Abstract

We present a development of microlenses achromatically corrected in near-infrared spectral windows. We show that the standard fiber drawing technology can be successfully applied to the development achromatic gradient index microlenses by means of internal nanostructurization. These gradient index microlenses can achieve similar performance to standard aspheric doublets, while utilizing a simpler, singlet element geometry with flat surfaces. A nanostructured lens with a parabolic profile was designed using a combination of the simulated annealing method and the effective medium approximation theory. Measurements on the fabricated lenses show that the microlenses have a nearly wavelength-independent focal plane at a distance of about 35 μm from the lens facet over the wavelength range of 600–1550 nm. The successful design and fabrication of achromatic flat-parallel rod microlenses opens new perspectives for micro-imaging systems and wavelength-independent coupling into optical fibers.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Large diameter nanostructured gradient index lens

Jedrzej Nowosielski, Ryszard Buczynski, Andrew J. Waddie, Adam Filipkowski, Dariusz Pysz, Aongus McCarthy, Ryszard Stepien, and Mohammad R. Taghizadeh
Opt. Express 20(11) 11767-11777 (2012)

Large elliptical nanostructured gradient-index microlens

Ryszard Buczynski, Adam Filipkowski, Andrew J. Waddie, Bernard Piechal, Jedrzej Nowosielski, Dariusz Pysz, Ryszard Stepien, and Mohammad R. Taghizadeh
Appl. Opt. 55(1) 89-94 (2016)

Chromatic analysis and design of a first-order radial GRIN lens

Joseph N. Mait, Guy Beadie, Predrag Milojkovic, and Richard A. Flynn
Opt. Express 23(17) 22069-22086 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principle of Optics (Cambridge University, 1999).
  2. R. Kingslake and R. B. Johnson, Lens Design Fundamentals (Elsevier, 2010).
  3. J. Sasian, W. Gao, and Y. Yan, “Method to design apochromat and superachromat objectives,” Opt. Eng. 56(10), 105106 (2017).
    [Crossref]
  4. N. Davidson, A. A. Friesem, and E. Hasman, “Analytic design of hybrid diffractive-refractive achromats,” Appl. Opt. 32(25), 4770–4774 (1993).
    [Crossref] [PubMed]
  5. R. A. Flynn, E. F. Fleet, G. Beadie, and J. S. Shirk, “Achromatic GRIN singlet lens design,” Opt. Express 21(4), 4970–4978 (2013).
    [Crossref] [PubMed]
  6. R. A. Flynn and G. Beadie, “Athermal achromat lens enebled by polymer gradient index optics,” Proc. SPIE 9822, 98220S (2016).
    [Crossref]
  7. F. Bociort, “Chromatic paraxial aberration coefficients for radial gradient-index lenses,” J. Opt. Soc. Am. A 13(6), 1277–1284 (1996).
    [Crossref]
  8. G. Beadie, J. N. Mait, R. A. Flynn, and P. Milojkovic, “Materials figure of merit for achromatic gradient index (GRIN) optics,” Proc. SPIE 9822, 98220Q (2016).
    [Crossref]
  9. J. Morris, G. Wolf, S. Vandendriessche, and S. Sparrold, “Achrotech: achromat cost versus performance for conventional, diffractive and GRIN components,” Proc. SPIE 9947, 994704 (2016).
    [Crossref]
  10. J. N. Mait, G. Beadie, P. Milojkovic, and R. A. Flynn, “Chromatic analysis and design of a first-order radial GRIN lens,” Opt. Express 23(17), 22069–22086 (2015).
    [Crossref] [PubMed]
  11. J. N. Mait, G. Beadie, R. A. Flynn, and P. Milojkovic, “Dispersion design in gradient index elements using ternary blends,” Opt. Express 24(25), 29295–29301 (2016).
    [Crossref] [PubMed]
  12. G. Beadie, J. Mait, R. A. Flynn, and P. Milojkovic, “Ternary versus binary material systems for gradient index optics,” Proc. SPIE 10181, 1018108 (2017).
    [Crossref]
  13. E. W. Marchand, Gradient Index Optics (Academic, 1978).
  14. M. Herzberger and C. D. Salzberg, “Refractive indices of infrared optical materials and color correction of infrared lenses,” J. Opt. Soc. Am. A 52(4), 420–427 (1962).
    [Crossref]
  15. J. A. Corsetti, P. McCarthy, and D. T. Moore, “Color correction in the infrared using gradient-index materials,” Opt. Eng. 52(11), 112109 (2013).
    [Crossref]
  16. P. J. Wang, J. A. Yeh, W. Y. Hsu, Y. C. Cheng, W. Lee, N. H. Wu, and C. Y. Wu, “Study of 3D printing method for GRIN micro-optics devices,” Proc. SPIE 9759, 975910 (2016).
    [Crossref]
  17. F. Hudelist, R. Buczynski, A. J. Waddie, and M. R. Taghizadeh, “Design and fabrication of nano-structured gradient index microlenses,” Opt. Express 17(5), 3255–3263 (2009).
    [Crossref] [PubMed]
  18. H. Hogan, “For IR imaging, better SWaP beckons,” Photon. Spectra 49, 48–51 (2015).
  19. S. D. Campbell, D. E. Brocker, J. Nagar, and D. H. Werner, “SWaP reduction regimes in achromatic GRIN singlets,” Appl. Opt. 55(13), 3594–3598 (2016).
    [Crossref] [PubMed]
  20. A. Sihvola, Electromagnetic Mixing Formulas and Applications (The Institution of Engineering and Technology, 1999).
  21. R. Kasztelanic, A. Filipkowski, A. Anuszkiewicz, P. Stafiej, G. Stepniewski, D. Pysz, K. Krzyzak, R. Stepien, M. Klimczak, and R. Buczynski, “Integrating free-form nanostructured GRIN microlenses with single-mode fibers for optofluidic systems,” Sci. Rep. 8(1), 5072 (2018).
    [Crossref] [PubMed]
  22. F. Hudelist, J. M. Nowosielski, R. Buczynski, A. J. Waddie, and M. R. Taghizadeh, “Nanostructured elliptical gradient-index microlenses,” Opt. Lett. 35(2), 130–132 (2010).
    [Crossref] [PubMed]
  23. A. Filipkowski, B. Piechal, D. Pysz, R. Stepien, A. Waddie, M. R. Taghizadeh, and R. Buczynski, “Nanostructured gradient index microaxicons made by a modified stack and draw method,” Opt. Lett. 40(22), 5200–5203 (2015).
    [Crossref] [PubMed]
  24. J. Pniewski, R. Kasztelanic, J. M. Nowosielski, A. Filipkowski, B. Piechal, A. J. Waddie, D. Pysz, I. Kujawa, R. Stepien, M. R. Taghizadeh, and R. Buczynski, “Diffractive optics development using a modified stack-and-draw technique,” Appl. Opt. 55(18), 4939–4945 (2016).
    [Crossref] [PubMed]
  25. A. J. Waddie, R. Buczynski, F. Hudelist, J. Nowosielski, D. Pysz, R. Stepien, and M. R. Taghizadeh, “Form birefringence in nanostructured micro-optical devices,” Opt. Mater. Express 1(7), 1251–1261 (2011).
    [Crossref]
  26. A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8(1), 12329 (2018).
    [Crossref] [PubMed]
  27. M. J. Riedl, Optical Design Fundamentals for Infrared Systems (SPIE, 2001).
  28. Schott, “Schott optical glass collection – datasheets,” http://www.schott.com/d/advanced_optics/
  29. CDGM Glass Company, http://cdgmglass.com
  30. Ohara Online-Shop, https://www.ohara-gmbh.com/shop/glassorten.html
  31. P. J. van Laarhoven and E. H. Aarts, Simulated Annealing: Theory and Applications (Reidel, Dordrecht 1987).
  32. A. G. Kirk and T. J. Hall, “Design of binary computer generated holograms by simulated annealing: coding density and reconstruction error,” Opt. Comnun. 94(6), 491–496 (1992).
    [Crossref]
  33. M. Wang and N. Pan, “Predictions of effective physical properties of complex multiphase materials,” Mater. Sci. Eng. Rep. 63(1), 1–30 (2008).
    [Crossref]
  34. C. Tuck, Effective Medium Theory (Oxford University, 1999).
  35. C. Gomez-Reino, M. V. Perez, and C. Bao, Gradient-Index Optics, Fundamentals and Applications (Springer, 2002).
  36. G. R. Hadley, “Wide-angle beam propagation using Pade approximant operators,” Opt. Lett. 17(20), 1426–1428 (1992).
    [Crossref] [PubMed]

2018 (2)

R. Kasztelanic, A. Filipkowski, A. Anuszkiewicz, P. Stafiej, G. Stepniewski, D. Pysz, K. Krzyzak, R. Stepien, M. Klimczak, and R. Buczynski, “Integrating free-form nanostructured GRIN microlenses with single-mode fibers for optofluidic systems,” Sci. Rep. 8(1), 5072 (2018).
[Crossref] [PubMed]

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8(1), 12329 (2018).
[Crossref] [PubMed]

2017 (2)

J. Sasian, W. Gao, and Y. Yan, “Method to design apochromat and superachromat objectives,” Opt. Eng. 56(10), 105106 (2017).
[Crossref]

G. Beadie, J. Mait, R. A. Flynn, and P. Milojkovic, “Ternary versus binary material systems for gradient index optics,” Proc. SPIE 10181, 1018108 (2017).
[Crossref]

2016 (7)

P. J. Wang, J. A. Yeh, W. Y. Hsu, Y. C. Cheng, W. Lee, N. H. Wu, and C. Y. Wu, “Study of 3D printing method for GRIN micro-optics devices,” Proc. SPIE 9759, 975910 (2016).
[Crossref]

R. A. Flynn and G. Beadie, “Athermal achromat lens enebled by polymer gradient index optics,” Proc. SPIE 9822, 98220S (2016).
[Crossref]

G. Beadie, J. N. Mait, R. A. Flynn, and P. Milojkovic, “Materials figure of merit for achromatic gradient index (GRIN) optics,” Proc. SPIE 9822, 98220Q (2016).
[Crossref]

J. Morris, G. Wolf, S. Vandendriessche, and S. Sparrold, “Achrotech: achromat cost versus performance for conventional, diffractive and GRIN components,” Proc. SPIE 9947, 994704 (2016).
[Crossref]

S. D. Campbell, D. E. Brocker, J. Nagar, and D. H. Werner, “SWaP reduction regimes in achromatic GRIN singlets,” Appl. Opt. 55(13), 3594–3598 (2016).
[Crossref] [PubMed]

J. Pniewski, R. Kasztelanic, J. M. Nowosielski, A. Filipkowski, B. Piechal, A. J. Waddie, D. Pysz, I. Kujawa, R. Stepien, M. R. Taghizadeh, and R. Buczynski, “Diffractive optics development using a modified stack-and-draw technique,” Appl. Opt. 55(18), 4939–4945 (2016).
[Crossref] [PubMed]

J. N. Mait, G. Beadie, R. A. Flynn, and P. Milojkovic, “Dispersion design in gradient index elements using ternary blends,” Opt. Express 24(25), 29295–29301 (2016).
[Crossref] [PubMed]

2015 (3)

2013 (2)

J. A. Corsetti, P. McCarthy, and D. T. Moore, “Color correction in the infrared using gradient-index materials,” Opt. Eng. 52(11), 112109 (2013).
[Crossref]

R. A. Flynn, E. F. Fleet, G. Beadie, and J. S. Shirk, “Achromatic GRIN singlet lens design,” Opt. Express 21(4), 4970–4978 (2013).
[Crossref] [PubMed]

2011 (1)

2010 (1)

2009 (1)

2008 (1)

M. Wang and N. Pan, “Predictions of effective physical properties of complex multiphase materials,” Mater. Sci. Eng. Rep. 63(1), 1–30 (2008).
[Crossref]

1996 (1)

1993 (1)

1992 (2)

G. R. Hadley, “Wide-angle beam propagation using Pade approximant operators,” Opt. Lett. 17(20), 1426–1428 (1992).
[Crossref] [PubMed]

A. G. Kirk and T. J. Hall, “Design of binary computer generated holograms by simulated annealing: coding density and reconstruction error,” Opt. Comnun. 94(6), 491–496 (1992).
[Crossref]

1962 (1)

M. Herzberger and C. D. Salzberg, “Refractive indices of infrared optical materials and color correction of infrared lenses,” J. Opt. Soc. Am. A 52(4), 420–427 (1962).
[Crossref]

Anuszkiewicz, A.

R. Kasztelanic, A. Filipkowski, A. Anuszkiewicz, P. Stafiej, G. Stepniewski, D. Pysz, K. Krzyzak, R. Stepien, M. Klimczak, and R. Buczynski, “Integrating free-form nanostructured GRIN microlenses with single-mode fibers for optofluidic systems,” Sci. Rep. 8(1), 5072 (2018).
[Crossref] [PubMed]

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8(1), 12329 (2018).
[Crossref] [PubMed]

Beadie, G.

G. Beadie, J. Mait, R. A. Flynn, and P. Milojkovic, “Ternary versus binary material systems for gradient index optics,” Proc. SPIE 10181, 1018108 (2017).
[Crossref]

G. Beadie, J. N. Mait, R. A. Flynn, and P. Milojkovic, “Materials figure of merit for achromatic gradient index (GRIN) optics,” Proc. SPIE 9822, 98220Q (2016).
[Crossref]

R. A. Flynn and G. Beadie, “Athermal achromat lens enebled by polymer gradient index optics,” Proc. SPIE 9822, 98220S (2016).
[Crossref]

J. N. Mait, G. Beadie, R. A. Flynn, and P. Milojkovic, “Dispersion design in gradient index elements using ternary blends,” Opt. Express 24(25), 29295–29301 (2016).
[Crossref] [PubMed]

J. N. Mait, G. Beadie, P. Milojkovic, and R. A. Flynn, “Chromatic analysis and design of a first-order radial GRIN lens,” Opt. Express 23(17), 22069–22086 (2015).
[Crossref] [PubMed]

R. A. Flynn, E. F. Fleet, G. Beadie, and J. S. Shirk, “Achromatic GRIN singlet lens design,” Opt. Express 21(4), 4970–4978 (2013).
[Crossref] [PubMed]

Bociort, F.

Brocker, D. E.

Buczynski, R.

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8(1), 12329 (2018).
[Crossref] [PubMed]

R. Kasztelanic, A. Filipkowski, A. Anuszkiewicz, P. Stafiej, G. Stepniewski, D. Pysz, K. Krzyzak, R. Stepien, M. Klimczak, and R. Buczynski, “Integrating free-form nanostructured GRIN microlenses with single-mode fibers for optofluidic systems,” Sci. Rep. 8(1), 5072 (2018).
[Crossref] [PubMed]

J. Pniewski, R. Kasztelanic, J. M. Nowosielski, A. Filipkowski, B. Piechal, A. J. Waddie, D. Pysz, I. Kujawa, R. Stepien, M. R. Taghizadeh, and R. Buczynski, “Diffractive optics development using a modified stack-and-draw technique,” Appl. Opt. 55(18), 4939–4945 (2016).
[Crossref] [PubMed]

A. Filipkowski, B. Piechal, D. Pysz, R. Stepien, A. Waddie, M. R. Taghizadeh, and R. Buczynski, “Nanostructured gradient index microaxicons made by a modified stack and draw method,” Opt. Lett. 40(22), 5200–5203 (2015).
[Crossref] [PubMed]

A. J. Waddie, R. Buczynski, F. Hudelist, J. Nowosielski, D. Pysz, R. Stepien, and M. R. Taghizadeh, “Form birefringence in nanostructured micro-optical devices,” Opt. Mater. Express 1(7), 1251–1261 (2011).
[Crossref]

F. Hudelist, J. M. Nowosielski, R. Buczynski, A. J. Waddie, and M. R. Taghizadeh, “Nanostructured elliptical gradient-index microlenses,” Opt. Lett. 35(2), 130–132 (2010).
[Crossref] [PubMed]

F. Hudelist, R. Buczynski, A. J. Waddie, and M. R. Taghizadeh, “Design and fabrication of nano-structured gradient index microlenses,” Opt. Express 17(5), 3255–3263 (2009).
[Crossref] [PubMed]

Campbell, S. D.

Cheng, Y. C.

P. J. Wang, J. A. Yeh, W. Y. Hsu, Y. C. Cheng, W. Lee, N. H. Wu, and C. Y. Wu, “Study of 3D printing method for GRIN micro-optics devices,” Proc. SPIE 9759, 975910 (2016).
[Crossref]

Corsetti, J. A.

J. A. Corsetti, P. McCarthy, and D. T. Moore, “Color correction in the infrared using gradient-index materials,” Opt. Eng. 52(11), 112109 (2013).
[Crossref]

Davidson, N.

Filipkowski, A.

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8(1), 12329 (2018).
[Crossref] [PubMed]

R. Kasztelanic, A. Filipkowski, A. Anuszkiewicz, P. Stafiej, G. Stepniewski, D. Pysz, K. Krzyzak, R. Stepien, M. Klimczak, and R. Buczynski, “Integrating free-form nanostructured GRIN microlenses with single-mode fibers for optofluidic systems,” Sci. Rep. 8(1), 5072 (2018).
[Crossref] [PubMed]

J. Pniewski, R. Kasztelanic, J. M. Nowosielski, A. Filipkowski, B. Piechal, A. J. Waddie, D. Pysz, I. Kujawa, R. Stepien, M. R. Taghizadeh, and R. Buczynski, “Diffractive optics development using a modified stack-and-draw technique,” Appl. Opt. 55(18), 4939–4945 (2016).
[Crossref] [PubMed]

A. Filipkowski, B. Piechal, D. Pysz, R. Stepien, A. Waddie, M. R. Taghizadeh, and R. Buczynski, “Nanostructured gradient index microaxicons made by a modified stack and draw method,” Opt. Lett. 40(22), 5200–5203 (2015).
[Crossref] [PubMed]

Fleet, E. F.

Flynn, R. A.

G. Beadie, J. Mait, R. A. Flynn, and P. Milojkovic, “Ternary versus binary material systems for gradient index optics,” Proc. SPIE 10181, 1018108 (2017).
[Crossref]

G. Beadie, J. N. Mait, R. A. Flynn, and P. Milojkovic, “Materials figure of merit for achromatic gradient index (GRIN) optics,” Proc. SPIE 9822, 98220Q (2016).
[Crossref]

R. A. Flynn and G. Beadie, “Athermal achromat lens enebled by polymer gradient index optics,” Proc. SPIE 9822, 98220S (2016).
[Crossref]

J. N. Mait, G. Beadie, R. A. Flynn, and P. Milojkovic, “Dispersion design in gradient index elements using ternary blends,” Opt. Express 24(25), 29295–29301 (2016).
[Crossref] [PubMed]

J. N. Mait, G. Beadie, P. Milojkovic, and R. A. Flynn, “Chromatic analysis and design of a first-order radial GRIN lens,” Opt. Express 23(17), 22069–22086 (2015).
[Crossref] [PubMed]

R. A. Flynn, E. F. Fleet, G. Beadie, and J. S. Shirk, “Achromatic GRIN singlet lens design,” Opt. Express 21(4), 4970–4978 (2013).
[Crossref] [PubMed]

Friesem, A. A.

Gao, W.

J. Sasian, W. Gao, and Y. Yan, “Method to design apochromat and superachromat objectives,” Opt. Eng. 56(10), 105106 (2017).
[Crossref]

Hadley, G. R.

Hall, T. J.

A. G. Kirk and T. J. Hall, “Design of binary computer generated holograms by simulated annealing: coding density and reconstruction error,” Opt. Comnun. 94(6), 491–496 (1992).
[Crossref]

Hasman, E.

Herzberger, M.

M. Herzberger and C. D. Salzberg, “Refractive indices of infrared optical materials and color correction of infrared lenses,” J. Opt. Soc. Am. A 52(4), 420–427 (1962).
[Crossref]

Hogan, H.

H. Hogan, “For IR imaging, better SWaP beckons,” Photon. Spectra 49, 48–51 (2015).

Hsu, W. Y.

P. J. Wang, J. A. Yeh, W. Y. Hsu, Y. C. Cheng, W. Lee, N. H. Wu, and C. Y. Wu, “Study of 3D printing method for GRIN micro-optics devices,” Proc. SPIE 9759, 975910 (2016).
[Crossref]

Hudelist, F.

Kasztelanic, R.

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8(1), 12329 (2018).
[Crossref] [PubMed]

R. Kasztelanic, A. Filipkowski, A. Anuszkiewicz, P. Stafiej, G. Stepniewski, D. Pysz, K. Krzyzak, R. Stepien, M. Klimczak, and R. Buczynski, “Integrating free-form nanostructured GRIN microlenses with single-mode fibers for optofluidic systems,” Sci. Rep. 8(1), 5072 (2018).
[Crossref] [PubMed]

J. Pniewski, R. Kasztelanic, J. M. Nowosielski, A. Filipkowski, B. Piechal, A. J. Waddie, D. Pysz, I. Kujawa, R. Stepien, M. R. Taghizadeh, and R. Buczynski, “Diffractive optics development using a modified stack-and-draw technique,” Appl. Opt. 55(18), 4939–4945 (2016).
[Crossref] [PubMed]

Kirk, A. G.

A. G. Kirk and T. J. Hall, “Design of binary computer generated holograms by simulated annealing: coding density and reconstruction error,” Opt. Comnun. 94(6), 491–496 (1992).
[Crossref]

Klimczak, M.

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8(1), 12329 (2018).
[Crossref] [PubMed]

R. Kasztelanic, A. Filipkowski, A. Anuszkiewicz, P. Stafiej, G. Stepniewski, D. Pysz, K. Krzyzak, R. Stepien, M. Klimczak, and R. Buczynski, “Integrating free-form nanostructured GRIN microlenses with single-mode fibers for optofluidic systems,” Sci. Rep. 8(1), 5072 (2018).
[Crossref] [PubMed]

Krzyzak, K.

R. Kasztelanic, A. Filipkowski, A. Anuszkiewicz, P. Stafiej, G. Stepniewski, D. Pysz, K. Krzyzak, R. Stepien, M. Klimczak, and R. Buczynski, “Integrating free-form nanostructured GRIN microlenses with single-mode fibers for optofluidic systems,” Sci. Rep. 8(1), 5072 (2018).
[Crossref] [PubMed]

Kujawa, I.

Lee, W.

P. J. Wang, J. A. Yeh, W. Y. Hsu, Y. C. Cheng, W. Lee, N. H. Wu, and C. Y. Wu, “Study of 3D printing method for GRIN micro-optics devices,” Proc. SPIE 9759, 975910 (2016).
[Crossref]

Mait, J.

G. Beadie, J. Mait, R. A. Flynn, and P. Milojkovic, “Ternary versus binary material systems for gradient index optics,” Proc. SPIE 10181, 1018108 (2017).
[Crossref]

Mait, J. N.

McCarthy, P.

J. A. Corsetti, P. McCarthy, and D. T. Moore, “Color correction in the infrared using gradient-index materials,” Opt. Eng. 52(11), 112109 (2013).
[Crossref]

Milojkovic, P.

G. Beadie, J. Mait, R. A. Flynn, and P. Milojkovic, “Ternary versus binary material systems for gradient index optics,” Proc. SPIE 10181, 1018108 (2017).
[Crossref]

G. Beadie, J. N. Mait, R. A. Flynn, and P. Milojkovic, “Materials figure of merit for achromatic gradient index (GRIN) optics,” Proc. SPIE 9822, 98220Q (2016).
[Crossref]

J. N. Mait, G. Beadie, R. A. Flynn, and P. Milojkovic, “Dispersion design in gradient index elements using ternary blends,” Opt. Express 24(25), 29295–29301 (2016).
[Crossref] [PubMed]

J. N. Mait, G. Beadie, P. Milojkovic, and R. A. Flynn, “Chromatic analysis and design of a first-order radial GRIN lens,” Opt. Express 23(17), 22069–22086 (2015).
[Crossref] [PubMed]

Moore, D. T.

J. A. Corsetti, P. McCarthy, and D. T. Moore, “Color correction in the infrared using gradient-index materials,” Opt. Eng. 52(11), 112109 (2013).
[Crossref]

Morris, J.

J. Morris, G. Wolf, S. Vandendriessche, and S. Sparrold, “Achrotech: achromat cost versus performance for conventional, diffractive and GRIN components,” Proc. SPIE 9947, 994704 (2016).
[Crossref]

Nagar, J.

Nowosielski, J.

Nowosielski, J. M.

Pan, N.

M. Wang and N. Pan, “Predictions of effective physical properties of complex multiphase materials,” Mater. Sci. Eng. Rep. 63(1), 1–30 (2008).
[Crossref]

Piechal, B.

Pniewski, J.

Pysz, D.

Salzberg, C. D.

M. Herzberger and C. D. Salzberg, “Refractive indices of infrared optical materials and color correction of infrared lenses,” J. Opt. Soc. Am. A 52(4), 420–427 (1962).
[Crossref]

Sasian, J.

J. Sasian, W. Gao, and Y. Yan, “Method to design apochromat and superachromat objectives,” Opt. Eng. 56(10), 105106 (2017).
[Crossref]

Shirk, J. S.

Siwicki, B.

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8(1), 12329 (2018).
[Crossref] [PubMed]

Sparrold, S.

J. Morris, G. Wolf, S. Vandendriessche, and S. Sparrold, “Achrotech: achromat cost versus performance for conventional, diffractive and GRIN components,” Proc. SPIE 9947, 994704 (2016).
[Crossref]

Stafiej, P.

R. Kasztelanic, A. Filipkowski, A. Anuszkiewicz, P. Stafiej, G. Stepniewski, D. Pysz, K. Krzyzak, R. Stepien, M. Klimczak, and R. Buczynski, “Integrating free-form nanostructured GRIN microlenses with single-mode fibers for optofluidic systems,” Sci. Rep. 8(1), 5072 (2018).
[Crossref] [PubMed]

Stefaniuk, T.

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8(1), 12329 (2018).
[Crossref] [PubMed]

Stepien, R.

Stepniewski, G.

R. Kasztelanic, A. Filipkowski, A. Anuszkiewicz, P. Stafiej, G. Stepniewski, D. Pysz, K. Krzyzak, R. Stepien, M. Klimczak, and R. Buczynski, “Integrating free-form nanostructured GRIN microlenses with single-mode fibers for optofluidic systems,” Sci. Rep. 8(1), 5072 (2018).
[Crossref] [PubMed]

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8(1), 12329 (2018).
[Crossref] [PubMed]

Taghizadeh, M. R.

Vandendriessche, S.

J. Morris, G. Wolf, S. Vandendriessche, and S. Sparrold, “Achrotech: achromat cost versus performance for conventional, diffractive and GRIN components,” Proc. SPIE 9947, 994704 (2016).
[Crossref]

Waddie, A.

Waddie, A. J.

Wang, M.

M. Wang and N. Pan, “Predictions of effective physical properties of complex multiphase materials,” Mater. Sci. Eng. Rep. 63(1), 1–30 (2008).
[Crossref]

Wang, P. J.

P. J. Wang, J. A. Yeh, W. Y. Hsu, Y. C. Cheng, W. Lee, N. H. Wu, and C. Y. Wu, “Study of 3D printing method for GRIN micro-optics devices,” Proc. SPIE 9759, 975910 (2016).
[Crossref]

Werner, D. H.

Wolf, G.

J. Morris, G. Wolf, S. Vandendriessche, and S. Sparrold, “Achrotech: achromat cost versus performance for conventional, diffractive and GRIN components,” Proc. SPIE 9947, 994704 (2016).
[Crossref]

Wu, C. Y.

P. J. Wang, J. A. Yeh, W. Y. Hsu, Y. C. Cheng, W. Lee, N. H. Wu, and C. Y. Wu, “Study of 3D printing method for GRIN micro-optics devices,” Proc. SPIE 9759, 975910 (2016).
[Crossref]

Wu, N. H.

P. J. Wang, J. A. Yeh, W. Y. Hsu, Y. C. Cheng, W. Lee, N. H. Wu, and C. Y. Wu, “Study of 3D printing method for GRIN micro-optics devices,” Proc. SPIE 9759, 975910 (2016).
[Crossref]

Yan, Y.

J. Sasian, W. Gao, and Y. Yan, “Method to design apochromat and superachromat objectives,” Opt. Eng. 56(10), 105106 (2017).
[Crossref]

Yeh, J. A.

P. J. Wang, J. A. Yeh, W. Y. Hsu, Y. C. Cheng, W. Lee, N. H. Wu, and C. Y. Wu, “Study of 3D printing method for GRIN micro-optics devices,” Proc. SPIE 9759, 975910 (2016).
[Crossref]

Appl. Opt. (3)

J. Opt. Soc. Am. A (2)

F. Bociort, “Chromatic paraxial aberration coefficients for radial gradient-index lenses,” J. Opt. Soc. Am. A 13(6), 1277–1284 (1996).
[Crossref]

M. Herzberger and C. D. Salzberg, “Refractive indices of infrared optical materials and color correction of infrared lenses,” J. Opt. Soc. Am. A 52(4), 420–427 (1962).
[Crossref]

Mater. Sci. Eng. Rep. (1)

M. Wang and N. Pan, “Predictions of effective physical properties of complex multiphase materials,” Mater. Sci. Eng. Rep. 63(1), 1–30 (2008).
[Crossref]

Opt. Comnun. (1)

A. G. Kirk and T. J. Hall, “Design of binary computer generated holograms by simulated annealing: coding density and reconstruction error,” Opt. Comnun. 94(6), 491–496 (1992).
[Crossref]

Opt. Eng. (2)

J. Sasian, W. Gao, and Y. Yan, “Method to design apochromat and superachromat objectives,” Opt. Eng. 56(10), 105106 (2017).
[Crossref]

J. A. Corsetti, P. McCarthy, and D. T. Moore, “Color correction in the infrared using gradient-index materials,” Opt. Eng. 52(11), 112109 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Opt. Mater. Express (1)

Photon. Spectra (1)

H. Hogan, “For IR imaging, better SWaP beckons,” Photon. Spectra 49, 48–51 (2015).

Proc. SPIE (5)

P. J. Wang, J. A. Yeh, W. Y. Hsu, Y. C. Cheng, W. Lee, N. H. Wu, and C. Y. Wu, “Study of 3D printing method for GRIN micro-optics devices,” Proc. SPIE 9759, 975910 (2016).
[Crossref]

G. Beadie, J. N. Mait, R. A. Flynn, and P. Milojkovic, “Materials figure of merit for achromatic gradient index (GRIN) optics,” Proc. SPIE 9822, 98220Q (2016).
[Crossref]

J. Morris, G. Wolf, S. Vandendriessche, and S. Sparrold, “Achrotech: achromat cost versus performance for conventional, diffractive and GRIN components,” Proc. SPIE 9947, 994704 (2016).
[Crossref]

G. Beadie, J. Mait, R. A. Flynn, and P. Milojkovic, “Ternary versus binary material systems for gradient index optics,” Proc. SPIE 10181, 1018108 (2017).
[Crossref]

R. A. Flynn and G. Beadie, “Athermal achromat lens enebled by polymer gradient index optics,” Proc. SPIE 9822, 98220S (2016).
[Crossref]

Sci. Rep. (2)

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8(1), 12329 (2018).
[Crossref] [PubMed]

R. Kasztelanic, A. Filipkowski, A. Anuszkiewicz, P. Stafiej, G. Stepniewski, D. Pysz, K. Krzyzak, R. Stepien, M. Klimczak, and R. Buczynski, “Integrating free-form nanostructured GRIN microlenses with single-mode fibers for optofluidic systems,” Sci. Rep. 8(1), 5072 (2018).
[Crossref] [PubMed]

Other (11)

C. Tuck, Effective Medium Theory (Oxford University, 1999).

C. Gomez-Reino, M. V. Perez, and C. Bao, Gradient-Index Optics, Fundamentals and Applications (Springer, 2002).

M. J. Riedl, Optical Design Fundamentals for Infrared Systems (SPIE, 2001).

Schott, “Schott optical glass collection – datasheets,” http://www.schott.com/d/advanced_optics/

CDGM Glass Company, http://cdgmglass.com

Ohara Online-Shop, https://www.ohara-gmbh.com/shop/glassorten.html

P. J. van Laarhoven and E. H. Aarts, Simulated Annealing: Theory and Applications (Reidel, Dordrecht 1987).

M. Born and E. Wolf, Principle of Optics (Cambridge University, 1999).

R. Kingslake and R. B. Johnson, Lens Design Fundamentals (Elsevier, 2010).

E. W. Marchand, Gradient Index Optics (Academic, 1978).

A. Sihvola, Electromagnetic Mixing Formulas and Applications (The Institution of Engineering and Technology, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Examples of lenses: a) simple lens, b) achromatic lens doublet, c) hybrid diffractive-refractive achromatic, d, e) achromatic refractive GRIN singlet.
Fig. 2
Fig. 2 Scheme of chromatic aberration for four types of lens. The focal lengths vary in different ranges for the different types of lenses. Typically, the variation of the focal length of a simple lens will be much larger than the variation of the focal length for various achromatic lens.
Fig. 3
Fig. 3 A concept of the achromatic nanostructured GRIN microlens with flat surfaces. The nanostructured gradient index lens is constructed of discrete sub-wavelength sized glass rods made of two, different glasses. A proper choice of glass with matching material dispersion and design of lens internal structure allow to obtain nearly wavelength independent performance of the microlenses. WD(λx) denote working distance for wavelength λx defined as a distance between end facet of the lens and focus spot.
Fig. 4
Fig. 4 Chromatic properties of nanostructured GRIN microlens: a) internal structure GRIN microlens with the radius rmax composed of low and high refractive index glass rods n1 and n0, respectively, b) effective refraction index distribution in nGRIN microlens with the radius rmax, c) effective refractive index profile of nanostructured GRIN microlens for several wavelengths of light, n0(λ) and n1(λ) denote refractive indices in the center and at the edge of the nanostructured GRIN microlens for wavelength λ.
Fig. 5
Fig. 5 Analysis of chromatic properties for a nanostructured GRIN lens made of pairs of hypothetical glasses: a) Δn = c, ideal case for a lens with compensated axial chromatic aberration, b) Δn = – c λ, axial chromatic aberration is not compensated c) Δn = – c + c λ, axial chromatic aberration is not compensated d) Δn has the form of a square function, case of achromatic lens, where axial chromatic aberration is compensated for two wavelengths e) Δn achieves two extremes (the axes in an arbitrary units). case of apochromatic lens, where axial chromatic aberration is compensated for three wavelengths The red dots in the fourth column show the sample wavelengths for which the focal lengths are the same.
Fig. 6
Fig. 6 Theoretical analysis of chromatic properties of GRIN microlenses made of pairs of glasses: a) BASF51 and N-SF2, b) LASF36A and N-SF64, c) N-LAF2 and N-F2, d) H-K9L and S-BSL7M, e) H-BAK6 and S-BAL41M. The red dots denote sample wavelengths for which the focal lengths are equal. Calculations are performed for parabolic GRIN lens with diameter of 20 μm and length of 100 μm.
Fig. 7
Fig. 7 Refractive indices of NC21A and NC34 glasses (a) and their difference (b) for the wavelength range 500 - 1700 nm. (c) Calculated effective focal length for parabolic GRIN lens with diameter of 20 μm and length of 100 μm.
Fig. 8
Fig. 8 (a) Internal structure of the nGRIN microlens composed of NC21A and NC34 glass nanorods, (b) SEM image of the fabricated lens structure, (c) a comparison of nanorods distribution in designed and fabricated patterns.
Fig. 9
Fig. 9 Schematic of the nGRIN lens characterization setup, WD denote working distance, and BS – beam spot diameter
Fig. 10
Fig. 10 The profiles of laser beams that propagates behind the tested nGRIN microlens measured along the propagation axis for the various wavelengths of λ = 532, 634, 850, 980, 1310 and 1550 nm.
Fig. 11
Fig. 11 Working distance of the nGRIN lens as a function of incident light wavelength – a comparison of experimental and modelling results with BPM method and using GRIN lens analytical equation (Eq. (5)). Error bars denote accuracy of working distance determination as shown in Fig. 10.

Tables (1)

Tables Icon

Table 1 Thermo-physical properties of NC21A and NC34 glasses.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n eff =φ n 0 +( 1φ ) n 1 ,
n= n 0 ( 1 A 2 r 2 )
A= 2( n 0 n 1 ) n 0 r max 2 = 2Δn n 0 r max 2
f= 1 n 0 A sin( L A )
WD=fcos( L A )

Metrics