Abstract

A temperature-insensitive fiber-optic tip sensors array is proposed for multipoint refractive index measurement using optical carrier based on microwave reflection (OCMR). The tip sensors array is made of a series of cleaved fiber end-faces and is spatially multiplexed by physically connecting with a fiber-optic splitter with different lengths of short delay fiber. A sensors array with eight sensing tips is demonstrated for multipoint refractive index measurement. Experimental results show that it can offer a high refractive-index resolution of 3.60 × 10−6 RIU and a low temperature-refractive index cross sensitivity of 3.74 × 10−7 RIU/°C. Such a sensors array not only possesses excellent sensing performances, but also can be integrated into a chip for biochemical sensing applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
In-line short cavity Fabry-Perot strain sensor for quasi distributed measurement utilizing standard OTDR

Edvard Cibula and Denis Donlagic
Opt. Express 15(14) 8719-8730 (2007)

Overlapped fiber-optic Michelson interferometers for simultaneous refractive index measurement at two sensing points

Ma. del Rosario Bautista-Morales, Rodolfo Martínez-Manuel, and Carlos A. Pineda-Arellano
Appl. Opt. 56(34) 9515-9519 (2017)

Diaphragm-based optical fiber sensor array for multipoint acoustic detection

Jingyi Wang, Fan Ai, Qizhen Sun, Tao Liu, Hao Li, Zhijun Yan, and Deming Liu
Opt. Express 26(19) 25293-25304 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Gastón, I. Lozano, and J. Sevilla, “A novel approach to on line oil quality sensing through side-Polished optical fiber,” In the proceeding of Instrumentation and Measurement Technology Conference (IEEE, 2006), pp. 2066–2069.
  2. Q. G. Shi, L. N. Ying, L. Wang, B. J. Peng, and C. F. Ying, “A Method of the Detection of Marine Pollution Based on the Measurement of Refractive Index,” Appl. Mech. Mater. 551, 347–352 (2014).
    [Crossref]
  3. U. Sampath, H. Kim, D. G. Kim, Y. C. Kim, and M. Song, “In-situ cure monitoring of wind turbine blades by using fiber bragg grating sensors and fresnel reflection measurement,” Sensors (Basel) 15(8), 18229–18238 (2015).
    [Crossref] [PubMed]
  4. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(151122), 151122 (2005).
    [Crossref]
  5. H. Meng, W. Shen, G. Zhang, C. Tan, and X. Huang, “Fiber Bragg grating-based fiber sensor for simultaneous measurement of refractive index and temperature,” Sens. Actuators B Chem. 150(1), 226–229 (2010).
    [Crossref]
  6. A. Singh, “Various characteristics of long-period fiber grating-based refractive index sensor,” Optik (Stuttg.) 126(24), 5439–5443 (2015).
    [Crossref]
  7. Y. J. Rao, M. Deng, D. W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A Phys. 148(1), 33–38 (2008).
    [Crossref]
  8. X. Li, Y. Shao, Y. Yu, Y. Zhang, and S. Wei, “A highly sensitive fiber-optic fabry–perot interferometer based on internal reflection mirrors for refractive index measurement,” Sensors (Basel) 16(6), 794 (2016).
    [Crossref] [PubMed]
  9. Z. Ran, Y. Rao, J. Zhang, and B. Xu, “A miniature fiber-optic refractive-index sensor based on laser-machined Fabry-Perot interferometer tip,” J. Lit. Technol. 27(23), 75035U (2009).
    [Crossref]
  10. Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express 16(3), 2252–2263 (2008).
    [Crossref] [PubMed]
  11. M. Shao, X. Qiao, H. Fu, Y. Liu, X. Zhao, and N. Yao, “High sensitivity refractive index sensing of Mach-Zehnder interferometer based on multimode fiber core sandwiched between two waist-enlarged fiber tapers,” Opt. Commun. 311, 359–363 (2013).
    [Crossref]
  12. J. Harris, P. Lu, H. Larocque, L. Chen, and X. Bao, “In-fiber Mach-Zehnder interferometric refractive index sensors with guided and leaky modes,” Sens. Actuators B Chem. 206, 246–251 (2015).
    [Crossref]
  13. L. Melo, G. Burton, P. Kubik, and P. Wild, “Refractive index sensor based on inline Mach-Zehnder interferometer coated with hafnium oxide by atomic layer deposition,” Sens. Actuators B Chem. 236, 537–545 (2016).
    [Crossref]
  14. S. Pu, L. Luo, J. Tang, L. Mao, and X. Zeng, “Ultrasensitive Refractive-Index Sensors Based on Tapered Fiber Coupler with Sagnac Loop,” IEEE Photonics Technol. Lett. 28(10), 1073–1076 (2016).
    [Crossref]
  15. H. Meng, W. Shen, G. Zhang, X. Wu, W. Wang, C. Tan, and X. Huang, “Michelson interferometer-based fiber-optic sensing of liquid refractive index,” Sens. Actuators B Chem. 160(1), 720–723 (2011).
    [Crossref]
  16. L. Li, Q. Ma, M. Cao, G. Zhang, Y. Zhang, L. Jiang, C. Gao, J. Yao, S. Gong, and W. Li, “High stability Michelson refractometer based on an in-fiber interferometer followed with a Faraday rotator mirror,” Sens. Actuators B Chem. 234, 674–679 (2016).
    [Crossref]
  17. Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “High sensitivity SMS fiber structure based refractometer--analysis and experiment,” Opt. Express 19(9), 7937–7944 (2011).
    [Crossref] [PubMed]
  18. R. Xiong, H. Meng, Q. Yao, B. Huang, Y. Liu, H. Xue, C. Tan, and X. Huang, “Simultaneous Measurement of Refractive Index and Temperature Based on Modal Interference,” Opt. Commun. 364, 191–194 (2014).
  19. Y. Chen, Q. Han, T. Liu, and X. Lü, “Self-temperature-compensative refractometer based on singlemode-multimode-singlemode fiber structure,” Sens. Actuators B Chem. 212, 107–111 (2015).
    [Crossref]
  20. Y. Chen, Y. Wang, R. Chen, W. Yang, H. Liu, T. Liu, and Q. Han, “A Hybrid Multimode Interference Structure-Based Refractive Index and Temperature Fiber Sensor,” IEEE Sens. J. 16(2), 331–335 (2016).
    [Crossref]
  21. M. Kumar, A. Kumar, and R. Dwivedi, “Ultra high sensitive integrated optical waveguide refractive index sensor based on multimode interference,” Sens. Actuators B Chem. 222, 556–561 (2016).
    [Crossref]
  22. K. Lin, Y. Lu, J. Chen, R. Zheng, P. Wang, and H. Ming, “Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity,” Opt. Express 16(23), 18599–18604 (2008).
    [Crossref] [PubMed]
  23. Y. Al-Qazwini, A. S. M. Noor, Z. Al-Qazwini, M. H. Yaacob, S. W. Harun, and M. A. Mahdi, “Refractive index sensor based on SPR in symmetrically etched plastic optical fibers,” Sens. Actuators A Phys. 246, 163–169 (2016).
    [Crossref]
  24. M. D. R. Bautista-Morales, R. Martínez-Manuel, and C. A. Pineda-Arellano, “Overlapped fiber-optic Michelson interferometers for simultaneous refractive index measurement at two sensing points,” Appl. Opt. 56(34), 9515–9519 (2017).
    [Crossref] [PubMed]
  25. K. S. Park, Y. H. Kim, J. B. Eom, S. J. Park, M.-S. Park, J.-H. Jang, and B. H. Lee, “Compact and multiplexible hydrogen gas sensor assisted by self-referencing technique,” Opt. Express 19(19), 18190–18198 (2011).
    [Crossref] [PubMed]
  26. L. Liu, Y. Gong, Y. Wu, T. Zhao, H. J. Wu, and Y. J. Rao, “Spatial frequency multiplexing of fiber-optic interferometric refractive index sensors based on graded-index multimode fibers,” Sensors (Basel) 12(9), 12377–12385 (2012).
    [Crossref]
  27. J. H. López, Ó. Esteban, M. G. Shlyagin, and R. Martínez-Manuel, “Multipoint Refractometer Based on Combined Correlation and Frequency Multiplexing,” IEEE Photonics Technol. Lett. 29(17), 1479–1482 (2017).
    [Crossref]
  28. S. C. Warren-Smith, R. M. André, J. Dellith, and H. Bartelt, “Multiplexed refractive index-based sensing using optical fiber microcavities,” Proc. SPIE 9899, 98991G (2016).
  29. C. L. Zhao, J. Li, S. Zhang, Z. Zhang, and S. Jin, “Simple fresnel reflection-based optical fiber sensor for multipoint refractive index measurement using an awg,” IEEE Photonics Technol. Lett. 25(6), 606–608 (2013).
    [Crossref]
  30. S. J. J. Yuan, C. Zhao, L. Qi, X. Wang, and Z. Zhang, “Fresnel reflection-based optical fiber sensor for quasi-distributed refractive index measurement,” Laser & Optoeletronics Progress 51(9), 092801 (2014).
    [Crossref]
  31. A. Basgumus, F. E. Durak, A. Altuncu, and G. Yilmaz, “A universal and stable all-fiber refractive index sensor system,” IEEE Photonics Technol. Lett. 28(2), 171–174 (2016).
    [Crossref]
  32. K. Yüksel, “Optical fiber sensor system for remote and multi-point refractive index measurement,” Sens. Actuators A Phys. 250, 29–34 (2016).
    [Crossref]
  33. Y. Xiang, Y. Luo, Y. Li, Y. Li, Z. Yan, D. Liu, and Q. Sun, “Quasi-Distributed Dual-Parameter Optical Fiber Sensor Based on Cascaded Microfiber Fabry-Perot Interferometers,” IEEE Photonics J. 10(2), 1 (2018).
    [Crossref]
  34. J. Huang, X. Lan, M. Luo, and H. Xiao, “Spatially continuous distributed fiber optic sensing using optical carrier based microwave interferometry,” Opt. Express 22(15), 18757–18769 (2014).
    [Crossref] [PubMed]
  35. L. B. Yuan, “Effect of Temperature and Strain on Fiber Optic Refractive Index,” Acta Opt. Sin. 17(12), 1713–1717 (1997).
  36. J. C. Murphy and L. C. Aamodt, “Photothermal spectroscopy using optical beam probing: Mirage effect,” J. Appl. Phys. 51(9), 4580–4588 (1980).
    [Crossref]

2018 (1)

Y. Xiang, Y. Luo, Y. Li, Y. Li, Z. Yan, D. Liu, and Q. Sun, “Quasi-Distributed Dual-Parameter Optical Fiber Sensor Based on Cascaded Microfiber Fabry-Perot Interferometers,” IEEE Photonics J. 10(2), 1 (2018).
[Crossref]

2017 (2)

M. D. R. Bautista-Morales, R. Martínez-Manuel, and C. A. Pineda-Arellano, “Overlapped fiber-optic Michelson interferometers for simultaneous refractive index measurement at two sensing points,” Appl. Opt. 56(34), 9515–9519 (2017).
[Crossref] [PubMed]

J. H. López, Ó. Esteban, M. G. Shlyagin, and R. Martínez-Manuel, “Multipoint Refractometer Based on Combined Correlation and Frequency Multiplexing,” IEEE Photonics Technol. Lett. 29(17), 1479–1482 (2017).
[Crossref]

2016 (10)

S. C. Warren-Smith, R. M. André, J. Dellith, and H. Bartelt, “Multiplexed refractive index-based sensing using optical fiber microcavities,” Proc. SPIE 9899, 98991G (2016).

Y. Al-Qazwini, A. S. M. Noor, Z. Al-Qazwini, M. H. Yaacob, S. W. Harun, and M. A. Mahdi, “Refractive index sensor based on SPR in symmetrically etched plastic optical fibers,” Sens. Actuators A Phys. 246, 163–169 (2016).
[Crossref]

Y. Chen, Y. Wang, R. Chen, W. Yang, H. Liu, T. Liu, and Q. Han, “A Hybrid Multimode Interference Structure-Based Refractive Index and Temperature Fiber Sensor,” IEEE Sens. J. 16(2), 331–335 (2016).
[Crossref]

M. Kumar, A. Kumar, and R. Dwivedi, “Ultra high sensitive integrated optical waveguide refractive index sensor based on multimode interference,” Sens. Actuators B Chem. 222, 556–561 (2016).
[Crossref]

A. Basgumus, F. E. Durak, A. Altuncu, and G. Yilmaz, “A universal and stable all-fiber refractive index sensor system,” IEEE Photonics Technol. Lett. 28(2), 171–174 (2016).
[Crossref]

K. Yüksel, “Optical fiber sensor system for remote and multi-point refractive index measurement,” Sens. Actuators A Phys. 250, 29–34 (2016).
[Crossref]

X. Li, Y. Shao, Y. Yu, Y. Zhang, and S. Wei, “A highly sensitive fiber-optic fabry–perot interferometer based on internal reflection mirrors for refractive index measurement,” Sensors (Basel) 16(6), 794 (2016).
[Crossref] [PubMed]

L. Melo, G. Burton, P. Kubik, and P. Wild, “Refractive index sensor based on inline Mach-Zehnder interferometer coated with hafnium oxide by atomic layer deposition,” Sens. Actuators B Chem. 236, 537–545 (2016).
[Crossref]

S. Pu, L. Luo, J. Tang, L. Mao, and X. Zeng, “Ultrasensitive Refractive-Index Sensors Based on Tapered Fiber Coupler with Sagnac Loop,” IEEE Photonics Technol. Lett. 28(10), 1073–1076 (2016).
[Crossref]

L. Li, Q. Ma, M. Cao, G. Zhang, Y. Zhang, L. Jiang, C. Gao, J. Yao, S. Gong, and W. Li, “High stability Michelson refractometer based on an in-fiber interferometer followed with a Faraday rotator mirror,” Sens. Actuators B Chem. 234, 674–679 (2016).
[Crossref]

2015 (4)

Y. Chen, Q. Han, T. Liu, and X. Lü, “Self-temperature-compensative refractometer based on singlemode-multimode-singlemode fiber structure,” Sens. Actuators B Chem. 212, 107–111 (2015).
[Crossref]

J. Harris, P. Lu, H. Larocque, L. Chen, and X. Bao, “In-fiber Mach-Zehnder interferometric refractive index sensors with guided and leaky modes,” Sens. Actuators B Chem. 206, 246–251 (2015).
[Crossref]

A. Singh, “Various characteristics of long-period fiber grating-based refractive index sensor,” Optik (Stuttg.) 126(24), 5439–5443 (2015).
[Crossref]

U. Sampath, H. Kim, D. G. Kim, Y. C. Kim, and M. Song, “In-situ cure monitoring of wind turbine blades by using fiber bragg grating sensors and fresnel reflection measurement,” Sensors (Basel) 15(8), 18229–18238 (2015).
[Crossref] [PubMed]

2014 (4)

Q. G. Shi, L. N. Ying, L. Wang, B. J. Peng, and C. F. Ying, “A Method of the Detection of Marine Pollution Based on the Measurement of Refractive Index,” Appl. Mech. Mater. 551, 347–352 (2014).
[Crossref]

R. Xiong, H. Meng, Q. Yao, B. Huang, Y. Liu, H. Xue, C. Tan, and X. Huang, “Simultaneous Measurement of Refractive Index and Temperature Based on Modal Interference,” Opt. Commun. 364, 191–194 (2014).

S. J. J. Yuan, C. Zhao, L. Qi, X. Wang, and Z. Zhang, “Fresnel reflection-based optical fiber sensor for quasi-distributed refractive index measurement,” Laser & Optoeletronics Progress 51(9), 092801 (2014).
[Crossref]

J. Huang, X. Lan, M. Luo, and H. Xiao, “Spatially continuous distributed fiber optic sensing using optical carrier based microwave interferometry,” Opt. Express 22(15), 18757–18769 (2014).
[Crossref] [PubMed]

2013 (2)

C. L. Zhao, J. Li, S. Zhang, Z. Zhang, and S. Jin, “Simple fresnel reflection-based optical fiber sensor for multipoint refractive index measurement using an awg,” IEEE Photonics Technol. Lett. 25(6), 606–608 (2013).
[Crossref]

M. Shao, X. Qiao, H. Fu, Y. Liu, X. Zhao, and N. Yao, “High sensitivity refractive index sensing of Mach-Zehnder interferometer based on multimode fiber core sandwiched between two waist-enlarged fiber tapers,” Opt. Commun. 311, 359–363 (2013).
[Crossref]

2012 (1)

L. Liu, Y. Gong, Y. Wu, T. Zhao, H. J. Wu, and Y. J. Rao, “Spatial frequency multiplexing of fiber-optic interferometric refractive index sensors based on graded-index multimode fibers,” Sensors (Basel) 12(9), 12377–12385 (2012).
[Crossref]

2011 (3)

2010 (1)

H. Meng, W. Shen, G. Zhang, C. Tan, and X. Huang, “Fiber Bragg grating-based fiber sensor for simultaneous measurement of refractive index and temperature,” Sens. Actuators B Chem. 150(1), 226–229 (2010).
[Crossref]

2009 (1)

Z. Ran, Y. Rao, J. Zhang, and B. Xu, “A miniature fiber-optic refractive-index sensor based on laser-machined Fabry-Perot interferometer tip,” J. Lit. Technol. 27(23), 75035U (2009).
[Crossref]

2008 (3)

2005 (1)

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(151122), 151122 (2005).
[Crossref]

1997 (1)

L. B. Yuan, “Effect of Temperature and Strain on Fiber Optic Refractive Index,” Acta Opt. Sin. 17(12), 1713–1717 (1997).

1980 (1)

J. C. Murphy and L. C. Aamodt, “Photothermal spectroscopy using optical beam probing: Mirage effect,” J. Appl. Phys. 51(9), 4580–4588 (1980).
[Crossref]

Aamodt, L. C.

J. C. Murphy and L. C. Aamodt, “Photothermal spectroscopy using optical beam probing: Mirage effect,” J. Appl. Phys. 51(9), 4580–4588 (1980).
[Crossref]

Al-Qazwini, Y.

Y. Al-Qazwini, A. S. M. Noor, Z. Al-Qazwini, M. H. Yaacob, S. W. Harun, and M. A. Mahdi, “Refractive index sensor based on SPR in symmetrically etched plastic optical fibers,” Sens. Actuators A Phys. 246, 163–169 (2016).
[Crossref]

Al-Qazwini, Z.

Y. Al-Qazwini, A. S. M. Noor, Z. Al-Qazwini, M. H. Yaacob, S. W. Harun, and M. A. Mahdi, “Refractive index sensor based on SPR in symmetrically etched plastic optical fibers,” Sens. Actuators A Phys. 246, 163–169 (2016).
[Crossref]

Altuncu, A.

A. Basgumus, F. E. Durak, A. Altuncu, and G. Yilmaz, “A universal and stable all-fiber refractive index sensor system,” IEEE Photonics Technol. Lett. 28(2), 171–174 (2016).
[Crossref]

André, R. M.

S. C. Warren-Smith, R. M. André, J. Dellith, and H. Bartelt, “Multiplexed refractive index-based sensing using optical fiber microcavities,” Proc. SPIE 9899, 98991G (2016).

Bao, X.

J. Harris, P. Lu, H. Larocque, L. Chen, and X. Bao, “In-fiber Mach-Zehnder interferometric refractive index sensors with guided and leaky modes,” Sens. Actuators B Chem. 206, 246–251 (2015).
[Crossref]

Bartelt, H.

S. C. Warren-Smith, R. M. André, J. Dellith, and H. Bartelt, “Multiplexed refractive index-based sensing using optical fiber microcavities,” Proc. SPIE 9899, 98991G (2016).

Basgumus, A.

A. Basgumus, F. E. Durak, A. Altuncu, and G. Yilmaz, “A universal and stable all-fiber refractive index sensor system,” IEEE Photonics Technol. Lett. 28(2), 171–174 (2016).
[Crossref]

Bautista-Morales, M. D. R.

Burton, G.

L. Melo, G. Burton, P. Kubik, and P. Wild, “Refractive index sensor based on inline Mach-Zehnder interferometer coated with hafnium oxide by atomic layer deposition,” Sens. Actuators B Chem. 236, 537–545 (2016).
[Crossref]

Cao, M.

L. Li, Q. Ma, M. Cao, G. Zhang, Y. Zhang, L. Jiang, C. Gao, J. Yao, S. Gong, and W. Li, “High stability Michelson refractometer based on an in-fiber interferometer followed with a Faraday rotator mirror,” Sens. Actuators B Chem. 234, 674–679 (2016).
[Crossref]

Chen, J.

Chen, L.

J. Harris, P. Lu, H. Larocque, L. Chen, and X. Bao, “In-fiber Mach-Zehnder interferometric refractive index sensors with guided and leaky modes,” Sens. Actuators B Chem. 206, 246–251 (2015).
[Crossref]

Chen, R.

Y. Chen, Y. Wang, R. Chen, W. Yang, H. Liu, T. Liu, and Q. Han, “A Hybrid Multimode Interference Structure-Based Refractive Index and Temperature Fiber Sensor,” IEEE Sens. J. 16(2), 331–335 (2016).
[Crossref]

Chen, Y.

Y. Chen, Y. Wang, R. Chen, W. Yang, H. Liu, T. Liu, and Q. Han, “A Hybrid Multimode Interference Structure-Based Refractive Index and Temperature Fiber Sensor,” IEEE Sens. J. 16(2), 331–335 (2016).
[Crossref]

Y. Chen, Q. Han, T. Liu, and X. Lü, “Self-temperature-compensative refractometer based on singlemode-multimode-singlemode fiber structure,” Sens. Actuators B Chem. 212, 107–111 (2015).
[Crossref]

Chiang, K. S.

Dellith, J.

S. C. Warren-Smith, R. M. André, J. Dellith, and H. Bartelt, “Multiplexed refractive index-based sensing using optical fiber microcavities,” Proc. SPIE 9899, 98991G (2016).

Deng, M.

Y. J. Rao, M. Deng, D. W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A Phys. 148(1), 33–38 (2008).
[Crossref]

Duan, D. W.

Y. J. Rao, M. Deng, D. W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A Phys. 148(1), 33–38 (2008).
[Crossref]

Durak, F. E.

A. Basgumus, F. E. Durak, A. Altuncu, and G. Yilmaz, “A universal and stable all-fiber refractive index sensor system,” IEEE Photonics Technol. Lett. 28(2), 171–174 (2016).
[Crossref]

Dwivedi, R.

M. Kumar, A. Kumar, and R. Dwivedi, “Ultra high sensitive integrated optical waveguide refractive index sensor based on multimode interference,” Sens. Actuators B Chem. 222, 556–561 (2016).
[Crossref]

Eom, J. B.

Esteban, Ó.

J. H. López, Ó. Esteban, M. G. Shlyagin, and R. Martínez-Manuel, “Multipoint Refractometer Based on Combined Correlation and Frequency Multiplexing,” IEEE Photonics Technol. Lett. 29(17), 1479–1482 (2017).
[Crossref]

Farrell, G.

Fu, H.

M. Shao, X. Qiao, H. Fu, Y. Liu, X. Zhao, and N. Yao, “High sensitivity refractive index sensing of Mach-Zehnder interferometer based on multimode fiber core sandwiched between two waist-enlarged fiber tapers,” Opt. Commun. 311, 359–363 (2013).
[Crossref]

Gao, C.

L. Li, Q. Ma, M. Cao, G. Zhang, Y. Zhang, L. Jiang, C. Gao, J. Yao, S. Gong, and W. Li, “High stability Michelson refractometer based on an in-fiber interferometer followed with a Faraday rotator mirror,” Sens. Actuators B Chem. 234, 674–679 (2016).
[Crossref]

Gong, S.

L. Li, Q. Ma, M. Cao, G. Zhang, Y. Zhang, L. Jiang, C. Gao, J. Yao, S. Gong, and W. Li, “High stability Michelson refractometer based on an in-fiber interferometer followed with a Faraday rotator mirror,” Sens. Actuators B Chem. 234, 674–679 (2016).
[Crossref]

Gong, Y.

L. Liu, Y. Gong, Y. Wu, T. Zhao, H. J. Wu, and Y. J. Rao, “Spatial frequency multiplexing of fiber-optic interferometric refractive index sensors based on graded-index multimode fibers,” Sensors (Basel) 12(9), 12377–12385 (2012).
[Crossref]

Han, Q.

Y. Chen, Y. Wang, R. Chen, W. Yang, H. Liu, T. Liu, and Q. Han, “A Hybrid Multimode Interference Structure-Based Refractive Index and Temperature Fiber Sensor,” IEEE Sens. J. 16(2), 331–335 (2016).
[Crossref]

Y. Chen, Q. Han, T. Liu, and X. Lü, “Self-temperature-compensative refractometer based on singlemode-multimode-singlemode fiber structure,” Sens. Actuators B Chem. 212, 107–111 (2015).
[Crossref]

Harris, J.

J. Harris, P. Lu, H. Larocque, L. Chen, and X. Bao, “In-fiber Mach-Zehnder interferometric refractive index sensors with guided and leaky modes,” Sens. Actuators B Chem. 206, 246–251 (2015).
[Crossref]

Harun, S. W.

Y. Al-Qazwini, A. S. M. Noor, Z. Al-Qazwini, M. H. Yaacob, S. W. Harun, and M. A. Mahdi, “Refractive index sensor based on SPR in symmetrically etched plastic optical fibers,” Sens. Actuators A Phys. 246, 163–169 (2016).
[Crossref]

Huang, B.

R. Xiong, H. Meng, Q. Yao, B. Huang, Y. Liu, H. Xue, C. Tan, and X. Huang, “Simultaneous Measurement of Refractive Index and Temperature Based on Modal Interference,” Opt. Commun. 364, 191–194 (2014).

Huang, J.

Huang, X.

R. Xiong, H. Meng, Q. Yao, B. Huang, Y. Liu, H. Xue, C. Tan, and X. Huang, “Simultaneous Measurement of Refractive Index and Temperature Based on Modal Interference,” Opt. Commun. 364, 191–194 (2014).

H. Meng, W. Shen, G. Zhang, X. Wu, W. Wang, C. Tan, and X. Huang, “Michelson interferometer-based fiber-optic sensing of liquid refractive index,” Sens. Actuators B Chem. 160(1), 720–723 (2011).
[Crossref]

H. Meng, W. Shen, G. Zhang, C. Tan, and X. Huang, “Fiber Bragg grating-based fiber sensor for simultaneous measurement of refractive index and temperature,” Sens. Actuators B Chem. 150(1), 226–229 (2010).
[Crossref]

Huang, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(151122), 151122 (2005).
[Crossref]

Jang, J.-H.

Jiang, L.

L. Li, Q. Ma, M. Cao, G. Zhang, Y. Zhang, L. Jiang, C. Gao, J. Yao, S. Gong, and W. Li, “High stability Michelson refractometer based on an in-fiber interferometer followed with a Faraday rotator mirror,” Sens. Actuators B Chem. 234, 674–679 (2016).
[Crossref]

Jin, S.

C. L. Zhao, J. Li, S. Zhang, Z. Zhang, and S. Jin, “Simple fresnel reflection-based optical fiber sensor for multipoint refractive index measurement using an awg,” IEEE Photonics Technol. Lett. 25(6), 606–608 (2013).
[Crossref]

Kim, D. G.

U. Sampath, H. Kim, D. G. Kim, Y. C. Kim, and M. Song, “In-situ cure monitoring of wind turbine blades by using fiber bragg grating sensors and fresnel reflection measurement,” Sensors (Basel) 15(8), 18229–18238 (2015).
[Crossref] [PubMed]

Kim, H.

U. Sampath, H. Kim, D. G. Kim, Y. C. Kim, and M. Song, “In-situ cure monitoring of wind turbine blades by using fiber bragg grating sensors and fresnel reflection measurement,” Sensors (Basel) 15(8), 18229–18238 (2015).
[Crossref] [PubMed]

Kim, Y. C.

U. Sampath, H. Kim, D. G. Kim, Y. C. Kim, and M. Song, “In-situ cure monitoring of wind turbine blades by using fiber bragg grating sensors and fresnel reflection measurement,” Sensors (Basel) 15(8), 18229–18238 (2015).
[Crossref] [PubMed]

Kim, Y. H.

Kubik, P.

L. Melo, G. Burton, P. Kubik, and P. Wild, “Refractive index sensor based on inline Mach-Zehnder interferometer coated with hafnium oxide by atomic layer deposition,” Sens. Actuators B Chem. 236, 537–545 (2016).
[Crossref]

Kumar, A.

M. Kumar, A. Kumar, and R. Dwivedi, “Ultra high sensitive integrated optical waveguide refractive index sensor based on multimode interference,” Sens. Actuators B Chem. 222, 556–561 (2016).
[Crossref]

Kumar, M.

M. Kumar, A. Kumar, and R. Dwivedi, “Ultra high sensitive integrated optical waveguide refractive index sensor based on multimode interference,” Sens. Actuators B Chem. 222, 556–561 (2016).
[Crossref]

Lan, X.

Larocque, H.

J. Harris, P. Lu, H. Larocque, L. Chen, and X. Bao, “In-fiber Mach-Zehnder interferometric refractive index sensors with guided and leaky modes,” Sens. Actuators B Chem. 206, 246–251 (2015).
[Crossref]

Lee, B. H.

Lee, R. K.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(151122), 151122 (2005).
[Crossref]

Li, J.

C. L. Zhao, J. Li, S. Zhang, Z. Zhang, and S. Jin, “Simple fresnel reflection-based optical fiber sensor for multipoint refractive index measurement using an awg,” IEEE Photonics Technol. Lett. 25(6), 606–608 (2013).
[Crossref]

Li, L.

L. Li, Q. Ma, M. Cao, G. Zhang, Y. Zhang, L. Jiang, C. Gao, J. Yao, S. Gong, and W. Li, “High stability Michelson refractometer based on an in-fiber interferometer followed with a Faraday rotator mirror,” Sens. Actuators B Chem. 234, 674–679 (2016).
[Crossref]

Li, W.

L. Li, Q. Ma, M. Cao, G. Zhang, Y. Zhang, L. Jiang, C. Gao, J. Yao, S. Gong, and W. Li, “High stability Michelson refractometer based on an in-fiber interferometer followed with a Faraday rotator mirror,” Sens. Actuators B Chem. 234, 674–679 (2016).
[Crossref]

Li, X.

X. Li, Y. Shao, Y. Yu, Y. Zhang, and S. Wei, “A highly sensitive fiber-optic fabry–perot interferometer based on internal reflection mirrors for refractive index measurement,” Sensors (Basel) 16(6), 794 (2016).
[Crossref] [PubMed]

Li, Y.

Y. Xiang, Y. Luo, Y. Li, Y. Li, Z. Yan, D. Liu, and Q. Sun, “Quasi-Distributed Dual-Parameter Optical Fiber Sensor Based on Cascaded Microfiber Fabry-Perot Interferometers,” IEEE Photonics J. 10(2), 1 (2018).
[Crossref]

Y. Xiang, Y. Luo, Y. Li, Y. Li, Z. Yan, D. Liu, and Q. Sun, “Quasi-Distributed Dual-Parameter Optical Fiber Sensor Based on Cascaded Microfiber Fabry-Perot Interferometers,” IEEE Photonics J. 10(2), 1 (2018).
[Crossref]

Liang, W.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(151122), 151122 (2005).
[Crossref]

Liao, X.

Lin, K.

Liu, D.

Y. Xiang, Y. Luo, Y. Li, Y. Li, Z. Yan, D. Liu, and Q. Sun, “Quasi-Distributed Dual-Parameter Optical Fiber Sensor Based on Cascaded Microfiber Fabry-Perot Interferometers,” IEEE Photonics J. 10(2), 1 (2018).
[Crossref]

Liu, H.

Y. Chen, Y. Wang, R. Chen, W. Yang, H. Liu, T. Liu, and Q. Han, “A Hybrid Multimode Interference Structure-Based Refractive Index and Temperature Fiber Sensor,” IEEE Sens. J. 16(2), 331–335 (2016).
[Crossref]

Liu, L.

L. Liu, Y. Gong, Y. Wu, T. Zhao, H. J. Wu, and Y. J. Rao, “Spatial frequency multiplexing of fiber-optic interferometric refractive index sensors based on graded-index multimode fibers,” Sensors (Basel) 12(9), 12377–12385 (2012).
[Crossref]

Liu, T.

Y. Chen, Y. Wang, R. Chen, W. Yang, H. Liu, T. Liu, and Q. Han, “A Hybrid Multimode Interference Structure-Based Refractive Index and Temperature Fiber Sensor,” IEEE Sens. J. 16(2), 331–335 (2016).
[Crossref]

Y. Chen, Q. Han, T. Liu, and X. Lü, “Self-temperature-compensative refractometer based on singlemode-multimode-singlemode fiber structure,” Sens. Actuators B Chem. 212, 107–111 (2015).
[Crossref]

Liu, W. J.

Liu, Y.

R. Xiong, H. Meng, Q. Yao, B. Huang, Y. Liu, H. Xue, C. Tan, and X. Huang, “Simultaneous Measurement of Refractive Index and Temperature Based on Modal Interference,” Opt. Commun. 364, 191–194 (2014).

M. Shao, X. Qiao, H. Fu, Y. Liu, X. Zhao, and N. Yao, “High sensitivity refractive index sensing of Mach-Zehnder interferometer based on multimode fiber core sandwiched between two waist-enlarged fiber tapers,” Opt. Commun. 311, 359–363 (2013).
[Crossref]

López, J. H.

J. H. López, Ó. Esteban, M. G. Shlyagin, and R. Martínez-Manuel, “Multipoint Refractometer Based on Combined Correlation and Frequency Multiplexing,” IEEE Photonics Technol. Lett. 29(17), 1479–1482 (2017).
[Crossref]

Lu, P.

J. Harris, P. Lu, H. Larocque, L. Chen, and X. Bao, “In-fiber Mach-Zehnder interferometric refractive index sensors with guided and leaky modes,” Sens. Actuators B Chem. 206, 246–251 (2015).
[Crossref]

Lu, Y.

Lü, X.

Y. Chen, Q. Han, T. Liu, and X. Lü, “Self-temperature-compensative refractometer based on singlemode-multimode-singlemode fiber structure,” Sens. Actuators B Chem. 212, 107–111 (2015).
[Crossref]

Luo, L.

S. Pu, L. Luo, J. Tang, L. Mao, and X. Zeng, “Ultrasensitive Refractive-Index Sensors Based on Tapered Fiber Coupler with Sagnac Loop,” IEEE Photonics Technol. Lett. 28(10), 1073–1076 (2016).
[Crossref]

Luo, M.

Luo, Y.

Y. Xiang, Y. Luo, Y. Li, Y. Li, Z. Yan, D. Liu, and Q. Sun, “Quasi-Distributed Dual-Parameter Optical Fiber Sensor Based on Cascaded Microfiber Fabry-Perot Interferometers,” IEEE Photonics J. 10(2), 1 (2018).
[Crossref]

Ma, Q.

L. Li, Q. Ma, M. Cao, G. Zhang, Y. Zhang, L. Jiang, C. Gao, J. Yao, S. Gong, and W. Li, “High stability Michelson refractometer based on an in-fiber interferometer followed with a Faraday rotator mirror,” Sens. Actuators B Chem. 234, 674–679 (2016).
[Crossref]

Mahdi, M. A.

Y. Al-Qazwini, A. S. M. Noor, Z. Al-Qazwini, M. H. Yaacob, S. W. Harun, and M. A. Mahdi, “Refractive index sensor based on SPR in symmetrically etched plastic optical fibers,” Sens. Actuators A Phys. 246, 163–169 (2016).
[Crossref]

Mao, L.

S. Pu, L. Luo, J. Tang, L. Mao, and X. Zeng, “Ultrasensitive Refractive-Index Sensors Based on Tapered Fiber Coupler with Sagnac Loop,” IEEE Photonics Technol. Lett. 28(10), 1073–1076 (2016).
[Crossref]

Martínez-Manuel, R.

J. H. López, Ó. Esteban, M. G. Shlyagin, and R. Martínez-Manuel, “Multipoint Refractometer Based on Combined Correlation and Frequency Multiplexing,” IEEE Photonics Technol. Lett. 29(17), 1479–1482 (2017).
[Crossref]

M. D. R. Bautista-Morales, R. Martínez-Manuel, and C. A. Pineda-Arellano, “Overlapped fiber-optic Michelson interferometers for simultaneous refractive index measurement at two sensing points,” Appl. Opt. 56(34), 9515–9519 (2017).
[Crossref] [PubMed]

Melo, L.

L. Melo, G. Burton, P. Kubik, and P. Wild, “Refractive index sensor based on inline Mach-Zehnder interferometer coated with hafnium oxide by atomic layer deposition,” Sens. Actuators B Chem. 236, 537–545 (2016).
[Crossref]

Meng, H.

R. Xiong, H. Meng, Q. Yao, B. Huang, Y. Liu, H. Xue, C. Tan, and X. Huang, “Simultaneous Measurement of Refractive Index and Temperature Based on Modal Interference,” Opt. Commun. 364, 191–194 (2014).

H. Meng, W. Shen, G. Zhang, X. Wu, W. Wang, C. Tan, and X. Huang, “Michelson interferometer-based fiber-optic sensing of liquid refractive index,” Sens. Actuators B Chem. 160(1), 720–723 (2011).
[Crossref]

H. Meng, W. Shen, G. Zhang, C. Tan, and X. Huang, “Fiber Bragg grating-based fiber sensor for simultaneous measurement of refractive index and temperature,” Sens. Actuators B Chem. 150(1), 226–229 (2010).
[Crossref]

Ming, H.

Murphy, J. C.

J. C. Murphy and L. C. Aamodt, “Photothermal spectroscopy using optical beam probing: Mirage effect,” J. Appl. Phys. 51(9), 4580–4588 (1980).
[Crossref]

Noor, A. S. M.

Y. Al-Qazwini, A. S. M. Noor, Z. Al-Qazwini, M. H. Yaacob, S. W. Harun, and M. A. Mahdi, “Refractive index sensor based on SPR in symmetrically etched plastic optical fibers,” Sens. Actuators A Phys. 246, 163–169 (2016).
[Crossref]

Park, K. S.

Park, M.-S.

Park, S. J.

Peng, B. J.

Q. G. Shi, L. N. Ying, L. Wang, B. J. Peng, and C. F. Ying, “A Method of the Detection of Marine Pollution Based on the Measurement of Refractive Index,” Appl. Mech. Mater. 551, 347–352 (2014).
[Crossref]

Pineda-Arellano, C. A.

Pu, S.

S. Pu, L. Luo, J. Tang, L. Mao, and X. Zeng, “Ultrasensitive Refractive-Index Sensors Based on Tapered Fiber Coupler with Sagnac Loop,” IEEE Photonics Technol. Lett. 28(10), 1073–1076 (2016).
[Crossref]

Qi, L.

S. J. J. Yuan, C. Zhao, L. Qi, X. Wang, and Z. Zhang, “Fresnel reflection-based optical fiber sensor for quasi-distributed refractive index measurement,” Laser & Optoeletronics Progress 51(9), 092801 (2014).
[Crossref]

Qiao, X.

M. Shao, X. Qiao, H. Fu, Y. Liu, X. Zhao, and N. Yao, “High sensitivity refractive index sensing of Mach-Zehnder interferometer based on multimode fiber core sandwiched between two waist-enlarged fiber tapers,” Opt. Commun. 311, 359–363 (2013).
[Crossref]

Ran, Z.

Z. Ran, Y. Rao, J. Zhang, and B. Xu, “A miniature fiber-optic refractive-index sensor based on laser-machined Fabry-Perot interferometer tip,” J. Lit. Technol. 27(23), 75035U (2009).
[Crossref]

Ran, Z. L.

Rao, Y.

Z. Ran, Y. Rao, J. Zhang, and B. Xu, “A miniature fiber-optic refractive-index sensor based on laser-machined Fabry-Perot interferometer tip,” J. Lit. Technol. 27(23), 75035U (2009).
[Crossref]

Rao, Y. J.

L. Liu, Y. Gong, Y. Wu, T. Zhao, H. J. Wu, and Y. J. Rao, “Spatial frequency multiplexing of fiber-optic interferometric refractive index sensors based on graded-index multimode fibers,” Sensors (Basel) 12(9), 12377–12385 (2012).
[Crossref]

Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express 16(3), 2252–2263 (2008).
[Crossref] [PubMed]

Y. J. Rao, M. Deng, D. W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A Phys. 148(1), 33–38 (2008).
[Crossref]

Sampath, U.

U. Sampath, H. Kim, D. G. Kim, Y. C. Kim, and M. Song, “In-situ cure monitoring of wind turbine blades by using fiber bragg grating sensors and fresnel reflection measurement,” Sensors (Basel) 15(8), 18229–18238 (2015).
[Crossref] [PubMed]

Semenova, Y.

Shao, M.

M. Shao, X. Qiao, H. Fu, Y. Liu, X. Zhao, and N. Yao, “High sensitivity refractive index sensing of Mach-Zehnder interferometer based on multimode fiber core sandwiched between two waist-enlarged fiber tapers,” Opt. Commun. 311, 359–363 (2013).
[Crossref]

Shao, Y.

X. Li, Y. Shao, Y. Yu, Y. Zhang, and S. Wei, “A highly sensitive fiber-optic fabry–perot interferometer based on internal reflection mirrors for refractive index measurement,” Sensors (Basel) 16(6), 794 (2016).
[Crossref] [PubMed]

Shen, W.

H. Meng, W. Shen, G. Zhang, X. Wu, W. Wang, C. Tan, and X. Huang, “Michelson interferometer-based fiber-optic sensing of liquid refractive index,” Sens. Actuators B Chem. 160(1), 720–723 (2011).
[Crossref]

H. Meng, W. Shen, G. Zhang, C. Tan, and X. Huang, “Fiber Bragg grating-based fiber sensor for simultaneous measurement of refractive index and temperature,” Sens. Actuators B Chem. 150(1), 226–229 (2010).
[Crossref]

Shi, Q. G.

Q. G. Shi, L. N. Ying, L. Wang, B. J. Peng, and C. F. Ying, “A Method of the Detection of Marine Pollution Based on the Measurement of Refractive Index,” Appl. Mech. Mater. 551, 347–352 (2014).
[Crossref]

Shlyagin, M. G.

J. H. López, Ó. Esteban, M. G. Shlyagin, and R. Martínez-Manuel, “Multipoint Refractometer Based on Combined Correlation and Frequency Multiplexing,” IEEE Photonics Technol. Lett. 29(17), 1479–1482 (2017).
[Crossref]

Singh, A.

A. Singh, “Various characteristics of long-period fiber grating-based refractive index sensor,” Optik (Stuttg.) 126(24), 5439–5443 (2015).
[Crossref]

Song, M.

U. Sampath, H. Kim, D. G. Kim, Y. C. Kim, and M. Song, “In-situ cure monitoring of wind turbine blades by using fiber bragg grating sensors and fresnel reflection measurement,” Sensors (Basel) 15(8), 18229–18238 (2015).
[Crossref] [PubMed]

Sun, Q.

Y. Xiang, Y. Luo, Y. Li, Y. Li, Z. Yan, D. Liu, and Q. Sun, “Quasi-Distributed Dual-Parameter Optical Fiber Sensor Based on Cascaded Microfiber Fabry-Perot Interferometers,” IEEE Photonics J. 10(2), 1 (2018).
[Crossref]

Tan, C.

R. Xiong, H. Meng, Q. Yao, B. Huang, Y. Liu, H. Xue, C. Tan, and X. Huang, “Simultaneous Measurement of Refractive Index and Temperature Based on Modal Interference,” Opt. Commun. 364, 191–194 (2014).

H. Meng, W. Shen, G. Zhang, X. Wu, W. Wang, C. Tan, and X. Huang, “Michelson interferometer-based fiber-optic sensing of liquid refractive index,” Sens. Actuators B Chem. 160(1), 720–723 (2011).
[Crossref]

H. Meng, W. Shen, G. Zhang, C. Tan, and X. Huang, “Fiber Bragg grating-based fiber sensor for simultaneous measurement of refractive index and temperature,” Sens. Actuators B Chem. 150(1), 226–229 (2010).
[Crossref]

Tang, J.

S. Pu, L. Luo, J. Tang, L. Mao, and X. Zeng, “Ultrasensitive Refractive-Index Sensors Based on Tapered Fiber Coupler with Sagnac Loop,” IEEE Photonics Technol. Lett. 28(10), 1073–1076 (2016).
[Crossref]

Wang, L.

Q. G. Shi, L. N. Ying, L. Wang, B. J. Peng, and C. F. Ying, “A Method of the Detection of Marine Pollution Based on the Measurement of Refractive Index,” Appl. Mech. Mater. 551, 347–352 (2014).
[Crossref]

Wang, P.

Wang, W.

H. Meng, W. Shen, G. Zhang, X. Wu, W. Wang, C. Tan, and X. Huang, “Michelson interferometer-based fiber-optic sensing of liquid refractive index,” Sens. Actuators B Chem. 160(1), 720–723 (2011).
[Crossref]

Wang, X.

S. J. J. Yuan, C. Zhao, L. Qi, X. Wang, and Z. Zhang, “Fresnel reflection-based optical fiber sensor for quasi-distributed refractive index measurement,” Laser & Optoeletronics Progress 51(9), 092801 (2014).
[Crossref]

Wang, Y.

Y. Chen, Y. Wang, R. Chen, W. Yang, H. Liu, T. Liu, and Q. Han, “A Hybrid Multimode Interference Structure-Based Refractive Index and Temperature Fiber Sensor,” IEEE Sens. J. 16(2), 331–335 (2016).
[Crossref]

Warren-Smith, S. C.

S. C. Warren-Smith, R. M. André, J. Dellith, and H. Bartelt, “Multiplexed refractive index-based sensing using optical fiber microcavities,” Proc. SPIE 9899, 98991G (2016).

Wei, S.

X. Li, Y. Shao, Y. Yu, Y. Zhang, and S. Wei, “A highly sensitive fiber-optic fabry–perot interferometer based on internal reflection mirrors for refractive index measurement,” Sensors (Basel) 16(6), 794 (2016).
[Crossref] [PubMed]

Wild, P.

L. Melo, G. Burton, P. Kubik, and P. Wild, “Refractive index sensor based on inline Mach-Zehnder interferometer coated with hafnium oxide by atomic layer deposition,” Sens. Actuators B Chem. 236, 537–545 (2016).
[Crossref]

Wu, H. J.

L. Liu, Y. Gong, Y. Wu, T. Zhao, H. J. Wu, and Y. J. Rao, “Spatial frequency multiplexing of fiber-optic interferometric refractive index sensors based on graded-index multimode fibers,” Sensors (Basel) 12(9), 12377–12385 (2012).
[Crossref]

Wu, Q.

Wu, X.

H. Meng, W. Shen, G. Zhang, X. Wu, W. Wang, C. Tan, and X. Huang, “Michelson interferometer-based fiber-optic sensing of liquid refractive index,” Sens. Actuators B Chem. 160(1), 720–723 (2011).
[Crossref]

Wu, Y.

L. Liu, Y. Gong, Y. Wu, T. Zhao, H. J. Wu, and Y. J. Rao, “Spatial frequency multiplexing of fiber-optic interferometric refractive index sensors based on graded-index multimode fibers,” Sensors (Basel) 12(9), 12377–12385 (2012).
[Crossref]

Xiang, Y.

Y. Xiang, Y. Luo, Y. Li, Y. Li, Z. Yan, D. Liu, and Q. Sun, “Quasi-Distributed Dual-Parameter Optical Fiber Sensor Based on Cascaded Microfiber Fabry-Perot Interferometers,” IEEE Photonics J. 10(2), 1 (2018).
[Crossref]

Xiao, H.

Xiong, R.

R. Xiong, H. Meng, Q. Yao, B. Huang, Y. Liu, H. Xue, C. Tan, and X. Huang, “Simultaneous Measurement of Refractive Index and Temperature Based on Modal Interference,” Opt. Commun. 364, 191–194 (2014).

Xu, B.

Z. Ran, Y. Rao, J. Zhang, and B. Xu, “A miniature fiber-optic refractive-index sensor based on laser-machined Fabry-Perot interferometer tip,” J. Lit. Technol. 27(23), 75035U (2009).
[Crossref]

Xu, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(151122), 151122 (2005).
[Crossref]

Xue, H.

R. Xiong, H. Meng, Q. Yao, B. Huang, Y. Liu, H. Xue, C. Tan, and X. Huang, “Simultaneous Measurement of Refractive Index and Temperature Based on Modal Interference,” Opt. Commun. 364, 191–194 (2014).

Yaacob, M. H.

Y. Al-Qazwini, A. S. M. Noor, Z. Al-Qazwini, M. H. Yaacob, S. W. Harun, and M. A. Mahdi, “Refractive index sensor based on SPR in symmetrically etched plastic optical fibers,” Sens. Actuators A Phys. 246, 163–169 (2016).
[Crossref]

Yan, Z.

Y. Xiang, Y. Luo, Y. Li, Y. Li, Z. Yan, D. Liu, and Q. Sun, “Quasi-Distributed Dual-Parameter Optical Fiber Sensor Based on Cascaded Microfiber Fabry-Perot Interferometers,” IEEE Photonics J. 10(2), 1 (2018).
[Crossref]

Yang, W.

Y. Chen, Y. Wang, R. Chen, W. Yang, H. Liu, T. Liu, and Q. Han, “A Hybrid Multimode Interference Structure-Based Refractive Index and Temperature Fiber Sensor,” IEEE Sens. J. 16(2), 331–335 (2016).
[Crossref]

Yao, J.

L. Li, Q. Ma, M. Cao, G. Zhang, Y. Zhang, L. Jiang, C. Gao, J. Yao, S. Gong, and W. Li, “High stability Michelson refractometer based on an in-fiber interferometer followed with a Faraday rotator mirror,” Sens. Actuators B Chem. 234, 674–679 (2016).
[Crossref]

Yao, N.

M. Shao, X. Qiao, H. Fu, Y. Liu, X. Zhao, and N. Yao, “High sensitivity refractive index sensing of Mach-Zehnder interferometer based on multimode fiber core sandwiched between two waist-enlarged fiber tapers,” Opt. Commun. 311, 359–363 (2013).
[Crossref]

Yao, Q.

R. Xiong, H. Meng, Q. Yao, B. Huang, Y. Liu, H. Xue, C. Tan, and X. Huang, “Simultaneous Measurement of Refractive Index and Temperature Based on Modal Interference,” Opt. Commun. 364, 191–194 (2014).

Yariv, A.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(151122), 151122 (2005).
[Crossref]

Yilmaz, G.

A. Basgumus, F. E. Durak, A. Altuncu, and G. Yilmaz, “A universal and stable all-fiber refractive index sensor system,” IEEE Photonics Technol. Lett. 28(2), 171–174 (2016).
[Crossref]

Ying, C. F.

Q. G. Shi, L. N. Ying, L. Wang, B. J. Peng, and C. F. Ying, “A Method of the Detection of Marine Pollution Based on the Measurement of Refractive Index,” Appl. Mech. Mater. 551, 347–352 (2014).
[Crossref]

Ying, L. N.

Q. G. Shi, L. N. Ying, L. Wang, B. J. Peng, and C. F. Ying, “A Method of the Detection of Marine Pollution Based on the Measurement of Refractive Index,” Appl. Mech. Mater. 551, 347–352 (2014).
[Crossref]

Yu, Y.

X. Li, Y. Shao, Y. Yu, Y. Zhang, and S. Wei, “A highly sensitive fiber-optic fabry–perot interferometer based on internal reflection mirrors for refractive index measurement,” Sensors (Basel) 16(6), 794 (2016).
[Crossref] [PubMed]

Yuan, L. B.

L. B. Yuan, “Effect of Temperature and Strain on Fiber Optic Refractive Index,” Acta Opt. Sin. 17(12), 1713–1717 (1997).

Yuan, S. J. J.

S. J. J. Yuan, C. Zhao, L. Qi, X. Wang, and Z. Zhang, “Fresnel reflection-based optical fiber sensor for quasi-distributed refractive index measurement,” Laser & Optoeletronics Progress 51(9), 092801 (2014).
[Crossref]

Yüksel, K.

K. Yüksel, “Optical fiber sensor system for remote and multi-point refractive index measurement,” Sens. Actuators A Phys. 250, 29–34 (2016).
[Crossref]

Zeng, X.

S. Pu, L. Luo, J. Tang, L. Mao, and X. Zeng, “Ultrasensitive Refractive-Index Sensors Based on Tapered Fiber Coupler with Sagnac Loop,” IEEE Photonics Technol. Lett. 28(10), 1073–1076 (2016).
[Crossref]

Zhang, G.

L. Li, Q. Ma, M. Cao, G. Zhang, Y. Zhang, L. Jiang, C. Gao, J. Yao, S. Gong, and W. Li, “High stability Michelson refractometer based on an in-fiber interferometer followed with a Faraday rotator mirror,” Sens. Actuators B Chem. 234, 674–679 (2016).
[Crossref]

H. Meng, W. Shen, G. Zhang, X. Wu, W. Wang, C. Tan, and X. Huang, “Michelson interferometer-based fiber-optic sensing of liquid refractive index,” Sens. Actuators B Chem. 160(1), 720–723 (2011).
[Crossref]

H. Meng, W. Shen, G. Zhang, C. Tan, and X. Huang, “Fiber Bragg grating-based fiber sensor for simultaneous measurement of refractive index and temperature,” Sens. Actuators B Chem. 150(1), 226–229 (2010).
[Crossref]

Zhang, J.

Z. Ran, Y. Rao, J. Zhang, and B. Xu, “A miniature fiber-optic refractive-index sensor based on laser-machined Fabry-Perot interferometer tip,” J. Lit. Technol. 27(23), 75035U (2009).
[Crossref]

Zhang, S.

C. L. Zhao, J. Li, S. Zhang, Z. Zhang, and S. Jin, “Simple fresnel reflection-based optical fiber sensor for multipoint refractive index measurement using an awg,” IEEE Photonics Technol. Lett. 25(6), 606–608 (2013).
[Crossref]

Zhang, Y.

X. Li, Y. Shao, Y. Yu, Y. Zhang, and S. Wei, “A highly sensitive fiber-optic fabry–perot interferometer based on internal reflection mirrors for refractive index measurement,” Sensors (Basel) 16(6), 794 (2016).
[Crossref] [PubMed]

L. Li, Q. Ma, M. Cao, G. Zhang, Y. Zhang, L. Jiang, C. Gao, J. Yao, S. Gong, and W. Li, “High stability Michelson refractometer based on an in-fiber interferometer followed with a Faraday rotator mirror,” Sens. Actuators B Chem. 234, 674–679 (2016).
[Crossref]

Zhang, Z.

S. J. J. Yuan, C. Zhao, L. Qi, X. Wang, and Z. Zhang, “Fresnel reflection-based optical fiber sensor for quasi-distributed refractive index measurement,” Laser & Optoeletronics Progress 51(9), 092801 (2014).
[Crossref]

C. L. Zhao, J. Li, S. Zhang, Z. Zhang, and S. Jin, “Simple fresnel reflection-based optical fiber sensor for multipoint refractive index measurement using an awg,” IEEE Photonics Technol. Lett. 25(6), 606–608 (2013).
[Crossref]

Zhao, C.

S. J. J. Yuan, C. Zhao, L. Qi, X. Wang, and Z. Zhang, “Fresnel reflection-based optical fiber sensor for quasi-distributed refractive index measurement,” Laser & Optoeletronics Progress 51(9), 092801 (2014).
[Crossref]

Zhao, C. L.

C. L. Zhao, J. Li, S. Zhang, Z. Zhang, and S. Jin, “Simple fresnel reflection-based optical fiber sensor for multipoint refractive index measurement using an awg,” IEEE Photonics Technol. Lett. 25(6), 606–608 (2013).
[Crossref]

Zhao, T.

L. Liu, Y. Gong, Y. Wu, T. Zhao, H. J. Wu, and Y. J. Rao, “Spatial frequency multiplexing of fiber-optic interferometric refractive index sensors based on graded-index multimode fibers,” Sensors (Basel) 12(9), 12377–12385 (2012).
[Crossref]

Zhao, X.

M. Shao, X. Qiao, H. Fu, Y. Liu, X. Zhao, and N. Yao, “High sensitivity refractive index sensing of Mach-Zehnder interferometer based on multimode fiber core sandwiched between two waist-enlarged fiber tapers,” Opt. Commun. 311, 359–363 (2013).
[Crossref]

Zheng, R.

Zhu, T.

Y. J. Rao, M. Deng, D. W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A Phys. 148(1), 33–38 (2008).
[Crossref]

Acta Opt. Sin. (1)

L. B. Yuan, “Effect of Temperature and Strain on Fiber Optic Refractive Index,” Acta Opt. Sin. 17(12), 1713–1717 (1997).

Appl. Mech. Mater. (1)

Q. G. Shi, L. N. Ying, L. Wang, B. J. Peng, and C. F. Ying, “A Method of the Detection of Marine Pollution Based on the Measurement of Refractive Index,” Appl. Mech. Mater. 551, 347–352 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(151122), 151122 (2005).
[Crossref]

IEEE Photonics J. (1)

Y. Xiang, Y. Luo, Y. Li, Y. Li, Z. Yan, D. Liu, and Q. Sun, “Quasi-Distributed Dual-Parameter Optical Fiber Sensor Based on Cascaded Microfiber Fabry-Perot Interferometers,” IEEE Photonics J. 10(2), 1 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (4)

C. L. Zhao, J. Li, S. Zhang, Z. Zhang, and S. Jin, “Simple fresnel reflection-based optical fiber sensor for multipoint refractive index measurement using an awg,” IEEE Photonics Technol. Lett. 25(6), 606–608 (2013).
[Crossref]

A. Basgumus, F. E. Durak, A. Altuncu, and G. Yilmaz, “A universal and stable all-fiber refractive index sensor system,” IEEE Photonics Technol. Lett. 28(2), 171–174 (2016).
[Crossref]

J. H. López, Ó. Esteban, M. G. Shlyagin, and R. Martínez-Manuel, “Multipoint Refractometer Based on Combined Correlation and Frequency Multiplexing,” IEEE Photonics Technol. Lett. 29(17), 1479–1482 (2017).
[Crossref]

S. Pu, L. Luo, J. Tang, L. Mao, and X. Zeng, “Ultrasensitive Refractive-Index Sensors Based on Tapered Fiber Coupler with Sagnac Loop,” IEEE Photonics Technol. Lett. 28(10), 1073–1076 (2016).
[Crossref]

IEEE Sens. J. (1)

Y. Chen, Y. Wang, R. Chen, W. Yang, H. Liu, T. Liu, and Q. Han, “A Hybrid Multimode Interference Structure-Based Refractive Index and Temperature Fiber Sensor,” IEEE Sens. J. 16(2), 331–335 (2016).
[Crossref]

J. Appl. Phys. (1)

J. C. Murphy and L. C. Aamodt, “Photothermal spectroscopy using optical beam probing: Mirage effect,” J. Appl. Phys. 51(9), 4580–4588 (1980).
[Crossref]

J. Lit. Technol. (1)

Z. Ran, Y. Rao, J. Zhang, and B. Xu, “A miniature fiber-optic refractive-index sensor based on laser-machined Fabry-Perot interferometer tip,” J. Lit. Technol. 27(23), 75035U (2009).
[Crossref]

Laser & Optoeletronics Progress (1)

S. J. J. Yuan, C. Zhao, L. Qi, X. Wang, and Z. Zhang, “Fresnel reflection-based optical fiber sensor for quasi-distributed refractive index measurement,” Laser & Optoeletronics Progress 51(9), 092801 (2014).
[Crossref]

Opt. Commun. (2)

M. Shao, X. Qiao, H. Fu, Y. Liu, X. Zhao, and N. Yao, “High sensitivity refractive index sensing of Mach-Zehnder interferometer based on multimode fiber core sandwiched between two waist-enlarged fiber tapers,” Opt. Commun. 311, 359–363 (2013).
[Crossref]

R. Xiong, H. Meng, Q. Yao, B. Huang, Y. Liu, H. Xue, C. Tan, and X. Huang, “Simultaneous Measurement of Refractive Index and Temperature Based on Modal Interference,” Opt. Commun. 364, 191–194 (2014).

Opt. Express (5)

Optik (Stuttg.) (1)

A. Singh, “Various characteristics of long-period fiber grating-based refractive index sensor,” Optik (Stuttg.) 126(24), 5439–5443 (2015).
[Crossref]

Proc. SPIE (1)

S. C. Warren-Smith, R. M. André, J. Dellith, and H. Bartelt, “Multiplexed refractive index-based sensing using optical fiber microcavities,” Proc. SPIE 9899, 98991G (2016).

Sens. Actuators A Phys. (3)

Y. Al-Qazwini, A. S. M. Noor, Z. Al-Qazwini, M. H. Yaacob, S. W. Harun, and M. A. Mahdi, “Refractive index sensor based on SPR in symmetrically etched plastic optical fibers,” Sens. Actuators A Phys. 246, 163–169 (2016).
[Crossref]

K. Yüksel, “Optical fiber sensor system for remote and multi-point refractive index measurement,” Sens. Actuators A Phys. 250, 29–34 (2016).
[Crossref]

Y. J. Rao, M. Deng, D. W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A Phys. 148(1), 33–38 (2008).
[Crossref]

Sens. Actuators B Chem. (7)

H. Meng, W. Shen, G. Zhang, C. Tan, and X. Huang, “Fiber Bragg grating-based fiber sensor for simultaneous measurement of refractive index and temperature,” Sens. Actuators B Chem. 150(1), 226–229 (2010).
[Crossref]

Y. Chen, Q. Han, T. Liu, and X. Lü, “Self-temperature-compensative refractometer based on singlemode-multimode-singlemode fiber structure,” Sens. Actuators B Chem. 212, 107–111 (2015).
[Crossref]

J. Harris, P. Lu, H. Larocque, L. Chen, and X. Bao, “In-fiber Mach-Zehnder interferometric refractive index sensors with guided and leaky modes,” Sens. Actuators B Chem. 206, 246–251 (2015).
[Crossref]

L. Melo, G. Burton, P. Kubik, and P. Wild, “Refractive index sensor based on inline Mach-Zehnder interferometer coated with hafnium oxide by atomic layer deposition,” Sens. Actuators B Chem. 236, 537–545 (2016).
[Crossref]

H. Meng, W. Shen, G. Zhang, X. Wu, W. Wang, C. Tan, and X. Huang, “Michelson interferometer-based fiber-optic sensing of liquid refractive index,” Sens. Actuators B Chem. 160(1), 720–723 (2011).
[Crossref]

L. Li, Q. Ma, M. Cao, G. Zhang, Y. Zhang, L. Jiang, C. Gao, J. Yao, S. Gong, and W. Li, “High stability Michelson refractometer based on an in-fiber interferometer followed with a Faraday rotator mirror,” Sens. Actuators B Chem. 234, 674–679 (2016).
[Crossref]

M. Kumar, A. Kumar, and R. Dwivedi, “Ultra high sensitive integrated optical waveguide refractive index sensor based on multimode interference,” Sens. Actuators B Chem. 222, 556–561 (2016).
[Crossref]

Sensors (Basel) (3)

L. Liu, Y. Gong, Y. Wu, T. Zhao, H. J. Wu, and Y. J. Rao, “Spatial frequency multiplexing of fiber-optic interferometric refractive index sensors based on graded-index multimode fibers,” Sensors (Basel) 12(9), 12377–12385 (2012).
[Crossref]

U. Sampath, H. Kim, D. G. Kim, Y. C. Kim, and M. Song, “In-situ cure monitoring of wind turbine blades by using fiber bragg grating sensors and fresnel reflection measurement,” Sensors (Basel) 15(8), 18229–18238 (2015).
[Crossref] [PubMed]

X. Li, Y. Shao, Y. Yu, Y. Zhang, and S. Wei, “A highly sensitive fiber-optic fabry–perot interferometer based on internal reflection mirrors for refractive index measurement,” Sensors (Basel) 16(6), 794 (2016).
[Crossref] [PubMed]

Other (1)

A. Gastón, I. Lozano, and J. Sevilla, “A novel approach to on line oil quality sensing through side-Polished optical fiber,” In the proceeding of Instrumentation and Measurement Technology Conference (IEEE, 2006), pp. 2066–2069.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of OCMR system for multipoint RI measurements.
Fig. 2
Fig. 2 Experimental setup for multipoint refractive index measurement based on OCMR.
Fig. 3
Fig. 3 (a) Reflective amplitudes of the 8 sensing tips in time domain at various RIs. (b) Zoom graph of the fourth sensing tip.
Fig. 4
Fig. 4 RI responses of the 7 sensors (a) without self-calibration, (b) with self-calibration.
Fig. 5
Fig. 5 Normalized reflective amplitudes as a function of refractive index (blue line) and temperature (red line).
Fig. 6
Fig. 6 Stability of the sensing tips, and the inset is the corresponding spectrum in time domain.

Tables (3)

Tables Icon

Table 1 Comparison of the linearity of each sensing tip with two calculation methods

Tables Icon

Table 2 Comparison of RI sensitivities and fitting linearity degree of sensors with the two calculation methods

Tables Icon

Table 3 The comparison of sensing performances of multipoint RI measurement methods

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

| i=1 N E i | 2 =DC term + Microwave term + Optical term
I DC = i=1 N R i A 2
I m = i=1 N R i A 2 Bcos[ f(t+ W c + 2 z i n c ) ]
I o = 2 Δω i=1,j=1ji N (1+Bcos[f(t+ W+2 z i n c ))(1+Bcos[f(t+ W+2 z j n c )] ) R i R j A 2 ω min ω max {cos[ 2ω c ( z 1 z 2 )n]}dω
R i = ( n fiber n i n fiber + n i ) 2
X(t)= i=1 N X i (t) = i=1 N R i A 2 B| sinc[ ( f max f min )(t+ τ i ) ] |
X i =k R i t= τ i  and i= 1, 2, ,N at t =  t i  and i = 1, 2, ...N.
n i = 1 R i 1+ R i n fiber = 1 X i /k 1+ X i /k n fiber , n i < n fiber n i = 1+ R i 1 R i n fiber = 1+ X i /k 1 X i /k n fiber , n i > n fiber i= 1, 2, ,N
S RI,i = Δ X i Δn =k Δ R i Δn = 4k n fiber ( n fiber n i ) ( n fiber + n i ) 3
S T,i = Δ X i ΔT =k Δ R i ΔT = 4k n i ( n fiber (T) n i ) ( n fiber (T)+ n i ) 3 n fiber (T) T
C i = S T,i S RI,i
X i ' = X measured X 1 = X i X 1 ,i=2,3,...,N
n i = 1 X i / X 1 1+ X i / X 1 n fiber , n i < n fiber n i = 1+ X i / X 1 1 X i / X 1 n fiber , n i > n fiber   i= 1, 2, ,N.
D= c 2 n gr ( f max f min )
X i,j * = X i,j ' (t) X i,1 ' (t) = X i,j X 1,j X i,1 X 1,1 ,i=2,3,...,N,j=2,3,...,M.

Metrics