Abstract

Accurate modeling of the operation of diode-pumped alkali lasers is a critical step toward the design of high-powered devices. We present precision measurements for the Cs-CH4 62P3/2 → 62P1/2 mixing cross section and the 62P3/2,1/2 → 62S1/2 quenching cross section, which are important parameters in understanding the operation and, in particular, the heat generated in a cesium vapor laser. Measurements are carried out using ultrafast laser pulse excitation and observation of fluorescence due to collisional excitation transfer in time is done using the technique of time-correlated single-photon counting. Mixing rate measurements are acquired over methane pressures of 10 – 40 Torr, resulting in a Cs-CH4 62P3/2 → 62P1/2 mixing cross section of (1.40 ± 0.08) × 10−15 cm2, while quenching rate measurements are carried out over methane pressures of 500 – 4000 Torr, resulting in a 62P3/2,1/2 → 62S1/2 quenching cross section of (1.57 ± 0.03) × 10−18 cm2. These results suggest only a slight contribution to the heating of a cesium vapor laser is due to Cs 62P quenching, contrary to previous studies. We also discuss additional possible sources of energy transfer from upper excited states of Cs.

Full Article  |  PDF Article
OSA Recommended Articles
Temperature dependence of Rb 5P fine-structure transfer induced by He4 collisions

M. A. Gearba, J. F. Sell, B. M. Patterson, R. Lloyd, J. Plyler, and R. J. Knize
Opt. Lett. 37(10) 1637-1639 (2012)

Enhancement of Rb fine-structure transfer in 4He due to three-body collisions

J. F. Sell, M. A. Gearba, B. M. Patterson, T. Genda, B. Naumann, and R. J. Knize
Opt. Lett. 35(13) 2146-2148 (2010)

Time-resolved CH (A2Δ and B2) laser-induced fluorescence in low pressure hydrocarbon flames

Karen J. Rensberger, Mark J. Dyer, and Richard A. Copeland
Appl. Opt. 27(17) 3679-3689 (1988)

References

  • View by:
  • |
  • |
  • |

  1. W. F. Krupke, “Diode pumped alkali lasers (DPALs) - A review (rev1),” Prog. Quantum Electron. 36(1), 4–28 (2012).
    [Crossref]
  2. B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2012).
    [Crossref]
  3. G. A. Pitz and M. D. Anderson, “Recent advances in optically pumped alkali lasers,” Appl. Phys. Rev. 4(4), 041101 (2017).
    [Crossref]
  4. B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple laser diode array pumped Cs laser with 48 W output power,” Electron. Lett. 44(9), 582–583 (2008).
    [Crossref]
  5. A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
    [Crossref]
  6. L. Krause, Advances in Chemical Physics: The Excited State in Chemical Physics (Wiley, 1975), Chap. 4.
  7. B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Power degradation due to thermal effects in potassium diode pumped alkali laser,” Opt. Commun. 341(15), 97–100 (2015).
    [Crossref]
  8. B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Measurements of the gain medium temperature in an operating Cs DPAL,” Opt. Express 24(17), 19286–19292 (2016).
    [Crossref] [PubMed]
  9. G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
    [Crossref]
  10. T. Yamamoto, F. Yamamoto, M. Endo, and F. Wani, “Experimental investigation of gas flow type DPAL,” Proc. SPIE 10254, 102540S (2017).
    [Crossref]
  11. G. A. Pitz, C. D. Fox, and G. P. Perram, “Transfer between the cesium 62P1/2 and 62P3/2 levels induced by collisions with H2, HD, D2, CH4, C2H6, CF4, and C2F6,” Phys. Rev. A 84, 032708 (2011).
    [Crossref]
  12. E. Walentynowicz, R. A. Phaneuf, W. E. Baylis, and L. Krause, “Inelastic collisions between excited alkali atoms and molecules IX. An isotope effect in the cross sections for 62P1/2 ↔ 62P3/2 mixing in cesium, induced in collisions with deuterated methanes,” Can. J. Phys. 52(7), 584–588 (1974).
    [Crossref]
  13. E. Yacoby, I. Auslender, K. Waichman, O. Sadot, B. D. Barmashenko, and S. Rosenwaks, “Analysis of continuous wave diode pumped cesium laser with gas circulation: experimental and theoretical studies,” Opt. Express 26(14), 17814–17819 (2018).
    [Crossref] [PubMed]
  14. E. Yacoby, I. Auslender, B. D. Barmashenko, and S. Rosewaks, “Continuous wave diode pumped flowing-gas cesium laser,” Proc. SPIE 11042, 110420D (2019).
  15. M. Endo, T. Yamamoto, F. Yamamoto, and F. Wani, “Diode-pumped cesium vapor laser operated with various hydrocarbon gases and compared with numerical simulation,” Opt. Eng. 57(12), 126104 (2018).
    [Crossref]
  16. M. A. Gearba, J. F. Sell, B. M. Patterson, R. Lloyd, J. Plyler, and R. J. Knize, “Temperature dependence of Rb 5P fine-structure transfer induced by 4He collisions,” Opt. Lett. 37(10), 1637–1639 (2012).
    [Crossref] [PubMed]
  17. J. F. Sell, M. A. Gearba, B. M. Patterson, D. Byrne, G. Jemo, T. C. Lilly, R. Meeter, and R. J. Knize, “Collisional excitation transfer between Rb(5P) states in 50–3000 Torr of 4He,” J. Phys. B: At. Mol. Opt. Phys. 45, 055202 (2012).
    [Crossref]
  18. M. A. Gearba, J. H. Wells, P. H. Rich, J. M. Wesemann, L. A. Zimmerman, B. M. Patterson, R. J. Knize, and J. F. Sell, “Collisional excitation transfer and quenching in Rb(5P)-methane mixtures,” Phys. Rev. A 99, 022706 (2019).
    [Crossref]
  19. D. V. O’Connor and D. Phillips, Time-Correlated Single Photon Counting (Academic Press, 1984).
  20. J. Huennekens, H. J. Park, T. Colbert, and S. C. McClain, “Radiation trapping in sodium-noble gas mixtures,” Phys. Rev. A 35(7), 2892–2901 (1987).
    [Crossref]

2019 (2)

E. Yacoby, I. Auslender, B. D. Barmashenko, and S. Rosewaks, “Continuous wave diode pumped flowing-gas cesium laser,” Proc. SPIE 11042, 110420D (2019).

M. A. Gearba, J. H. Wells, P. H. Rich, J. M. Wesemann, L. A. Zimmerman, B. M. Patterson, R. J. Knize, and J. F. Sell, “Collisional excitation transfer and quenching in Rb(5P)-methane mixtures,” Phys. Rev. A 99, 022706 (2019).
[Crossref]

2018 (2)

M. Endo, T. Yamamoto, F. Yamamoto, and F. Wani, “Diode-pumped cesium vapor laser operated with various hydrocarbon gases and compared with numerical simulation,” Opt. Eng. 57(12), 126104 (2018).
[Crossref]

E. Yacoby, I. Auslender, K. Waichman, O. Sadot, B. D. Barmashenko, and S. Rosenwaks, “Analysis of continuous wave diode pumped cesium laser with gas circulation: experimental and theoretical studies,” Opt. Express 26(14), 17814–17819 (2018).
[Crossref] [PubMed]

2017 (2)

T. Yamamoto, F. Yamamoto, M. Endo, and F. Wani, “Experimental investigation of gas flow type DPAL,” Proc. SPIE 10254, 102540S (2017).
[Crossref]

G. A. Pitz and M. D. Anderson, “Recent advances in optically pumped alkali lasers,” Appl. Phys. Rev. 4(4), 041101 (2017).
[Crossref]

2016 (2)

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Measurements of the gain medium temperature in an operating Cs DPAL,” Opt. Express 24(17), 19286–19292 (2016).
[Crossref] [PubMed]

G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
[Crossref]

2015 (1)

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Power degradation due to thermal effects in potassium diode pumped alkali laser,” Opt. Commun. 341(15), 97–100 (2015).
[Crossref]

2012 (5)

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

W. F. Krupke, “Diode pumped alkali lasers (DPALs) - A review (rev1),” Prog. Quantum Electron. 36(1), 4–28 (2012).
[Crossref]

B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2012).
[Crossref]

M. A. Gearba, J. F. Sell, B. M. Patterson, R. Lloyd, J. Plyler, and R. J. Knize, “Temperature dependence of Rb 5P fine-structure transfer induced by 4He collisions,” Opt. Lett. 37(10), 1637–1639 (2012).
[Crossref] [PubMed]

J. F. Sell, M. A. Gearba, B. M. Patterson, D. Byrne, G. Jemo, T. C. Lilly, R. Meeter, and R. J. Knize, “Collisional excitation transfer between Rb(5P) states in 50–3000 Torr of 4He,” J. Phys. B: At. Mol. Opt. Phys. 45, 055202 (2012).
[Crossref]

2011 (1)

G. A. Pitz, C. D. Fox, and G. P. Perram, “Transfer between the cesium 62P1/2 and 62P3/2 levels induced by collisions with H2, HD, D2, CH4, C2H6, CF4, and C2F6,” Phys. Rev. A 84, 032708 (2011).
[Crossref]

2008 (1)

B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple laser diode array pumped Cs laser with 48 W output power,” Electron. Lett. 44(9), 582–583 (2008).
[Crossref]

1987 (1)

J. Huennekens, H. J. Park, T. Colbert, and S. C. McClain, “Radiation trapping in sodium-noble gas mixtures,” Phys. Rev. A 35(7), 2892–2901 (1987).
[Crossref]

1974 (1)

E. Walentynowicz, R. A. Phaneuf, W. E. Baylis, and L. Krause, “Inelastic collisions between excited alkali atoms and molecules IX. An isotope effect in the cross sections for 62P1/2 ↔ 62P3/2 mixing in cesium, induced in collisions with deuterated methanes,” Can. J. Phys. 52(7), 584–588 (1974).
[Crossref]

Anderson, M. D.

G. A. Pitz and M. D. Anderson, “Recent advances in optically pumped alkali lasers,” Appl. Phys. Rev. 4(4), 041101 (2017).
[Crossref]

Auslender, I.

Barmashenko, B. D.

Baylis, W. E.

E. Walentynowicz, R. A. Phaneuf, W. E. Baylis, and L. Krause, “Inelastic collisions between excited alkali atoms and molecules IX. An isotope effect in the cross sections for 62P1/2 ↔ 62P3/2 mixing in cesium, induced in collisions with deuterated methanes,” Can. J. Phys. 52(7), 584–588 (1974).
[Crossref]

Bogachev, A. V.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Byrne, D.

J. F. Sell, M. A. Gearba, B. M. Patterson, D. Byrne, G. Jemo, T. C. Lilly, R. Meeter, and R. J. Knize, “Collisional excitation transfer between Rb(5P) states in 50–3000 Torr of 4He,” J. Phys. B: At. Mol. Opt. Phys. 45, 055202 (2012).
[Crossref]

Colbert, T.

J. Huennekens, H. J. Park, T. Colbert, and S. C. McClain, “Radiation trapping in sodium-noble gas mixtures,” Phys. Rev. A 35(7), 2892–2901 (1987).
[Crossref]

Dudov, A. M.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Endo, M.

M. Endo, T. Yamamoto, F. Yamamoto, and F. Wani, “Diode-pumped cesium vapor laser operated with various hydrocarbon gases and compared with numerical simulation,” Opt. Eng. 57(12), 126104 (2018).
[Crossref]

T. Yamamoto, F. Yamamoto, M. Endo, and F. Wani, “Experimental investigation of gas flow type DPAL,” Proc. SPIE 10254, 102540S (2017).
[Crossref]

Fox, C. D.

G. A. Pitz, C. D. Fox, and G. P. Perram, “Transfer between the cesium 62P1/2 and 62P3/2 levels induced by collisions with H2, HD, D2, CH4, C2H6, CF4, and C2F6,” Phys. Rev. A 84, 032708 (2011).
[Crossref]

Garanin, S. G.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Gearba, M. A.

M. A. Gearba, J. H. Wells, P. H. Rich, J. M. Wesemann, L. A. Zimmerman, B. M. Patterson, R. J. Knize, and J. F. Sell, “Collisional excitation transfer and quenching in Rb(5P)-methane mixtures,” Phys. Rev. A 99, 022706 (2019).
[Crossref]

J. F. Sell, M. A. Gearba, B. M. Patterson, D. Byrne, G. Jemo, T. C. Lilly, R. Meeter, and R. J. Knize, “Collisional excitation transfer between Rb(5P) states in 50–3000 Torr of 4He,” J. Phys. B: At. Mol. Opt. Phys. 45, 055202 (2012).
[Crossref]

M. A. Gearba, J. F. Sell, B. M. Patterson, R. Lloyd, J. Plyler, and R. J. Knize, “Temperature dependence of Rb 5P fine-structure transfer induced by 4He collisions,” Opt. Lett. 37(10), 1637–1639 (2012).
[Crossref] [PubMed]

Guild, E. M.

G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
[Crossref]

Hostutler, D. A.

G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
[Crossref]

Huennekens, J.

J. Huennekens, H. J. Park, T. Colbert, and S. C. McClain, “Radiation trapping in sodium-noble gas mixtures,” Phys. Rev. A 35(7), 2892–2901 (1987).
[Crossref]

Jemo, G.

J. F. Sell, M. A. Gearba, B. M. Patterson, D. Byrne, G. Jemo, T. C. Lilly, R. Meeter, and R. J. Knize, “Collisional excitation transfer between Rb(5P) states in 50–3000 Torr of 4He,” J. Phys. B: At. Mol. Opt. Phys. 45, 055202 (2012).
[Crossref]

Knize, R. J.

M. A. Gearba, J. H. Wells, P. H. Rich, J. M. Wesemann, L. A. Zimmerman, B. M. Patterson, R. J. Knize, and J. F. Sell, “Collisional excitation transfer and quenching in Rb(5P)-methane mixtures,” Phys. Rev. A 99, 022706 (2019).
[Crossref]

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Measurements of the gain medium temperature in an operating Cs DPAL,” Opt. Express 24(17), 19286–19292 (2016).
[Crossref] [PubMed]

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Power degradation due to thermal effects in potassium diode pumped alkali laser,” Opt. Commun. 341(15), 97–100 (2015).
[Crossref]

B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2012).
[Crossref]

J. F. Sell, M. A. Gearba, B. M. Patterson, D. Byrne, G. Jemo, T. C. Lilly, R. Meeter, and R. J. Knize, “Collisional excitation transfer between Rb(5P) states in 50–3000 Torr of 4He,” J. Phys. B: At. Mol. Opt. Phys. 45, 055202 (2012).
[Crossref]

M. A. Gearba, J. F. Sell, B. M. Patterson, R. Lloyd, J. Plyler, and R. J. Knize, “Temperature dependence of Rb 5P fine-structure transfer induced by 4He collisions,” Opt. Lett. 37(10), 1637–1639 (2012).
[Crossref] [PubMed]

B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple laser diode array pumped Cs laser with 48 W output power,” Electron. Lett. 44(9), 582–583 (2008).
[Crossref]

Krause, L.

E. Walentynowicz, R. A. Phaneuf, W. E. Baylis, and L. Krause, “Inelastic collisions between excited alkali atoms and molecules IX. An isotope effect in the cross sections for 62P1/2 ↔ 62P3/2 mixing in cesium, induced in collisions with deuterated methanes,” Can. J. Phys. 52(7), 584–588 (1974).
[Crossref]

L. Krause, Advances in Chemical Physics: The Excited State in Chemical Physics (Wiley, 1975), Chap. 4.

Krupke, W. F.

W. F. Krupke, “Diode pumped alkali lasers (DPALs) - A review (rev1),” Prog. Quantum Electron. 36(1), 4–28 (2012).
[Crossref]

Kulikov, S. M.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Lilly, T. C.

J. F. Sell, M. A. Gearba, B. M. Patterson, D. Byrne, G. Jemo, T. C. Lilly, R. Meeter, and R. J. Knize, “Collisional excitation transfer between Rb(5P) states in 50–3000 Torr of 4He,” J. Phys. B: At. Mol. Opt. Phys. 45, 055202 (2012).
[Crossref]

Lloyd, R.

McClain, S. C.

J. Huennekens, H. J. Park, T. Colbert, and S. C. McClain, “Radiation trapping in sodium-noble gas mixtures,” Phys. Rev. A 35(7), 2892–2901 (1987).
[Crossref]

Meeter, R.

J. F. Sell, M. A. Gearba, B. M. Patterson, D. Byrne, G. Jemo, T. C. Lilly, R. Meeter, and R. J. Knize, “Collisional excitation transfer between Rb(5P) states in 50–3000 Torr of 4He,” J. Phys. B: At. Mol. Opt. Phys. 45, 055202 (2012).
[Crossref]

Mikaelian, G. T.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Moran, P. J.

G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
[Crossref]

O’Connor, D. V.

D. V. O’Connor and D. Phillips, Time-Correlated Single Photon Counting (Academic Press, 1984).

Oliker, B. Q.

G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
[Crossref]

Panarin, V. A.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Park, H. J.

J. Huennekens, H. J. Park, T. Colbert, and S. C. McClain, “Radiation trapping in sodium-noble gas mixtures,” Phys. Rev. A 35(7), 2892–2901 (1987).
[Crossref]

Patterson, B. M.

M. A. Gearba, J. H. Wells, P. H. Rich, J. M. Wesemann, L. A. Zimmerman, B. M. Patterson, R. J. Knize, and J. F. Sell, “Collisional excitation transfer and quenching in Rb(5P)-methane mixtures,” Phys. Rev. A 99, 022706 (2019).
[Crossref]

J. F. Sell, M. A. Gearba, B. M. Patterson, D. Byrne, G. Jemo, T. C. Lilly, R. Meeter, and R. J. Knize, “Collisional excitation transfer between Rb(5P) states in 50–3000 Torr of 4He,” J. Phys. B: At. Mol. Opt. Phys. 45, 055202 (2012).
[Crossref]

M. A. Gearba, J. F. Sell, B. M. Patterson, R. Lloyd, J. Plyler, and R. J. Knize, “Temperature dependence of Rb 5P fine-structure transfer induced by 4He collisions,” Opt. Lett. 37(10), 1637–1639 (2012).
[Crossref] [PubMed]

Pautov, V. O.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Perram, G. P.

G. A. Pitz, C. D. Fox, and G. P. Perram, “Transfer between the cesium 62P1/2 and 62P3/2 levels induced by collisions with H2, HD, D2, CH4, C2H6, CF4, and C2F6,” Phys. Rev. A 84, 032708 (2011).
[Crossref]

Phaneuf, R. A.

E. Walentynowicz, R. A. Phaneuf, W. E. Baylis, and L. Krause, “Inelastic collisions between excited alkali atoms and molecules IX. An isotope effect in the cross sections for 62P1/2 ↔ 62P3/2 mixing in cesium, induced in collisions with deuterated methanes,” Can. J. Phys. 52(7), 584–588 (1974).
[Crossref]

Phillips, D.

D. V. O’Connor and D. Phillips, Time-Correlated Single Photon Counting (Academic Press, 1984).

Pitz, G. A.

G. A. Pitz and M. D. Anderson, “Recent advances in optically pumped alkali lasers,” Appl. Phys. Rev. 4(4), 041101 (2017).
[Crossref]

G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
[Crossref]

G. A. Pitz, C. D. Fox, and G. P. Perram, “Transfer between the cesium 62P1/2 and 62P3/2 levels induced by collisions with H2, HD, D2, CH4, C2H6, CF4, and C2F6,” Phys. Rev. A 84, 032708 (2011).
[Crossref]

Plyler, J.

Rich, P. H.

M. A. Gearba, J. H. Wells, P. H. Rich, J. M. Wesemann, L. A. Zimmerman, B. M. Patterson, R. J. Knize, and J. F. Sell, “Collisional excitation transfer and quenching in Rb(5P)-methane mixtures,” Phys. Rev. A 99, 022706 (2019).
[Crossref]

Rosenwaks, S.

Rosewaks, S.

E. Yacoby, I. Auslender, B. D. Barmashenko, and S. Rosewaks, “Continuous wave diode pumped flowing-gas cesium laser,” Proc. SPIE 11042, 110420D (2019).

Rotondaro, M. D.

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Measurements of the gain medium temperature in an operating Cs DPAL,” Opt. Express 24(17), 19286–19292 (2016).
[Crossref] [PubMed]

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Power degradation due to thermal effects in potassium diode pumped alkali laser,” Opt. Commun. 341(15), 97–100 (2015).
[Crossref]

Rus, A. V.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Sadot, O.

Sell, J.

B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple laser diode array pumped Cs laser with 48 W output power,” Electron. Lett. 44(9), 582–583 (2008).
[Crossref]

Sell, J. F.

M. A. Gearba, J. H. Wells, P. H. Rich, J. M. Wesemann, L. A. Zimmerman, B. M. Patterson, R. J. Knize, and J. F. Sell, “Collisional excitation transfer and quenching in Rb(5P)-methane mixtures,” Phys. Rev. A 99, 022706 (2019).
[Crossref]

M. A. Gearba, J. F. Sell, B. M. Patterson, R. Lloyd, J. Plyler, and R. J. Knize, “Temperature dependence of Rb 5P fine-structure transfer induced by 4He collisions,” Opt. Lett. 37(10), 1637–1639 (2012).
[Crossref] [PubMed]

J. F. Sell, M. A. Gearba, B. M. Patterson, D. Byrne, G. Jemo, T. C. Lilly, R. Meeter, and R. J. Knize, “Collisional excitation transfer between Rb(5P) states in 50–3000 Torr of 4He,” J. Phys. B: At. Mol. Opt. Phys. 45, 055202 (2012).
[Crossref]

Shaffer, M. K.

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Measurements of the gain medium temperature in an operating Cs DPAL,” Opt. Express 24(17), 19286–19292 (2016).
[Crossref] [PubMed]

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Power degradation due to thermal effects in potassium diode pumped alkali laser,” Opt. Commun. 341(15), 97–100 (2015).
[Crossref]

Stalnaker, D. M.

G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
[Crossref]

Sukharev, S. A.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Townsend, S. W.

G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
[Crossref]

Waichman, K.

Walentynowicz, E.

E. Walentynowicz, R. A. Phaneuf, W. E. Baylis, and L. Krause, “Inelastic collisions between excited alkali atoms and molecules IX. An isotope effect in the cross sections for 62P1/2 ↔ 62P3/2 mixing in cesium, induced in collisions with deuterated methanes,” Can. J. Phys. 52(7), 584–588 (1974).
[Crossref]

Wani, F.

M. Endo, T. Yamamoto, F. Yamamoto, and F. Wani, “Diode-pumped cesium vapor laser operated with various hydrocarbon gases and compared with numerical simulation,” Opt. Eng. 57(12), 126104 (2018).
[Crossref]

T. Yamamoto, F. Yamamoto, M. Endo, and F. Wani, “Experimental investigation of gas flow type DPAL,” Proc. SPIE 10254, 102540S (2017).
[Crossref]

Wells, J. H.

M. A. Gearba, J. H. Wells, P. H. Rich, J. M. Wesemann, L. A. Zimmerman, B. M. Patterson, R. J. Knize, and J. F. Sell, “Collisional excitation transfer and quenching in Rb(5P)-methane mixtures,” Phys. Rev. A 99, 022706 (2019).
[Crossref]

Wesemann, J. M.

M. A. Gearba, J. H. Wells, P. H. Rich, J. M. Wesemann, L. A. Zimmerman, B. M. Patterson, R. J. Knize, and J. F. Sell, “Collisional excitation transfer and quenching in Rb(5P)-methane mixtures,” Phys. Rev. A 99, 022706 (2019).
[Crossref]

Yacoby, E.

Yamamoto, F.

M. Endo, T. Yamamoto, F. Yamamoto, and F. Wani, “Diode-pumped cesium vapor laser operated with various hydrocarbon gases and compared with numerical simulation,” Opt. Eng. 57(12), 126104 (2018).
[Crossref]

T. Yamamoto, F. Yamamoto, M. Endo, and F. Wani, “Experimental investigation of gas flow type DPAL,” Proc. SPIE 10254, 102540S (2017).
[Crossref]

Yamamoto, T.

M. Endo, T. Yamamoto, F. Yamamoto, and F. Wani, “Diode-pumped cesium vapor laser operated with various hydrocarbon gases and compared with numerical simulation,” Opt. Eng. 57(12), 126104 (2018).
[Crossref]

T. Yamamoto, F. Yamamoto, M. Endo, and F. Wani, “Experimental investigation of gas flow type DPAL,” Proc. SPIE 10254, 102540S (2017).
[Crossref]

Yeroshenko, V. A.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Zhdanov, B. V.

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Measurements of the gain medium temperature in an operating Cs DPAL,” Opt. Express 24(17), 19286–19292 (2016).
[Crossref] [PubMed]

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Power degradation due to thermal effects in potassium diode pumped alkali laser,” Opt. Commun. 341(15), 97–100 (2015).
[Crossref]

B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2012).
[Crossref]

B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple laser diode array pumped Cs laser with 48 W output power,” Electron. Lett. 44(9), 582–583 (2008).
[Crossref]

Zimmerman, L. A.

M. A. Gearba, J. H. Wells, P. H. Rich, J. M. Wesemann, L. A. Zimmerman, B. M. Patterson, R. J. Knize, and J. F. Sell, “Collisional excitation transfer and quenching in Rb(5P)-methane mixtures,” Phys. Rev. A 99, 022706 (2019).
[Crossref]

Appl. Phys. Rev. (1)

G. A. Pitz and M. D. Anderson, “Recent advances in optically pumped alkali lasers,” Appl. Phys. Rev. 4(4), 041101 (2017).
[Crossref]

Can. J. Phys. (1)

E. Walentynowicz, R. A. Phaneuf, W. E. Baylis, and L. Krause, “Inelastic collisions between excited alkali atoms and molecules IX. An isotope effect in the cross sections for 62P1/2 ↔ 62P3/2 mixing in cesium, induced in collisions with deuterated methanes,” Can. J. Phys. 52(7), 584–588 (1974).
[Crossref]

Electron. Lett. (1)

B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple laser diode array pumped Cs laser with 48 W output power,” Electron. Lett. 44(9), 582–583 (2008).
[Crossref]

J. Phys. B: At. Mol. Opt. Phys. (1)

J. F. Sell, M. A. Gearba, B. M. Patterson, D. Byrne, G. Jemo, T. C. Lilly, R. Meeter, and R. J. Knize, “Collisional excitation transfer between Rb(5P) states in 50–3000 Torr of 4He,” J. Phys. B: At. Mol. Opt. Phys. 45, 055202 (2012).
[Crossref]

Opt. Commun. (1)

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Power degradation due to thermal effects in potassium diode pumped alkali laser,” Opt. Commun. 341(15), 97–100 (2015).
[Crossref]

Opt. Eng. (2)

M. Endo, T. Yamamoto, F. Yamamoto, and F. Wani, “Diode-pumped cesium vapor laser operated with various hydrocarbon gases and compared with numerical simulation,” Opt. Eng. 57(12), 126104 (2018).
[Crossref]

B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (3)

M. A. Gearba, J. H. Wells, P. H. Rich, J. M. Wesemann, L. A. Zimmerman, B. M. Patterson, R. J. Knize, and J. F. Sell, “Collisional excitation transfer and quenching in Rb(5P)-methane mixtures,” Phys. Rev. A 99, 022706 (2019).
[Crossref]

G. A. Pitz, C. D. Fox, and G. P. Perram, “Transfer between the cesium 62P1/2 and 62P3/2 levels induced by collisions with H2, HD, D2, CH4, C2H6, CF4, and C2F6,” Phys. Rev. A 84, 032708 (2011).
[Crossref]

J. Huennekens, H. J. Park, T. Colbert, and S. C. McClain, “Radiation trapping in sodium-noble gas mixtures,” Phys. Rev. A 35(7), 2892–2901 (1987).
[Crossref]

Proc. SPIE (3)

E. Yacoby, I. Auslender, B. D. Barmashenko, and S. Rosewaks, “Continuous wave diode pumped flowing-gas cesium laser,” Proc. SPIE 11042, 110420D (2019).

G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
[Crossref]

T. Yamamoto, F. Yamamoto, M. Endo, and F. Wani, “Experimental investigation of gas flow type DPAL,” Proc. SPIE 10254, 102540S (2017).
[Crossref]

Prog. Quantum Electron. (1)

W. F. Krupke, “Diode pumped alkali lasers (DPALs) - A review (rev1),” Prog. Quantum Electron. 36(1), 4–28 (2012).
[Crossref]

Quantum Electron. (1)

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Other (2)

L. Krause, Advances in Chemical Physics: The Excited State in Chemical Physics (Wiley, 1975), Chap. 4.

D. V. O’Connor and D. Phillips, Time-Correlated Single Photon Counting (Academic Press, 1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Cesium energy level diagram, illustrating the states involved in these experiments. (b) Schematic of the experimental setup used to carry out cesium 62P mixing rate and quenching rate measurements in methane gas.
Fig. 2
Fig. 2 The time evolution of 894 nm fluorescence induced by collisional excitation transfer with methane gas at the pressures listed. Also shown is the excitation laser pulse at 852 nm. The solid lines are fits to the data according to Eq. (4) and are used to extract the mixing rates. The inset shows the mixing rates as a function of methane gas pressure and a linear fit to the data is used to extract the mixing cross-section.
Fig. 3
Fig. 3 The decay in time of 894 nm fluorescence induced by collisional excitation transfer in the high pressure regime. The solid lines are fits to the data according to Eq. (8) and are used to extract the quenching rates. The inset shows the quenching rates as a function of the methane gas pressure and a linear fit to the data is used to extract the quenching cross-section.
Fig. 4
Fig. 4 Fluorescence emitted by upper atomic states of Cs after laser pulse excitation at 852 nm for various methane pressures. The peaks at 602, 620, 673 and 698 nm correspond to Cs 8D → 62P1/2, 8D → 62P3/2, 7D → 62P1/2 and 7D → 62P3/2 transitions, respectively.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

d n 1 d t = ( γ 10 + R 12 + Q 10 ) n 1 + R 21 n 2
d n 2 d t = ( γ 20 + R 21 + Q 20 ) n 2 + R 12 n 1 ,
R 12 R 21 = g 2 g 1 e Δ E / k B T ,
n 1 ( t ) = A e s t + B e s + t ,
s ± = 1 2 [ ( α 1 + α 2 ) ± ( α 1 α 2 ) 2 + 4 R 12 R 21 ] ,
R 21 = n σ 21 v rel ,
s = γ av + Q av ,
n ( t ) = C e s t + D

Metrics