Abstract

Photonic crystal (PhC) nanobeams (NB) patterned on porous silicon (PSi) waveguide substrates are demonstrated for the specific, label-free detection of oligonucleotides. These photonic structures combine the large active sensing area intrinsic to PSi sensors with the high-quality (Q) factor and low-mode volume characteristic of compact resonant silicon-on-insulator (SOI) PhC NB devices. The PSi PhC NB can achieve a Q-factor near 9,000 and has an approximately 40-fold increased active sensing area for molecular attachment, compared to traditional SOI PhC NB sensors. The PSi PhC NB exhibits a resonance shift that is more than one order of magnitude larger than that of a similarly designed SOI PhC NB for the detection of small chemical molecules and 16-base peptide nucleic acids. The design and fabrication of PSi PhC NB sensors are compatible with CMOS processing, sensor arrays, and integration with lab-on-chip systems.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Porous silicon ring resonator for compact, high sensitivity biosensing applications

Gilberto A. Rodriguez, Shuren Hu, and Sharon M. Weiss
Opt. Express 23(6) 7111-7119 (2015)

Guided mode biosensor based on grating coupled porous silicon waveguide

Xing Wei and Sharon M. Weiss
Opt. Express 19(12) 11330-11339 (2011)

Photonic crystal microring resonator for label-free biosensing

Stanley M. Lo, Shuren Hu, Girija Gaur, Yiorgos Kostoulas, Sharon M. Weiss, and Philippe M. Fauchet
Opt. Express 25(6) 7046-7054 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
    [Crossref] [PubMed]
  2. M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J Sel Top Quant 16(3), 654–661 (2010).
    [Crossref]
  3. Y. Sun and X. Fan, “Optical ring resonators for biochemical and chemical sensing,” Anal. Bioanal. Chem. 399(1), 205–211 (2011).
    [Crossref] [PubMed]
  4. M. R. Lee and P. M. Fauchet, “Two-dimensional silicon photonic crystal based biosensing platform for protein detection,” Opt. Express 15(8), 4530–4535 (2007).
    [Crossref] [PubMed]
  5. W. C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing,” Opt. Lett. 37(7), 1208–1210 (2012).
    [Crossref] [PubMed]
  6. F. Liang, N. Clarke, P. Patel, M. Loncar, and Q. Quan, “Scalable photonic crystal chips for high sensitivity protein detection,” Opt. Express 21(26), 32306–32312 (2013).
    [Crossref] [PubMed]
  7. J. E. Baker, R. Sriram, and B. L. Miller, “Two-dimensional photonic crystals for sensitive microscale chemical and biochemical sensing,” Lab Chip 15(4), 971–990 (2015).
    [Crossref] [PubMed]
  8. H. Inan, M. Poyraz, F. Inci, M. A. Lifson, M. Baday, B. T. Cunningham, and U. Demirci, “Photonic crystals: emerging biosensors and their promise for point-of-care applications,” Chem. Soc. Rev. 46(2), 366–388 (2017).
    [Crossref] [PubMed]
  9. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
    [Crossref] [PubMed]
  10. Q. M. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
    [Crossref]
  11. Z. Yu and S. Fan, “Extraordinarily high spectral sensitivity in refractive index sensors using multiple optical modes,” Opt. Express 19(11), 10029–10040 (2011).
    [Crossref] [PubMed]
  12. M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27(1), 101–105 (2011).
    [Crossref] [PubMed]
  13. S. Kim, H. M. Kim, and Y. H. Lee, “Single nanobeam optical sensor with a high Q-factor and high sensitivity,” Opt. Lett. 40(22), 5351–5354 (2015).
    [Crossref] [PubMed]
  14. C. Kang, C. T. Phare, Y. A. Vlasov, S. Assefa, and S. M. Weiss, “Photonic crystal slab sensor with enhanced surface area,” Opt. Express 18(26), 27930–27937 (2010).
    [Crossref] [PubMed]
  15. A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94(6), 063503 (2009).
    [Crossref]
  16. Porous Silicon for Biomedical Applications. H. A. Santos. (Woodhead Publishing 2014).
  17. S. Arshavsky-Graham, N. Massad-Ivanir, E. Segal, and S. Weiss, “Porous silicon-based photonic biosensors: Current status and emerging applications,” Anal. Chem. 91(1), 441–467 (2019).
    [Crossref]
  18. K. P. S. Dancil, D. P. Greiner, and M. J. Sailor, “A porous silicon optical biosensor: Detection of reversible binding of IgG to a protein A-modified surface,” J. Am. Chem. Soc. 121(34), 7925–7930 (1999).
    [Crossref]
  19. G. Rong, A. Najmaie, J. E. Sipe, and S. M. Weiss, “Nanoscale porous silicon waveguide for label-free DNA sensing,” Biosens. Bioelectron. 23(10), 1572–1576 (2008).
    [Crossref] [PubMed]
  20. S. Chan, S. R. Horner, P. M. Fauchet, and B. L. Miller, “Identification of Gram negative bacteria using nanoscale silicon microcavities,” J. Am. Chem. Soc. 123(47), 11797–11798 (2001).
    [Crossref] [PubMed]
  21. G. A. Rodriguez, J. D. Ryckman, Y. Jiao, and S. M. Weiss, “A size selective porous silicon grating-coupled Bloch surface and sub-surface wave biosensor,” Biosens. Bioelectron. 53, 486–493 (2014).
    [Crossref] [PubMed]
  22. C. Pacholski, “Photonic crystal sensors based on porous silicon,” Sensors (Basel) 13(4), 4694–4713 (2013).
    [Crossref] [PubMed]
  23. L. De Stefano, P. Arcari, A. Lamberti, C. Sanges, L. Rotiroti, I. Rea, and I. Rendina, “DNA optical detection based on porous silicon technology: from biosensors to biochips,” Sensors (Basel) 7(2), 214–221 (2007).
    [Crossref]
  24. G. D. Francia, V. L. Ferrara, S. Manzo, and S. Chiavarini, “Towards a label-free optical porous silicon DNA sensor,” Biosens. Bioelectron. 21(4), 661–665 (2005).
    [Crossref] [PubMed]
  25. S. Mariani, L. Pino, L. M. Strambini, L. Tedeschi, and G. Barillaro, “10 000-fold improvement in protein detection using nanostructured porous silicon interferometric aptasensors,” ACS Sens. 1(12), 1471–1479 (2016).
    [Crossref]
  26. V. Paeder, V. Musi, L. Hvozdara, S. Herminjard, and H. P. Herzig, “Detection of protein aggregation with a Bloch surface wave based sensor,” Sensor Actuat B 157(1), 260–264 (2011).
    [Crossref]
  27. A. M. Rossi, L. Wang, V. Reipa, and T. E. Murphy, “Porous silicon biosensor for detection of viruses,” Biosens. Bioelectron. 23(5), 741–745 (2007).
    [Crossref] [PubMed]
  28. S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, “Porous silicon microcavities for biosensing applications,” Phys. Status Solidi, A Appl. Res. 182(1), 541–546 (2000).
    [Crossref]
  29. S. Arshavsky-Graham, N. Massad-Ivanir, F. Paratore, T. Scheper, M. Bercovici, and E. Segal, “On chip protein pre-concentration for enhancing the sensitivity of porous silicon biosensors,” ACS Sens. 2(12), 1767–1773 (2017).
    [Crossref] [PubMed]
  30. L. M. Bonanno and L. A. DeLouise, “Whole blood optical biosensor,” Biosens. Bioelectron. 23(3), 444–448 (2007).
    [Crossref] [PubMed]
  31. G. A. Rodriguez, S. Hu, and S. M. Weiss, “Porous silicon ring resonator for compact, high sensitivity biosensing applications,” Opt. Express 23(6), 7111–7119 (2015).
    [Crossref] [PubMed]
  32. K. Kim and T. E. Murphy, “Porous silicon integrated Mach-Zehnder interferometer waveguide for biological and chemical sensing,” Opt. Express 21(17), 19488–19497 (2013).
    [Crossref] [PubMed]
  33. P. Girault, N. Lorrain, J. Lemaitre, L. Poffo, M. Guendouz, I. Hardy, M. Gadonna, A. Gutierrez, L. Bodiou, and J. Charrier, “Racetrack micro-resonators based on ridge waveguides made of porous silica,” Opt. Mater. 50, 167–174 (2015).
    [Crossref]
  34. R. Caroselli, S. Ponce-Alcántara, F. P. Quilez, D. M. Sánchez, L. T. Morán, A. G. Barres, L. Bellieres, H. Bandarenka, K. Girel, V. Bondarenko, and J. García-Rupérez, “Experimental study of the sensitivity of a porous silicon ring resonator sensor using continuous in-flow measurements,” Opt. Express 25(25), 31651–31659 (2017).
    [Crossref] [PubMed]
  35. H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron. 44, 89–94 (2013).
    [Crossref] [PubMed]
  36. P. Azuelos, P. Girault, N. Lorrain, Y. Dumeige, L. Bodiou, L. Poffo, M. Guendouz, M. Thual, and J. Charrier, “Optimization of porous silicon waveguide design for micro-ring resonator sensing applications,” J. Opt. 20(8), 085301 (2018).
    [Crossref]
  37. Q. Quan, I. B. Burgess, S. K. Y. Tang, D. L. Floyd, and M. Loncar, “High-Q, low index-contrast polymeric photonic crystal nanobeam cavities,” Opt. Express 19(22), 22191–22197 (2011).
    [Crossref] [PubMed]
  38. Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
    [Crossref] [PubMed]
  39. S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001).
    [Crossref] [PubMed]
  40. F. Dell’Olio and V. M. N. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15(8), 4977–4993 (2007).
    [Crossref] [PubMed]
  41. C. Steinem, A. Janshoff, V. S.-Y. Lin, N. H. Völcker, and M. Reza Ghadiri, “DNA hybridization-enhanced porous silicon corrosion: mechanistic investigators and prospect for optical interferometric biosensing,” Tetrahedron 60(49), 11259–11267 (2004).
    [Crossref]
  42. Y. Zhao, J. L. Lawrie, K. R. Beavers, P. E. Laibinis, and S. M. Weiss, “Effect of DNA-induced corrosion on passivated porous silicon biosensors,” ACS Appl. Mater. Interfaces 6(16), 13510–13519 (2014).
    [Crossref] [PubMed]
  43. Y. Zhao, J. L. Lawrie, P. E. Laibinis, and S. M. Weiss, “Understanding and mitigating DNA induced corrosion in porous silicon based biosensors,” Proc. SPIE 8933, 893302 (2014).
    [Crossref]
  44. P. J. Reece, G. Lerondel, W. H. Zheng, and M. Gal, “Optical microcavities with subnanometer linewidths based on porous silicon,” Appl. Phys. Lett. 81(26), 4895–4897 (2002).
    [Crossref]
  45. C. K. Tsang, T. L. Kelly, M. J. Sailor, and Y. Y. Li, “Highly stable porous silicon-carbon composites as label-free optical biosensors,” ACS Nano 6(12), 10546–10554 (2012).
    [Crossref] [PubMed]

2019 (1)

S. Arshavsky-Graham, N. Massad-Ivanir, E. Segal, and S. Weiss, “Porous silicon-based photonic biosensors: Current status and emerging applications,” Anal. Chem. 91(1), 441–467 (2019).
[Crossref]

2018 (1)

P. Azuelos, P. Girault, N. Lorrain, Y. Dumeige, L. Bodiou, L. Poffo, M. Guendouz, M. Thual, and J. Charrier, “Optimization of porous silicon waveguide design for micro-ring resonator sensing applications,” J. Opt. 20(8), 085301 (2018).
[Crossref]

2017 (3)

H. Inan, M. Poyraz, F. Inci, M. A. Lifson, M. Baday, B. T. Cunningham, and U. Demirci, “Photonic crystals: emerging biosensors and their promise for point-of-care applications,” Chem. Soc. Rev. 46(2), 366–388 (2017).
[Crossref] [PubMed]

S. Arshavsky-Graham, N. Massad-Ivanir, F. Paratore, T. Scheper, M. Bercovici, and E. Segal, “On chip protein pre-concentration for enhancing the sensitivity of porous silicon biosensors,” ACS Sens. 2(12), 1767–1773 (2017).
[Crossref] [PubMed]

R. Caroselli, S. Ponce-Alcántara, F. P. Quilez, D. M. Sánchez, L. T. Morán, A. G. Barres, L. Bellieres, H. Bandarenka, K. Girel, V. Bondarenko, and J. García-Rupérez, “Experimental study of the sensitivity of a porous silicon ring resonator sensor using continuous in-flow measurements,” Opt. Express 25(25), 31651–31659 (2017).
[Crossref] [PubMed]

2016 (1)

S. Mariani, L. Pino, L. M. Strambini, L. Tedeschi, and G. Barillaro, “10 000-fold improvement in protein detection using nanostructured porous silicon interferometric aptasensors,” ACS Sens. 1(12), 1471–1479 (2016).
[Crossref]

2015 (4)

J. E. Baker, R. Sriram, and B. L. Miller, “Two-dimensional photonic crystals for sensitive microscale chemical and biochemical sensing,” Lab Chip 15(4), 971–990 (2015).
[Crossref] [PubMed]

P. Girault, N. Lorrain, J. Lemaitre, L. Poffo, M. Guendouz, I. Hardy, M. Gadonna, A. Gutierrez, L. Bodiou, and J. Charrier, “Racetrack micro-resonators based on ridge waveguides made of porous silica,” Opt. Mater. 50, 167–174 (2015).
[Crossref]

G. A. Rodriguez, S. Hu, and S. M. Weiss, “Porous silicon ring resonator for compact, high sensitivity biosensing applications,” Opt. Express 23(6), 7111–7119 (2015).
[Crossref] [PubMed]

S. Kim, H. M. Kim, and Y. H. Lee, “Single nanobeam optical sensor with a high Q-factor and high sensitivity,” Opt. Lett. 40(22), 5351–5354 (2015).
[Crossref] [PubMed]

2014 (3)

Y. Zhao, J. L. Lawrie, K. R. Beavers, P. E. Laibinis, and S. M. Weiss, “Effect of DNA-induced corrosion on passivated porous silicon biosensors,” ACS Appl. Mater. Interfaces 6(16), 13510–13519 (2014).
[Crossref] [PubMed]

Y. Zhao, J. L. Lawrie, P. E. Laibinis, and S. M. Weiss, “Understanding and mitigating DNA induced corrosion in porous silicon based biosensors,” Proc. SPIE 8933, 893302 (2014).
[Crossref]

G. A. Rodriguez, J. D. Ryckman, Y. Jiao, and S. M. Weiss, “A size selective porous silicon grating-coupled Bloch surface and sub-surface wave biosensor,” Biosens. Bioelectron. 53, 486–493 (2014).
[Crossref] [PubMed]

2013 (4)

C. Pacholski, “Photonic crystal sensors based on porous silicon,” Sensors (Basel) 13(4), 4694–4713 (2013).
[Crossref] [PubMed]

H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron. 44, 89–94 (2013).
[Crossref] [PubMed]

K. Kim and T. E. Murphy, “Porous silicon integrated Mach-Zehnder interferometer waveguide for biological and chemical sensing,” Opt. Express 21(17), 19488–19497 (2013).
[Crossref] [PubMed]

F. Liang, N. Clarke, P. Patel, M. Loncar, and Q. Quan, “Scalable photonic crystal chips for high sensitivity protein detection,” Opt. Express 21(26), 32306–32312 (2013).
[Crossref] [PubMed]

2012 (2)

W. C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing,” Opt. Lett. 37(7), 1208–1210 (2012).
[Crossref] [PubMed]

C. K. Tsang, T. L. Kelly, M. J. Sailor, and Y. Y. Li, “Highly stable porous silicon-carbon composites as label-free optical biosensors,” ACS Nano 6(12), 10546–10554 (2012).
[Crossref] [PubMed]

2011 (6)

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27(1), 101–105 (2011).
[Crossref] [PubMed]

Y. Sun and X. Fan, “Optical ring resonators for biochemical and chemical sensing,” Anal. Bioanal. Chem. 399(1), 205–211 (2011).
[Crossref] [PubMed]

V. Paeder, V. Musi, L. Hvozdara, S. Herminjard, and H. P. Herzig, “Detection of protein aggregation with a Bloch surface wave based sensor,” Sensor Actuat B 157(1), 260–264 (2011).
[Crossref]

Z. Yu and S. Fan, “Extraordinarily high spectral sensitivity in refractive index sensors using multiple optical modes,” Opt. Express 19(11), 10029–10040 (2011).
[Crossref] [PubMed]

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
[Crossref] [PubMed]

Q. Quan, I. B. Burgess, S. K. Y. Tang, D. L. Floyd, and M. Loncar, “High-Q, low index-contrast polymeric photonic crystal nanobeam cavities,” Opt. Express 19(22), 22191–22197 (2011).
[Crossref] [PubMed]

2010 (3)

C. Kang, C. T. Phare, Y. A. Vlasov, S. Assefa, and S. M. Weiss, “Photonic crystal slab sensor with enhanced surface area,” Opt. Express 18(26), 27930–27937 (2010).
[Crossref] [PubMed]

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J Sel Top Quant 16(3), 654–661 (2010).
[Crossref]

Q. M. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[Crossref]

2009 (1)

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94(6), 063503 (2009).
[Crossref]

2008 (1)

G. Rong, A. Najmaie, J. E. Sipe, and S. M. Weiss, “Nanoscale porous silicon waveguide for label-free DNA sensing,” Biosens. Bioelectron. 23(10), 1572–1576 (2008).
[Crossref] [PubMed]

2007 (6)

L. De Stefano, P. Arcari, A. Lamberti, C. Sanges, L. Rotiroti, I. Rea, and I. Rendina, “DNA optical detection based on porous silicon technology: from biosensors to biochips,” Sensors (Basel) 7(2), 214–221 (2007).
[Crossref]

L. M. Bonanno and L. A. DeLouise, “Whole blood optical biosensor,” Biosens. Bioelectron. 23(3), 444–448 (2007).
[Crossref] [PubMed]

A. M. Rossi, L. Wang, V. Reipa, and T. E. Murphy, “Porous silicon biosensor for detection of viruses,” Biosens. Bioelectron. 23(5), 741–745 (2007).
[Crossref] [PubMed]

M. R. Lee and P. M. Fauchet, “Two-dimensional silicon photonic crystal based biosensing platform for protein detection,” Opt. Express 15(8), 4530–4535 (2007).
[Crossref] [PubMed]

F. Dell’Olio and V. M. N. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15(8), 4977–4993 (2007).
[Crossref] [PubMed]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
[Crossref] [PubMed]

2005 (2)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
[Crossref] [PubMed]

G. D. Francia, V. L. Ferrara, S. Manzo, and S. Chiavarini, “Towards a label-free optical porous silicon DNA sensor,” Biosens. Bioelectron. 21(4), 661–665 (2005).
[Crossref] [PubMed]

2004 (1)

C. Steinem, A. Janshoff, V. S.-Y. Lin, N. H. Völcker, and M. Reza Ghadiri, “DNA hybridization-enhanced porous silicon corrosion: mechanistic investigators and prospect for optical interferometric biosensing,” Tetrahedron 60(49), 11259–11267 (2004).
[Crossref]

2002 (1)

P. J. Reece, G. Lerondel, W. H. Zheng, and M. Gal, “Optical microcavities with subnanometer linewidths based on porous silicon,” Appl. Phys. Lett. 81(26), 4895–4897 (2002).
[Crossref]

2001 (2)

S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001).
[Crossref] [PubMed]

S. Chan, S. R. Horner, P. M. Fauchet, and B. L. Miller, “Identification of Gram negative bacteria using nanoscale silicon microcavities,” J. Am. Chem. Soc. 123(47), 11797–11798 (2001).
[Crossref] [PubMed]

2000 (1)

S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, “Porous silicon microcavities for biosensing applications,” Phys. Status Solidi, A Appl. Res. 182(1), 541–546 (2000).
[Crossref]

1999 (1)

K. P. S. Dancil, D. P. Greiner, and M. J. Sailor, “A porous silicon optical biosensor: Detection of reversible binding of IgG to a protein A-modified surface,” J. Am. Chem. Soc. 121(34), 7925–7930 (1999).
[Crossref]

Akahane, Y.

Arcari, P.

L. De Stefano, P. Arcari, A. Lamberti, C. Sanges, L. Rotiroti, I. Rea, and I. Rendina, “DNA optical detection based on porous silicon technology: from biosensors to biochips,” Sensors (Basel) 7(2), 214–221 (2007).
[Crossref]

Arshavsky-Graham, S.

S. Arshavsky-Graham, N. Massad-Ivanir, E. Segal, and S. Weiss, “Porous silicon-based photonic biosensors: Current status and emerging applications,” Anal. Chem. 91(1), 441–467 (2019).
[Crossref]

S. Arshavsky-Graham, N. Massad-Ivanir, F. Paratore, T. Scheper, M. Bercovici, and E. Segal, “On chip protein pre-concentration for enhancing the sensitivity of porous silicon biosensors,” ACS Sens. 2(12), 1767–1773 (2017).
[Crossref] [PubMed]

Asano, T.

Assefa, S.

Azuelos, P.

P. Azuelos, P. Girault, N. Lorrain, Y. Dumeige, L. Bodiou, L. Poffo, M. Guendouz, M. Thual, and J. Charrier, “Optimization of porous silicon waveguide design for micro-ring resonator sensing applications,” J. Opt. 20(8), 085301 (2018).
[Crossref]

Baday, M.

H. Inan, M. Poyraz, F. Inci, M. A. Lifson, M. Baday, B. T. Cunningham, and U. Demirci, “Photonic crystals: emerging biosensors and their promise for point-of-care applications,” Chem. Soc. Rev. 46(2), 366–388 (2017).
[Crossref] [PubMed]

Baehr-Jones, T.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J Sel Top Quant 16(3), 654–661 (2010).
[Crossref]

Baets, R.

Bailey, R. C.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J Sel Top Quant 16(3), 654–661 (2010).
[Crossref]

Baker, J. E.

J. E. Baker, R. Sriram, and B. L. Miller, “Two-dimensional photonic crystals for sensitive microscale chemical and biochemical sensing,” Lab Chip 15(4), 971–990 (2015).
[Crossref] [PubMed]

Bandarenka, H.

Barillaro, G.

S. Mariani, L. Pino, L. M. Strambini, L. Tedeschi, and G. Barillaro, “10 000-fold improvement in protein detection using nanostructured porous silicon interferometric aptasensors,” ACS Sens. 1(12), 1471–1479 (2016).
[Crossref]

Barres, A. G.

Bartolozzi, I.

Beavers, K. R.

Y. Zhao, J. L. Lawrie, K. R. Beavers, P. E. Laibinis, and S. M. Weiss, “Effect of DNA-induced corrosion on passivated porous silicon biosensors,” ACS Appl. Mater. Interfaces 6(16), 13510–13519 (2014).
[Crossref] [PubMed]

Bellieres, L.

Bercovici, M.

S. Arshavsky-Graham, N. Massad-Ivanir, F. Paratore, T. Scheper, M. Bercovici, and E. Segal, “On chip protein pre-concentration for enhancing the sensitivity of porous silicon biosensors,” ACS Sens. 2(12), 1767–1773 (2017).
[Crossref] [PubMed]

Bienstman, P.

Bodiou, L.

P. Azuelos, P. Girault, N. Lorrain, Y. Dumeige, L. Bodiou, L. Poffo, M. Guendouz, M. Thual, and J. Charrier, “Optimization of porous silicon waveguide design for micro-ring resonator sensing applications,” J. Opt. 20(8), 085301 (2018).
[Crossref]

P. Girault, N. Lorrain, J. Lemaitre, L. Poffo, M. Guendouz, I. Hardy, M. Gadonna, A. Gutierrez, L. Bodiou, and J. Charrier, “Racetrack micro-resonators based on ridge waveguides made of porous silica,” Opt. Mater. 50, 167–174 (2015).
[Crossref]

Bonanno, L. M.

L. M. Bonanno and L. A. DeLouise, “Whole blood optical biosensor,” Biosens. Bioelectron. 23(3), 444–448 (2007).
[Crossref] [PubMed]

Bondarenko, V.

Burgess, I. B.

Caroselli, R.

Chakravarty, S.

Chan, S.

S. Chan, S. R. Horner, P. M. Fauchet, and B. L. Miller, “Identification of Gram negative bacteria using nanoscale silicon microcavities,” J. Am. Chem. Soc. 123(47), 11797–11798 (2001).
[Crossref] [PubMed]

S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, “Porous silicon microcavities for biosensing applications,” Phys. Status Solidi, A Appl. Res. 182(1), 541–546 (2000).
[Crossref]

Charrier, J.

P. Azuelos, P. Girault, N. Lorrain, Y. Dumeige, L. Bodiou, L. Poffo, M. Guendouz, M. Thual, and J. Charrier, “Optimization of porous silicon waveguide design for micro-ring resonator sensing applications,” J. Opt. 20(8), 085301 (2018).
[Crossref]

P. Girault, N. Lorrain, J. Lemaitre, L. Poffo, M. Guendouz, I. Hardy, M. Gadonna, A. Gutierrez, L. Bodiou, and J. Charrier, “Racetrack micro-resonators based on ridge waveguides made of porous silica,” Opt. Mater. 50, 167–174 (2015).
[Crossref]

Chen, L.

H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron. 44, 89–94 (2013).
[Crossref] [PubMed]

Chen, R. T.

Chiavarini, S.

G. D. Francia, V. L. Ferrara, S. Manzo, and S. Chiavarini, “Towards a label-free optical porous silicon DNA sensor,” Biosens. Bioelectron. 21(4), 661–665 (2005).
[Crossref] [PubMed]

Clarke, N.

Cunningham, B. T.

H. Inan, M. Poyraz, F. Inci, M. A. Lifson, M. Baday, B. T. Cunningham, and U. Demirci, “Photonic crystals: emerging biosensors and their promise for point-of-care applications,” Chem. Soc. Rev. 46(2), 366–388 (2017).
[Crossref] [PubMed]

Dancil, K. P. S.

K. P. S. Dancil, D. P. Greiner, and M. J. Sailor, “A porous silicon optical biosensor: Detection of reversible binding of IgG to a protein A-modified surface,” J. Am. Chem. Soc. 121(34), 7925–7930 (1999).
[Crossref]

De Stefano, L.

L. De Stefano, P. Arcari, A. Lamberti, C. Sanges, L. Rotiroti, I. Rea, and I. Rendina, “DNA optical detection based on porous silicon technology: from biosensors to biochips,” Sensors (Basel) 7(2), 214–221 (2007).
[Crossref]

De Vos, K.

Dell’Olio, F.

DeLouise, L. A.

L. M. Bonanno and L. A. DeLouise, “Whole blood optical biosensor,” Biosens. Bioelectron. 23(3), 444–448 (2007).
[Crossref] [PubMed]

Demirci, U.

H. Inan, M. Poyraz, F. Inci, M. A. Lifson, M. Baday, B. T. Cunningham, and U. Demirci, “Photonic crystals: emerging biosensors and their promise for point-of-care applications,” Chem. Soc. Rev. 46(2), 366–388 (2017).
[Crossref] [PubMed]

Deotare, P. B.

Q. M. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[Crossref]

Di Falco, A.

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27(1), 101–105 (2011).
[Crossref] [PubMed]

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94(6), 063503 (2009).
[Crossref]

Dumeige, Y.

P. Azuelos, P. Girault, N. Lorrain, Y. Dumeige, L. Bodiou, L. Poffo, M. Guendouz, M. Thual, and J. Charrier, “Optimization of porous silicon waveguide design for micro-ring resonator sensing applications,” J. Opt. 20(8), 085301 (2018).
[Crossref]

Fan, S.

Fan, X.

Y. Sun and X. Fan, “Optical ring resonators for biochemical and chemical sensing,” Anal. Bioanal. Chem. 399(1), 205–211 (2011).
[Crossref] [PubMed]

Fauchet, P. M.

M. R. Lee and P. M. Fauchet, “Two-dimensional silicon photonic crystal based biosensing platform for protein detection,” Opt. Express 15(8), 4530–4535 (2007).
[Crossref] [PubMed]

S. Chan, S. R. Horner, P. M. Fauchet, and B. L. Miller, “Identification of Gram negative bacteria using nanoscale silicon microcavities,” J. Am. Chem. Soc. 123(47), 11797–11798 (2001).
[Crossref] [PubMed]

S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, “Porous silicon microcavities for biosensing applications,” Phys. Status Solidi, A Appl. Res. 182(1), 541–546 (2000).
[Crossref]

Ferrara, V. L.

G. D. Francia, V. L. Ferrara, S. Manzo, and S. Chiavarini, “Towards a label-free optical porous silicon DNA sensor,” Biosens. Bioelectron. 21(4), 661–665 (2005).
[Crossref] [PubMed]

Floyd, D. L.

Francia, G. D.

G. D. Francia, V. L. Ferrara, S. Manzo, and S. Chiavarini, “Towards a label-free optical porous silicon DNA sensor,” Biosens. Bioelectron. 21(4), 661–665 (2005).
[Crossref] [PubMed]

Gadonna, M.

P. Girault, N. Lorrain, J. Lemaitre, L. Poffo, M. Guendouz, I. Hardy, M. Gadonna, A. Gutierrez, L. Bodiou, and J. Charrier, “Racetrack micro-resonators based on ridge waveguides made of porous silica,” Opt. Mater. 50, 167–174 (2015).
[Crossref]

Gal, M.

P. J. Reece, G. Lerondel, W. H. Zheng, and M. Gal, “Optical microcavities with subnanometer linewidths based on porous silicon,” Appl. Phys. Lett. 81(26), 4895–4897 (2002).
[Crossref]

García-Rupérez, J.

Girault, P.

P. Azuelos, P. Girault, N. Lorrain, Y. Dumeige, L. Bodiou, L. Poffo, M. Guendouz, M. Thual, and J. Charrier, “Optimization of porous silicon waveguide design for micro-ring resonator sensing applications,” J. Opt. 20(8), 085301 (2018).
[Crossref]

P. Girault, N. Lorrain, J. Lemaitre, L. Poffo, M. Guendouz, I. Hardy, M. Gadonna, A. Gutierrez, L. Bodiou, and J. Charrier, “Racetrack micro-resonators based on ridge waveguides made of porous silica,” Opt. Mater. 50, 167–174 (2015).
[Crossref]

Girel, K.

Gleeson, M. A.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J Sel Top Quant 16(3), 654–661 (2010).
[Crossref]

Greiner, D. P.

K. P. S. Dancil, D. P. Greiner, and M. J. Sailor, “A porous silicon optical biosensor: Detection of reversible binding of IgG to a protein A-modified surface,” J. Am. Chem. Soc. 121(34), 7925–7930 (1999).
[Crossref]

Guendouz, M.

P. Azuelos, P. Girault, N. Lorrain, Y. Dumeige, L. Bodiou, L. Poffo, M. Guendouz, M. Thual, and J. Charrier, “Optimization of porous silicon waveguide design for micro-ring resonator sensing applications,” J. Opt. 20(8), 085301 (2018).
[Crossref]

P. Girault, N. Lorrain, J. Lemaitre, L. Poffo, M. Guendouz, I. Hardy, M. Gadonna, A. Gutierrez, L. Bodiou, and J. Charrier, “Racetrack micro-resonators based on ridge waveguides made of porous silica,” Opt. Mater. 50, 167–174 (2015).
[Crossref]

Gunn, L. C.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J Sel Top Quant 16(3), 654–661 (2010).
[Crossref]

Gunn, W. G.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J Sel Top Quant 16(3), 654–661 (2010).
[Crossref]

Gutierrez, A.

P. Girault, N. Lorrain, J. Lemaitre, L. Poffo, M. Guendouz, I. Hardy, M. Gadonna, A. Gutierrez, L. Bodiou, and J. Charrier, “Racetrack micro-resonators based on ridge waveguides made of porous silica,” Opt. Mater. 50, 167–174 (2015).
[Crossref]

Hardy, I.

P. Girault, N. Lorrain, J. Lemaitre, L. Poffo, M. Guendouz, I. Hardy, M. Gadonna, A. Gutierrez, L. Bodiou, and J. Charrier, “Racetrack micro-resonators based on ridge waveguides made of porous silica,” Opt. Mater. 50, 167–174 (2015).
[Crossref]

Herminjard, S.

V. Paeder, V. Musi, L. Hvozdara, S. Herminjard, and H. P. Herzig, “Detection of protein aggregation with a Bloch surface wave based sensor,” Sensor Actuat B 157(1), 260–264 (2011).
[Crossref]

Herzig, H. P.

V. Paeder, V. Musi, L. Hvozdara, S. Herminjard, and H. P. Herzig, “Detection of protein aggregation with a Bloch surface wave based sensor,” Sensor Actuat B 157(1), 260–264 (2011).
[Crossref]

Hochberg, M.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J Sel Top Quant 16(3), 654–661 (2010).
[Crossref]

Horner, S. R.

S. Chan, S. R. Horner, P. M. Fauchet, and B. L. Miller, “Identification of Gram negative bacteria using nanoscale silicon microcavities,” J. Am. Chem. Soc. 123(47), 11797–11798 (2001).
[Crossref] [PubMed]

Hu, S.

Hvozdara, L.

V. Paeder, V. Musi, L. Hvozdara, S. Herminjard, and H. P. Herzig, “Detection of protein aggregation with a Bloch surface wave based sensor,” Sensor Actuat B 157(1), 260–264 (2011).
[Crossref]

Inan, H.

H. Inan, M. Poyraz, F. Inci, M. A. Lifson, M. Baday, B. T. Cunningham, and U. Demirci, “Photonic crystals: emerging biosensors and their promise for point-of-care applications,” Chem. Soc. Rev. 46(2), 366–388 (2017).
[Crossref] [PubMed]

Inci, F.

H. Inan, M. Poyraz, F. Inci, M. A. Lifson, M. Baday, B. T. Cunningham, and U. Demirci, “Photonic crystals: emerging biosensors and their promise for point-of-care applications,” Chem. Soc. Rev. 46(2), 366–388 (2017).
[Crossref] [PubMed]

Iqbal, M.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J Sel Top Quant 16(3), 654–661 (2010).
[Crossref]

Janshoff, A.

C. Steinem, A. Janshoff, V. S.-Y. Lin, N. H. Völcker, and M. Reza Ghadiri, “DNA hybridization-enhanced porous silicon corrosion: mechanistic investigators and prospect for optical interferometric biosensing,” Tetrahedron 60(49), 11259–11267 (2004).
[Crossref]

Jia, Z.

H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron. 44, 89–94 (2013).
[Crossref] [PubMed]

Jiao, Y.

G. A. Rodriguez, J. D. Ryckman, Y. Jiao, and S. M. Weiss, “A size selective porous silicon grating-coupled Bloch surface and sub-surface wave biosensor,” Biosens. Bioelectron. 53, 486–493 (2014).
[Crossref] [PubMed]

Joannopoulos, J.

Johnson, S.

Kang, C.

Kelly, T. L.

C. K. Tsang, T. L. Kelly, M. J. Sailor, and Y. Y. Li, “Highly stable porous silicon-carbon composites as label-free optical biosensors,” ACS Nano 6(12), 10546–10554 (2012).
[Crossref] [PubMed]

Kim, H. M.

Kim, K.

Kim, S.

Krauss, T. F.

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27(1), 101–105 (2011).
[Crossref] [PubMed]

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94(6), 063503 (2009).
[Crossref]

Lai, W. C.

Laibinis, P. E.

Y. Zhao, J. L. Lawrie, K. R. Beavers, P. E. Laibinis, and S. M. Weiss, “Effect of DNA-induced corrosion on passivated porous silicon biosensors,” ACS Appl. Mater. Interfaces 6(16), 13510–13519 (2014).
[Crossref] [PubMed]

Y. Zhao, J. L. Lawrie, P. E. Laibinis, and S. M. Weiss, “Understanding and mitigating DNA induced corrosion in porous silicon based biosensors,” Proc. SPIE 8933, 893302 (2014).
[Crossref]

Lamberti, A.

L. De Stefano, P. Arcari, A. Lamberti, C. Sanges, L. Rotiroti, I. Rea, and I. Rendina, “DNA optical detection based on porous silicon technology: from biosensors to biochips,” Sensors (Basel) 7(2), 214–221 (2007).
[Crossref]

Lawrie, J. L.

Y. Zhao, J. L. Lawrie, K. R. Beavers, P. E. Laibinis, and S. M. Weiss, “Effect of DNA-induced corrosion on passivated porous silicon biosensors,” ACS Appl. Mater. Interfaces 6(16), 13510–13519 (2014).
[Crossref] [PubMed]

Y. Zhao, J. L. Lawrie, P. E. Laibinis, and S. M. Weiss, “Understanding and mitigating DNA induced corrosion in porous silicon based biosensors,” Proc. SPIE 8933, 893302 (2014).
[Crossref]

Lee, M. R.

Lee, Y. H.

Lemaitre, J.

P. Girault, N. Lorrain, J. Lemaitre, L. Poffo, M. Guendouz, I. Hardy, M. Gadonna, A. Gutierrez, L. Bodiou, and J. Charrier, “Racetrack micro-resonators based on ridge waveguides made of porous silica,” Opt. Mater. 50, 167–174 (2015).
[Crossref]

Lerondel, G.

P. J. Reece, G. Lerondel, W. H. Zheng, and M. Gal, “Optical microcavities with subnanometer linewidths based on porous silicon,” Appl. Phys. Lett. 81(26), 4895–4897 (2002).
[Crossref]

Li, Y.

S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, “Porous silicon microcavities for biosensing applications,” Phys. Status Solidi, A Appl. Res. 182(1), 541–546 (2000).
[Crossref]

Li, Y. Y.

C. K. Tsang, T. L. Kelly, M. J. Sailor, and Y. Y. Li, “Highly stable porous silicon-carbon composites as label-free optical biosensors,” ACS Nano 6(12), 10546–10554 (2012).
[Crossref] [PubMed]

Liang, F.

Lifson, M. A.

H. Inan, M. Poyraz, F. Inci, M. A. Lifson, M. Baday, B. T. Cunningham, and U. Demirci, “Photonic crystals: emerging biosensors and their promise for point-of-care applications,” Chem. Soc. Rev. 46(2), 366–388 (2017).
[Crossref] [PubMed]

Lin, V. S.-Y.

C. Steinem, A. Janshoff, V. S.-Y. Lin, N. H. Völcker, and M. Reza Ghadiri, “DNA hybridization-enhanced porous silicon corrosion: mechanistic investigators and prospect for optical interferometric biosensing,” Tetrahedron 60(49), 11259–11267 (2004).
[Crossref]

Liu, R.

H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron. 44, 89–94 (2013).
[Crossref] [PubMed]

Loncar, M.

Lorrain, N.

P. Azuelos, P. Girault, N. Lorrain, Y. Dumeige, L. Bodiou, L. Poffo, M. Guendouz, M. Thual, and J. Charrier, “Optimization of porous silicon waveguide design for micro-ring resonator sensing applications,” J. Opt. 20(8), 085301 (2018).
[Crossref]

P. Girault, N. Lorrain, J. Lemaitre, L. Poffo, M. Guendouz, I. Hardy, M. Gadonna, A. Gutierrez, L. Bodiou, and J. Charrier, “Racetrack micro-resonators based on ridge waveguides made of porous silica,” Opt. Mater. 50, 167–174 (2015).
[Crossref]

Lv, X.

H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron. 44, 89–94 (2013).
[Crossref] [PubMed]

Ma, J.

H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron. 44, 89–94 (2013).
[Crossref] [PubMed]

Manzo, S.

G. D. Francia, V. L. Ferrara, S. Manzo, and S. Chiavarini, “Towards a label-free optical porous silicon DNA sensor,” Biosens. Bioelectron. 21(4), 661–665 (2005).
[Crossref] [PubMed]

Mariani, S.

S. Mariani, L. Pino, L. M. Strambini, L. Tedeschi, and G. Barillaro, “10 000-fold improvement in protein detection using nanostructured porous silicon interferometric aptasensors,” ACS Sens. 1(12), 1471–1479 (2016).
[Crossref]

Massad-Ivanir, N.

S. Arshavsky-Graham, N. Massad-Ivanir, E. Segal, and S. Weiss, “Porous silicon-based photonic biosensors: Current status and emerging applications,” Anal. Chem. 91(1), 441–467 (2019).
[Crossref]

S. Arshavsky-Graham, N. Massad-Ivanir, F. Paratore, T. Scheper, M. Bercovici, and E. Segal, “On chip protein pre-concentration for enhancing the sensitivity of porous silicon biosensors,” ACS Sens. 2(12), 1767–1773 (2017).
[Crossref] [PubMed]

Miller, B. L.

J. E. Baker, R. Sriram, and B. L. Miller, “Two-dimensional photonic crystals for sensitive microscale chemical and biochemical sensing,” Lab Chip 15(4), 971–990 (2015).
[Crossref] [PubMed]

S. Chan, S. R. Horner, P. M. Fauchet, and B. L. Miller, “Identification of Gram negative bacteria using nanoscale silicon microcavities,” J. Am. Chem. Soc. 123(47), 11797–11798 (2001).
[Crossref] [PubMed]

S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, “Porous silicon microcavities for biosensing applications,” Phys. Status Solidi, A Appl. Res. 182(1), 541–546 (2000).
[Crossref]

Morán, L. T.

Murphy, T. E.

K. Kim and T. E. Murphy, “Porous silicon integrated Mach-Zehnder interferometer waveguide for biological and chemical sensing,” Opt. Express 21(17), 19488–19497 (2013).
[Crossref] [PubMed]

A. M. Rossi, L. Wang, V. Reipa, and T. E. Murphy, “Porous silicon biosensor for detection of viruses,” Biosens. Bioelectron. 23(5), 741–745 (2007).
[Crossref] [PubMed]

Musi, V.

V. Paeder, V. Musi, L. Hvozdara, S. Herminjard, and H. P. Herzig, “Detection of protein aggregation with a Bloch surface wave based sensor,” Sensor Actuat B 157(1), 260–264 (2011).
[Crossref]

Najmaie, A.

G. Rong, A. Najmaie, J. E. Sipe, and S. M. Weiss, “Nanoscale porous silicon waveguide for label-free DNA sensing,” Biosens. Bioelectron. 23(10), 1572–1576 (2008).
[Crossref] [PubMed]

Noda, S.

O’Faolain, L.

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94(6), 063503 (2009).
[Crossref]

Pacholski, C.

C. Pacholski, “Photonic crystal sensors based on porous silicon,” Sensors (Basel) 13(4), 4694–4713 (2013).
[Crossref] [PubMed]

Paeder, V.

V. Paeder, V. Musi, L. Hvozdara, S. Herminjard, and H. P. Herzig, “Detection of protein aggregation with a Bloch surface wave based sensor,” Sensor Actuat B 157(1), 260–264 (2011).
[Crossref]

Paratore, F.

S. Arshavsky-Graham, N. Massad-Ivanir, F. Paratore, T. Scheper, M. Bercovici, and E. Segal, “On chip protein pre-concentration for enhancing the sensitivity of porous silicon biosensors,” ACS Sens. 2(12), 1767–1773 (2017).
[Crossref] [PubMed]

Passaro, V. M. N.

Patel, P.

Phare, C. T.

Pino, L.

S. Mariani, L. Pino, L. M. Strambini, L. Tedeschi, and G. Barillaro, “10 000-fold improvement in protein detection using nanostructured porous silicon interferometric aptasensors,” ACS Sens. 1(12), 1471–1479 (2016).
[Crossref]

Poffo, L.

P. Azuelos, P. Girault, N. Lorrain, Y. Dumeige, L. Bodiou, L. Poffo, M. Guendouz, M. Thual, and J. Charrier, “Optimization of porous silicon waveguide design for micro-ring resonator sensing applications,” J. Opt. 20(8), 085301 (2018).
[Crossref]

P. Girault, N. Lorrain, J. Lemaitre, L. Poffo, M. Guendouz, I. Hardy, M. Gadonna, A. Gutierrez, L. Bodiou, and J. Charrier, “Racetrack micro-resonators based on ridge waveguides made of porous silica,” Opt. Mater. 50, 167–174 (2015).
[Crossref]

Ponce-Alcántara, S.

Poyraz, M.

H. Inan, M. Poyraz, F. Inci, M. A. Lifson, M. Baday, B. T. Cunningham, and U. Demirci, “Photonic crystals: emerging biosensors and their promise for point-of-care applications,” Chem. Soc. Rev. 46(2), 366–388 (2017).
[Crossref] [PubMed]

Quan, Q.

Quan, Q. M.

Q. M. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[Crossref]

Quilez, F. P.

Rea, I.

L. De Stefano, P. Arcari, A. Lamberti, C. Sanges, L. Rotiroti, I. Rea, and I. Rendina, “DNA optical detection based on porous silicon technology: from biosensors to biochips,” Sensors (Basel) 7(2), 214–221 (2007).
[Crossref]

Reece, P. J.

P. J. Reece, G. Lerondel, W. H. Zheng, and M. Gal, “Optical microcavities with subnanometer linewidths based on porous silicon,” Appl. Phys. Lett. 81(26), 4895–4897 (2002).
[Crossref]

Reipa, V.

A. M. Rossi, L. Wang, V. Reipa, and T. E. Murphy, “Porous silicon biosensor for detection of viruses,” Biosens. Bioelectron. 23(5), 741–745 (2007).
[Crossref] [PubMed]

Rendina, I.

L. De Stefano, P. Arcari, A. Lamberti, C. Sanges, L. Rotiroti, I. Rea, and I. Rendina, “DNA optical detection based on porous silicon technology: from biosensors to biochips,” Sensors (Basel) 7(2), 214–221 (2007).
[Crossref]

Reza Ghadiri, M.

C. Steinem, A. Janshoff, V. S.-Y. Lin, N. H. Völcker, and M. Reza Ghadiri, “DNA hybridization-enhanced porous silicon corrosion: mechanistic investigators and prospect for optical interferometric biosensing,” Tetrahedron 60(49), 11259–11267 (2004).
[Crossref]

Rodriguez, G. A.

G. A. Rodriguez, S. Hu, and S. M. Weiss, “Porous silicon ring resonator for compact, high sensitivity biosensing applications,” Opt. Express 23(6), 7111–7119 (2015).
[Crossref] [PubMed]

G. A. Rodriguez, J. D. Ryckman, Y. Jiao, and S. M. Weiss, “A size selective porous silicon grating-coupled Bloch surface and sub-surface wave biosensor,” Biosens. Bioelectron. 53, 486–493 (2014).
[Crossref] [PubMed]

Rong, G.

G. Rong, A. Najmaie, J. E. Sipe, and S. M. Weiss, “Nanoscale porous silicon waveguide for label-free DNA sensing,” Biosens. Bioelectron. 23(10), 1572–1576 (2008).
[Crossref] [PubMed]

Rossi, A. M.

A. M. Rossi, L. Wang, V. Reipa, and T. E. Murphy, “Porous silicon biosensor for detection of viruses,” Biosens. Bioelectron. 23(5), 741–745 (2007).
[Crossref] [PubMed]

Rothberg, L. J.

S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, “Porous silicon microcavities for biosensing applications,” Phys. Status Solidi, A Appl. Res. 182(1), 541–546 (2000).
[Crossref]

Rotiroti, L.

L. De Stefano, P. Arcari, A. Lamberti, C. Sanges, L. Rotiroti, I. Rea, and I. Rendina, “DNA optical detection based on porous silicon technology: from biosensors to biochips,” Sensors (Basel) 7(2), 214–221 (2007).
[Crossref]

Ryckman, J. D.

G. A. Rodriguez, J. D. Ryckman, Y. Jiao, and S. M. Weiss, “A size selective porous silicon grating-coupled Bloch surface and sub-surface wave biosensor,” Biosens. Bioelectron. 53, 486–493 (2014).
[Crossref] [PubMed]

Sailor, M. J.

C. K. Tsang, T. L. Kelly, M. J. Sailor, and Y. Y. Li, “Highly stable porous silicon-carbon composites as label-free optical biosensors,” ACS Nano 6(12), 10546–10554 (2012).
[Crossref] [PubMed]

K. P. S. Dancil, D. P. Greiner, and M. J. Sailor, “A porous silicon optical biosensor: Detection of reversible binding of IgG to a protein A-modified surface,” J. Am. Chem. Soc. 121(34), 7925–7930 (1999).
[Crossref]

Sánchez, D. M.

Sanges, C.

L. De Stefano, P. Arcari, A. Lamberti, C. Sanges, L. Rotiroti, I. Rea, and I. Rendina, “DNA optical detection based on porous silicon technology: from biosensors to biochips,” Sensors (Basel) 7(2), 214–221 (2007).
[Crossref]

Schacht, E.

Scheper, T.

S. Arshavsky-Graham, N. Massad-Ivanir, F. Paratore, T. Scheper, M. Bercovici, and E. Segal, “On chip protein pre-concentration for enhancing the sensitivity of porous silicon biosensors,” ACS Sens. 2(12), 1767–1773 (2017).
[Crossref] [PubMed]

Scullion, M. G.

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27(1), 101–105 (2011).
[Crossref] [PubMed]

Segal, E.

S. Arshavsky-Graham, N. Massad-Ivanir, E. Segal, and S. Weiss, “Porous silicon-based photonic biosensors: Current status and emerging applications,” Anal. Chem. 91(1), 441–467 (2019).
[Crossref]

S. Arshavsky-Graham, N. Massad-Ivanir, F. Paratore, T. Scheper, M. Bercovici, and E. Segal, “On chip protein pre-concentration for enhancing the sensitivity of porous silicon biosensors,” ACS Sens. 2(12), 1767–1773 (2017).
[Crossref] [PubMed]

Sipe, J. E.

G. Rong, A. Najmaie, J. E. Sipe, and S. M. Weiss, “Nanoscale porous silicon waveguide for label-free DNA sensing,” Biosens. Bioelectron. 23(10), 1572–1576 (2008).
[Crossref] [PubMed]

Song, B. S.

Spaugh, B.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J Sel Top Quant 16(3), 654–661 (2010).
[Crossref]

Sriram, R.

J. E. Baker, R. Sriram, and B. L. Miller, “Two-dimensional photonic crystals for sensitive microscale chemical and biochemical sensing,” Lab Chip 15(4), 971–990 (2015).
[Crossref] [PubMed]

Steinem, C.

C. Steinem, A. Janshoff, V. S.-Y. Lin, N. H. Völcker, and M. Reza Ghadiri, “DNA hybridization-enhanced porous silicon corrosion: mechanistic investigators and prospect for optical interferometric biosensing,” Tetrahedron 60(49), 11259–11267 (2004).
[Crossref]

Strambini, L. M.

S. Mariani, L. Pino, L. M. Strambini, L. Tedeschi, and G. Barillaro, “10 000-fold improvement in protein detection using nanostructured porous silicon interferometric aptasensors,” ACS Sens. 1(12), 1471–1479 (2016).
[Crossref]

Sun, Y.

Y. Sun and X. Fan, “Optical ring resonators for biochemical and chemical sensing,” Anal. Bioanal. Chem. 399(1), 205–211 (2011).
[Crossref] [PubMed]

Tang, S. K. Y.

Tedeschi, L.

S. Mariani, L. Pino, L. M. Strambini, L. Tedeschi, and G. Barillaro, “10 000-fold improvement in protein detection using nanostructured porous silicon interferometric aptasensors,” ACS Sens. 1(12), 1471–1479 (2016).
[Crossref]

Thual, M.

P. Azuelos, P. Girault, N. Lorrain, Y. Dumeige, L. Bodiou, L. Poffo, M. Guendouz, M. Thual, and J. Charrier, “Optimization of porous silicon waveguide design for micro-ring resonator sensing applications,” J. Opt. 20(8), 085301 (2018).
[Crossref]

Tsang, C. K.

C. K. Tsang, T. L. Kelly, M. J. Sailor, and Y. Y. Li, “Highly stable porous silicon-carbon composites as label-free optical biosensors,” ACS Nano 6(12), 10546–10554 (2012).
[Crossref] [PubMed]

Tybor, F.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J Sel Top Quant 16(3), 654–661 (2010).
[Crossref]

Vlasov, Y. A.

Völcker, N. H.

C. Steinem, A. Janshoff, V. S.-Y. Lin, N. H. Völcker, and M. Reza Ghadiri, “DNA hybridization-enhanced porous silicon corrosion: mechanistic investigators and prospect for optical interferometric biosensing,” Tetrahedron 60(49), 11259–11267 (2004).
[Crossref]

Wang, L.

A. M. Rossi, L. Wang, V. Reipa, and T. E. Murphy, “Porous silicon biosensor for detection of viruses,” Biosens. Bioelectron. 23(5), 741–745 (2007).
[Crossref] [PubMed]

Weiss, S.

S. Arshavsky-Graham, N. Massad-Ivanir, E. Segal, and S. Weiss, “Porous silicon-based photonic biosensors: Current status and emerging applications,” Anal. Chem. 91(1), 441–467 (2019).
[Crossref]

Weiss, S. M.

G. A. Rodriguez, S. Hu, and S. M. Weiss, “Porous silicon ring resonator for compact, high sensitivity biosensing applications,” Opt. Express 23(6), 7111–7119 (2015).
[Crossref] [PubMed]

G. A. Rodriguez, J. D. Ryckman, Y. Jiao, and S. M. Weiss, “A size selective porous silicon grating-coupled Bloch surface and sub-surface wave biosensor,” Biosens. Bioelectron. 53, 486–493 (2014).
[Crossref] [PubMed]

Y. Zhao, J. L. Lawrie, K. R. Beavers, P. E. Laibinis, and S. M. Weiss, “Effect of DNA-induced corrosion on passivated porous silicon biosensors,” ACS Appl. Mater. Interfaces 6(16), 13510–13519 (2014).
[Crossref] [PubMed]

Y. Zhao, J. L. Lawrie, P. E. Laibinis, and S. M. Weiss, “Understanding and mitigating DNA induced corrosion in porous silicon based biosensors,” Proc. SPIE 8933, 893302 (2014).
[Crossref]

C. Kang, C. T. Phare, Y. A. Vlasov, S. Assefa, and S. M. Weiss, “Photonic crystal slab sensor with enhanced surface area,” Opt. Express 18(26), 27930–27937 (2010).
[Crossref] [PubMed]

G. Rong, A. Najmaie, J. E. Sipe, and S. M. Weiss, “Nanoscale porous silicon waveguide for label-free DNA sensing,” Biosens. Bioelectron. 23(10), 1572–1576 (2008).
[Crossref] [PubMed]

Yu, Z.

Zhang, H.

H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron. 44, 89–94 (2013).
[Crossref] [PubMed]

Zhao, Y.

Y. Zhao, J. L. Lawrie, P. E. Laibinis, and S. M. Weiss, “Understanding and mitigating DNA induced corrosion in porous silicon based biosensors,” Proc. SPIE 8933, 893302 (2014).
[Crossref]

Y. Zhao, J. L. Lawrie, K. R. Beavers, P. E. Laibinis, and S. M. Weiss, “Effect of DNA-induced corrosion on passivated porous silicon biosensors,” ACS Appl. Mater. Interfaces 6(16), 13510–13519 (2014).
[Crossref] [PubMed]

Zheng, W. H.

P. J. Reece, G. Lerondel, W. H. Zheng, and M. Gal, “Optical microcavities with subnanometer linewidths based on porous silicon,” Appl. Phys. Lett. 81(26), 4895–4897 (2002).
[Crossref]

Zhou, J.

H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron. 44, 89–94 (2013).
[Crossref] [PubMed]

Zou, Y.

ACS Appl. Mater. Interfaces (1)

Y. Zhao, J. L. Lawrie, K. R. Beavers, P. E. Laibinis, and S. M. Weiss, “Effect of DNA-induced corrosion on passivated porous silicon biosensors,” ACS Appl. Mater. Interfaces 6(16), 13510–13519 (2014).
[Crossref] [PubMed]

ACS Nano (1)

C. K. Tsang, T. L. Kelly, M. J. Sailor, and Y. Y. Li, “Highly stable porous silicon-carbon composites as label-free optical biosensors,” ACS Nano 6(12), 10546–10554 (2012).
[Crossref] [PubMed]

ACS Sens. (2)

S. Mariani, L. Pino, L. M. Strambini, L. Tedeschi, and G. Barillaro, “10 000-fold improvement in protein detection using nanostructured porous silicon interferometric aptasensors,” ACS Sens. 1(12), 1471–1479 (2016).
[Crossref]

S. Arshavsky-Graham, N. Massad-Ivanir, F. Paratore, T. Scheper, M. Bercovici, and E. Segal, “On chip protein pre-concentration for enhancing the sensitivity of porous silicon biosensors,” ACS Sens. 2(12), 1767–1773 (2017).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

Y. Sun and X. Fan, “Optical ring resonators for biochemical and chemical sensing,” Anal. Bioanal. Chem. 399(1), 205–211 (2011).
[Crossref] [PubMed]

Anal. Chem. (1)

S. Arshavsky-Graham, N. Massad-Ivanir, E. Segal, and S. Weiss, “Porous silicon-based photonic biosensors: Current status and emerging applications,” Anal. Chem. 91(1), 441–467 (2019).
[Crossref]

Appl. Phys. Lett. (3)

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94(6), 063503 (2009).
[Crossref]

Q. M. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[Crossref]

P. J. Reece, G. Lerondel, W. H. Zheng, and M. Gal, “Optical microcavities with subnanometer linewidths based on porous silicon,” Appl. Phys. Lett. 81(26), 4895–4897 (2002).
[Crossref]

Biosens. Bioelectron. (7)

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27(1), 101–105 (2011).
[Crossref] [PubMed]

G. D. Francia, V. L. Ferrara, S. Manzo, and S. Chiavarini, “Towards a label-free optical porous silicon DNA sensor,” Biosens. Bioelectron. 21(4), 661–665 (2005).
[Crossref] [PubMed]

H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron. 44, 89–94 (2013).
[Crossref] [PubMed]

G. Rong, A. Najmaie, J. E. Sipe, and S. M. Weiss, “Nanoscale porous silicon waveguide for label-free DNA sensing,” Biosens. Bioelectron. 23(10), 1572–1576 (2008).
[Crossref] [PubMed]

G. A. Rodriguez, J. D. Ryckman, Y. Jiao, and S. M. Weiss, “A size selective porous silicon grating-coupled Bloch surface and sub-surface wave biosensor,” Biosens. Bioelectron. 53, 486–493 (2014).
[Crossref] [PubMed]

L. M. Bonanno and L. A. DeLouise, “Whole blood optical biosensor,” Biosens. Bioelectron. 23(3), 444–448 (2007).
[Crossref] [PubMed]

A. M. Rossi, L. Wang, V. Reipa, and T. E. Murphy, “Porous silicon biosensor for detection of viruses,” Biosens. Bioelectron. 23(5), 741–745 (2007).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

H. Inan, M. Poyraz, F. Inci, M. A. Lifson, M. Baday, B. T. Cunningham, and U. Demirci, “Photonic crystals: emerging biosensors and their promise for point-of-care applications,” Chem. Soc. Rev. 46(2), 366–388 (2017).
[Crossref] [PubMed]

IEEE J Sel Top Quant (1)

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J Sel Top Quant 16(3), 654–661 (2010).
[Crossref]

J. Am. Chem. Soc. (2)

S. Chan, S. R. Horner, P. M. Fauchet, and B. L. Miller, “Identification of Gram negative bacteria using nanoscale silicon microcavities,” J. Am. Chem. Soc. 123(47), 11797–11798 (2001).
[Crossref] [PubMed]

K. P. S. Dancil, D. P. Greiner, and M. J. Sailor, “A porous silicon optical biosensor: Detection of reversible binding of IgG to a protein A-modified surface,” J. Am. Chem. Soc. 121(34), 7925–7930 (1999).
[Crossref]

J. Opt. (1)

P. Azuelos, P. Girault, N. Lorrain, Y. Dumeige, L. Bodiou, L. Poffo, M. Guendouz, M. Thual, and J. Charrier, “Optimization of porous silicon waveguide design for micro-ring resonator sensing applications,” J. Opt. 20(8), 085301 (2018).
[Crossref]

Lab Chip (1)

J. E. Baker, R. Sriram, and B. L. Miller, “Two-dimensional photonic crystals for sensitive microscale chemical and biochemical sensing,” Lab Chip 15(4), 971–990 (2015).
[Crossref] [PubMed]

Opt. Express (13)

S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001).
[Crossref] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
[Crossref] [PubMed]

M. R. Lee and P. M. Fauchet, “Two-dimensional silicon photonic crystal based biosensing platform for protein detection,” Opt. Express 15(8), 4530–4535 (2007).
[Crossref] [PubMed]

F. Dell’Olio and V. M. N. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15(8), 4977–4993 (2007).
[Crossref] [PubMed]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
[Crossref] [PubMed]

C. Kang, C. T. Phare, Y. A. Vlasov, S. Assefa, and S. M. Weiss, “Photonic crystal slab sensor with enhanced surface area,” Opt. Express 18(26), 27930–27937 (2010).
[Crossref] [PubMed]

Z. Yu and S. Fan, “Extraordinarily high spectral sensitivity in refractive index sensors using multiple optical modes,” Opt. Express 19(11), 10029–10040 (2011).
[Crossref] [PubMed]

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
[Crossref] [PubMed]

Q. Quan, I. B. Burgess, S. K. Y. Tang, D. L. Floyd, and M. Loncar, “High-Q, low index-contrast polymeric photonic crystal nanobeam cavities,” Opt. Express 19(22), 22191–22197 (2011).
[Crossref] [PubMed]

R. Caroselli, S. Ponce-Alcántara, F. P. Quilez, D. M. Sánchez, L. T. Morán, A. G. Barres, L. Bellieres, H. Bandarenka, K. Girel, V. Bondarenko, and J. García-Rupérez, “Experimental study of the sensitivity of a porous silicon ring resonator sensor using continuous in-flow measurements,” Opt. Express 25(25), 31651–31659 (2017).
[Crossref] [PubMed]

K. Kim and T. E. Murphy, “Porous silicon integrated Mach-Zehnder interferometer waveguide for biological and chemical sensing,” Opt. Express 21(17), 19488–19497 (2013).
[Crossref] [PubMed]

F. Liang, N. Clarke, P. Patel, M. Loncar, and Q. Quan, “Scalable photonic crystal chips for high sensitivity protein detection,” Opt. Express 21(26), 32306–32312 (2013).
[Crossref] [PubMed]

G. A. Rodriguez, S. Hu, and S. M. Weiss, “Porous silicon ring resonator for compact, high sensitivity biosensing applications,” Opt. Express 23(6), 7111–7119 (2015).
[Crossref] [PubMed]

Opt. Lett. (2)

Opt. Mater. (1)

P. Girault, N. Lorrain, J. Lemaitre, L. Poffo, M. Guendouz, I. Hardy, M. Gadonna, A. Gutierrez, L. Bodiou, and J. Charrier, “Racetrack micro-resonators based on ridge waveguides made of porous silica,” Opt. Mater. 50, 167–174 (2015).
[Crossref]

Phys. Status Solidi, A Appl. Res. (1)

S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, “Porous silicon microcavities for biosensing applications,” Phys. Status Solidi, A Appl. Res. 182(1), 541–546 (2000).
[Crossref]

Proc. SPIE (1)

Y. Zhao, J. L. Lawrie, P. E. Laibinis, and S. M. Weiss, “Understanding and mitigating DNA induced corrosion in porous silicon based biosensors,” Proc. SPIE 8933, 893302 (2014).
[Crossref]

Sensor Actuat B (1)

V. Paeder, V. Musi, L. Hvozdara, S. Herminjard, and H. P. Herzig, “Detection of protein aggregation with a Bloch surface wave based sensor,” Sensor Actuat B 157(1), 260–264 (2011).
[Crossref]

Sensors (Basel) (2)

C. Pacholski, “Photonic crystal sensors based on porous silicon,” Sensors (Basel) 13(4), 4694–4713 (2013).
[Crossref] [PubMed]

L. De Stefano, P. Arcari, A. Lamberti, C. Sanges, L. Rotiroti, I. Rea, and I. Rendina, “DNA optical detection based on porous silicon technology: from biosensors to biochips,” Sensors (Basel) 7(2), 214–221 (2007).
[Crossref]

Tetrahedron (1)

C. Steinem, A. Janshoff, V. S.-Y. Lin, N. H. Völcker, and M. Reza Ghadiri, “DNA hybridization-enhanced porous silicon corrosion: mechanistic investigators and prospect for optical interferometric biosensing,” Tetrahedron 60(49), 11259–11267 (2004).
[Crossref]

Other (1)

Porous Silicon for Biomedical Applications. H. A. Santos. (Woodhead Publishing 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Mirror strength of different air hole filling fractions in PSi PhC NB unit cell. (b) Field profile of cavity mode in PSi PhC NB (lower) and corresponding refractive index profile (upper) where red and blue represent high and low refractive index, respectively. Electric field distribution in the cross section of the (c) PSi PhC NB and (d) SOI PhC NB. Simulations include the full cladding region, and the center of the waveguide is set to z = 0 for both the PSi and SOI PhC NBs. The guiding layers of the PhC NBs are labeled nH, the cladding layers are labeled nL, and the cover regions are labeled n = 1 (air).
Fig. 2
Fig. 2 (a) SEM image of PSi PhC NB cavity with 30 mirror and 25 cavity segments and (b) zoom in of air holes in maximum mirror strength region. (c) Cross-sectional SEM image of the ridge waveguide used to couple light from a tapered fiber into the PSi PhC NB. The image was taken after the sample was manually cleaved.
Fig. 3
Fig. 3 (a) Transmission spectrum of PSi PhC NB cavity with the lowest order measurable resonance and band edge located at 1555.5 nm and 1595 nm, respectively. (b) Lorentzian curve fit (red line) of lowest order measurable resonance in (a) indicates a cavity Q of 1,311 for one of the PSi PhC NBs used in the sensing experiments. (c) A PSi PhC NB with a resonant mode near 1618.5 nm showed the highest experimentally measured Q = 8,938.
Fig. 4
Fig. 4 Transmission spectrum of a typical SOI PhC NB used in the biosensing experiments. The lowest order measurable resonance is located at 1533.9 nm and the band edge is near 1571 nm. Inset shows a magnified view of the lowest order resonance and a Lorentzian curve fit (red line) that suggests a cavity Q of 11,736.
Fig. 5
Fig. 5 (a) Transmission spectra of PSi PhC NB showing the detection of small chemical linker molecules (APTES and SPDP), probe DNA, and 1 μM target PNA. (b) Transmission spectra of PSi PhC NB for control experiment in which the probe DNA is not complementary to the target PNA (i.e., mismatch probe DNA). While hybridization of complementary nucleic acids leads to a resonance red-shift, exposure of mismatched sequences leads to a small blue-shift of the PSi PhC NB resonance. (c) Transmission spectra of SOI PhC NB showing the detection of small chemical linker molecules, probe DNA, and 1 μM target PNA. (d) Transmission spectra of SOI PhC NB for control experiment with mismatched probe DNA. Hybridization of complementary nucleic acids leads to a significantly larger resonance red-shift compared to exposure of mismatched sequences. Raw data with prominent Fabry-Perot fringes are shown in the dashed lines and Lorentzian fits are shown in the solid lines. The difference in the initial resonance wavelength for the two SOI PhC NBs may be due to the measurement of different modes in the two samples. Note that the wavelength range is much smaller for the SOI PhC NBs. In all parts of the figure, only the lowest order mode is shown for clarity.
Fig. 6
Fig. 6 Full transmission spectra of PSi PhC NB showing the detection of APTES molecules. The lowest order mode in each spectrum is highlighted by an arrow. Mode order in the PhC NB is identified based on the resonance position relative to the photonic band edge.
Fig. 7
Fig. 7 (a) Reflectance spectra of 2-layer, planar PSi waveguide before and after APTES surface functionalization. (b) Fourier transform of the reflectance spectra over a reduced wavelength window revealing the effective optical thickness of the PSi guiding layer (I), cladding layer (II), and combined guiding and cladding layers (III) before and after APTES attachment.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Γ s = S | E(y,z) | 2 dy dz S | E(y,z) | 2 dy dz

Metrics