Abstract

A tunable bandpass microwave photonic filter can be achieved by using a notch ring resonator with optical phase modulation. However, the filter’s out of band rejection ratio and shape factor are limited due to the ring resonator’s residual phase, which can seriously degrade the filter’s performance. By using dual optical carriers and setting their wavelengths oppositely detuned from two resonant frequencies of a notch ring resonator, the residual phase induced by the ring resonator at radio frequencies falling outside the region of the notch stopband is reduced, thus the out-of-band rejection ratio and shape factor of the microwave photonic filter are greatly improved. The proposed microwave photonic filter was both verified theoretically and experimentally. Compared with single optical carrier method, the out-of-band rejection ratio of the filter can be enhanced from 17.7dB to 31.5dB, and the filter’s shape factor is improved from 3.05 to 1.78. Besides, the filter’s frequency and bandwidth can be tuned by varying the wavelengths of the two optical carriers and the ring resonator’s coupling coefficients. Finally, a tunable bandpass microwave photonic filter with frequency tuning range of 2~14GHz, 3dB bandwidth tuning range of 0.673~2.798GHz is demonstrated.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Widely tunable single bandpass microwave photonic filter based on Brillouin-assisted optical carrier recovery

Wen Ting Wang, Jian Guo Liu, Wen Hui Sun, Wei Yu Wang, Sun Long Wang, and Ning Hua Zhu
Opt. Express 22(24) 29304-29313 (2014)

Silicon-on-insulator-based microwave photonic filter with widely adjustable bandwidth

Lu Xu, Jie Hou, Haitao Tang, Yuan Yu, Yu Yu, Xuewen Shu, and Xinliang Zhang
Photon. Res. 7(2) 110-115 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
    [Crossref]
  2. R. A. Minasian, “Ultra-wideband and adaptive photonic signal processing of microwave signals,” IEEE J. Quantum Electron. 52(1), 1 (2016).
    [Crossref]
  3. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  4. R. A. Minasian, E. H. W. Chan, and X. Yi, “Microwave photonic signal processing,” Opt. Express 21(19), 22918–22936 (2013).
    [Crossref] [PubMed]
  5. F. Jiang, Y. Yu, T. Cao, H. Tang, J. Dong, and X. Zhang, “Flat-top bandpass microwave photonic filter with tunable bandwidth and center frequency based on a Fabry-Pérot semiconductor optical amplifier,” Opt. Lett. 41(14), 3301–3304 (2016).
    [Crossref] [PubMed]
  6. F. Jiang, Y. Yu, H. Tang, L. Xu, and X. Zhang, “Tunable bandpass microwave photonic filter with ultrahigh stopband attenuation and skirt selectivity,” Opt. Express 24(16), 18655–18663 (2016).
    [Crossref] [PubMed]
  7. N. Shi, T. Hao, W. Li, N. Zhu, and M. Li, “A reconfigurable microwave photonic filter with flexible tunability using a multi-wavelength laser and a multi-channel phase-shifted fiber Bragg grating,” Opt. Commun. 407, 27–32 (2018).
    [Crossref]
  8. W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
    [Crossref]
  9. Y. Long and J. Wang, “Ultra-high peak rejection notch microwave photonic filter using a single silicon microring resonator,” Opt. Express 23(14), 17739–17750 (2015).
    [Crossref] [PubMed]
  10. J. Dong, L. Liu, D. Gao, Y. Yu, A. Zheng, T. Yang, and X. Zhang, “Compact notch microwave photonic filters using on-chip integrated microring resonators,” IEEE Photonics J. 5(2), 5500307 (2013).
    [Crossref]
  11. L. Liu, Y. Yang, Z. Li, X. Jin, W. Mo, and X. Liu, “Low power consumption and continuously tunable all-optical microwave filter based on an opto-mechanical microring resonator,” Opt. Express 25(2), 960–971 (2017).
    [Crossref] [PubMed]
  12. D. Zhang, X. Feng, and Y. Huang, “Tunable and reconfigurable bandpass microwave photonic filters utilizing integrated optical processor on silicon-on-insulator substrate,” IEEE Photonics Technol. Lett. 24(17), 1502–1505 (2012).
    [Crossref]
  13. Z. Zhang, B. Huang, Z. Zhang, C. Cheng, and H. Chen, “Microwave photonic filter with reconfigurable and tunable bandpass response using integrated optical signal processor based on microring resonator,” Opt. Eng. 52(12), 127102 (2013).
    [Crossref]
  14. W. Zhang and J. Yao, “On-chip silicon photonic integrated frequency-tunable bandpass microwave photonic filter,” Opt. Lett. 43(15), 3622–3625 (2018).
    [Crossref] [PubMed]
  15. H. Qiu, F. Zhou, J. Qie, Y. Yao, X. Hu, Y. Zhang, X. Xiao, Y. Yu, J. Dong, and X. Zhang, “A continuously tunable sub-gigahertz microwave photonic bandpass filter based on an ultra-high-Q silicon microring resonator,” J. Lightwave Technol. 36(19), 4312–4318 (2018).
    [Crossref]
  16. J. Palaci, G. E. Villanueva, J. V. Galan, J. Marti, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photonics Technol. Lett. 22(17), 1276–1278 (2010).
    [Crossref]
  17. N. Ehteshami, W. Zhang, and J. Yao, “Optically tunable single passband microwave photonic tilter based on phase-modulation to intensity-modulation conversion in a silicon-on-insulator microring resonator,” in 2015 International Topical Meeting on Microwave Photonics (IEEE, 2015), pp.1–4.
  18. W. Yang, X. Yi, S. Song, S. X. Chew, L. Li, and L. Nguyen, “Tunable single bandpass microwave photonic filter based on phase compensated silicon-on-insulator microring resonator,” in 2016 21st OptoElectronics and Communications Conference held jointly with 2016 International Conference on Photonics in Switching (IEEE 2016), pp.1–3.
  19. S. Song, S. Zhang, B. Liu, S. X. Chew, X. Yi, and L. Nguyen, “Single passband microwave photonic filter using a dual- parallel Mach–Zehnder modulator,” in Asia Communications and Photonics Conference (Optical Society of America, 2017).
    [Crossref]
  20. S. Song, S. X. Chew, X. Yi, L. Nguyen, and R. A. Minasian, “Tunable single-passband microwave photonic filter based on integrated optical double notch filter,” J. Lightwave Technol. 36(19), 4557–4564 (2018).
    [Crossref]
  21. H. Jiang, L. Yan, and D. Marpaung, “Chip-based arbitrary radio-frequency photonic filter with algorithm-driven reconfigurable resolution,” Opt. Lett. 43(3), 415–418 (2018).
    [Crossref] [PubMed]
  22. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
    [Crossref]
  23. R. Heideman, M. Hoekman, and E. Schreuder, “Triplex-based integrated optical ring resonators for lab-on-a-chip and environmental detection,” IEEE J. sel. top. quant. 18(5), 1583–1596 (2012).
    [Crossref]
  24. Z. Tang, S. Pan, and J. Yao, “A high resolution optical vector network analyzer based on a wideband and wavelength-tunable optical single-sideband modulator,” Opt. Express 20(6), 6555–6560 (2012).
    [Crossref] [PubMed]

2018 (5)

2017 (1)

2016 (3)

2015 (1)

2013 (3)

R. A. Minasian, E. H. W. Chan, and X. Yi, “Microwave photonic signal processing,” Opt. Express 21(19), 22918–22936 (2013).
[Crossref] [PubMed]

J. Dong, L. Liu, D. Gao, Y. Yu, A. Zheng, T. Yang, and X. Zhang, “Compact notch microwave photonic filters using on-chip integrated microring resonators,” IEEE Photonics J. 5(2), 5500307 (2013).
[Crossref]

Z. Zhang, B. Huang, Z. Zhang, C. Cheng, and H. Chen, “Microwave photonic filter with reconfigurable and tunable bandpass response using integrated optical signal processor based on microring resonator,” Opt. Eng. 52(12), 127102 (2013).
[Crossref]

2012 (5)

D. Zhang, X. Feng, and Y. Huang, “Tunable and reconfigurable bandpass microwave photonic filters utilizing integrated optical processor on silicon-on-insulator substrate,” IEEE Photonics Technol. Lett. 24(17), 1502–1505 (2012).
[Crossref]

W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
[Crossref]

Z. Tang, S. Pan, and J. Yao, “A high resolution optical vector network analyzer based on a wideband and wavelength-tunable optical single-sideband modulator,” Opt. Express 20(6), 6555–6560 (2012).
[Crossref] [PubMed]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

R. Heideman, M. Hoekman, and E. Schreuder, “Triplex-based integrated optical ring resonators for lab-on-a-chip and environmental detection,” IEEE J. sel. top. quant. 18(5), 1583–1596 (2012).
[Crossref]

2010 (1)

J. Palaci, G. E. Villanueva, J. V. Galan, J. Marti, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photonics Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

2007 (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

2006 (1)

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Cao, T.

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
[Crossref]

Chan, E. H. W.

Chen, H.

Z. Zhang, B. Huang, Z. Zhang, C. Cheng, and H. Chen, “Microwave photonic filter with reconfigurable and tunable bandpass response using integrated optical signal processor based on microring resonator,” Opt. Eng. 52(12), 127102 (2013).
[Crossref]

Cheng, C.

Z. Zhang, B. Huang, Z. Zhang, C. Cheng, and H. Chen, “Microwave photonic filter with reconfigurable and tunable bandpass response using integrated optical signal processor based on microring resonator,” Opt. Eng. 52(12), 127102 (2013).
[Crossref]

Chew, S. X.

S. Song, S. X. Chew, X. Yi, L. Nguyen, and R. A. Minasian, “Tunable single-passband microwave photonic filter based on integrated optical double notch filter,” J. Lightwave Technol. 36(19), 4557–4564 (2018).
[Crossref]

S. Song, S. Zhang, B. Liu, S. X. Chew, X. Yi, and L. Nguyen, “Single passband microwave photonic filter using a dual- parallel Mach–Zehnder modulator,” in Asia Communications and Photonics Conference (Optical Society of America, 2017).
[Crossref]

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Dong, J.

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Ehteshami, N.

N. Ehteshami, W. Zhang, and J. Yao, “Optically tunable single passband microwave photonic tilter based on phase-modulation to intensity-modulation conversion in a silicon-on-insulator microring resonator,” in 2015 International Topical Meeting on Microwave Photonics (IEEE, 2015), pp.1–4.

Feng, X.

D. Zhang, X. Feng, and Y. Huang, “Tunable and reconfigurable bandpass microwave photonic filters utilizing integrated optical processor on silicon-on-insulator substrate,” IEEE Photonics Technol. Lett. 24(17), 1502–1505 (2012).
[Crossref]

Galan, J. V.

J. Palaci, G. E. Villanueva, J. V. Galan, J. Marti, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photonics Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

Gao, D.

J. Dong, L. Liu, D. Gao, Y. Yu, A. Zheng, T. Yang, and X. Zhang, “Compact notch microwave photonic filters using on-chip integrated microring resonators,” IEEE Photonics J. 5(2), 5500307 (2013).
[Crossref]

Hao, T.

N. Shi, T. Hao, W. Li, N. Zhu, and M. Li, “A reconfigurable microwave photonic filter with flexible tunability using a multi-wavelength laser and a multi-channel phase-shifted fiber Bragg grating,” Opt. Commun. 407, 27–32 (2018).
[Crossref]

Heideman, R.

R. Heideman, M. Hoekman, and E. Schreuder, “Triplex-based integrated optical ring resonators for lab-on-a-chip and environmental detection,” IEEE J. sel. top. quant. 18(5), 1583–1596 (2012).
[Crossref]

Hoekman, M.

R. Heideman, M. Hoekman, and E. Schreuder, “Triplex-based integrated optical ring resonators for lab-on-a-chip and environmental detection,” IEEE J. sel. top. quant. 18(5), 1583–1596 (2012).
[Crossref]

Hu, X.

Huang, B.

Z. Zhang, B. Huang, Z. Zhang, C. Cheng, and H. Chen, “Microwave photonic filter with reconfigurable and tunable bandpass response using integrated optical signal processor based on microring resonator,” Opt. Eng. 52(12), 127102 (2013).
[Crossref]

Huang, Y.

D. Zhang, X. Feng, and Y. Huang, “Tunable and reconfigurable bandpass microwave photonic filters utilizing integrated optical processor on silicon-on-insulator substrate,” IEEE Photonics Technol. Lett. 24(17), 1502–1505 (2012).
[Crossref]

Jiang, F.

Jiang, H.

Jin, X.

Kumar Selvaraja, S.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Li, M.

N. Shi, T. Hao, W. Li, N. Zhu, and M. Li, “A reconfigurable microwave photonic filter with flexible tunability using a multi-wavelength laser and a multi-channel phase-shifted fiber Bragg grating,” Opt. Commun. 407, 27–32 (2018).
[Crossref]

W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
[Crossref]

Li, W.

N. Shi, T. Hao, W. Li, N. Zhu, and M. Li, “A reconfigurable microwave photonic filter with flexible tunability using a multi-wavelength laser and a multi-channel phase-shifted fiber Bragg grating,” Opt. Commun. 407, 27–32 (2018).
[Crossref]

W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
[Crossref]

Li, Z.

Liu, B.

S. Song, S. Zhang, B. Liu, S. X. Chew, X. Yi, and L. Nguyen, “Single passband microwave photonic filter using a dual- parallel Mach–Zehnder modulator,” in Asia Communications and Photonics Conference (Optical Society of America, 2017).
[Crossref]

Liu, L.

L. Liu, Y. Yang, Z. Li, X. Jin, W. Mo, and X. Liu, “Low power consumption and continuously tunable all-optical microwave filter based on an opto-mechanical microring resonator,” Opt. Express 25(2), 960–971 (2017).
[Crossref] [PubMed]

J. Dong, L. Liu, D. Gao, Y. Yu, A. Zheng, T. Yang, and X. Zhang, “Compact notch microwave photonic filters using on-chip integrated microring resonators,” IEEE Photonics J. 5(2), 5500307 (2013).
[Crossref]

Liu, X.

Long, Y.

Marpaung, D.

Marti, J.

J. Palaci, G. E. Villanueva, J. V. Galan, J. Marti, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photonics Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

Minasian, R. A.

Mo, W.

Nguyen, L.

S. Song, S. X. Chew, X. Yi, L. Nguyen, and R. A. Minasian, “Tunable single-passband microwave photonic filter based on integrated optical double notch filter,” J. Lightwave Technol. 36(19), 4557–4564 (2018).
[Crossref]

S. Song, S. Zhang, B. Liu, S. X. Chew, X. Yi, and L. Nguyen, “Single passband microwave photonic filter using a dual- parallel Mach–Zehnder modulator,” in Asia Communications and Photonics Conference (Optical Society of America, 2017).
[Crossref]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Ortega, B.

Palaci, J.

J. Palaci, G. E. Villanueva, J. V. Galan, J. Marti, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photonics Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

Pan, S.

Pastor, D.

Qie, J.

Qiu, H.

Schreuder, E.

R. Heideman, M. Hoekman, and E. Schreuder, “Triplex-based integrated optical ring resonators for lab-on-a-chip and environmental detection,” IEEE J. sel. top. quant. 18(5), 1583–1596 (2012).
[Crossref]

Shi, N.

N. Shi, T. Hao, W. Li, N. Zhu, and M. Li, “A reconfigurable microwave photonic filter with flexible tunability using a multi-wavelength laser and a multi-channel phase-shifted fiber Bragg grating,” Opt. Commun. 407, 27–32 (2018).
[Crossref]

Song, S.

S. Song, S. X. Chew, X. Yi, L. Nguyen, and R. A. Minasian, “Tunable single-passband microwave photonic filter based on integrated optical double notch filter,” J. Lightwave Technol. 36(19), 4557–4564 (2018).
[Crossref]

S. Song, S. Zhang, B. Liu, S. X. Chew, X. Yi, and L. Nguyen, “Single passband microwave photonic filter using a dual- parallel Mach–Zehnder modulator,” in Asia Communications and Photonics Conference (Optical Society of America, 2017).
[Crossref]

Tang, H.

Tang, Z.

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Vidal, B.

J. Palaci, G. E. Villanueva, J. V. Galan, J. Marti, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photonics Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

Villanueva, G. E.

J. Palaci, G. E. Villanueva, J. V. Galan, J. Marti, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photonics Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

Wang, J.

Xiao, X.

Xu, L.

Yan, L.

Yang, T.

J. Dong, L. Liu, D. Gao, Y. Yu, A. Zheng, T. Yang, and X. Zhang, “Compact notch microwave photonic filters using on-chip integrated microring resonators,” IEEE Photonics J. 5(2), 5500307 (2013).
[Crossref]

Yang, Y.

Yao, J.

W. Zhang and J. Yao, “On-chip silicon photonic integrated frequency-tunable bandpass microwave photonic filter,” Opt. Lett. 43(15), 3622–3625 (2018).
[Crossref] [PubMed]

W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
[Crossref]

Z. Tang, S. Pan, and J. Yao, “A high resolution optical vector network analyzer based on a wideband and wavelength-tunable optical single-sideband modulator,” Opt. Express 20(6), 6555–6560 (2012).
[Crossref] [PubMed]

N. Ehteshami, W. Zhang, and J. Yao, “Optically tunable single passband microwave photonic tilter based on phase-modulation to intensity-modulation conversion in a silicon-on-insulator microring resonator,” in 2015 International Topical Meeting on Microwave Photonics (IEEE, 2015), pp.1–4.

Yao, Y.

Yi, X.

Yu, Y.

Zhang, D.

D. Zhang, X. Feng, and Y. Huang, “Tunable and reconfigurable bandpass microwave photonic filters utilizing integrated optical processor on silicon-on-insulator substrate,” IEEE Photonics Technol. Lett. 24(17), 1502–1505 (2012).
[Crossref]

Zhang, S.

S. Song, S. Zhang, B. Liu, S. X. Chew, X. Yi, and L. Nguyen, “Single passband microwave photonic filter using a dual- parallel Mach–Zehnder modulator,” in Asia Communications and Photonics Conference (Optical Society of America, 2017).
[Crossref]

Zhang, W.

W. Zhang and J. Yao, “On-chip silicon photonic integrated frequency-tunable bandpass microwave photonic filter,” Opt. Lett. 43(15), 3622–3625 (2018).
[Crossref] [PubMed]

N. Ehteshami, W. Zhang, and J. Yao, “Optically tunable single passband microwave photonic tilter based on phase-modulation to intensity-modulation conversion in a silicon-on-insulator microring resonator,” in 2015 International Topical Meeting on Microwave Photonics (IEEE, 2015), pp.1–4.

Zhang, X.

Zhang, Y.

Zhang, Z.

Z. Zhang, B. Huang, Z. Zhang, C. Cheng, and H. Chen, “Microwave photonic filter with reconfigurable and tunable bandpass response using integrated optical signal processor based on microring resonator,” Opt. Eng. 52(12), 127102 (2013).
[Crossref]

Z. Zhang, B. Huang, Z. Zhang, C. Cheng, and H. Chen, “Microwave photonic filter with reconfigurable and tunable bandpass response using integrated optical signal processor based on microring resonator,” Opt. Eng. 52(12), 127102 (2013).
[Crossref]

Zheng, A.

J. Dong, L. Liu, D. Gao, Y. Yu, A. Zheng, T. Yang, and X. Zhang, “Compact notch microwave photonic filters using on-chip integrated microring resonators,” IEEE Photonics J. 5(2), 5500307 (2013).
[Crossref]

Zhou, F.

Zhu, N.

N. Shi, T. Hao, W. Li, N. Zhu, and M. Li, “A reconfigurable microwave photonic filter with flexible tunability using a multi-wavelength laser and a multi-channel phase-shifted fiber Bragg grating,” Opt. Commun. 407, 27–32 (2018).
[Crossref]

IEEE J. Quantum Electron. (1)

R. A. Minasian, “Ultra-wideband and adaptive photonic signal processing of microwave signals,” IEEE J. Quantum Electron. 52(1), 1 (2016).
[Crossref]

IEEE J. sel. top. quant. (1)

R. Heideman, M. Hoekman, and E. Schreuder, “Triplex-based integrated optical ring resonators for lab-on-a-chip and environmental detection,” IEEE J. sel. top. quant. 18(5), 1583–1596 (2012).
[Crossref]

IEEE Photonics J. (1)

J. Dong, L. Liu, D. Gao, Y. Yu, A. Zheng, T. Yang, and X. Zhang, “Compact notch microwave photonic filters using on-chip integrated microring resonators,” IEEE Photonics J. 5(2), 5500307 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (2)

D. Zhang, X. Feng, and Y. Huang, “Tunable and reconfigurable bandpass microwave photonic filters utilizing integrated optical processor on silicon-on-insulator substrate,” IEEE Photonics Technol. Lett. 24(17), 1502–1505 (2012).
[Crossref]

J. Palaci, G. E. Villanueva, J. V. Galan, J. Marti, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photonics Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
[Crossref]

J. Lightwave Technol. (3)

Laser Photonics Rev. (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Opt. Commun. (1)

N. Shi, T. Hao, W. Li, N. Zhu, and M. Li, “A reconfigurable microwave photonic filter with flexible tunability using a multi-wavelength laser and a multi-channel phase-shifted fiber Bragg grating,” Opt. Commun. 407, 27–32 (2018).
[Crossref]

Opt. Eng. (1)

Z. Zhang, B. Huang, Z. Zhang, C. Cheng, and H. Chen, “Microwave photonic filter with reconfigurable and tunable bandpass response using integrated optical signal processor based on microring resonator,” Opt. Eng. 52(12), 127102 (2013).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Other (3)

N. Ehteshami, W. Zhang, and J. Yao, “Optically tunable single passband microwave photonic tilter based on phase-modulation to intensity-modulation conversion in a silicon-on-insulator microring resonator,” in 2015 International Topical Meeting on Microwave Photonics (IEEE, 2015), pp.1–4.

W. Yang, X. Yi, S. Song, S. X. Chew, L. Li, and L. Nguyen, “Tunable single bandpass microwave photonic filter based on phase compensated silicon-on-insulator microring resonator,” in 2016 21st OptoElectronics and Communications Conference held jointly with 2016 International Conference on Photonics in Switching (IEEE 2016), pp.1–3.

S. Song, S. Zhang, B. Liu, S. X. Chew, X. Yi, and L. Nguyen, “Single passband microwave photonic filter using a dual- parallel Mach–Zehnder modulator,” in Asia Communications and Photonics Conference (Optical Society of America, 2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The bandpass MPF based on phase modulation with single optical carrier.
Fig. 2
Fig. 2 (a)The simulated RF response of the bandpass MPF based on phase modulation with single optical carrier; (b) The normalized amplitudes of photocurrents i0, + 1 and i0, −1; (c) The transmittance and phase responses of micro-ring resonator; (d) The changing tendency of φ0, −1 and φ0, + 1.
Fig. 3
Fig. 3 (a) The schematic of the proposed MPF (b) The optical transmission spectrum of the MRR and the frequency setting of the two optical carriers.
Fig. 4
Fig. 4 The normalized amplitude (a) and phase (b) responses of photocurrents induced by the MRR with varying RF frequency shift relative to the two optical carriers; (c) The simulated RF responses of the MPF using single and dual optical carriers.
Fig. 5
Fig. 5 (a)The schematic of tunable MRR; (b) The measured optical transmission spectrum and phase response of the MRR and the frequency setting of the two optical carriers. (c) The magnified view of region A in Fig. 5(b)
Fig. 6
Fig. 6 The measured RF responses of the MPF using single and dual optical carriers.
Fig. 7
Fig. 7 Measured RF responses of the MPF with different filter frequencies.
Fig. 8
Fig. 8 The measured RF responses of (a) under coupling; (b) closely critical coupling and (c) over coupling. (d) Variations of 3dB bandwidth of the MPF with ∆λ under different self-coupling coefficient t.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E PM (t)= E C e j φ C [ J 0 (m) e j ω C t + J 1 (m) e j( ω C + ω f )t J 1 (m) e j( ω C ω f )t ]
i(t)= i 0,+1 (t)+ i 0.1 (t) =2αη P 0 J 0 (m) J 1 (m) T( ω 0 ) [ T( ω 0 + ω f ) cos( ω f t+ φ 0,+1 ) T( ω 0 ω f ) cos( ω f t+ φ 0,1 )]
φ 0,+1 = φ MRR ( ω C + ω f ) φ MRR ( ω C ) φ 0,1 = φ MRR ( ω C ) φ MRR ( ω C ω f )
P out = 1 2 i 2 R out
E PM (t)= E C1 e j φ C1 [ J 0 (m) e j ω C1 t + J 1 (m) e j( ω C1 + ω f )t J 1 (m) e j( ω C1 ω f )t ] + E C2 e j φ C2 [ J 0 (m) e j ω C2 t + J 1 (m) e j( ω C2 + ω f )t J 1 (m) e j( ω C2 ω f )t ]
i 1,+1 (t)=2αη P C J 0 (m) J 1 (m) T( ω C1 )T( ω C1 + ω f ) cos( ω f t+ φ 1,+1 ) i 1,1 (t)=2αη P C J 0 (m) J 1 (m) T( ω C1 )T( ω C1 ω f ) cos( ω f t+ φ 1,1 +π) i 2,+1 (t)=2αη P C J 0 (m) J 1 (m) T( ω C2 )T( ω C2 + ω f ) cos( ω f t+ φ 2,+1 ) i 2,1 (t)=2αη P C J 0 (m) J 1 (m) T( ω C2 )T( ω C2 ω f ) cos( ω f t+ φ 2,1 +π)
i(t)= i 1,+1 (t)+ i 1,1 (t)+ i 2,+1 (t)+ i 2,1 (t)
φ 1,+1 = φ MRR ( ω C1 + ω f ) φ MRR ( ω C1 ), φ 1,1 = φ MRR ( ω C1 ) φ MRR ( ω C1 ω f ) φ 2,+1 = φ MRR ( ω C2 + ω f ) φ MRR ( ω C2 ), φ 2,1 = φ MRR ( ω C2 ) φ MRR ( ω C2 ω f )
f center = 1 2 (Δ f 1 +Δ f 2 )
FWHM= FSR π 1at at
T=10log[ a 2 + t 2 2tacos(2π n eff (λ)L/λ+Φ) 12tacos(2π n eff (λ)L/λ+Φ)+ t 2 a 2 ]Loss

Metrics