. Cho, and X.-C. Zhang, “Time-domain transillumination of biological tissues with terahertz pulses,” Opt. Lett. 25, 242–244 (2000).
    [Crossref]
  4. X.-C. Zhang, “Terahertz wave imaging: horizons and hurdles,” Phys. Medicine Biol. 47, 3667 (2002).
    [Crossref]
  5. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20, 1716–1718 (1995).
    [Crossref] [PubMed]
  6. J. Liu, C. Dai, S. L. Jianming, and X.-C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photon. 4, 627–631 (2010).
    [Crossref]
  7. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photon. 1, 97–105 (2007).
    [Crossref]
  8. S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109, 061301 (2011).
    [Crossref]
  9. S. Verghese, K. A. McIntosh, and E. R. Brown, “Optical and terahertz power limits in the low-temperature-grown gaas photomixers,” Appl. Phys. Lett. 71, 2743–2745 (1997).
    [Crossref]
  10. E. R. Brown, “A photoconductive model for superior gaas thz photomixers,” Appl. Phys. Lett. 75, 769–771 (1999).
    [Crossref]
  11. C. Kadow, S. B. Fleischer, J. P. Ibbetson, J. E. Bowers, and A. C. Gossard, “Subpicosecond carrier dynamics in low temperature grown gaas on si substrates,” Appl. Phys. Lett. 75, 2575–2577 (1999).
    [Crossref]
  12. R. Adam, M. Mikulics, S. Wu, X. Zheng, M. Marso, I. Camara, F. Siebe, R. Gusten, A. Foerster, P. Kordos, and R. Sobolewski, “Fabrication and performance of hybrid photoconductive devices based on freestanding lt-gaas,” Proc. SPIE 5352, 321–332 (2004).
    [Crossref]
  13. D. J. Yeh and E. R. Brown, “New design for increased terahertz power from ltg gaas photomixers,” Proc. SPIE 4111, 124–132 (2000).
    [Crossref]
  14. E. Peytavit, S. Arscott, D. Lippens, G. Mouret, S. Matton, P. Masselin, R. Bocquet, J. F. Lampin, L. Desplanque, and F. Mollot, “Terahertz frequency difference from vertically integrated low-temperature-grown gaas photodetector,” Appl. Phys. Lett. 81, 1174–1176 (2002).
    [Crossref]
  15. E. Peytavit, C. Coinon, and J.-F. Lampin, “A metal-metal fabry-pérot cavity photoconductor for efficient gaas terahertz photomixers,” J. Appl. Phys. 109, 016101 (2011).
    [Crossref]
  16. C. W. Berry and M. Jarrahi, “Terahertz generation using plasmonic photoconductive gratings,” New J. Phys. 14, 105029 (2012).
    [Crossref]
  17. C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
    [Crossref] [PubMed]
  18. C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105, 011121 (2014).
    [Crossref]
  19. E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown gaas photoconductors,” J. Appl. Phys. 73, 1480–1484 (1993).
    [Crossref]
  20. E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 thz in low-temperature-grown gaas,” Appl. Phys. Lett. 66, 285–287 (1995).
    [Crossref]
  21. J. Manley and H. Rowe, “Some general properties of nonlinear elements part i. general energy relations,” in Proceedings of the IRE (IEEE, 1956) 44, 904–913.
    [Crossref]
  22. A. W. Jackson, “Low-temperature-grown gaas photomixers designed for increased terahertz output power,” Ph.D. disseration, University of California, Santa Barbara, CA (1999).
  23. A. W. Jackson, J. P. Ibbetson, A. C. Gossard, and U. K. Mishra, “Reduced thermal conductivity in low-temperature-grown gaas,” Appl. Phys. Lett. 74, 2325–2327 (1999).
    [Crossref]
  24. W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, “Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors,” Phys. Rev. Lett. 96, 045901 (2006).
    [Crossref] [PubMed]
  25. A. Krotkus and J.-L. Coutaz, “Non-stoichiometric semiconductor materials for terahertz optoelectronics applications,” Semicond. Sci. Technol. 20, S142 (2005).
    [Crossref]
  26. C.-H. Lin, R.-L. Chern, and H.-Y. Lin, “Polarization-independent broad-band nearly perfect absorbers in the visible regime,” Opt. Express 19, 415–424 (2011).
    [Crossref] [PubMed]
  27. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
    [Crossref] [PubMed]
  28. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Artech House, Incorporated, 2005).
  29. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the {FDTD} method,” Comput. Phys. Commun. 181, 687–702 (2010).
    [Crossref]
  30. H. Loka, S. Benjamin, and P. W. E. Smith, “Optical characterization of low-temperature-grown gaas for ultrafast all-optical switching devices,” Quantum Electron. IEEE J. 34, 1426–1437 (1998).
    [Crossref]
  31. A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
    [Crossref]
  32. J.-T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94, 197401 (2005).
    [Crossref]
  33. J. P. Ibbetson and U. K. Mishra, “Space-charge-limited currents in nonstoichiometric gaas,” Appl. Phys. Lett. 68, 3781–3783 (1996).
    [Crossref]
  34. N. Zamdmer, Q. Hu, K. A. McIntosh, and S. Verghese, “Increase in response time of low-temperature-grown gaas photoconductive switches at high voltage bias,” Appl. Phys. Lett. 75, 2313–2315 (1999).
    [Crossref]
  35. S. Preu, F. H. Renner, S. Malzer, G. H. Döhler, L. J. Wang, M. Hanson, A. C. Gossard, T. L. J. Wilkinson, and E. R. Brown, “Efficient terahertz emission from ballistic transport enhanced n-i-p-n-i-p superlattice photomixers,” Appl. Phys. Lett. 90, 212115 (2007).
    [Crossref]
  36. G. H. Döhler, F. Renner, O. Klar, M. Eckardt, A. Schwanhöußer, S. Malzer, D. Driscoll, M. Hanson, A. C. Gossard, G. Loata, T. Löffler, and H. Roskos, “Thz-photomixer based on quasi-ballistic transport,” Semicond. Sci. Technol. 20, S178 (2005).
    [Crossref]
  37. M. Stellmacher, J. Nagle, J. F. Lampin, P. Santoro, J. Vaneecloo, and A. Alexandrou, “Dependence of the carrier lifetime on acceptor concentration in gaas grown at low-temperature under different growth and annealing conditions,” J. Appl. Phys. 88, 6026–6031 (2000).
    [Crossref]
  38. R. A. Wyss, T. Lee, J. C. Pearson, S. Matsuura, G. A. Blake, C. Kadow, and A. C. Gossard, “Embedded Coplanar Strips Traveling-wave Photomixers,” Twelfth International Symposium on Space Terahertz Technology, San Diego, CA, (2001).
  39. T. E. Buehl, J. M. LeBeau, S. Stemmer, M. A. Scarpulla, C. J. Palmstrøm, and A. C. Gossard, “Growth of embedded eras nanorods on (4 1 1)a and (4 1 1)b gaas by molecular beam epitaxy,” J. Cryst. Growth 312, 2089–2092 (2010).
    [Crossref]
  40. D. L. Powers, Boundary Value Problems and Partial Differential Equations: Student Solutions Manual (Elsevier Academic Press, 2005).
  41. J. Holman, Heat Transfer (McGraw-Hill Education, 2009).
  42. M. Feiginov, “Sub-terahertz and terahertz microstrip resonant-tunneling-diode oscillators,” Appl. Phys. Lett. 107, 123504 (2015).
    [Crossref]
  43. K. Okada, K. Kasagi, N. Oshima, S. Suzuki, and M. Asada, “Resonant-tunneling-diode terahertz oscillator using patch antenna integrated on slot resonator for power radiation,” IEEE Trans. Terahertz Sci. Technol. 5, 613–618 (2015).
    [Crossref]
  44. I. S. Gregory, C. Baker, W. R. Tribe, I. Bradley, M. Evans, E. Linfield, G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” Quantum Electron. IEEE J. 41, 717–728 (2005).
    [Crossref]
  45. K.-L. Wong, C.-L. Tang, and J.-Y. Chiou, “Broadband probe-fed patch antenna with a w-shaped ground plane,” IEEE Trans. Antennas Propag. 50, 827–831 (2002).
    [Crossref]
  46. F. Yang, X.-X. Zhang, X. Ye, and Y. Rahmat-Samii, “Wide-band e-shaped patch antennas for wireless communications,” IEEE Trans. Antennas Propag. 49, 1094–1100 (2001).
    [Crossref]
  47. P.-Y. Chen and A. Alú, “Dual-mode miniaturized elliptical patch antenna with mu-negative metamaterials,” Antennas Wirel. Propag. Lett. IEEE 9, 351–354 (2010).
    [Crossref]
  48. K. Güney, “Radiation quality factor and resonant resistance of rectangular microstrip antennas,” Microw. Opt. Technol. Lett. 7, 427–430 (1994).
    [Crossref]
  49. S. M. Duffy, S. Verghese, A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microwave Theory Tech. 49, 1032–1038 (2001).
    [Crossref]
  50. A. Stohr, A. Malcoci, A. Sauerwald, I. C. Mayorga, R. Gusten, and D. S. Jager, “Ultra-wide-band traveling-wave photodetectors for photonic local oscillators,” J. Light. Technol. 21, 3062–3070 (2003).
    [Crossref]
  51. P. G. Huggard, B. N. Ellison, P. Shen, N. J. Gomes, P. A. Davies, W. Shillue, A. Vaccari, and J. M. Payne, “Generation of millimetre and sub-millimetre waves by photomixing in 1.55 μm wavelength photodiode,” Electron. Lett. 38, 327–328 (2002).
    [Crossref]
  52. H. Ito, Y. Muramoto, T. Furuta, and Y. Hirota, “High-speed and high-output-power uni-traveling-carrier photodiodes,” in 2005 IEEE LEOS Annual Meeting Conference Proceedings (2005), pp. 456–457.
    [Crossref]
  53. H. Ito, F. Nakajima, T. Furuta, K. Yoshino, Y. Hirota, and T. Ishibashi, “Photonic terahertz-wave generation using antenna-integrated uni-travelling-carrier photodiode,” Electron. Lett. 39, 1–2 (2003).
    [Crossref]
  54. F. Nakajima, T. Furuta, and H. Ito, “High-power continuous-terahertz-wave generation using resonant-antenna-integrated uni-travelling-carrier photodiode,” Electron. Lett. 40, 1297–1298 (2004).
    [Crossref]
  55. S. Suzuki, M. Asada, A. Teranishi, H. Sugiyama, and H. Yokoyama, “Fundamental oscillation of resonant tunneling diodes above 1 thz at room temperature,” Appl. Phys. Lett. 97, 242102 (2010).
    [Crossref]
  56. C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, and A. J. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 61940C (2006).
  57. F. Nakajima, T. Furuta, and H. Ito, “High-power continuous-terahertz-wave generation using resonant-antenna-integrated uni-travelling-carrier photodiode,” Electron. Lett. 40, 1297–1298 (2004).
    [Crossref]
  58. K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
    [Crossref] [PubMed]
  59. M. A. Belkin and F. Capasso, “New frontiers in quantum cascade lasers: high performance room temperature terahertz sources,” Phys. Scripta 90, 118002 (2015).
    [Crossref]
  60. S.-H. Yang and M. Jarrahi, “Frequency-tunable continuous-wave terahertz sources based on gaas plasmonic photomixers,” Appl. Phys. Lett. 107, 131111 (2015).
    [Crossref]

2015 (4)

M. Feiginov, “Sub-terahertz and terahertz microstrip resonant-tunneling-diode oscillators,” Appl. Phys. Lett. 107, 123504 (2015).
[Crossref]

K. Okada, K. Kasagi, N. Oshima, S. Suzuki, and M. Asada, “Resonant-tunneling-diode terahertz oscillator using patch antenna integrated on slot resonator for power radiation,” IEEE Trans. Terahertz Sci. Technol. 5, 613–618 (2015).
[Crossref]

M. A. Belkin and F. Capasso, “New frontiers in quantum cascade lasers: high performance room temperature terahertz sources,” Phys. Scripta 90, 118002 (2015).
[Crossref]

S.-H. Yang and M. Jarrahi, “Frequency-tunable continuous-wave terahertz sources based on gaas plasmonic photomixers,” Appl. Phys. Lett. 107, 131111 (2015).
[Crossref]

2014 (1)

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105, 011121 (2014).
[Crossref]

2013 (2)

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

2012 (1)

C. W. Berry and M. Jarrahi, “Terahertz generation using plasmonic photoconductive gratings,” New J. Phys. 14, 105029 (2012).
[Crossref]

2011 (4)

E. Peytavit, C. Coinon, and J.-F. Lampin, “A metal-metal fabry-pérot cavity photoconductor for efficient gaas terahertz photomixers,” J. Appl. Phys. 109, 016101 (2011).
[Crossref]

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109, 061301 (2011).
[Crossref]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

C.-H. Lin, R.-L. Chern, and H.-Y. Lin, “Polarization-independent broad-band nearly perfect absorbers in the visible regime,” Opt. Express 19, 415–424 (2011).
[Crossref] [PubMed]

2010 (5)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the {FDTD} method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

S. Suzuki, M. Asada, A. Teranishi, H. Sugiyama, and H. Yokoyama, “Fundamental oscillation of resonant tunneling diodes above 1 thz at room temperature,” Appl. Phys. Lett. 97, 242102 (2010).
[Crossref]

J. Liu, C. Dai, S. L. Jianming, and X.-C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photon. 4, 627–631 (2010).
[Crossref]

P.-Y. Chen and A. Alú, “Dual-mode miniaturized elliptical patch antenna with mu-negative metamaterials,” Antennas Wirel. Propag. Lett. IEEE 9, 351–354 (2010).
[Crossref]

T. E. Buehl, J. M. LeBeau, S. Stemmer, M. A. Scarpulla, C. J. Palmstrøm, and A. C. Gossard, “Growth of embedded eras nanorods on (4 1 1)a and (4 1 1)b gaas by molecular beam epitaxy,” J. Cryst. Growth 312, 2089–2092 (2010).
[Crossref]

2007 (2)

S. Preu, F. H. Renner, S. Malzer, G. H. Döhler, L. J. Wang, M. Hanson, A. C. Gossard, T. L. J. Wilkinson, and E. R. Brown, “Efficient terahertz emission from ballistic transport enhanced n-i-p-n-i-p superlattice photomixers,” Appl. Phys. Lett. 90, 212115 (2007).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photon. 1, 97–105 (2007).
[Crossref]

2006 (2)

W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, “Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors,” Phys. Rev. Lett. 96, 045901 (2006).
[Crossref] [PubMed]

C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, and A. J. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 61940C (2006).

2005 (5)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications, explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[Crossref]

A. Krotkus and J.-L. Coutaz, “Non-stoichiometric semiconductor materials for terahertz optoelectronics applications,” Semicond. Sci. Technol. 20, S142 (2005).
[Crossref]

J.-T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94, 197401 (2005).
[Crossref]

G. H. Döhler, F. Renner, O. Klar, M. Eckardt, A. Schwanhöußer, S. Malzer, D. Driscoll, M. Hanson, A. C. Gossard, G. Loata, T. Löffler, and H. Roskos, “Thz-photomixer based on quasi-ballistic transport,” Semicond. Sci. Technol. 20, S178 (2005).
[Crossref]

I. S. Gregory, C. Baker, W. R. Tribe, I. Bradley, M. Evans, E. Linfield, G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” Quantum Electron. IEEE J. 41, 717–728 (2005).
[Crossref]

2004 (4)

R. Adam, M. Mikulics, S. Wu, X. Zheng, M. Marso, I. Camara, F. Siebe, R. Gusten, A. Foerster, P. Kordos, and R. Sobolewski, “Fabrication and performance of hybrid photoconductive devices based on freestanding lt-gaas,” Proc. SPIE 5352, 321–332 (2004).
[Crossref]

P. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microwave Theory Tech. 52, 2438–2447 (2004).
[Crossref]

F. Nakajima, T. Furuta, and H. Ito, “High-power continuous-terahertz-wave generation using resonant-antenna-integrated uni-travelling-carrier photodiode,” Electron. Lett. 40, 1297–1298 (2004).
[Crossref]

F. Nakajima, T. Furuta, and H. Ito, “High-power continuous-terahertz-wave generation using resonant-antenna-integrated uni-travelling-carrier photodiode,” Electron. Lett. 40, 1297–1298 (2004).
[Crossref]

2003 (2)

H. Ito, F. Nakajima, T. Furuta, K. Yoshino, Y. Hirota, and T. Ishibashi, “Photonic terahertz-wave generation using antenna-integrated uni-travelling-carrier photodiode,” Electron. Lett. 39, 1–2 (2003).
[Crossref]

A. Stohr, A. Malcoci, A. Sauerwald, I. C. Mayorga, R. Gusten, and D. S. Jager, “Ultra-wide-band traveling-wave photodetectors for photonic local oscillators,” J. Light. Technol. 21, 3062–3070 (2003).
[Crossref]

2002 (4)

P. G. Huggard, B. N. Ellison, P. Shen, N. J. Gomes, P. A. Davies, W. Shillue, A. Vaccari, and J. M. Payne, “Generation of millimetre and sub-millimetre waves by photomixing in 1.55 μm wavelength photodiode,” Electron. Lett. 38, 327–328 (2002).
[Crossref]

K.-L. Wong, C.-L. Tang, and J.-Y. Chiou, “Broadband probe-fed patch antenna with a w-shaped ground plane,” IEEE Trans. Antennas Propag. 50, 827–831 (2002).
[Crossref]

E. Peytavit, S. Arscott, D. Lippens, G. Mouret, S. Matton, P. Masselin, R. Bocquet, J. F. Lampin, L. Desplanque, and F. Mollot, “Terahertz frequency difference from vertically integrated low-temperature-grown gaas photodetector,” Appl. Phys. Lett. 81, 1174–1176 (2002).
[Crossref]

X.-C. Zhang, “Terahertz wave imaging: horizons and hurdles,” Phys. Medicine Biol. 47, 3667 (2002).
[Crossref]

2001 (2)

S. M. Duffy, S. Verghese, A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microwave Theory Tech. 49, 1032–1038 (2001).
[Crossref]

F. Yang, X.-X. Zhang, X. Ye, and Y. Rahmat-Samii, “Wide-band e-shaped patch antennas for wireless communications,” IEEE Trans. Antennas Propag. 49, 1094–1100 (2001).
[Crossref]

2000 (3)

M. Stellmacher, J. Nagle, J. F. Lampin, P. Santoro, J. Vaneecloo, and A. Alexandrou, “Dependence of the carrier lifetime on acceptor concentration in gaas grown at low-temperature under different growth and annealing conditions,” J. Appl. Phys. 88, 6026–6031 (2000).
[Crossref]

D. J. Yeh and E. R. Brown, “New design for increased terahertz power from ltg gaas photomixers,” Proc. SPIE 4111, 124–132 (2000).
[Crossref]

P. Y. Han, G. C. Cho, and X.-C. Zhang, “Time-domain transillumination of biological tissues with terahertz pulses,” Opt. Lett. 25, 242–244 (2000).
[Crossref]

1999 (4)

E. R. Brown, “A photoconductive model for superior gaas thz photomixers,” Appl. Phys. Lett. 75, 769–771 (1999).
[Crossref]

C. Kadow, S. B. Fleischer, J. P. Ibbetson, J. E. Bowers, and A. C. Gossard, “Subpicosecond carrier dynamics in low temperature grown gaas on si substrates,” Appl. Phys. Lett. 75, 2575–2577 (1999).
[Crossref]

A. W. Jackson, J. P. Ibbetson, A. C. Gossard, and U. K. Mishra, “Reduced thermal conductivity in low-temperature-grown gaas,” Appl. Phys. Lett. 74, 2325–2327 (1999).
[Crossref]

N. Zamdmer, Q. Hu, K. A. McIntosh, and S. Verghese, “Increase in response time of low-temperature-grown gaas photoconductive switches at high voltage bias,” Appl. Phys. Lett. 75, 2313–2315 (1999).
[Crossref]

1998 (2)

A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
[Crossref]

H. Loka, S. Benjamin, and P. W. E. Smith, “Optical characterization of low-temperature-grown gaas for ultrafast all-optical switching devices,” Quantum Electron. IEEE J. 34, 1426–1437 (1998).
[Crossref]

1997 (1)

S. Verghese, K. A. McIntosh, and E. R. Brown, “Optical and terahertz power limits in the low-temperature-grown gaas photomixers,” Appl. Phys. Lett. 71, 2743–2745 (1997).
[Crossref]

1996 (1)

J. P. Ibbetson and U. K. Mishra, “Space-charge-limited currents in nonstoichiometric gaas,” Appl. Phys. Lett. 68, 3781–3783 (1996).
[Crossref]

1995 (2)

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 thz in low-temperature-grown gaas,” Appl. Phys. Lett. 66, 285–287 (1995).
[Crossref]

B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20, 1716–1718 (1995).
[Crossref] [PubMed]

1994 (1)

K. Güney, “Radiation quality factor and resonant resistance of rectangular microstrip antennas,” Microw. Opt. Technol. Lett. 7, 427–430 (1994).
[Crossref]

1993 (1)

E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown gaas photoconductors,” J. Appl. Phys. 73, 1480–1484 (1993).
[Crossref]

Adam, R.

R. Adam, M. Mikulics, S. Wu, X. Zheng, M. Marso, I. Camara, F. Siebe, R. Gusten, A. Foerster, P. Kordos, and R. Sobolewski, “Fabrication and performance of hybrid photoconductive devices based on freestanding lt-gaas,” Proc. SPIE 5352, 321–332 (2004).
[Crossref]

Alexandrou, A.

M. Stellmacher, J. Nagle, J. F. Lampin, P. Santoro, J. Vaneecloo, and A. Alexandrou, “Dependence of the carrier lifetime on acceptor concentration in gaas grown at low-temperature under different growth and annealing conditions,” J. Appl. Phys. 88, 6026–6031 (2000).
[Crossref]

Alú, A.

P.-Y. Chen and A. Alú, “Dual-mode miniaturized elliptical patch antenna with mu-negative metamaterials,” Antennas Wirel. Propag. Lett. IEEE 9, 351–354 (2010).
[Crossref]

Amann, M. C.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

Arscott, S.

E. Peytavit, S. Arscott, D. Lippens, G. Mouret, S. Matton, P. Masselin, R. Bocquet, J. F. Lampin, L. Desplanque, and F. Mollot, “Terahertz frequency difference from vertically integrated low-temperature-grown gaas photodetector,” Appl. Phys. Lett. 81, 1174–1176 (2002).
[Crossref]

Asada, M.

K. Okada, K. Kasagi, N. Oshima, S. Suzuki, and M. Asada, “Resonant-tunneling-diode terahertz oscillator using patch antenna integrated on slot resonator for power radiation,” IEEE Trans. Terahertz Sci. Technol. 5, 613–618 (2015).
[Crossref]

S. Suzuki, M. Asada, A. Teranishi, H. Sugiyama, and H. Yokoyama, “Fundamental oscillation of resonant tunneling diodes above 1 thz at room temperature,” Appl. Phys. Lett. 97, 242102 (2010).
[Crossref]

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Baker, C.

I. S. Gregory, C. Baker, W. R. Tribe, I. Bradley, M. Evans, E. Linfield, G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” Quantum Electron. IEEE J. 41, 717–728 (2005).
[Crossref]

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications, explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[Crossref]

Belkin, M. A.

M. A. Belkin and F. Capasso, “New frontiers in quantum cascade lasers: high performance room temperature terahertz sources,” Phys. Scripta 90, 118002 (2015).
[Crossref]

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

Benjamin, S.

H. Loka, S. Benjamin, and P. W. E. Smith, “Optical characterization of low-temperature-grown gaas for ultrafast all-optical switching devices,” Quantum Electron. IEEE J. 34, 1426–1437 (1998).
[Crossref]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the {FDTD} method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Berry, C. W.

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105, 011121 (2014).
[Crossref]

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

C. W. Berry and M. Jarrahi, “Terahertz generation using plasmonic photoconductive gratings,” New J. Phys. 14, 105029 (2012).
[Crossref]

Blake, G. A.

R. A. Wyss, T. Lee, J. C. Pearson, S. Matsuura, G. A. Blake, C. Kadow, and A. C. Gossard, “Embedded Coplanar Strips Traveling-wave Photomixers,” Twelfth International Symposium on Space Terahertz Technology, San Diego, CA, (2001).

Bocquet, R.

E. Peytavit, S. Arscott, D. Lippens, G. Mouret, S. Matton, P. Masselin, R. Bocquet, J. F. Lampin, L. Desplanque, and F. Mollot, “Terahertz frequency difference from vertically integrated low-temperature-grown gaas photodetector,” Appl. Phys. Lett. 81, 1174–1176 (2002).
[Crossref]

Boehm, G.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

Bowers, J. E.

C. Kadow, S. B. Fleischer, J. P. Ibbetson, J. E. Bowers, and A. C. Gossard, “Subpicosecond carrier dynamics in low temperature grown gaas on si substrates,” Appl. Phys. Lett. 75, 2575–2577 (1999).
[Crossref]

Bradley, I.

I. S. Gregory, C. Baker, W. R. Tribe, I. Bradley, M. Evans, E. Linfield, G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” Quantum Electron. IEEE J. 41, 717–728 (2005).
[Crossref]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Brown, E. R.

S. Preu, F. H. Renner, S. Malzer, G. H. Döhler, L. J. Wang, M. Hanson, A. C. Gossard, T. L. J. Wilkinson, and E. R. Brown, “Efficient terahertz emission from ballistic transport enhanced n-i-p-n-i-p superlattice photomixers,” Appl. Phys. Lett. 90, 212115 (2007).
[Crossref]

D. J. Yeh and E. R. Brown, “New design for increased terahertz power from ltg gaas photomixers,” Proc. SPIE 4111, 124–132 (2000).
[Crossref]

E. R. Brown, “A photoconductive model for superior gaas thz photomixers,” Appl. Phys. Lett. 75, 769–771 (1999).
[Crossref]

S. Verghese, K. A. McIntosh, and E. R. Brown, “Optical and terahertz power limits in the low-temperature-grown gaas photomixers,” Appl. Phys. Lett. 71, 2743–2745 (1997).
[Crossref]

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 thz in low-temperature-grown gaas,” Appl. Phys. Lett. 66, 285–287 (1995).
[Crossref]

E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown gaas photoconductors,” J. Appl. Phys. 73, 1480–1484 (1993).
[Crossref]

Buehl, T. E.

T. E. Buehl, J. M. LeBeau, S. Stemmer, M. A. Scarpulla, C. J. Palmstrøm, and A. C. Gossard, “Growth of embedded eras nanorods on (4 1 1)a and (4 1 1)b gaas by molecular beam epitaxy,” J. Cryst. Growth 312, 2089–2092 (2010).
[Crossref]

Camara, I.

R. Adam, M. Mikulics, S. Wu, X. Zheng, M. Marso, I. Camara, F. Siebe, R. Gusten, A. Foerster, P. Kordos, and R. Sobolewski, “Fabrication and performance of hybrid photoconductive devices based on freestanding lt-gaas,” Proc. SPIE 5352, 321–332 (2004).
[Crossref]

Cannard, P. J.

C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, and A. J. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 61940C (2006).

Capasso, F.

M. A. Belkin and F. Capasso, “New frontiers in quantum cascade lasers: high performance room temperature terahertz sources,” Phys. Scripta 90, 118002 (2015).
[Crossref]

Catrysse, P. B.

J.-T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94, 197401 (2005).
[Crossref]

Chen, P.-Y.

P.-Y. Chen and A. Alú, “Dual-mode miniaturized elliptical patch antenna with mu-negative metamaterials,” Antennas Wirel. Propag. Lett. IEEE 9, 351–354 (2010).
[Crossref]

Chern, R.-L.

Chiou, J.-Y.

K.-L. Wong, C.-L. Tang, and J.-Y. Chiou, “Broadband probe-fed patch antenna with a w-shaped ground plane,” IEEE Trans. Antennas Propag. 50, 827–831 (2002).
[Crossref]

Cho, G. C.

Choutagunta, K.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

Coinon, C.

E. Peytavit, C. Coinon, and J.-F. Lampin, “A metal-metal fabry-pérot cavity photoconductor for efficient gaas terahertz photomixers,” J. Appl. Phys. 109, 016101 (2011).
[Crossref]

Coutaz, J.-L.

A. Krotkus and J.-L. Coutaz, “Non-stoichiometric semiconductor materials for terahertz optoelectronics applications,” Semicond. Sci. Technol. 20, S142 (2005).
[Crossref]

Dai, C.

J. Liu, C. Dai, S. L. Jianming, and X.-C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photon. 4, 627–631 (2010).
[Crossref]

Davies, G.

I. S. Gregory, C. Baker, W. R. Tribe, I. Bradley, M. Evans, E. Linfield, G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” Quantum Electron. IEEE J. 41, 717–728 (2005).
[Crossref]

Davies, P. A.

P. G. Huggard, B. N. Ellison, P. Shen, N. J. Gomes, P. A. Davies, W. Shillue, A. Vaccari, and J. M. Payne, “Generation of millimetre and sub-millimetre waves by photomixing in 1.55 μm wavelength photodiode,” Electron. Lett. 38, 327–328 (2002).
[Crossref]

Demmerle, F.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

Dennis, C. L.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 thz in low-temperature-grown gaas,” Appl. Phys. Lett. 66, 285–287 (1995).
[Crossref]

Desplanque, L.

E. Peytavit, S. Arscott, D. Lippens, G. Mouret, S. Matton, P. Masselin, R. Bocquet, J. F. Lampin, L. Desplanque, and F. Mollot, “Terahertz frequency difference from vertically integrated low-temperature-grown gaas photodetector,” Appl. Phys. Lett. 81, 1174–1176 (2002).
[Crossref]

Djurišic, A. B.

Döhler, G. H.

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109, 061301 (2011).
[Crossref]

S. Preu, F. H. Renner, S. Malzer, G. H. Döhler, L. J. Wang, M. Hanson, A. C. Gossard, T. L. J. Wilkinson, and E. R. Brown, “Efficient terahertz emission from ballistic transport enhanced n-i-p-n-i-p superlattice photomixers,” Appl. Phys. Lett. 90, 212115 (2007).
[Crossref]

G. H. Döhler, F. Renner, O. Klar, M. Eckardt, A. Schwanhöußer, S. Malzer, D. Driscoll, M. Hanson, A. C. Gossard, G. Loata, T. Löffler, and H. Roskos, “Thz-photomixer based on quasi-ballistic transport,” Semicond. Sci. Technol. 20, S178 (2005).
[Crossref]

Driscoll, D.

G. H. Döhler, F. Renner, O. Klar, M. Eckardt, A. Schwanhöußer, S. Malzer, D. Driscoll, M. Hanson, A. C. Gossard, G. Loata, T. Löffler, and H. Roskos, “Thz-photomixer based on quasi-ballistic transport,” Semicond. Sci. Technol. 20, S178 (2005).
[Crossref]

Duffy, S. M.

S. M. Duffy, S. Verghese, A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microwave Theory Tech. 49, 1032–1038 (2001).
[Crossref]

Eckardt, M.

G. H. Döhler, F. Renner, O. Klar, M. Eckardt, A. Schwanhöußer, S. Malzer, D. Driscoll, M. Hanson, A. C. Gossard, G. Loata, T. Löffler, and H. Roskos, “Thz-photomixer based on quasi-ballistic transport,” Semicond. Sci. Technol. 20, S178 (2005).
[Crossref]

Elazar, J. M.

Ellison, B. N.

P. G. Huggard, B. N. Ellison, P. Shen, N. J. Gomes, P. A. Davies, W. Shillue, A. Vaccari, and J. M. Payne, “Generation of millimetre and sub-millimetre waves by photomixing in 1.55 μm wavelength photodiode,” Electron. Lett. 38, 327–328 (2002).
[Crossref]

Evans, M.

I. S. Gregory, C. Baker, W. R. Tribe, I. Bradley, M. Evans, E. Linfield, G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” Quantum Electron. IEEE J. 41, 717–728 (2005).
[Crossref]

Fan, S.

J.-T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94, 197401 (2005).
[Crossref]

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications, explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[Crossref]

Feiginov, M.

M. Feiginov, “Sub-terahertz and terahertz microstrip resonant-tunneling-diode oscillators,” Appl. Phys. Lett. 107, 123504 (2015).
[Crossref]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Firth, R.

C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, and A. J. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 61940C (2006).

Fleischer, S. B.

C. Kadow, S. B. Fleischer, J. P. Ibbetson, J. E. Bowers, and A. C. Gossard, “Subpicosecond carrier dynamics in low temperature grown gaas on si substrates,” Appl. Phys. Lett. 75, 2575–2577 (1999).
[Crossref]

Foerster, A.

R. Adam, M. Mikulics, S. Wu, X. Zheng, M. Marso, I. Camara, F. Siebe, R. Gusten, A. Foerster, P. Kordos, and R. Sobolewski, “Fabrication and performance of hybrid photoconductive devices based on freestanding lt-gaas,” Proc. SPIE 5352, 321–332 (2004).
[Crossref]

Furuta, T.

F. Nakajima, T. Furuta, and H. Ito, “High-power continuous-terahertz-wave generation using resonant-antenna-integrated uni-travelling-carrier photodiode,” Electron. Lett. 40, 1297–1298 (2004).
[Crossref]

F. Nakajima, T. Furuta, and H. Ito, “High-power continuous-terahertz-wave generation using resonant-antenna-integrated uni-travelling-carrier photodiode,” Electron. Lett. 40, 1297–1298 (2004).
[Crossref]

H. Ito, F. Nakajima, T. Furuta, K. Yoshino, Y. Hirota, and T. Ishibashi, “Photonic terahertz-wave generation using antenna-integrated uni-travelling-carrier photodiode,” Electron. Lett. 39, 1–2 (2003).
[Crossref]

H. Ito, Y. Muramoto, T. Furuta, and Y. Hirota, “High-speed and high-output-power uni-traveling-carrier photodiodes,” in 2005 IEEE LEOS Annual Meeting Conference Proceedings (2005), pp. 456–457.
[Crossref]

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications, explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[Crossref]

Gomes, N. J.

P. G. Huggard, B. N. Ellison, P. Shen, N. J. Gomes, P. A. Davies, W. Shillue, A. Vaccari, and J. M. Payne, “Generation of millimetre and sub-millimetre waves by photomixing in 1.55 μm wavelength photodiode,” Electron. Lett. 38, 327–328 (2002).
[Crossref]

Gossard, A.

W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, “Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors,” Phys. Rev. Lett. 96, 045901 (2006).
[Crossref] [PubMed]

Gossard, A. C.

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105, 011121 (2014).
[Crossref]

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109, 061301 (2011).
[Crossref]

T. E. Buehl, J. M. LeBeau, S. Stemmer, M. A. Scarpulla, C. J. Palmstrøm, and A. C. Gossard, “Growth of embedded eras nanorods on (4 1 1)a and (4 1 1)b gaas by molecular beam epitaxy,” J. Cryst. Growth 312, 2089–2092 (2010).
[Crossref]

S. Preu, F. H. Renner, S. Malzer, G. H. Döhler, L. J. Wang, M. Hanson, A. C. Gossard, T. L. J. Wilkinson, and E. R. Brown, “Efficient terahertz emission from ballistic transport enhanced n-i-p-n-i-p superlattice photomixers,” Appl. Phys. Lett. 90, 212115 (2007).
[Crossref]

G. H. Döhler, F. Renner, O. Klar, M. Eckardt, A. Schwanhöußer, S. Malzer, D. Driscoll, M. Hanson, A. C. Gossard, G. Loata, T. Löffler, and H. Roskos, “Thz-photomixer based on quasi-ballistic transport,” Semicond. Sci. Technol. 20, S178 (2005).
[Crossref]

S. M. Duffy, S. Verghese, A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microwave Theory Tech. 49, 1032–1038 (2001).
[Crossref]

A. W. Jackson, J. P. Ibbetson, A. C. Gossard, and U. K. Mishra, “Reduced thermal conductivity in low-temperature-grown gaas,” Appl. Phys. Lett. 74, 2325–2327 (1999).
[Crossref]

C. Kadow, S. B. Fleischer, J. P. Ibbetson, J. E. Bowers, and A. C. Gossard, “Subpicosecond carrier dynamics in low temperature grown gaas on si substrates,” Appl. Phys. Lett. 75, 2575–2577 (1999).
[Crossref]

R. A. Wyss, T. Lee, J. C. Pearson, S. Matsuura, G. A. Blake, C. Kadow, and A. C. Gossard, “Embedded Coplanar Strips Traveling-wave Photomixers,” Twelfth International Symposium on Space Terahertz Technology, San Diego, CA, (2001).

Gregory, I. S.

I. S. Gregory, C. Baker, W. R. Tribe, I. Bradley, M. Evans, E. Linfield, G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” Quantum Electron. IEEE J. 41, 717–728 (2005).
[Crossref]

Güney, K.

K. Güney, “Radiation quality factor and resonant resistance of rectangular microstrip antennas,” Microw. Opt. Technol. Lett. 7, 427–430 (1994).
[Crossref]

Gusten, R.

R. Adam, M. Mikulics, S. Wu, X. Zheng, M. Marso, I. Camara, F. Siebe, R. Gusten, A. Foerster, P. Kordos, and R. Sobolewski, “Fabrication and performance of hybrid photoconductive devices based on freestanding lt-gaas,” Proc. SPIE 5352, 321–332 (2004).
[Crossref]

A. Stohr, A. Malcoci, A. Sauerwald, I. C. Mayorga, R. Gusten, and D. S. Jager, “Ultra-wide-band traveling-wave photodetectors for photonic local oscillators,” J. Light. Technol. 21, 3062–3070 (2003).
[Crossref]

Hagness, S.

A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Artech House, Incorporated, 2005).

Han, P. Y.

Hanson, M.

S. Preu, F. H. Renner, S. Malzer, G. H. Döhler, L. J. Wang, M. Hanson, A. C. Gossard, T. L. J. Wilkinson, and E. R. Brown, “Efficient terahertz emission from ballistic transport enhanced n-i-p-n-i-p superlattice photomixers,” Appl. Phys. Lett. 90, 212115 (2007).
[Crossref]

G. H. Döhler, F. Renner, O. Klar, M. Eckardt, A. Schwanhöußer, S. Malzer, D. Driscoll, M. Hanson, A. C. Gossard, G. Loata, T. Löffler, and H. Roskos, “Thz-photomixer based on quasi-ballistic transport,” Semicond. Sci. Technol. 20, S178 (2005).
[Crossref]

Hashemi, M. R.

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105, 011121 (2014).
[Crossref]

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

Hirota, Y.

H. Ito, F. Nakajima, T. Furuta, K. Yoshino, Y. Hirota, and T. Ishibashi, “Photonic terahertz-wave generation using antenna-integrated uni-travelling-carrier photodiode,” Electron. Lett. 39, 1–2 (2003).
[Crossref]

H. Ito, Y. Muramoto, T. Furuta, and Y. Hirota, “High-speed and high-output-power uni-traveling-carrier photodiodes,” in 2005 IEEE LEOS Annual Meeting Conference Proceedings (2005), pp. 456–457.
[Crossref]

Holman, J.

J. Holman, Heat Transfer (McGraw-Hill Education, 2009).

Hu, B. B.

Hu, Q.

N. Zamdmer, Q. Hu, K. A. McIntosh, and S. Verghese, “Increase in response time of low-temperature-grown gaas photoconductive switches at high voltage bias,” Appl. Phys. Lett. 75, 2313–2315 (1999).
[Crossref]

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications, explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[Crossref]

Huggard, P. G.

P. G. Huggard, B. N. Ellison, P. Shen, N. J. Gomes, P. A. Davies, W. Shillue, A. Vaccari, and J. M. Payne, “Generation of millimetre and sub-millimetre waves by photomixing in 1.55 μm wavelength photodiode,” Electron. Lett. 38, 327–328 (2002).
[Crossref]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the {FDTD} method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Ibbetson, J. P.

A. W. Jackson, J. P. Ibbetson, A. C. Gossard, and U. K. Mishra, “Reduced thermal conductivity in low-temperature-grown gaas,” Appl. Phys. Lett. 74, 2325–2327 (1999).
[Crossref]

C. Kadow, S. B. Fleischer, J. P. Ibbetson, J. E. Bowers, and A. C. Gossard, “Subpicosecond carrier dynamics in low temperature grown gaas on si substrates,” Appl. Phys. Lett. 75, 2575–2577 (1999).
[Crossref]

J. P. Ibbetson and U. K. Mishra, “Space-charge-limited currents in nonstoichiometric gaas,” Appl. Phys. Lett. 68, 3781–3783 (1996).
[Crossref]

Ishibashi, T.

H. Ito, F. Nakajima, T. Furuta, K. Yoshino, Y. Hirota, and T. Ishibashi, “Photonic terahertz-wave generation using antenna-integrated uni-travelling-carrier photodiode,” Electron. Lett. 39, 1–2 (2003).
[Crossref]

Ito, H.

F. Nakajima, T. Furuta, and H. Ito, “High-power continuous-terahertz-wave generation using resonant-antenna-integrated uni-travelling-carrier photodiode,” Electron. Lett. 40, 1297–1298 (2004).
[Crossref]

F. Nakajima, T. Furuta, and H. Ito, “High-power continuous-terahertz-wave generation using resonant-antenna-integrated uni-travelling-carrier photodiode,” Electron. Lett. 40, 1297–1298 (2004).
[Crossref]

H. Ito, F. Nakajima, T. Furuta, K. Yoshino, Y. Hirota, and T. Ishibashi, “Photonic terahertz-wave generation using antenna-integrated uni-travelling-carrier photodiode,” Electron. Lett. 39, 1–2 (2003).
[Crossref]

H. Ito, Y. Muramoto, T. Furuta, and Y. Hirota, “High-speed and high-output-power uni-traveling-carrier photodiodes,” in 2005 IEEE LEOS Annual Meeting Conference Proceedings (2005), pp. 456–457.
[Crossref]

Jackson, A.

S. M. Duffy, S. Verghese, A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microwave Theory Tech. 49, 1032–1038 (2001).
[Crossref]

Jackson, A. W.

A. W. Jackson, J. P. Ibbetson, A. C. Gossard, and U. K. Mishra, “Reduced thermal conductivity in low-temperature-grown gaas,” Appl. Phys. Lett. 74, 2325–2327 (1999).
[Crossref]

A. W. Jackson, “Low-temperature-grown gaas photomixers designed for increased terahertz output power,” Ph.D. disseration, University of California, Santa Barbara, CA (1999).

Jager, D. S.

A. Stohr, A. Malcoci, A. Sauerwald, I. C. Mayorga, R. Gusten, and D. S. Jager, “Ultra-wide-band traveling-wave photodetectors for photonic local oscillators,” J. Light. Technol. 21, 3062–3070 (2003).
[Crossref]

Jang, M.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

Jarrahi, M.

S.-H. Yang and M. Jarrahi, “Frequency-tunable continuous-wave terahertz sources based on gaas plasmonic photomixers,” Appl. Phys. Lett. 107, 131111 (2015).
[Crossref]

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105, 011121 (2014).
[Crossref]

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

C. W. Berry and M. Jarrahi, “Terahertz generation using plasmonic photoconductive gratings,” New J. Phys. 14, 105029 (2012).
[Crossref]

Jiang, A.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

Jiang, Y.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

Jianming, S. L.

J. Liu, C. Dai, S. L. Jianming, and X.-C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photon. 4, 627–631 (2010).
[Crossref]

Joannopoulos, J.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the {FDTD} method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the {FDTD} method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Kadow, C.

C. Kadow, S. B. Fleischer, J. P. Ibbetson, J. E. Bowers, and A. C. Gossard, “Subpicosecond carrier dynamics in low temperature grown gaas on si substrates,” Appl. Phys. Lett. 75, 2575–2577 (1999).
[Crossref]

R. A. Wyss, T. Lee, J. C. Pearson, S. Matsuura, G. A. Blake, C. Kadow, and A. C. Gossard, “Embedded Coplanar Strips Traveling-wave Photomixers,” Twelfth International Symposium on Space Terahertz Technology, San Diego, CA, (2001).

Kasagi, K.

K. Okada, K. Kasagi, N. Oshima, S. Suzuki, and M. Asada, “Resonant-tunneling-diode terahertz oscillator using patch antenna integrated on slot resonator for power radiation,” IEEE Trans. Terahertz Sci. Technol. 5, 613–618 (2015).
[Crossref]

Kim, W.

W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, “Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors,” Phys. Rev. Lett. 96, 045901 (2006).
[Crossref] [PubMed]

Klar, O.

G. H. Döhler, F. Renner, O. Klar, M. Eckardt, A. Schwanhöußer, S. Malzer, D. Driscoll, M. Hanson, A. C. Gossard, G. Loata, T. Löffler, and H. Roskos, “Thz-photomixer based on quasi-ballistic transport,” Semicond. Sci. Technol. 20, S178 (2005).
[Crossref]

Klenov, D.

W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, “Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors,” Phys. Rev. Lett. 96, 045901 (2006).
[Crossref] [PubMed]

Kordos, P.

R. Adam, M. Mikulics, S. Wu, X. Zheng, M. Marso, I. Camara, F. Siebe, R. Gusten, A. Foerster, P. Kordos, and R. Sobolewski, “Fabrication and performance of hybrid photoconductive devices based on freestanding lt-gaas,” Proc. SPIE 5352, 321–332 (2004).
[Crossref]

Krotkus, A.

A. Krotkus and J.-L. Coutaz, “Non-stoichiometric semiconductor materials for terahertz optoelectronics applications,” Semicond. Sci. Technol. 20, S142 (2005).
[Crossref]

Lampin, J. F.

E. Peytavit, S. Arscott, D. Lippens, G. Mouret, S. Matton, P. Masselin, R. Bocquet, J. F. Lampin, L. Desplanque, and F. Mollot, “Terahertz frequency difference from vertically integrated low-temperature-grown gaas photodetector,” Appl. Phys. Lett. 81, 1174–1176 (2002).
[Crossref]

M. Stellmacher, J. Nagle, J. F. Lampin, P. Santoro, J. Vaneecloo, and A. Alexandrou, “Dependence of the carrier lifetime on acceptor concentration in gaas grown at low-temperature under different growth and annealing conditions,” J. Appl. Phys. 88, 6026–6031 (2000).
[Crossref]

Lampin, J.-F.

E. Peytavit, C. Coinon, and J.-F. Lampin, “A metal-metal fabry-pérot cavity photoconductor for efficient gaas terahertz photomixers,” J. Appl. Phys. 109, 016101 (2011).
[Crossref]

LeBeau, J. M.

T. E. Buehl, J. M. LeBeau, S. Stemmer, M. A. Scarpulla, C. J. Palmstrøm, and A. C. Gossard, “Growth of embedded eras nanorods on (4 1 1)a and (4 1 1)b gaas by molecular beam epitaxy,” J. Cryst. Growth 312, 2089–2092 (2010).
[Crossref]

Lee, T.

R. A. Wyss, T. Lee, J. C. Pearson, S. Matsuura, G. A. Blake, C. Kadow, and A. C. Gossard, “Embedded Coplanar Strips Traveling-wave Photomixers,” Twelfth International Symposium on Space Terahertz Technology, San Diego, CA, (2001).

Lin, C.-H.

Lin, H.-Y.

Linfield, E.

I. S. Gregory, C. Baker, W. R. Tribe, I. Bradley, M. Evans, E. Linfield, G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” Quantum Electron. IEEE J. 41, 717–728 (2005).
[Crossref]

Lippens, D.

E. Peytavit, S. Arscott, D. Lippens, G. Mouret, S. Matton, P. Masselin, R. Bocquet, J. F. Lampin, L. Desplanque, and F. Mollot, “Terahertz frequency difference from vertically integrated low-temperature-grown gaas photodetector,” Appl. Phys. Lett. 81, 1174–1176 (2002).
[Crossref]

Liu, J.

J. Liu, C. Dai, S. L. Jianming, and X.-C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photon. 4, 627–631 (2010).
[Crossref]

Loata, G.

G. H. Döhler, F. Renner, O. Klar, M. Eckardt, A. Schwanhöußer, S. Malzer, D. Driscoll, M. Hanson, A. C. Gossard, G. Loata, T. Löffler, and H. Roskos, “Thz-photomixer based on quasi-ballistic transport,” Semicond. Sci. Technol. 20, S178 (2005).
[Crossref]

Löffler, T.

G. H. Döhler, F. Renner, O. Klar, M. Eckardt, A. Schwanhöußer, S. Malzer, D. Driscoll, M. Hanson, A. C. Gossard, G. Loata, T. Löffler, and H. Roskos, “Thz-photomixer based on quasi-ballistic transport,” Semicond. Sci. Technol. 20, S178 (2005).
[Crossref]

Loka, H.

H. Loka, S. Benjamin, and P. W. E. Smith, “Optical characterization of low-temperature-grown gaas for ultrafast all-optical switching devices,” Quantum Electron. IEEE J. 34, 1426–1437 (1998).
[Crossref]

Lu, H.

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105, 011121 (2014).
[Crossref]

Majewski, M. L.

Majumdar, A.

W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, “Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors,” Phys. Rev. Lett. 96, 045901 (2006).
[Crossref] [PubMed]

Malcoci, A.

A. Stohr, A. Malcoci, A. Sauerwald, I. C. Mayorga, R. Gusten, and D. S. Jager, “Ultra-wide-band traveling-wave photodetectors for photonic local oscillators,” J. Light. Technol. 21, 3062–3070 (2003).
[Crossref]

Malzer, S.

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109, 061301 (2011).
[Crossref]

S. Preu, F. H. Renner, S. Malzer, G. H. Döhler, L. J. Wang, M. Hanson, A. C. Gossard, T. L. J. Wilkinson, and E. R. Brown, “Efficient terahertz emission from ballistic transport enhanced n-i-p-n-i-p superlattice photomixers,” Appl. Phys. Lett. 90, 212115 (2007).
[Crossref]

G. H. Döhler, F. Renner, O. Klar, M. Eckardt, A. Schwanhöußer, S. Malzer, D. Driscoll, M. Hanson, A. C. Gossard, G. Loata, T. Löffler, and H. Roskos, “Thz-photomixer based on quasi-ballistic transport,” Semicond. Sci. Technol. 20, S178 (2005).
[Crossref]

Manley, J.

J. Manley and H. Rowe, “Some general properties of nonlinear elements part i. general energy relations,” in Proceedings of the IRE (IEEE, 1956) 44, 904–913.
[Crossref]

Marso, M.

R. Adam, M. Mikulics, S. Wu, X. Zheng, M. Marso, I. Camara, F. Siebe, R. Gusten, A. Foerster, P. Kordos, and R. Sobolewski, “Fabrication and performance of hybrid photoconductive devices based on freestanding lt-gaas,” Proc. SPIE 5352, 321–332 (2004).
[Crossref]

Masselin, P.

E. Peytavit, S. Arscott, D. Lippens, G. Mouret, S. Matton, P. Masselin, R. Bocquet, J. F. Lampin, L. Desplanque, and F. Mollot, “Terahertz frequency difference from vertically integrated low-temperature-grown gaas photodetector,” Appl. Phys. Lett. 81, 1174–1176 (2002).
[Crossref]

Matsuura, S.

S. M. Duffy, S. Verghese, A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microwave Theory Tech. 49, 1032–1038 (2001).
[Crossref]

R. A. Wyss, T. Lee, J. C. Pearson, S. Matsuura, G. A. Blake, C. Kadow, and A. C. Gossard, “Embedded Coplanar Strips Traveling-wave Photomixers,” Twelfth International Symposium on Space Terahertz Technology, San Diego, CA, (2001).

Matton, S.

E. Peytavit, S. Arscott, D. Lippens, G. Mouret, S. Matton, P. Masselin, R. Bocquet, J. F. Lampin, L. Desplanque, and F. Mollot, “Terahertz frequency difference from vertically integrated low-temperature-grown gaas photodetector,” Appl. Phys. Lett. 81, 1174–1176 (2002).
[Crossref]

Mayorga, I. C.

A. Stohr, A. Malcoci, A. Sauerwald, I. C. Mayorga, R. Gusten, and D. S. Jager, “Ultra-wide-band traveling-wave photodetectors for photonic local oscillators,” J. Light. Technol. 21, 3062–3070 (2003).
[Crossref]

McIntosh, A.

S. M. Duffy, S. Verghese, A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microwave Theory Tech. 49, 1032–1038 (2001).
[Crossref]

McIntosh, K. A.

N. Zamdmer, Q. Hu, K. A. McIntosh, and S. Verghese, “Increase in response time of low-temperature-grown gaas photoconductive switches at high voltage bias,” Appl. Phys. Lett. 75, 2313–2315 (1999).
[Crossref]

S. Verghese, K. A. McIntosh, and E. R. Brown, “Optical and terahertz power limits in the low-temperature-grown gaas photomixers,” Appl. Phys. Lett. 71, 2743–2745 (1997).
[Crossref]

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 thz in low-temperature-grown gaas,” Appl. Phys. Lett. 66, 285–287 (1995).
[Crossref]

E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown gaas photoconductors,” J. Appl. Phys. 73, 1480–1484 (1993).
[Crossref]

Mikulics, M.

R. Adam, M. Mikulics, S. Wu, X. Zheng, M. Marso, I. Camara, F. Siebe, R. Gusten, A. Foerster, P. Kordos, and R. Sobolewski, “Fabrication and performance of hybrid photoconductive devices based on freestanding lt-gaas,” Proc. SPIE 5352, 321–332 (2004).
[Crossref]

Mishra, U. K.

A. W. Jackson, J. P. Ibbetson, A. C. Gossard, and U. K. Mishra, “Reduced thermal conductivity in low-temperature-grown gaas,” Appl. Phys. Lett. 74, 2325–2327 (1999).
[Crossref]

J. P. Ibbetson and U. K. Mishra, “Space-charge-limited currents in nonstoichiometric gaas,” Appl. Phys. Lett. 68, 3781–3783 (1996).
[Crossref]

Missous, M.

I. S. Gregory, C. Baker, W. R. Tribe, I. Bradley, M. Evans, E. Linfield, G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” Quantum Electron. IEEE J. 41, 717–728 (2005).
[Crossref]

Mollot, F.

E. Peytavit, S. Arscott, D. Lippens, G. Mouret, S. Matton, P. Masselin, R. Bocquet, J. F. Lampin, L. Desplanque, and F. Mollot, “Terahertz frequency difference from vertically integrated low-temperature-grown gaas photodetector,” Appl. Phys. Lett. 81, 1174–1176 (2002).
[Crossref]

Moore, R.

C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, and A. J. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 61940C (2006).

Mouret, G.

E. Peytavit, S. Arscott, D. Lippens, G. Mouret, S. Matton, P. Masselin, R. Bocquet, J. F. Lampin, L. Desplanque, and F. Mollot, “Terahertz frequency difference from vertically integrated low-temperature-grown gaas photodetector,” Appl. Phys. Lett. 81, 1174–1176 (2002).
[Crossref]

Muramoto, Y.

H. Ito, Y. Muramoto, T. Furuta, and Y. Hirota, “High-speed and high-output-power uni-traveling-carrier photodiodes,” in 2005 IEEE LEOS Annual Meeting Conference Proceedings (2005), pp. 456–457.
[Crossref]

Nagle, J.

M. Stellmacher, J. Nagle, J. F. Lampin, P. Santoro, J. Vaneecloo, and A. Alexandrou, “Dependence of the carrier lifetime on acceptor concentration in gaas grown at low-temperature under different growth and annealing conditions,” J. Appl. Phys. 88, 6026–6031 (2000).
[Crossref]

Nakajima, F.

F. Nakajima, T. Furuta, and H. Ito, “High-power continuous-terahertz-wave generation using resonant-antenna-integrated uni-travelling-carrier photodiode,” Electron. Lett. 40, 1297–1298 (2004).
[Crossref]

F. Nakajima, T. Furuta, and H. Ito, “High-power continuous-terahertz-wave generation using resonant-antenna-integrated uni-travelling-carrier photodiode,” Electron. Lett. 40, 1297–1298 (2004).
[Crossref]

H. Ito, F. Nakajima, T. Furuta, K. Yoshino, Y. Hirota, and T. Ishibashi, “Photonic terahertz-wave generation using antenna-integrated uni-travelling-carrier photodiode,” Electron. Lett. 39, 1–2 (2003).
[Crossref]

Nichols, K. B.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 thz in low-temperature-grown gaas,” Appl. Phys. Lett. 66, 285–287 (1995).
[Crossref]

Nuss, M. C.

Okada, K.

K. Okada, K. Kasagi, N. Oshima, S. Suzuki, and M. Asada, “Resonant-tunneling-diode terahertz oscillator using patch antenna integrated on slot resonator for power radiation,” IEEE Trans. Terahertz Sci. Technol. 5, 613–618 (2015).
[Crossref]

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications, explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[Crossref]

Oshima, N.

K. Okada, K. Kasagi, N. Oshima, S. Suzuki, and M. Asada, “Resonant-tunneling-diode terahertz oscillator using patch antenna integrated on slot resonator for power radiation,” IEEE Trans. Terahertz Sci. Technol. 5, 613–618 (2015).
[Crossref]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the {FDTD} method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Palmstrøm, C. J.

T. E. Buehl, J. M. LeBeau, S. Stemmer, M. A. Scarpulla, C. J. Palmstrøm, and A. C. Gossard, “Growth of embedded eras nanorods on (4 1 1)a and (4 1 1)b gaas by molecular beam epitaxy,” J. Cryst. Growth 312, 2089–2092 (2010).
[Crossref]

Payne, J. M.

P. G. Huggard, B. N. Ellison, P. Shen, N. J. Gomes, P. A. Davies, W. Shillue, A. Vaccari, and J. M. Payne, “Generation of millimetre and sub-millimetre waves by photomixing in 1.55 μm wavelength photodiode,” Electron. Lett. 38, 327–328 (2002).
[Crossref]

Pearson, J. C.

R. A. Wyss, T. Lee, J. C. Pearson, S. Matsuura, G. A. Blake, C. Kadow, and A. C. Gossard, “Embedded Coplanar Strips Traveling-wave Photomixers,” Twelfth International Symposium on Space Terahertz Technology, San Diego, CA, (2001).

Peytavit, E.

E. Peytavit, C. Coinon, and J.-F. Lampin, “A metal-metal fabry-pérot cavity photoconductor for efficient gaas terahertz photomixers,” J. Appl. Phys. 109, 016101 (2011).
[Crossref]

E. Peytavit, S. Arscott, D. Lippens, G. Mouret, S. Matton, P. Masselin, R. Bocquet, J. F. Lampin, L. Desplanque, and F. Mollot, “Terahertz frequency difference from vertically integrated low-temperature-grown gaas photodetector,” Appl. Phys. Lett. 81, 1174–1176 (2002).
[Crossref]

Powers, D. L.

D. L. Powers, Boundary Value Problems and Partial Differential Equations: Student Solutions Manual (Elsevier Academic Press, 2005).

Preu, S.

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105, 011121 (2014).
[Crossref]

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109, 061301 (2011).
[Crossref]

S. Preu, F. H. Renner, S. Malzer, G. H. Döhler, L. J. Wang, M. Hanson, A. C. Gossard, T. L. J. Wilkinson, and E. R. Brown, “Efficient terahertz emission from ballistic transport enhanced n-i-p-n-i-p superlattice photomixers,” Appl. Phys. Lett. 90, 212115 (2007).
[Crossref]

Rahmat-Samii, Y.

F. Yang, X.-X. Zhang, X. Ye, and Y. Rahmat-Samii, “Wide-band e-shaped patch antennas for wireless communications,” IEEE Trans. Antennas Propag. 49, 1094–1100 (2001).
[Crossref]

Rakic, A. D.

Renaud, C. C.

C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, and A. J. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 61940C (2006).

Renner, F.

G. H. Döhler, F. Renner, O. Klar, M. Eckardt, A. Schwanhöußer, S. Malzer, D. Driscoll, M. Hanson, A. C. Gossard, G. Loata, T. Löffler, and H. Roskos, “Thz-photomixer based on quasi-ballistic transport,” Semicond. Sci. Technol. 20, S178 (2005).
[Crossref]

Renner, F. H.

S. Preu, F. H. Renner, S. Malzer, G. H. Döhler, L. J. Wang, M. Hanson, A. C. Gossard, T. L. J. Wilkinson, and E. R. Brown, “Efficient terahertz emission from ballistic transport enhanced n-i-p-n-i-p superlattice photomixers,” Appl. Phys. Lett. 90, 212115 (2007).
[Crossref]

Robertson, M.

C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, and A. J. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 61940C (2006).

Rogers, D.

C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, and A. J. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 61940C (2006).

Roskos, H.

G. H. Döhler, F. Renner, O. Klar, M. Eckardt, A. Schwanhöußer, S. Malzer, D. Driscoll, M. Hanson, A. C. Gossard, G. Loata, T. Löffler, and H. Roskos, “Thz-photomixer based on quasi-ballistic transport,” Semicond. Sci. Technol. 20, S178 (2005).
[Crossref]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the {FDTD} method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Rowe, H.

J. Manley and H. Rowe, “Some general properties of nonlinear elements part i. general energy relations,” in Proceedings of the IRE (IEEE, 1956) 44, 904–913.
[Crossref]

Santoro, P.

M. Stellmacher, J. Nagle, J. F. Lampin, P. Santoro, J. Vaneecloo, and A. Alexandrou, “Dependence of the carrier lifetime on acceptor concentration in gaas grown at low-temperature under different growth and annealing conditions,” J. Appl. Phys. 88, 6026–6031 (2000).
[Crossref]

Sauerwald, A.

A. Stohr, A. Malcoci, A. Sauerwald, I. C. Mayorga, R. Gusten, and D. S. Jager, “Ultra-wide-band traveling-wave photodetectors for photonic local oscillators,” J. Light. Technol. 21, 3062–3070 (2003).
[Crossref]

Scarpulla, M. A.

T. E. Buehl, J. M. LeBeau, S. Stemmer, M. A. Scarpulla, C. J. Palmstrøm, and A. C. Gossard, “Growth of embedded eras nanorods on (4 1 1)a and (4 1 1)b gaas by molecular beam epitaxy,” J. Cryst. Growth 312, 2089–2092 (2010).
[Crossref]

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications, explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[Crossref]

Schwanhöußer, A.

G. H. Döhler, F. Renner, O. Klar, M. Eckardt, A. Schwanhöußer, S. Malzer, D. Driscoll, M. Hanson, A. C. Gossard, G. Loata, T. Löffler, and H. Roskos, “Thz-photomixer based on quasi-ballistic transport,” Semicond. Sci. Technol. 20, S178 (2005).
[Crossref]

Seeds, A. J.

C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, and A. J. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 61940C (2006).

Shakouri, A.

W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, “Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors,” Phys. Rev. Lett. 96, 045901 (2006).
[Crossref] [PubMed]

Shen, J.-T.

J.-T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94, 197401 (2005).
[Crossref]

Shen, P.

P. G. Huggard, B. N. Ellison, P. Shen, N. J. Gomes, P. A. Davies, W. Shillue, A. Vaccari, and J. M. Payne, “Generation of millimetre and sub-millimetre waves by photomixing in 1.55 μm wavelength photodiode,” Electron. Lett. 38, 327–328 (2002).
[Crossref]

Shillue, W.

P. G. Huggard, B. N. Ellison, P. Shen, N. J. Gomes, P. A. Davies, W. Shillue, A. Vaccari, and J. M. Payne, “Generation of millimetre and sub-millimetre waves by photomixing in 1.55 μm wavelength photodiode,” Electron. Lett. 38, 327–328 (2002).
[Crossref]

Siebe, F.

R. Adam, M. Mikulics, S. Wu, X. Zheng, M. Marso, I. Camara, F. Siebe, R. Gusten, A. Foerster, P. Kordos, and R. Sobolewski, “Fabrication and performance of hybrid photoconductive devices based on freestanding lt-gaas,” Proc. SPIE 5352, 321–332 (2004).
[Crossref]

Siegel, P.

P. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microwave Theory Tech. 52, 2438–2447 (2004).
[Crossref]

Smith, F. W.

E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown gaas photoconductors,” J. Appl. Phys. 73, 1480–1484 (1993).
[Crossref]

Smith, P. W. E.

H. Loka, S. Benjamin, and P. W. E. Smith, “Optical characterization of low-temperature-grown gaas for ultrafast all-optical switching devices,” Quantum Electron. IEEE J. 34, 1426–1437 (1998).
[Crossref]

Sobolewski, R.

R. Adam, M. Mikulics, S. Wu, X. Zheng, M. Marso, I. Camara, F. Siebe, R. Gusten, A. Foerster, P. Kordos, and R. Sobolewski, “Fabrication and performance of hybrid photoconductive devices based on freestanding lt-gaas,” Proc. SPIE 5352, 321–332 (2004).
[Crossref]

Stellmacher, M.

M. Stellmacher, J. Nagle, J. F. Lampin, P. Santoro, J. Vaneecloo, and A. Alexandrou, “Dependence of the carrier lifetime on acceptor concentration in gaas grown at low-temperature under different growth and annealing conditions,” J. Appl. Phys. 88, 6026–6031 (2000).
[Crossref]

Stemmer, S.

T. E. Buehl, J. M. LeBeau, S. Stemmer, M. A. Scarpulla, C. J. Palmstrøm, and A. C. Gossard, “Growth of embedded eras nanorods on (4 1 1)a and (4 1 1)b gaas by molecular beam epitaxy,” J. Cryst. Growth 312, 2089–2092 (2010).
[Crossref]

W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, “Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors,” Phys. Rev. Lett. 96, 045901 (2006).
[Crossref] [PubMed]

Stohr, A.

A. Stohr, A. Malcoci, A. Sauerwald, I. C. Mayorga, R. Gusten, and D. S. Jager, “Ultra-wide-band traveling-wave photodetectors for photonic local oscillators,” J. Light. Technol. 21, 3062–3070 (2003).
[Crossref]

Sugiyama, H.

S. Suzuki, M. Asada, A. Teranishi, H. Sugiyama, and H. Yokoyama, “Fundamental oscillation of resonant tunneling diodes above 1 thz at room temperature,” Appl. Phys. Lett. 97, 242102 (2010).
[Crossref]

Suzuki, S.

K. Okada, K. Kasagi, N. Oshima, S. Suzuki, and M. Asada, “Resonant-tunneling-diode terahertz oscillator using patch antenna integrated on slot resonator for power radiation,” IEEE Trans. Terahertz Sci. Technol. 5, 613–618 (2015).
[Crossref]

S. Suzuki, M. Asada, A. Teranishi, H. Sugiyama, and H. Yokoyama, “Fundamental oscillation of resonant tunneling diodes above 1 thz at room temperature,” Appl. Phys. Lett. 97, 242102 (2010).
[Crossref]

Taflove, A.

A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Artech House, Incorporated, 2005).

Tang, C.-L.

K.-L. Wong, C.-L. Tang, and J.-Y. Chiou, “Broadband probe-fed patch antenna with a w-shaped ground plane,” IEEE Trans. Antennas Propag. 50, 827–831 (2002).
[Crossref]

Teranishi, A.

S. Suzuki, M. Asada, A. Teranishi, H. Sugiyama, and H. Yokoyama, “Fundamental oscillation of resonant tunneling diodes above 1 thz at room temperature,” Appl. Phys. Lett. 97, 242102 (2010).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photon. 1, 97–105 (2007).
[Crossref]

Tribe, W. R.

I. S. Gregory, C. Baker, W. R. Tribe, I. Bradley, M. Evans, E. Linfield, G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” Quantum Electron. IEEE J. 41, 717–728 (2005).
[Crossref]

Unlu, M.

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

Vaccari, A.

P. G. Huggard, B. N. Ellison, P. Shen, N. J. Gomes, P. A. Davies, W. Shillue, A. Vaccari, and J. M. Payne, “Generation of millimetre and sub-millimetre waves by photomixing in 1.55 μm wavelength photodiode,” Electron. Lett. 38, 327–328 (2002).
[Crossref]

Vaneecloo, J.

M. Stellmacher, J. Nagle, J. F. Lampin, P. Santoro, J. Vaneecloo, and A. Alexandrou, “Dependence of the carrier lifetime on acceptor concentration in gaas grown at low-temperature under different growth and annealing conditions,” J. Appl. Phys. 88, 6026–6031 (2000).
[Crossref]

Verghese, S.

S. M. Duffy, S. Verghese, A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microwave Theory Tech. 49, 1032–1038 (2001).
[Crossref]

N. Zamdmer, Q. Hu, K. A. McIntosh, and S. Verghese, “Increase in response time of low-temperature-grown gaas photoconductive switches at high voltage bias,” Appl. Phys. Lett. 75, 2313–2315 (1999).
[Crossref]

S. Verghese, K. A. McIntosh, and E. R. Brown, “Optical and terahertz power limits in the low-temperature-grown gaas photomixers,” Appl. Phys. Lett. 71, 2743–2745 (1997).
[Crossref]

Vijayraghavan, K.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

Vizbaras, A.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

Wang, L. J.

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109, 061301 (2011).
[Crossref]

S. Preu, F. H. Renner, S. Malzer, G. H. Döhler, L. J. Wang, M. Hanson, A. C. Gossard, T. L. J. Wilkinson, and E. R. Brown, “Efficient terahertz emission from ballistic transport enhanced n-i-p-n-i-p superlattice photomixers,” Appl. Phys. Lett. 90, 212115 (2007).
[Crossref]

Wang, N.

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

Wilkinson, T. L. J.

S. Preu, F. H. Renner, S. Malzer, G. H. Döhler, L. J. Wang, M. Hanson, A. C. Gossard, T. L. J. Wilkinson, and E. R. Brown, “Efficient terahertz emission from ballistic transport enhanced n-i-p-n-i-p superlattice photomixers,” Appl. Phys. Lett. 90, 212115 (2007).
[Crossref]

Wong, K.-L.

K.-L. Wong, C.-L. Tang, and J.-Y. Chiou, “Broadband probe-fed patch antenna with a w-shaped ground plane,” IEEE Trans. Antennas Propag. 50, 827–831 (2002).
[Crossref]

Wu, S.

R. Adam, M. Mikulics, S. Wu, X. Zheng, M. Marso, I. Camara, F. Siebe, R. Gusten, A. Foerster, P. Kordos, and R. Sobolewski, “Fabrication and performance of hybrid photoconductive devices based on freestanding lt-gaas,” Proc. SPIE 5352, 321–332 (2004).
[Crossref]

Wyss, R. A.

R. A. Wyss, T. Lee, J. C. Pearson, S. Matsuura, G. A. Blake, C. Kadow, and A. C. Gossard, “Embedded Coplanar Strips Traveling-wave Photomixers,” Twelfth International Symposium on Space Terahertz Technology, San Diego, CA, (2001).

Yang, F.

F. Yang, X.-X. Zhang, X. Ye, and Y. Rahmat-Samii, “Wide-band e-shaped patch antennas for wireless communications,” IEEE Trans. Antennas Propag. 49, 1094–1100 (2001).
[Crossref]

Yang, S.-H.

S.-H. Yang and M. Jarrahi, “Frequency-tunable continuous-wave terahertz sources based on gaas plasmonic photomixers,” Appl. Phys. Lett. 107, 131111 (2015).
[Crossref]

Ye, X.

F. Yang, X.-X. Zhang, X. Ye, and Y. Rahmat-Samii, “Wide-band e-shaped patch antennas for wireless communications,” IEEE Trans. Antennas Propag. 49, 1094–1100 (2001).
[Crossref]

Yeh, D. J.

D. J. Yeh and E. R. Brown, “New design for increased terahertz power from ltg gaas photomixers,” Proc. SPIE 4111, 124–132 (2000).
[Crossref]

Yokoyama, H.

S. Suzuki, M. Asada, A. Teranishi, H. Sugiyama, and H. Yokoyama, “Fundamental oscillation of resonant tunneling diodes above 1 thz at room temperature,” Appl. Phys. Lett. 97, 242102 (2010).
[Crossref]

Yoshino, K.

H. Ito, F. Nakajima, T. Furuta, K. Yoshino, Y. Hirota, and T. Ishibashi, “Photonic terahertz-wave generation using antenna-integrated uni-travelling-carrier photodiode,” Electron. Lett. 39, 1–2 (2003).
[Crossref]

Zamdmer, N.

N. Zamdmer, Q. Hu, K. A. McIntosh, and S. Verghese, “Increase in response time of low-temperature-grown gaas photoconductive switches at high voltage bias,” Appl. Phys. Lett. 75, 2313–2315 (1999).
[Crossref]

Zhang, X.-C.

J. Liu, C. Dai, S. L. Jianming, and X.-C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photon. 4, 627–631 (2010).
[Crossref]

X.-C. Zhang, “Terahertz wave imaging: horizons and hurdles,” Phys. Medicine Biol. 47, 3667 (2002).
[Crossref]

P. Y. Han, G. C. Cho, and X.-C. Zhang, “Time-domain transillumination of biological tissues with terahertz pulses,” Opt. Lett. 25, 242–244 (2000).
[Crossref]

Zhang, X.-X.

F. Yang, X.-X. Zhang, X. Ye, and Y. Rahmat-Samii, “Wide-band e-shaped patch antennas for wireless communications,” IEEE Trans. Antennas Propag. 49, 1094–1100 (2001).
[Crossref]

Zheng, X.

R. Adam, M. Mikulics, S. Wu, X. Zheng, M. Marso, I. Camara, F. Siebe, R. Gusten, A. Foerster, P. Kordos, and R. Sobolewski, “Fabrication and performance of hybrid photoconductive devices based on freestanding lt-gaas,” Proc. SPIE 5352, 321–332 (2004).
[Crossref]

Zide, J.

W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, “Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors,” Phys. Rev. Lett. 96, 045901 (2006).
[Crossref] [PubMed]

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications, explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[Crossref]

Antennas Wirel. Propag. Lett. IEEE (1)

P.-Y. Chen and A. Alú, “Dual-mode miniaturized elliptical patch antenna with mu-negative metamaterials,” Antennas Wirel. Propag. Lett. IEEE 9, 351–354 (2010).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (13)

J. P. Ibbetson and U. K. Mishra, “Space-charge-limited currents in nonstoichiometric gaas,” Appl. Phys. Lett. 68, 3781–3783 (1996).
[Crossref]

N. Zamdmer, Q. Hu, K. A. McIntosh, and S. Verghese, “Increase in response time of low-temperature-grown gaas photoconductive switches at high voltage bias,” Appl. Phys. Lett. 75, 2313–2315 (1999).
[Crossref]

S. Preu, F. H. Renner, S. Malzer, G. H. Döhler, L. J. Wang, M. Hanson, A. C. Gossard, T. L. J. Wilkinson, and E. R. Brown, “Efficient terahertz emission from ballistic transport enhanced n-i-p-n-i-p superlattice photomixers,” Appl. Phys. Lett. 90, 212115 (2007).
[Crossref]

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 thz in low-temperature-grown gaas,” Appl. Phys. Lett. 66, 285–287 (1995).
[Crossref]

A. W. Jackson, J. P. Ibbetson, A. C. Gossard, and U. K. Mishra, “Reduced thermal conductivity in low-temperature-grown gaas,” Appl. Phys. Lett. 74, 2325–2327 (1999).
[Crossref]

S. Verghese, K. A. McIntosh, and E. R. Brown, “Optical and terahertz power limits in the low-temperature-grown gaas photomixers,” Appl. Phys. Lett. 71, 2743–2745 (1997).
[Crossref]

E. R. Brown, “A photoconductive model for superior gaas thz photomixers,” Appl. Phys. Lett. 75, 769–771 (1999).
[Crossref]

C. Kadow, S. B. Fleischer, J. P. Ibbetson, J. E. Bowers, and A. C. Gossard, “Subpicosecond carrier dynamics in low temperature grown gaas on si substrates,” Appl. Phys. Lett. 75, 2575–2577 (1999).
[Crossref]

E. Peytavit, S. Arscott, D. Lippens, G. Mouret, S. Matton, P. Masselin, R. Bocquet, J. F. Lampin, L. Desplanque, and F. Mollot, “Terahertz frequency difference from vertically integrated low-temperature-grown gaas photodetector,” Appl. Phys. Lett. 81, 1174–1176 (2002).
[Crossref]

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105, 011121 (2014).
[Crossref]

M. Feiginov, “Sub-terahertz and terahertz microstrip resonant-tunneling-diode oscillators,” Appl. Phys. Lett. 107, 123504 (2015).
[Crossref]

S. Suzuki, M. Asada, A. Teranishi, H. Sugiyama, and H. Yokoyama, “Fundamental oscillation of resonant tunneling diodes above 1 thz at room temperature,” Appl. Phys. Lett. 97, 242102 (2010).
[Crossref]

S.-H. Yang and M. Jarrahi, “Frequency-tunable continuous-wave terahertz sources based on gaas plasmonic photomixers,” Appl. Phys. Lett. 107, 131111 (2015).
[Crossref]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the {FDTD} method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Electron. Lett. (4)

F. Nakajima, T. Furuta, and H. Ito, “High-power continuous-terahertz-wave generation using resonant-antenna-integrated uni-travelling-carrier photodiode,” Electron. Lett. 40, 1297–1298 (2004).
[Crossref]

H. Ito, F. Nakajima, T. Furuta, K. Yoshino, Y. Hirota, and T. Ishibashi, “Photonic terahertz-wave generation using antenna-integrated uni-travelling-carrier photodiode,” Electron. Lett. 39, 1–2 (2003).
[Crossref]

F. Nakajima, T. Furuta, and H. Ito, “High-power continuous-terahertz-wave generation using resonant-antenna-integrated uni-travelling-carrier photodiode,” Electron. Lett. 40, 1297–1298 (2004).
[Crossref]

P. G. Huggard, B. N. Ellison, P. Shen, N. J. Gomes, P. A. Davies, W. Shillue, A. Vaccari, and J. M. Payne, “Generation of millimetre and sub-millimetre waves by photomixing in 1.55 μm wavelength photodiode,” Electron. Lett. 38, 327–328 (2002).
[Crossref]

IEEE Trans. Antennas Propag. (2)

K.-L. Wong, C.-L. Tang, and J.-Y. Chiou, “Broadband probe-fed patch antenna with a w-shaped ground plane,” IEEE Trans. Antennas Propag. 50, 827–831 (2002).
[Crossref]

F. Yang, X.-X. Zhang, X. Ye, and Y. Rahmat-Samii, “Wide-band e-shaped patch antennas for wireless communications,” IEEE Trans. Antennas Propag. 49, 1094–1100 (2001).
[Crossref]

IEEE Trans. Microwave Theory Tech. (2)

S. M. Duffy, S. Verghese, A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microwave Theory Tech. 49, 1032–1038 (2001).
[Crossref]

P. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microwave Theory Tech. 52, 2438–2447 (2004).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

K. Okada, K. Kasagi, N. Oshima, S. Suzuki, and M. Asada, “Resonant-tunneling-diode terahertz oscillator using patch antenna integrated on slot resonator for power radiation,” IEEE Trans. Terahertz Sci. Technol. 5, 613–618 (2015).
[Crossref]

J. Appl. Phys. (4)

E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown gaas photoconductors,” J. Appl. Phys. 73, 1480–1484 (1993).
[Crossref]

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109, 061301 (2011).
[Crossref]

E. Peytavit, C. Coinon, and J.-F. Lampin, “A metal-metal fabry-pérot cavity photoconductor for efficient gaas terahertz photomixers,” J. Appl. Phys. 109, 016101 (2011).
[Crossref]

M. Stellmacher, J. Nagle, J. F. Lampin, P. Santoro, J. Vaneecloo, and A. Alexandrou, “Dependence of the carrier lifetime on acceptor concentration in gaas grown at low-temperature under different growth and annealing conditions,” J. Appl. Phys. 88, 6026–6031 (2000).
[Crossref]

J. Cryst. Growth (1)

T. E. Buehl, J. M. LeBeau, S. Stemmer, M. A. Scarpulla, C. J. Palmstrøm, and A. C. Gossard, “Growth of embedded eras nanorods on (4 1 1)a and (4 1 1)b gaas by molecular beam epitaxy,” J. Cryst. Growth 312, 2089–2092 (2010).
[Crossref]

J. Light. Technol. (1)

A. Stohr, A. Malcoci, A. Sauerwald, I. C. Mayorga, R. Gusten, and D. S. Jager, “Ultra-wide-band traveling-wave photodetectors for photonic local oscillators,” J. Light. Technol. 21, 3062–3070 (2003).
[Crossref]

Microw. Opt. Technol. Lett. (1)

K. Güney, “Radiation quality factor and resonant resistance of rectangular microstrip antennas,” Microw. Opt. Technol. Lett. 7, 427–430 (1994).
[Crossref]

Nat. Commun. (3)

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

Nat. Photon. (2)

J. Liu, C. Dai, S. L. Jianming, and X.-C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photon. 4, 627–631 (2010).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photon. 1, 97–105 (2007).
[Crossref]

New J. Phys. (1)

C. W. Berry and M. Jarrahi, “Terahertz generation using plasmonic photoconductive gratings,” New J. Phys. 14, 105029 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Medicine Biol. (1)

X.-C. Zhang, “Terahertz wave imaging: horizons and hurdles,” Phys. Medicine Biol. 47, 3667 (2002).
[Crossref]

Phys. Rev. Lett. (2)

W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, “Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors,” Phys. Rev. Lett. 96, 045901 (2006).
[Crossref] [PubMed]

J.-T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94, 197401 (2005).
[Crossref]

Phys. Scripta (1)

M. A. Belkin and F. Capasso, “New frontiers in quantum cascade lasers: high performance room temperature terahertz sources,” Phys. Scripta 90, 118002 (2015).
[Crossref]

Proc. SPIE (3)

C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, and A. J. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 61940C (2006).

R. Adam, M. Mikulics, S. Wu, X. Zheng, M. Marso, I. Camara, F. Siebe, R. Gusten, A. Foerster, P. Kordos, and R. Sobolewski, “Fabrication and performance of hybrid photoconductive devices based on freestanding lt-gaas,” Proc. SPIE 5352, 321–332 (2004).
[Crossref]

D. J. Yeh and E. R. Brown, “New design for increased terahertz power from ltg gaas photomixers,” Proc. SPIE 4111, 124–132 (2000).
[Crossref]

Quantum Electron. IEEE J. (2)

H. Loka, S. Benjamin, and P. W. E. Smith, “Optical characterization of low-temperature-grown gaas for ultrafast all-optical switching devices,” Quantum Electron. IEEE J. 34, 1426–1437 (1998).
[Crossref]

I. S. Gregory, C. Baker, W. R. Tribe, I. Bradley, M. Evans, E. Linfield, G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” Quantum Electron. IEEE J. 41, 717–728 (2005).
[Crossref]

Semicond. Sci. Technol. (3)

A. Krotkus and J.-L. Coutaz, “Non-stoichiometric semiconductor materials for terahertz optoelectronics applications,” Semicond. Sci. Technol. 20, S142 (2005).
[Crossref]

G. H. Döhler, F. Renner, O. Klar, M. Eckardt, A. Schwanhöußer, S. Malzer, D. Driscoll, M. Hanson, A. C. Gossard, G. Loata, T. Löffler, and H. Roskos, “Thz-photomixer based on quasi-ballistic transport,” Semicond. Sci. Technol. 20, S178 (2005).
[Crossref]

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications, explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[Crossref]

Other (7)

R. A. Wyss, T. Lee, J. C. Pearson, S. Matsuura, G. A. Blake, C. Kadow, and A. C. Gossard, “Embedded Coplanar Strips Traveling-wave Photomixers,” Twelfth International Symposium on Space Terahertz Technology, San Diego, CA, (2001).

J. Manley and H. Rowe, “Some general properties of nonlinear elements part i. general energy relations,” in Proceedings of the IRE (IEEE, 1956) 44, 904–913.
[Crossref]

A. W. Jackson, “Low-temperature-grown gaas photomixers designed for increased terahertz output power,” Ph.D. disseration, University of California, Santa Barbara, CA (1999).

A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Artech House, Incorporated, 2005).

D. L. Powers, Boundary Value Problems and Partial Differential Equations: Student Solutions Manual (Elsevier Academic Press, 2005).

J. Holman, Heat Transfer (McGraw-Hill Education, 2009).

H. Ito, Y. Muramoto, T. Furuta, and Y. Hirota, “High-speed and high-output-power uni-traveling-carrier photodiodes,” in 2005 IEEE LEOS Annual Meeting Conference Proceedings (2005), pp. 456–457.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 As illustration depicting key photomixer design features between (a) the conventional photomixer design and (b) the proposed enhanced metamaterial design.
Fig. 2
Fig. 2 Tailored subwavelength grating configuration and associated on-resonance H-field pattern. Grating pitch and absorbing region thickness were optimized through FDTD absorption calculations.
Fig. 3
Fig. 3 (a) Calculated absorption varying grating pitch and absorbing region thickness. On resonance absorption is highlighted in the red regions (b) Many absorbing designs achieve over 90% absorption. Compared to conventional photomixers, the metamaterial-enhanced design features an over 5× improvement in absorption for absorbing region thicknesses between 160–200nm. (c–e) Field strength profile for (c) E-field in-plane (Ex) (d) E-field out-of-plane (Ey) (e) H-field in-plane (Hz)
Fig. 4
Fig. 4 Centerline cross-sectional comparison between (a) conventional and (b) metamaterial-enhanced photomixer designs. Under equivalent thermal loading conditions, the conventional photomixer operates near the thermal failure limit of 110°C whereas the metamaterial-enhanced photomixer operates at less than 20% of its thermal budget.
Fig. 5
Fig. 5 Maximum thermal loading for the metamaterial-enhanced photomixer carrier transport conditions, resulting in an 5× increase in loading conditions compared to conventional designs before reaching the empirical 110°C device failure temperature limit.
Fig. 6
Fig. 6 (a) E-patch antenna design compared to equivalent rectangular patch design and (b) E-patch antenna geometry with varied grating parameters labels.
Fig. 7
Fig. 7 E-patch radiation modes in the THz regime across several THz-scaled designs.
Fig. 8
Fig. 8 Predicted THz output power over range of transport regimes and photoconductive gain seen in the blue colored region, outlined by the lower and upper bound estimates. The entire range of THz output powers to exceed demonstrated state-of-the-art THz sources [49–59] even under lower-bound transport conditions. (a) metamaterial-enhanced photomixer is expected to have at least 4× greater output compared to highest demonstrated RF-technology. (b) Also, the metamaterial-enhanced photomixer is expected to exceed demonstrated photonic methods in the THz regime at less than 2 THz compared to the Manley-Rowe limit.

Tables (2)

Tables Icon

Table 1 Relevant dimensions of THz E-patch antennas designs between 1.2–1.8 THz.

Tables Icon

Table 2 Metamaterial-enhanced photomixer design parameters for all three transport regimes operating at 1 THz. Optical pump absorption was assumed at 98% and operating conditions driven at maximum thermal loading. Each device assumes on-resonance E-patch design.

Metrics