Abstract

In this paper, we report a 3.7 kW all fiber narrow linewidth single mode fiber laser. The full width at half-maximum is about 0.30 nm, and the beam quality is Mx2=1.358, My2=1.202 at maximum output power. The laser is achieved by simultaneously suppressing nonlinear effects and mode instability (MI). Different seeds are injected into the main amplifier to study stimulated Raman scattering (SRS) effect. The results show that the phase modulated single frequency seed is benefit to suppress the SRS effect. For the phase modulated single frequency seed, inserting a filter in preamplifier will suppress amplified spontaneous emission (ASE) and decrease the backward power. By optimizing the coiling of active fiber, the MI effect is suppressed.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
>1  kW all-fiberized narrow-linewidth polarization-maintained fiber amplifiers with wavelength spanning from 1065 to 1090  nm

Yakun Liu, Rongtao Su, Pengfei Ma, Xiaolin Wang, Hanwei Zhang, Pu Zhou, and Lei Si
Appl. Opt. 56(14) 4213-4218 (2017)

Dynamic characteristics of stimulated Raman scattering in high power fiber amplifiers in the presence of mode instabilities

Rumao Tao, Hu Xiao, Hanwei Zhang, Jinyong Leng, Xiaolin Wang, Pu Zhou, and Xiaojun Xu
Opt. Express 26(19) 25098-25110 (2018)

High-efficiency, kilowatt 1034  nm all-fiber amplifier operating at 11  pm linewidth

Nader A. Naderi, Iyad Dajani, and Angel Flores
Opt. Lett. 41(5) 1018-1021 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. N. Zervas and C. A. Codemard, “High power fiber lasers: A review,” IEEE J. Sel. Top. Quantum Electron. 20, 219–241 (2014).
    [Crossref]
  2. S. Wei, F. Qiang, Z. Xiushan, R. A. Norwood, and N. Peyghambarian, “Fiber lasers and their applications [invited],” Appl. Opt. 53, 6554–6568 (2014).
    [Crossref]
  3. J. Kang, B. Lu, X. Qi, X. Feng, H. Chen, M. Jiang, Y. Wang, P. Fu, and J. Bai, “An efficient single-frequency yb-doped all-fiber mopa laser at 1064.3 nm,” Chin. Phys. Lett. 33, 54–57 (2016).
    [Crossref]
  4. M. K. Shukla, P. S. Maji, and R. Das, “Yb-fiber laser pumped high-power, broadly tunable, single-frequency red source based on a singly resonant optical parametric oscillator,” Opt. Lett. 41, 3033 (2016).
    [Crossref] [PubMed]
  5. E. A. Zlobina, S. A. Babin, and S. I. Kablukov, “Tunable cw all-fiber optical parametric oscillator operating below 1 μm,” Opt. Express 21, 6777–6782 (2013).
    [Crossref] [PubMed]
  6. A. Avdokhin, V. Gapontsev, P. Kadwani, A. Vaupel, I. Samartsev, N. Platonov, A. Yusim, and D. Myasnikov, “High average power quasi-cw single-mode green and uv fiber lasers,” in Photonics West-proc Spie, (2015).
  7. Z. Zhi, S. Brian, and M. Michiko, “Generation of 180 w average green power from a frequency-doubled picosecond rod fiber amplifier,” Opt. Express 25, 8138 (2017).
  8. A. Liu, R. Mead, T. Vatter, A. Henderson, and R. Stafford, “Spectral beam combining of high-power fiber lasers,” Proc. SPIE - The Int. Soc. for Opt. Eng. 5335, 81–88 (2004).
  9. M. Yanxing, W. Xiaolin, L. Jinyong, X. Hu, D. Xiaolin, Z. Jiajian, D. Wenbo, Z. Pu, X. Xiaojun, and S. Lei, “Coherent beam combination of 1.08 kw fiber amplifier array using single frequency dithering technique,” Opt. & Lasers Eng. 49, 1089–1092 (2011).
    [Crossref]
  10. Z. J. Liu, Z. Pu, X. U. Xiaojun, X. L. Wang, and M. A. Yanxing, “Coherent beam combining of high powerfiber lasers: Progress and prospect,” Sci. China Technol. Sci. 56, 1597–1606 (2013).
    [Crossref]
  11. C. X. Yu, O. Shatrovoy, T. Y. Fan, and T. F. Taunay, “Diode-pumped narrow linewidth multi-kilowatt metalized yb fiber amplifier,” Opt. Lett. 41, 5202 (2016).
    [Crossref] [PubMed]
  12. F. Beier, C. Hupel, J. Nold, S. Kuhn, S. Hein, J. Ihring, B. Sattler, N. Haarlammert, T. Schreiber, and R. Eberhardt, “Narrow linewidth, single mode 3 kw average power from a directly diode pumped ytterbium-doped low na fiber amplifier,” Opt. Express 24, 6011 (2016).
    [Crossref] [PubMed]
  13. F. Beier, C. Hupel, S. Kuhn, S. Hein, J. Nold, F. Proske, B. Sattler, A. Liem, C. Jauregui, and J. Limpert, “Single mode 4.3 kw output power from a diode-pumped yb-doped fiber amplifier,” Opt. Express 25, 14892–14899 (2017).
    [Crossref] [PubMed]
  14. G. Bo, Y. Feng Yang, J. Hua Wang, Zheng, X. Long Chen, and Chun Zhao, “Stimulated brillouin scattering enhancement factor improvement in a 11.6 ghz linewidth 1.5 kw yb-doped fiber amplifier,” Chin. Phys. Lett. 33, 94–97 (2016).
  15. C. Jun, M. Jung, W. Shin, B. A. Yu, Y. S. Yoon, Y. Park, and yuKhong Choi, “818 w yb-doped amplifier with <7 ghz linewidth based on pseudo-random phase modulation in polarization maintained all-fiber configuration,” Laser Phys. Lett. 16, 015102 (2018).
  16. P. Ma, R. Tao, R. Su, X. Wang, P. Zhou, and Z. Liu, “1.89 kw all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality,” Opt. Express 24, 4187 (2016).
    [Crossref] [PubMed]
  17. X. Yang, F. Qiang, Q. Yuguo, M. Xiangjie, and S. Wei, “2 kw narrow spectral width monolithic continuous wave in a near-diffraction-limited fiber laser,” Appl. Opt. 54, 9419–9421 (2015).
    [Crossref]
  18. J. Nold, M. Strecker, A. Liem, R. Eberhardt, T. Schreiber, and A. Tünnermann, “Narrow linewidth single mode fiber amplifier with 2.3 kw average power,” Cspg Special Publ. (2015).
  19. R. Su, R. Tao, X. Wang, H. Zhang, P. Ma, Z. Pu, and X. Xu, “2.43 kw narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression,” Laser Phys. Lett. 14, 085102 (2017).
    [Crossref]
  20. Y. Qi, M. Lei, C. Liu, B. He, and J. Zhou, “1.75 kw cw narrow linewidth yb-doped all-fiber amplifiers for beam combining application,” in CLEO: 2015, (Optical Society of America, 2015), p. ATu4M.4.
  21. N. Platonov, R. Yagodkin, J. D. L. Cruz, A. Yusim, and V. Gapontsev, “1.5 kw linear polarized on pm fiber and 2 kw on non-pm fiber narrow linewidth cw diffraction-limited fiber amplifier,” in Spie Lase, (2017).
  22. L. Tenglong, Z. Congwen, S. Yinhong, M. Yi, K. Weiwei, and P. Wanjing, “3.5 kw bidirectionally pumped narrow-linewidth fiber amplifier seeded by white-noise-source phase-modulated laser,” Laser Phys. 28, 105101 (2018).
    [Crossref]
  23. M. N. Zervas, “Transverse mode instability analysis in fiber amplifiers,” in Society of Photo-optical Instrumentation Engineers, (2017).
  24. A. Tünnermann, C. Jauregui, C. Wirth, F. Stutzki, F. Jansen, H. Otto, J. Limpert, O. Schmidt, T. Schreiber, and T. Eidam, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19, 13218 (2011).
    [Crossref] [PubMed]
  25. J. Cesar, O. Hans-Jürgen, S. Fabian, J. Florian, L. Jens, and T. Andreas, “Passive mitigation strategies for mode instabilities in high-power fiber laser systems,” Opt. Express 21, 19375–19386 (2013).
    [Crossref]
  26. B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express 20, 11407 (2012).
    [Crossref] [PubMed]
  27. K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 w ytterbium-doped fiber laser,” Laser Phys. 24, 162–166 (2014).
    [Crossref]
  28. K. Fanting, X. Junwen, R. H. Stolen, and D. Liang, “Direct experimental observation of stimulated thermal rayleigh scattering with polarization modes in a fiber amplifier,” Optica 3, 975 (2016).
    [Crossref]
  29. F. Möller, R. G. Krämer, C. Matzdorf, S. Nolte, M. Strecker, F. Stutzki, M. Plötner, V. Bock, T. Schreiber, and A. Tünnermann, “Comparison between bidirectional pumped yb-doped all-fiber single-mode amplifier and oscillator setup up to a power level of 5 kw,” (2018), p. AM2A.3.
  30. G. Liu and D. Liu, “Numerical analysis of stimulated brillouin scattering in high-power double-clad fiber lasers,” Optik 120, 24–28 (2009).
    [Crossref]
  31. C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20, 12912–12925 (2012).
    [Crossref] [PubMed]
  32. J. Cesar, E. Tino, O. Hans-Jürgen, S. Fabian, J. Florian, L. Jens, and T. Andreas, “Temperature-induced index gratings and their impact on mode instabilities in high-power fiber laser systems,” Opt. Express 20, 440–451 (2012).
    [Crossref]
  33. C. Jauregui, H. J. Otto, F. Stutzki, J. Limpert, and A. Tunnermann, “Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening,” Opt. Express 23, 20203–20218 (2015).
    [Crossref]
  34. D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37, 207–217 (2001).
    [Crossref]
  35. A. B. Mobini Esmaeil, Peysokhan Mostafa, and M. Arash, “Thermal modeling, heat mitigation, and radiative cooling for double-clad fiber amplifiers,” J. Opt. Soc. Am. B 35, 2484 (2018).
    [Crossref]
  36. L. I. Zebiao, Z. Huang, X. Xiang, X. Liang, H. Lin, X. U. Shanhui, Z. Yang, J. Wang, and J. Feng, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kw all-fiberized laser,” Photonics Res. 5, 77 (2017).
    [Crossref]
  37. T. Schreiber, A. Liem, E. Freier, C. Matzdorf, R. Eberhardt, C. Jauregui, J. Limpert, and A. Tünnermann, “Analysis of stimulated raman scattering in cw kw fiber oscillators,” in Spie Lase, (2014).
  38. R. Tao, P. Ma, X. Wang, Z. Pu, and Z. Liu, “Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers,” Laser Phys. Lett. 14, 025002 (2017).
    [Crossref]
  39. R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17, 045504 (2015).
    [Crossref]
  40. L. Wei, P. Ma, H. Lv, J. Xu, Z. Pu, and Z. Jiang, “General analysis of srs-limited high-power fiber lasers and design strategy,” Opt. Express 24, 26715 (2016).
    [Crossref]
  41. Q. Chu, H. Lin, C. Tang, J. Feng, and T. Xuan, “Spectral evolution and stimulated brillouin scattering suppression in phase-modulated fiber amplifier,” J. Phys. Commun. 2, 045022 (2018).
    [Crossref]
  42. Z. Li, C. Li, L. Yu, Q. Luo, and J. Feng, “Impact of stimulated raman scattering on the transverse mode instability threshold,” IEEE Photonics J. 10, 1–9 (2018).
  43. S. Naderi, I. Dajani, J. Grosek, and T. Madden, “Theoretical and numerical treatment of modal instability in high-power core and cladding-pumped raman fiber amplifiers,” Opt. Express 24, 16550–16565 (2016).
    [Crossref] [PubMed]
  44. K. Hejaz, M. Shayganmanesh, R. Rezaei-Nasirabad, A. Roohforouz, S. Azizi, A. Abedinajafi, and V. Vatani, “Modal instability induced by stimulated raman scattering in high-power yb-doped fiber amplifiers,” Opt. Lett. 42, 5274 (2017).
    [Crossref] [PubMed]
  45. J. Leng, “Influence of temporal characteristics on the power scalability of the fiber amplifier,” Laser Phys. 25, 035101 (2015).
    [Crossref]
  46. L. Wei, P. Ma, S. Chen, Z. Pu, and Z. Jiang, “Theoretical analysis of the srs-induced mode distortion in large-mode area fiber amplifiers,” Opt. Express 26, 15793 (2018).
    [Crossref]
  47. K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” in Fiber Lasers Xi: Technology, Systems, & Applications, (2014).
  48. D. Alekseev, V. Tyrtyshnyy, M. S. Kuznetsov, and O. Antipov, “Transverse mode instability in high-gain few-mode yb3+-doped fiber amplifiers with 10 um core diameter with or without backward reflection,” IEEE J. Sel. Top. Quantum Electron. 24, 1 (2018).
  49. R. Tao, P. Ma, X. Wang, Z. Pu, and Z. Liu, “1.3 kw monolithic linearly-polarized single-mode mopa and strategies for mitigating mode instabilities,” Physics 3, 86 (2014).
  50. M. Lei, Y. Qi, C. Liu, Y. Yang, Y. Zheng, and J. Zhou, “Mode controlling study on narrow-linewidth and high power all-fiber amplifier,” in International Symposium on Laser Interaction with Matter, (2015).
  51. R. Tao, R. Su, P. Ma, X. Wang, and P. Zhou, “Suppressing mode instabilities by optimizing the fiber coiling methods,” Laser Phys. Lett. 14, 025101 (2017).
    [Crossref]
  52. W. Stephan, “Implications of higher-order mode content in large mode area fibers with good beam quality,” Opt. Express 15, 15402–15409 (2007).
    [Crossref]
  53. P. Yan, J. P. Hao, Q. R. Xiao, Y. P. Wang, and M. L. Gong, “The influence of fusion splicing on the beam quality of a ytterbium-doped fiber laser,” Laser Phys. 23, 045109 (2013).
    [Crossref]

2018 (7)

C. Jun, M. Jung, W. Shin, B. A. Yu, Y. S. Yoon, Y. Park, and yuKhong Choi, “818 w yb-doped amplifier with <7 ghz linewidth based on pseudo-random phase modulation in polarization maintained all-fiber configuration,” Laser Phys. Lett. 16, 015102 (2018).

L. Tenglong, Z. Congwen, S. Yinhong, M. Yi, K. Weiwei, and P. Wanjing, “3.5 kw bidirectionally pumped narrow-linewidth fiber amplifier seeded by white-noise-source phase-modulated laser,” Laser Phys. 28, 105101 (2018).
[Crossref]

A. B. Mobini Esmaeil, Peysokhan Mostafa, and M. Arash, “Thermal modeling, heat mitigation, and radiative cooling for double-clad fiber amplifiers,” J. Opt. Soc. Am. B 35, 2484 (2018).
[Crossref]

Q. Chu, H. Lin, C. Tang, J. Feng, and T. Xuan, “Spectral evolution and stimulated brillouin scattering suppression in phase-modulated fiber amplifier,” J. Phys. Commun. 2, 045022 (2018).
[Crossref]

Z. Li, C. Li, L. Yu, Q. Luo, and J. Feng, “Impact of stimulated raman scattering on the transverse mode instability threshold,” IEEE Photonics J. 10, 1–9 (2018).

L. Wei, P. Ma, S. Chen, Z. Pu, and Z. Jiang, “Theoretical analysis of the srs-induced mode distortion in large-mode area fiber amplifiers,” Opt. Express 26, 15793 (2018).
[Crossref]

D. Alekseev, V. Tyrtyshnyy, M. S. Kuznetsov, and O. Antipov, “Transverse mode instability in high-gain few-mode yb3+-doped fiber amplifiers with 10 um core diameter with or without backward reflection,” IEEE J. Sel. Top. Quantum Electron. 24, 1 (2018).

2017 (7)

K. Hejaz, M. Shayganmanesh, R. Rezaei-Nasirabad, A. Roohforouz, S. Azizi, A. Abedinajafi, and V. Vatani, “Modal instability induced by stimulated raman scattering in high-power yb-doped fiber amplifiers,” Opt. Lett. 42, 5274 (2017).
[Crossref] [PubMed]

R. Tao, R. Su, P. Ma, X. Wang, and P. Zhou, “Suppressing mode instabilities by optimizing the fiber coiling methods,” Laser Phys. Lett. 14, 025101 (2017).
[Crossref]

L. I. Zebiao, Z. Huang, X. Xiang, X. Liang, H. Lin, X. U. Shanhui, Z. Yang, J. Wang, and J. Feng, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kw all-fiberized laser,” Photonics Res. 5, 77 (2017).
[Crossref]

R. Tao, P. Ma, X. Wang, Z. Pu, and Z. Liu, “Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers,” Laser Phys. Lett. 14, 025002 (2017).
[Crossref]

R. Su, R. Tao, X. Wang, H. Zhang, P. Ma, Z. Pu, and X. Xu, “2.43 kw narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression,” Laser Phys. Lett. 14, 085102 (2017).
[Crossref]

F. Beier, C. Hupel, S. Kuhn, S. Hein, J. Nold, F. Proske, B. Sattler, A. Liem, C. Jauregui, and J. Limpert, “Single mode 4.3 kw output power from a diode-pumped yb-doped fiber amplifier,” Opt. Express 25, 14892–14899 (2017).
[Crossref] [PubMed]

Z. Zhi, S. Brian, and M. Michiko, “Generation of 180 w average green power from a frequency-doubled picosecond rod fiber amplifier,” Opt. Express 25, 8138 (2017).

2016 (9)

J. Kang, B. Lu, X. Qi, X. Feng, H. Chen, M. Jiang, Y. Wang, P. Fu, and J. Bai, “An efficient single-frequency yb-doped all-fiber mopa laser at 1064.3 nm,” Chin. Phys. Lett. 33, 54–57 (2016).
[Crossref]

M. K. Shukla, P. S. Maji, and R. Das, “Yb-fiber laser pumped high-power, broadly tunable, single-frequency red source based on a singly resonant optical parametric oscillator,” Opt. Lett. 41, 3033 (2016).
[Crossref] [PubMed]

G. Bo, Y. Feng Yang, J. Hua Wang, Zheng, X. Long Chen, and Chun Zhao, “Stimulated brillouin scattering enhancement factor improvement in a 11.6 ghz linewidth 1.5 kw yb-doped fiber amplifier,” Chin. Phys. Lett. 33, 94–97 (2016).

C. X. Yu, O. Shatrovoy, T. Y. Fan, and T. F. Taunay, “Diode-pumped narrow linewidth multi-kilowatt metalized yb fiber amplifier,” Opt. Lett. 41, 5202 (2016).
[Crossref] [PubMed]

F. Beier, C. Hupel, J. Nold, S. Kuhn, S. Hein, J. Ihring, B. Sattler, N. Haarlammert, T. Schreiber, and R. Eberhardt, “Narrow linewidth, single mode 3 kw average power from a directly diode pumped ytterbium-doped low na fiber amplifier,” Opt. Express 24, 6011 (2016).
[Crossref] [PubMed]

P. Ma, R. Tao, R. Su, X. Wang, P. Zhou, and Z. Liu, “1.89 kw all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality,” Opt. Express 24, 4187 (2016).
[Crossref] [PubMed]

K. Fanting, X. Junwen, R. H. Stolen, and D. Liang, “Direct experimental observation of stimulated thermal rayleigh scattering with polarization modes in a fiber amplifier,” Optica 3, 975 (2016).
[Crossref]

S. Naderi, I. Dajani, J. Grosek, and T. Madden, “Theoretical and numerical treatment of modal instability in high-power core and cladding-pumped raman fiber amplifiers,” Opt. Express 24, 16550–16565 (2016).
[Crossref] [PubMed]

L. Wei, P. Ma, H. Lv, J. Xu, Z. Pu, and Z. Jiang, “General analysis of srs-limited high-power fiber lasers and design strategy,” Opt. Express 24, 26715 (2016).
[Crossref]

2015 (4)

J. Leng, “Influence of temporal characteristics on the power scalability of the fiber amplifier,” Laser Phys. 25, 035101 (2015).
[Crossref]

C. Jauregui, H. J. Otto, F. Stutzki, J. Limpert, and A. Tunnermann, “Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening,” Opt. Express 23, 20203–20218 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17, 045504 (2015).
[Crossref]

X. Yang, F. Qiang, Q. Yuguo, M. Xiangjie, and S. Wei, “2 kw narrow spectral width monolithic continuous wave in a near-diffraction-limited fiber laser,” Appl. Opt. 54, 9419–9421 (2015).
[Crossref]

2014 (4)

M. N. Zervas and C. A. Codemard, “High power fiber lasers: A review,” IEEE J. Sel. Top. Quantum Electron. 20, 219–241 (2014).
[Crossref]

S. Wei, F. Qiang, Z. Xiushan, R. A. Norwood, and N. Peyghambarian, “Fiber lasers and their applications [invited],” Appl. Opt. 53, 6554–6568 (2014).
[Crossref]

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 w ytterbium-doped fiber laser,” Laser Phys. 24, 162–166 (2014).
[Crossref]

R. Tao, P. Ma, X. Wang, Z. Pu, and Z. Liu, “1.3 kw monolithic linearly-polarized single-mode mopa and strategies for mitigating mode instabilities,” Physics 3, 86 (2014).

2013 (4)

P. Yan, J. P. Hao, Q. R. Xiao, Y. P. Wang, and M. L. Gong, “The influence of fusion splicing on the beam quality of a ytterbium-doped fiber laser,” Laser Phys. 23, 045109 (2013).
[Crossref]

J. Cesar, O. Hans-Jürgen, S. Fabian, J. Florian, L. Jens, and T. Andreas, “Passive mitigation strategies for mode instabilities in high-power fiber laser systems,” Opt. Express 21, 19375–19386 (2013).
[Crossref]

E. A. Zlobina, S. A. Babin, and S. I. Kablukov, “Tunable cw all-fiber optical parametric oscillator operating below 1 μm,” Opt. Express 21, 6777–6782 (2013).
[Crossref] [PubMed]

Z. J. Liu, Z. Pu, X. U. Xiaojun, X. L. Wang, and M. A. Yanxing, “Coherent beam combining of high powerfiber lasers: Progress and prospect,” Sci. China Technol. Sci. 56, 1597–1606 (2013).
[Crossref]

2012 (3)

2011 (2)

M. Yanxing, W. Xiaolin, L. Jinyong, X. Hu, D. Xiaolin, Z. Jiajian, D. Wenbo, Z. Pu, X. Xiaojun, and S. Lei, “Coherent beam combination of 1.08 kw fiber amplifier array using single frequency dithering technique,” Opt. & Lasers Eng. 49, 1089–1092 (2011).
[Crossref]

A. Tünnermann, C. Jauregui, C. Wirth, F. Stutzki, F. Jansen, H. Otto, J. Limpert, O. Schmidt, T. Schreiber, and T. Eidam, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19, 13218 (2011).
[Crossref] [PubMed]

2009 (1)

G. Liu and D. Liu, “Numerical analysis of stimulated brillouin scattering in high-power double-clad fiber lasers,” Optik 120, 24–28 (2009).
[Crossref]

2007 (1)

2004 (1)

A. Liu, R. Mead, T. Vatter, A. Henderson, and R. Stafford, “Spectral beam combining of high-power fiber lasers,” Proc. SPIE - The Int. Soc. for Opt. Eng. 5335, 81–88 (2004).

2001 (1)

D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37, 207–217 (2001).
[Crossref]

Abedinajafi, A.

Afzal, R.

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” in Fiber Lasers Xi: Technology, Systems, & Applications, (2014).

Alekseev, D.

D. Alekseev, V. Tyrtyshnyy, M. S. Kuznetsov, and O. Antipov, “Transverse mode instability in high-gain few-mode yb3+-doped fiber amplifiers with 10 um core diameter with or without backward reflection,” IEEE J. Sel. Top. Quantum Electron. 24, 1 (2018).

Andreas, T.

Antipov, O.

D. Alekseev, V. Tyrtyshnyy, M. S. Kuznetsov, and O. Antipov, “Transverse mode instability in high-gain few-mode yb3+-doped fiber amplifiers with 10 um core diameter with or without backward reflection,” IEEE J. Sel. Top. Quantum Electron. 24, 1 (2018).

Arash, M.

Avdokhin, A.

A. Avdokhin, V. Gapontsev, P. Kadwani, A. Vaupel, I. Samartsev, N. Platonov, A. Yusim, and D. Myasnikov, “High average power quasi-cw single-mode green and uv fiber lasers,” in Photonics West-proc Spie, (2015).

Azizi, S.

Babazadeh, A.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 w ytterbium-doped fiber laser,” Laser Phys. 24, 162–166 (2014).
[Crossref]

Babin, S. A.

Bai, J.

J. Kang, B. Lu, X. Qi, X. Feng, H. Chen, M. Jiang, Y. Wang, P. Fu, and J. Bai, “An efficient single-frequency yb-doped all-fiber mopa laser at 1064.3 nm,” Chin. Phys. Lett. 33, 54–57 (2016).
[Crossref]

Beier, F.

Bo, G.

G. Bo, Y. Feng Yang, J. Hua Wang, Zheng, X. Long Chen, and Chun Zhao, “Stimulated brillouin scattering enhancement factor improvement in a 11.6 ghz linewidth 1.5 kw yb-doped fiber amplifier,” Chin. Phys. Lett. 33, 94–97 (2016).

Bock, V.

F. Möller, R. G. Krämer, C. Matzdorf, S. Nolte, M. Strecker, F. Stutzki, M. Plötner, V. Bock, T. Schreiber, and A. Tünnermann, “Comparison between bidirectional pumped yb-doped all-fiber single-mode amplifier and oscillator setup up to a power level of 5 kw,” (2018), p. AM2A.3.

Brar, K.

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” in Fiber Lasers Xi: Technology, Systems, & Applications, (2014).

Brian, S.

Brown, D. C.

D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37, 207–217 (2001).
[Crossref]

Cesar, J.

Chen, H.

J. Kang, B. Lu, X. Qi, X. Feng, H. Chen, M. Jiang, Y. Wang, P. Fu, and J. Bai, “An efficient single-frequency yb-doped all-fiber mopa laser at 1064.3 nm,” Chin. Phys. Lett. 33, 54–57 (2016).
[Crossref]

Chen, S.

Chen, X. Long

G. Bo, Y. Feng Yang, J. Hua Wang, Zheng, X. Long Chen, and Chun Zhao, “Stimulated brillouin scattering enhancement factor improvement in a 11.6 ghz linewidth 1.5 kw yb-doped fiber amplifier,” Chin. Phys. Lett. 33, 94–97 (2016).

Choi, yuKhong

C. Jun, M. Jung, W. Shin, B. A. Yu, Y. S. Yoon, Y. Park, and yuKhong Choi, “818 w yb-doped amplifier with <7 ghz linewidth based on pseudo-random phase modulation in polarization maintained all-fiber configuration,” Laser Phys. Lett. 16, 015102 (2018).

Chu, Q.

Q. Chu, H. Lin, C. Tang, J. Feng, and T. Xuan, “Spectral evolution and stimulated brillouin scattering suppression in phase-modulated fiber amplifier,” J. Phys. Commun. 2, 045022 (2018).
[Crossref]

Codemard, C. A.

M. N. Zervas and C. A. Codemard, “High power fiber lasers: A review,” IEEE J. Sel. Top. Quantum Electron. 20, 219–241 (2014).
[Crossref]

Congwen, Z.

L. Tenglong, Z. Congwen, S. Yinhong, M. Yi, K. Weiwei, and P. Wanjing, “3.5 kw bidirectionally pumped narrow-linewidth fiber amplifier seeded by white-noise-source phase-modulated laser,” Laser Phys. 28, 105101 (2018).
[Crossref]

Courtney, S.

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” in Fiber Lasers Xi: Technology, Systems, & Applications, (2014).

Cruz, J. D. L.

N. Platonov, R. Yagodkin, J. D. L. Cruz, A. Yusim, and V. Gapontsev, “1.5 kw linear polarized on pm fiber and 2 kw on non-pm fiber narrow linewidth cw diffraction-limited fiber amplifier,” in Spie Lase, (2017).

Dajani, I.

Das, R.

Dilley, C.

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” in Fiber Lasers Xi: Technology, Systems, & Applications, (2014).

Eberhardt, R.

F. Beier, C. Hupel, J. Nold, S. Kuhn, S. Hein, J. Ihring, B. Sattler, N. Haarlammert, T. Schreiber, and R. Eberhardt, “Narrow linewidth, single mode 3 kw average power from a directly diode pumped ytterbium-doped low na fiber amplifier,” Opt. Express 24, 6011 (2016).
[Crossref] [PubMed]

J. Nold, M. Strecker, A. Liem, R. Eberhardt, T. Schreiber, and A. Tünnermann, “Narrow linewidth single mode fiber amplifier with 2.3 kw average power,” Cspg Special Publ. (2015).

T. Schreiber, A. Liem, E. Freier, C. Matzdorf, R. Eberhardt, C. Jauregui, J. Limpert, and A. Tünnermann, “Analysis of stimulated raman scattering in cw kw fiber oscillators,” in Spie Lase, (2014).

Eidam, T.

Fabian, S.

Fan, T. Y.

Fanting, K.

Feng, J.

Z. Li, C. Li, L. Yu, Q. Luo, and J. Feng, “Impact of stimulated raman scattering on the transverse mode instability threshold,” IEEE Photonics J. 10, 1–9 (2018).

Q. Chu, H. Lin, C. Tang, J. Feng, and T. Xuan, “Spectral evolution and stimulated brillouin scattering suppression in phase-modulated fiber amplifier,” J. Phys. Commun. 2, 045022 (2018).
[Crossref]

L. I. Zebiao, Z. Huang, X. Xiang, X. Liang, H. Lin, X. U. Shanhui, Z. Yang, J. Wang, and J. Feng, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kw all-fiberized laser,” Photonics Res. 5, 77 (2017).
[Crossref]

Feng, X.

J. Kang, B. Lu, X. Qi, X. Feng, H. Chen, M. Jiang, Y. Wang, P. Fu, and J. Bai, “An efficient single-frequency yb-doped all-fiber mopa laser at 1064.3 nm,” Chin. Phys. Lett. 33, 54–57 (2016).
[Crossref]

Florian, J.

Freier, E.

T. Schreiber, A. Liem, E. Freier, C. Matzdorf, R. Eberhardt, C. Jauregui, J. Limpert, and A. Tünnermann, “Analysis of stimulated raman scattering in cw kw fiber oscillators,” in Spie Lase, (2014).

Fu, P.

J. Kang, B. Lu, X. Qi, X. Feng, H. Chen, M. Jiang, Y. Wang, P. Fu, and J. Bai, “An efficient single-frequency yb-doped all-fiber mopa laser at 1064.3 nm,” Chin. Phys. Lett. 33, 54–57 (2016).
[Crossref]

Gapontsev, V.

A. Avdokhin, V. Gapontsev, P. Kadwani, A. Vaupel, I. Samartsev, N. Platonov, A. Yusim, and D. Myasnikov, “High average power quasi-cw single-mode green and uv fiber lasers,” in Photonics West-proc Spie, (2015).

N. Platonov, R. Yagodkin, J. D. L. Cruz, A. Yusim, and V. Gapontsev, “1.5 kw linear polarized on pm fiber and 2 kw on non-pm fiber narrow linewidth cw diffraction-limited fiber amplifier,” in Spie Lase, (2017).

Golshan, A. H.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 w ytterbium-doped fiber laser,” Laser Phys. 24, 162–166 (2014).
[Crossref]

Gong, M. L.

P. Yan, J. P. Hao, Q. R. Xiao, Y. P. Wang, and M. L. Gong, “The influence of fusion splicing on the beam quality of a ytterbium-doped fiber laser,” Laser Phys. 23, 045109 (2013).
[Crossref]

Grosek, J.

Haarlammert, N.

Hans-Jürgen, O.

Hao, J. P.

P. Yan, J. P. Hao, Q. R. Xiao, Y. P. Wang, and M. L. Gong, “The influence of fusion splicing on the beam quality of a ytterbium-doped fiber laser,” Laser Phys. 23, 045109 (2013).
[Crossref]

He, B.

Y. Qi, M. Lei, C. Liu, B. He, and J. Zhou, “1.75 kw cw narrow linewidth yb-doped all-fiber amplifiers for beam combining application,” in CLEO: 2015, (Optical Society of America, 2015), p. ATu4M.4.

Heidariazar, A.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 w ytterbium-doped fiber laser,” Laser Phys. 24, 162–166 (2014).
[Crossref]

Hein, S.

Hejaz, K.

K. Hejaz, M. Shayganmanesh, R. Rezaei-Nasirabad, A. Roohforouz, S. Azizi, A. Abedinajafi, and V. Vatani, “Modal instability induced by stimulated raman scattering in high-power yb-doped fiber amplifiers,” Opt. Lett. 42, 5274 (2017).
[Crossref] [PubMed]

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 w ytterbium-doped fiber laser,” Laser Phys. 24, 162–166 (2014).
[Crossref]

Henderson, A.

A. Liu, R. Mead, T. Vatter, A. Henderson, and R. Stafford, “Spectral beam combining of high-power fiber lasers,” Proc. SPIE - The Int. Soc. for Opt. Eng. 5335, 81–88 (2004).

Henrie, J.

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” in Fiber Lasers Xi: Technology, Systems, & Applications, (2014).

Hoffman, H. J.

D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37, 207–217 (2001).
[Crossref]

Honea, E.

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” in Fiber Lasers Xi: Technology, Systems, & Applications, (2014).

Hu, X.

M. Yanxing, W. Xiaolin, L. Jinyong, X. Hu, D. Xiaolin, Z. Jiajian, D. Wenbo, Z. Pu, X. Xiaojun, and S. Lei, “Coherent beam combination of 1.08 kw fiber amplifier array using single frequency dithering technique,” Opt. & Lasers Eng. 49, 1089–1092 (2011).
[Crossref]

Huang, Z.

L. I. Zebiao, Z. Huang, X. Xiang, X. Liang, H. Lin, X. U. Shanhui, Z. Yang, J. Wang, and J. Feng, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kw all-fiberized laser,” Photonics Res. 5, 77 (2017).
[Crossref]

Hupel, C.

Ihring, J.

Jafari, N. T.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 w ytterbium-doped fiber laser,” Laser Phys. 24, 162–166 (2014).
[Crossref]

Jansen, F.

Jauregui, C.

Jens, L.

Jiajian, Z.

M. Yanxing, W. Xiaolin, L. Jinyong, X. Hu, D. Xiaolin, Z. Jiajian, D. Wenbo, Z. Pu, X. Xiaojun, and S. Lei, “Coherent beam combination of 1.08 kw fiber amplifier array using single frequency dithering technique,” Opt. & Lasers Eng. 49, 1089–1092 (2011).
[Crossref]

Jiang, M.

J. Kang, B. Lu, X. Qi, X. Feng, H. Chen, M. Jiang, Y. Wang, P. Fu, and J. Bai, “An efficient single-frequency yb-doped all-fiber mopa laser at 1064.3 nm,” Chin. Phys. Lett. 33, 54–57 (2016).
[Crossref]

Jiang, Z.

Jinyong, L.

M. Yanxing, W. Xiaolin, L. Jinyong, X. Hu, D. Xiaolin, Z. Jiajian, D. Wenbo, Z. Pu, X. Xiaojun, and S. Lei, “Coherent beam combination of 1.08 kw fiber amplifier array using single frequency dithering technique,” Opt. & Lasers Eng. 49, 1089–1092 (2011).
[Crossref]

Jun, C.

C. Jun, M. Jung, W. Shin, B. A. Yu, Y. S. Yoon, Y. Park, and yuKhong Choi, “818 w yb-doped amplifier with <7 ghz linewidth based on pseudo-random phase modulation in polarization maintained all-fiber configuration,” Laser Phys. Lett. 16, 015102 (2018).

Jung, M.

C. Jun, M. Jung, W. Shin, B. A. Yu, Y. S. Yoon, Y. Park, and yuKhong Choi, “818 w yb-doped amplifier with <7 ghz linewidth based on pseudo-random phase modulation in polarization maintained all-fiber configuration,” Laser Phys. Lett. 16, 015102 (2018).

Junwen, X.

Kablukov, S. I.

Kadwani, P.

A. Avdokhin, V. Gapontsev, P. Kadwani, A. Vaupel, I. Samartsev, N. Platonov, A. Yusim, and D. Myasnikov, “High average power quasi-cw single-mode green and uv fiber lasers,” in Photonics West-proc Spie, (2015).

Kang, J.

J. Kang, B. Lu, X. Qi, X. Feng, H. Chen, M. Jiang, Y. Wang, P. Fu, and J. Bai, “An efficient single-frequency yb-doped all-fiber mopa laser at 1064.3 nm,” Chin. Phys. Lett. 33, 54–57 (2016).
[Crossref]

Krämer, R. G.

F. Möller, R. G. Krämer, C. Matzdorf, S. Nolte, M. Strecker, F. Stutzki, M. Plötner, V. Bock, T. Schreiber, and A. Tünnermann, “Comparison between bidirectional pumped yb-doped all-fiber single-mode amplifier and oscillator setup up to a power level of 5 kw,” (2018), p. AM2A.3.

Kuhn, S.

Kuznetsov, M. S.

D. Alekseev, V. Tyrtyshnyy, M. S. Kuznetsov, and O. Antipov, “Transverse mode instability in high-gain few-mode yb3+-doped fiber amplifiers with 10 um core diameter with or without backward reflection,” IEEE J. Sel. Top. Quantum Electron. 24, 1 (2018).

Lafouti, M.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 w ytterbium-doped fiber laser,” Laser Phys. 24, 162–166 (2014).
[Crossref]

Lei, M.

Y. Qi, M. Lei, C. Liu, B. He, and J. Zhou, “1.75 kw cw narrow linewidth yb-doped all-fiber amplifiers for beam combining application,” in CLEO: 2015, (Optical Society of America, 2015), p. ATu4M.4.

M. Lei, Y. Qi, C. Liu, Y. Yang, Y. Zheng, and J. Zhou, “Mode controlling study on narrow-linewidth and high power all-fiber amplifier,” in International Symposium on Laser Interaction with Matter, (2015).

Lei, S.

M. Yanxing, W. Xiaolin, L. Jinyong, X. Hu, D. Xiaolin, Z. Jiajian, D. Wenbo, Z. Pu, X. Xiaojun, and S. Lei, “Coherent beam combination of 1.08 kw fiber amplifier array using single frequency dithering technique,” Opt. & Lasers Eng. 49, 1089–1092 (2011).
[Crossref]

Leng, J.

J. Leng, “Influence of temporal characteristics on the power scalability of the fiber amplifier,” Laser Phys. 25, 035101 (2015).
[Crossref]

Li, C.

Z. Li, C. Li, L. Yu, Q. Luo, and J. Feng, “Impact of stimulated raman scattering on the transverse mode instability threshold,” IEEE Photonics J. 10, 1–9 (2018).

Li, Z.

Z. Li, C. Li, L. Yu, Q. Luo, and J. Feng, “Impact of stimulated raman scattering on the transverse mode instability threshold,” IEEE Photonics J. 10, 1–9 (2018).

Liang, D.

Liang, X.

L. I. Zebiao, Z. Huang, X. Xiang, X. Liang, H. Lin, X. U. Shanhui, Z. Yang, J. Wang, and J. Feng, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kw all-fiberized laser,” Photonics Res. 5, 77 (2017).
[Crossref]

Liem, A.

F. Beier, C. Hupel, S. Kuhn, S. Hein, J. Nold, F. Proske, B. Sattler, A. Liem, C. Jauregui, and J. Limpert, “Single mode 4.3 kw output power from a diode-pumped yb-doped fiber amplifier,” Opt. Express 25, 14892–14899 (2017).
[Crossref] [PubMed]

T. Schreiber, A. Liem, E. Freier, C. Matzdorf, R. Eberhardt, C. Jauregui, J. Limpert, and A. Tünnermann, “Analysis of stimulated raman scattering in cw kw fiber oscillators,” in Spie Lase, (2014).

J. Nold, M. Strecker, A. Liem, R. Eberhardt, T. Schreiber, and A. Tünnermann, “Narrow linewidth single mode fiber amplifier with 2.3 kw average power,” Cspg Special Publ. (2015).

Limpert, J.

Lin, H.

Q. Chu, H. Lin, C. Tang, J. Feng, and T. Xuan, “Spectral evolution and stimulated brillouin scattering suppression in phase-modulated fiber amplifier,” J. Phys. Commun. 2, 045022 (2018).
[Crossref]

L. I. Zebiao, Z. Huang, X. Xiang, X. Liang, H. Lin, X. U. Shanhui, Z. Yang, J. Wang, and J. Feng, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kw all-fiberized laser,” Photonics Res. 5, 77 (2017).
[Crossref]

Liu, A.

A. Liu, R. Mead, T. Vatter, A. Henderson, and R. Stafford, “Spectral beam combining of high-power fiber lasers,” Proc. SPIE - The Int. Soc. for Opt. Eng. 5335, 81–88 (2004).

Liu, C.

Y. Qi, M. Lei, C. Liu, B. He, and J. Zhou, “1.75 kw cw narrow linewidth yb-doped all-fiber amplifiers for beam combining application,” in CLEO: 2015, (Optical Society of America, 2015), p. ATu4M.4.

M. Lei, Y. Qi, C. Liu, Y. Yang, Y. Zheng, and J. Zhou, “Mode controlling study on narrow-linewidth and high power all-fiber amplifier,” in International Symposium on Laser Interaction with Matter, (2015).

Liu, D.

G. Liu and D. Liu, “Numerical analysis of stimulated brillouin scattering in high-power double-clad fiber lasers,” Optik 120, 24–28 (2009).
[Crossref]

Liu, G.

G. Liu and D. Liu, “Numerical analysis of stimulated brillouin scattering in high-power double-clad fiber lasers,” Optik 120, 24–28 (2009).
[Crossref]

Liu, Z.

R. Tao, P. Ma, X. Wang, Z. Pu, and Z. Liu, “Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers,” Laser Phys. Lett. 14, 025002 (2017).
[Crossref]

P. Ma, R. Tao, R. Su, X. Wang, P. Zhou, and Z. Liu, “1.89 kw all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality,” Opt. Express 24, 4187 (2016).
[Crossref] [PubMed]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17, 045504 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, Z. Pu, and Z. Liu, “1.3 kw monolithic linearly-polarized single-mode mopa and strategies for mitigating mode instabilities,” Physics 3, 86 (2014).

Liu, Z. J.

Z. J. Liu, Z. Pu, X. U. Xiaojun, X. L. Wang, and M. A. Yanxing, “Coherent beam combining of high powerfiber lasers: Progress and prospect,” Sci. China Technol. Sci. 56, 1597–1606 (2013).
[Crossref]

Lu, B.

J. Kang, B. Lu, X. Qi, X. Feng, H. Chen, M. Jiang, Y. Wang, P. Fu, and J. Bai, “An efficient single-frequency yb-doped all-fiber mopa laser at 1064.3 nm,” Chin. Phys. Lett. 33, 54–57 (2016).
[Crossref]

Luo, Q.

Z. Li, C. Li, L. Yu, Q. Luo, and J. Feng, “Impact of stimulated raman scattering on the transverse mode instability threshold,” IEEE Photonics J. 10, 1–9 (2018).

Lv, H.

Ma, P.

L. Wei, P. Ma, S. Chen, Z. Pu, and Z. Jiang, “Theoretical analysis of the srs-induced mode distortion in large-mode area fiber amplifiers,” Opt. Express 26, 15793 (2018).
[Crossref]

R. Tao, R. Su, P. Ma, X. Wang, and P. Zhou, “Suppressing mode instabilities by optimizing the fiber coiling methods,” Laser Phys. Lett. 14, 025101 (2017).
[Crossref]

R. Su, R. Tao, X. Wang, H. Zhang, P. Ma, Z. Pu, and X. Xu, “2.43 kw narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression,” Laser Phys. Lett. 14, 085102 (2017).
[Crossref]

R. Tao, P. Ma, X. Wang, Z. Pu, and Z. Liu, “Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers,” Laser Phys. Lett. 14, 025002 (2017).
[Crossref]

L. Wei, P. Ma, H. Lv, J. Xu, Z. Pu, and Z. Jiang, “General analysis of srs-limited high-power fiber lasers and design strategy,” Opt. Express 24, 26715 (2016).
[Crossref]

P. Ma, R. Tao, R. Su, X. Wang, P. Zhou, and Z. Liu, “1.89 kw all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality,” Opt. Express 24, 4187 (2016).
[Crossref] [PubMed]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17, 045504 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, Z. Pu, and Z. Liu, “1.3 kw monolithic linearly-polarized single-mode mopa and strategies for mitigating mode instabilities,” Physics 3, 86 (2014).

Madden, T.

Maji, P. S.

Matzdorf, C.

T. Schreiber, A. Liem, E. Freier, C. Matzdorf, R. Eberhardt, C. Jauregui, J. Limpert, and A. Tünnermann, “Analysis of stimulated raman scattering in cw kw fiber oscillators,” in Spie Lase, (2014).

F. Möller, R. G. Krämer, C. Matzdorf, S. Nolte, M. Strecker, F. Stutzki, M. Plötner, V. Bock, T. Schreiber, and A. Tünnermann, “Comparison between bidirectional pumped yb-doped all-fiber single-mode amplifier and oscillator setup up to a power level of 5 kw,” (2018), p. AM2A.3.

Mead, R.

A. Liu, R. Mead, T. Vatter, A. Henderson, and R. Stafford, “Spectral beam combining of high-power fiber lasers,” Proc. SPIE - The Int. Soc. for Opt. Eng. 5335, 81–88 (2004).

Michiko, M.

Mobini Esmaeil, A. B.

Möller, F.

F. Möller, R. G. Krämer, C. Matzdorf, S. Nolte, M. Strecker, F. Stutzki, M. Plötner, V. Bock, T. Schreiber, and A. Tünnermann, “Comparison between bidirectional pumped yb-doped all-fiber single-mode amplifier and oscillator setup up to a power level of 5 kw,” (2018), p. AM2A.3.

Mostafa, Peysokhan

Myasnikov, D.

A. Avdokhin, V. Gapontsev, P. Kadwani, A. Vaupel, I. Samartsev, N. Platonov, A. Yusim, and D. Myasnikov, “High average power quasi-cw single-mode green and uv fiber lasers,” in Photonics West-proc Spie, (2015).

Naderi, S.

Nasirabad, R. R.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 w ytterbium-doped fiber laser,” Laser Phys. 24, 162–166 (2014).
[Crossref]

Nold, J.

Nolte, S.

F. Möller, R. G. Krämer, C. Matzdorf, S. Nolte, M. Strecker, F. Stutzki, M. Plötner, V. Bock, T. Schreiber, and A. Tünnermann, “Comparison between bidirectional pumped yb-doped all-fiber single-mode amplifier and oscillator setup up to a power level of 5 kw,” (2018), p. AM2A.3.

Norouzey, A.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 w ytterbium-doped fiber laser,” Laser Phys. 24, 162–166 (2014).
[Crossref]

Norwood, R. A.

Otto, H.

Otto, H. J.

Otto, H.-J.

Park, Y.

C. Jun, M. Jung, W. Shin, B. A. Yu, Y. S. Yoon, Y. Park, and yuKhong Choi, “818 w yb-doped amplifier with <7 ghz linewidth based on pseudo-random phase modulation in polarization maintained all-fiber configuration,” Laser Phys. Lett. 16, 015102 (2018).

Peyghambarian, N.

Platonov, N.

N. Platonov, R. Yagodkin, J. D. L. Cruz, A. Yusim, and V. Gapontsev, “1.5 kw linear polarized on pm fiber and 2 kw on non-pm fiber narrow linewidth cw diffraction-limited fiber amplifier,” in Spie Lase, (2017).

A. Avdokhin, V. Gapontsev, P. Kadwani, A. Vaupel, I. Samartsev, N. Platonov, A. Yusim, and D. Myasnikov, “High average power quasi-cw single-mode green and uv fiber lasers,” in Photonics West-proc Spie, (2015).

Plötner, M.

F. Möller, R. G. Krämer, C. Matzdorf, S. Nolte, M. Strecker, F. Stutzki, M. Plötner, V. Bock, T. Schreiber, and A. Tünnermann, “Comparison between bidirectional pumped yb-doped all-fiber single-mode amplifier and oscillator setup up to a power level of 5 kw,” (2018), p. AM2A.3.

Poozesh, R.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 w ytterbium-doped fiber laser,” Laser Phys. 24, 162–166 (2014).
[Crossref]

Proske, F.

Pu, Z.

L. Wei, P. Ma, S. Chen, Z. Pu, and Z. Jiang, “Theoretical analysis of the srs-induced mode distortion in large-mode area fiber amplifiers,” Opt. Express 26, 15793 (2018).
[Crossref]

R. Tao, P. Ma, X. Wang, Z. Pu, and Z. Liu, “Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers,” Laser Phys. Lett. 14, 025002 (2017).
[Crossref]

R. Su, R. Tao, X. Wang, H. Zhang, P. Ma, Z. Pu, and X. Xu, “2.43 kw narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression,” Laser Phys. Lett. 14, 085102 (2017).
[Crossref]

L. Wei, P. Ma, H. Lv, J. Xu, Z. Pu, and Z. Jiang, “General analysis of srs-limited high-power fiber lasers and design strategy,” Opt. Express 24, 26715 (2016).
[Crossref]

R. Tao, P. Ma, X. Wang, Z. Pu, and Z. Liu, “1.3 kw monolithic linearly-polarized single-mode mopa and strategies for mitigating mode instabilities,” Physics 3, 86 (2014).

Z. J. Liu, Z. Pu, X. U. Xiaojun, X. L. Wang, and M. A. Yanxing, “Coherent beam combining of high powerfiber lasers: Progress and prospect,” Sci. China Technol. Sci. 56, 1597–1606 (2013).
[Crossref]

M. Yanxing, W. Xiaolin, L. Jinyong, X. Hu, D. Xiaolin, Z. Jiajian, D. Wenbo, Z. Pu, X. Xiaojun, and S. Lei, “Coherent beam combination of 1.08 kw fiber amplifier array using single frequency dithering technique,” Opt. & Lasers Eng. 49, 1089–1092 (2011).
[Crossref]

Qi, X.

J. Kang, B. Lu, X. Qi, X. Feng, H. Chen, M. Jiang, Y. Wang, P. Fu, and J. Bai, “An efficient single-frequency yb-doped all-fiber mopa laser at 1064.3 nm,” Chin. Phys. Lett. 33, 54–57 (2016).
[Crossref]

Qi, Y.

Y. Qi, M. Lei, C. Liu, B. He, and J. Zhou, “1.75 kw cw narrow linewidth yb-doped all-fiber amplifiers for beam combining application,” in CLEO: 2015, (Optical Society of America, 2015), p. ATu4M.4.

M. Lei, Y. Qi, C. Liu, Y. Yang, Y. Zheng, and J. Zhou, “Mode controlling study on narrow-linewidth and high power all-fiber amplifier,” in International Symposium on Laser Interaction with Matter, (2015).

Qiang, F.

Rezaei-Nasirabad, R.

Robin, C.

Roohforouz, A.

K. Hejaz, M. Shayganmanesh, R. Rezaei-Nasirabad, A. Roohforouz, S. Azizi, A. Abedinajafi, and V. Vatani, “Modal instability induced by stimulated raman scattering in high-power yb-doped fiber amplifiers,” Opt. Lett. 42, 5274 (2017).
[Crossref] [PubMed]

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 w ytterbium-doped fiber laser,” Laser Phys. 24, 162–166 (2014).
[Crossref]

Samartsev, I.

A. Avdokhin, V. Gapontsev, P. Kadwani, A. Vaupel, I. Samartsev, N. Platonov, A. Yusim, and D. Myasnikov, “High average power quasi-cw single-mode green and uv fiber lasers,” in Photonics West-proc Spie, (2015).

Sattler, B.

Savage-Leuchs, M.

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” in Fiber Lasers Xi: Technology, Systems, & Applications, (2014).

Schmidt, O.

Schreiber, T.

F. Beier, C. Hupel, J. Nold, S. Kuhn, S. Hein, J. Ihring, B. Sattler, N. Haarlammert, T. Schreiber, and R. Eberhardt, “Narrow linewidth, single mode 3 kw average power from a directly diode pumped ytterbium-doped low na fiber amplifier,” Opt. Express 24, 6011 (2016).
[Crossref] [PubMed]

A. Tünnermann, C. Jauregui, C. Wirth, F. Stutzki, F. Jansen, H. Otto, J. Limpert, O. Schmidt, T. Schreiber, and T. Eidam, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19, 13218 (2011).
[Crossref] [PubMed]

J. Nold, M. Strecker, A. Liem, R. Eberhardt, T. Schreiber, and A. Tünnermann, “Narrow linewidth single mode fiber amplifier with 2.3 kw average power,” Cspg Special Publ. (2015).

F. Möller, R. G. Krämer, C. Matzdorf, S. Nolte, M. Strecker, F. Stutzki, M. Plötner, V. Bock, T. Schreiber, and A. Tünnermann, “Comparison between bidirectional pumped yb-doped all-fiber single-mode amplifier and oscillator setup up to a power level of 5 kw,” (2018), p. AM2A.3.

T. Schreiber, A. Liem, E. Freier, C. Matzdorf, R. Eberhardt, C. Jauregui, J. Limpert, and A. Tünnermann, “Analysis of stimulated raman scattering in cw kw fiber oscillators,” in Spie Lase, (2014).

Shanhui, X. U.

L. I. Zebiao, Z. Huang, X. Xiang, X. Liang, H. Lin, X. U. Shanhui, Z. Yang, J. Wang, and J. Feng, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kw all-fiberized laser,” Photonics Res. 5, 77 (2017).
[Crossref]

Shatrovoy, O.

Shayganmanesh, M.

Shin, W.

C. Jun, M. Jung, W. Shin, B. A. Yu, Y. S. Yoon, Y. Park, and yuKhong Choi, “818 w yb-doped amplifier with <7 ghz linewidth based on pseudo-random phase modulation in polarization maintained all-fiber configuration,” Laser Phys. Lett. 16, 015102 (2018).

Shukla, M. K.

Stafford, R.

A. Liu, R. Mead, T. Vatter, A. Henderson, and R. Stafford, “Spectral beam combining of high-power fiber lasers,” Proc. SPIE - The Int. Soc. for Opt. Eng. 5335, 81–88 (2004).

Stephan, W.

Stolen, R. H.

Strecker, M.

J. Nold, M. Strecker, A. Liem, R. Eberhardt, T. Schreiber, and A. Tünnermann, “Narrow linewidth single mode fiber amplifier with 2.3 kw average power,” Cspg Special Publ. (2015).

F. Möller, R. G. Krämer, C. Matzdorf, S. Nolte, M. Strecker, F. Stutzki, M. Plötner, V. Bock, T. Schreiber, and A. Tünnermann, “Comparison between bidirectional pumped yb-doped all-fiber single-mode amplifier and oscillator setup up to a power level of 5 kw,” (2018), p. AM2A.3.

Stutzki, F.

Su, R.

R. Su, R. Tao, X. Wang, H. Zhang, P. Ma, Z. Pu, and X. Xu, “2.43 kw narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression,” Laser Phys. Lett. 14, 085102 (2017).
[Crossref]

R. Tao, R. Su, P. Ma, X. Wang, and P. Zhou, “Suppressing mode instabilities by optimizing the fiber coiling methods,” Laser Phys. Lett. 14, 025101 (2017).
[Crossref]

P. Ma, R. Tao, R. Su, X. Wang, P. Zhou, and Z. Liu, “1.89 kw all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality,” Opt. Express 24, 4187 (2016).
[Crossref] [PubMed]

Tang, C.

Q. Chu, H. Lin, C. Tang, J. Feng, and T. Xuan, “Spectral evolution and stimulated brillouin scattering suppression in phase-modulated fiber amplifier,” J. Phys. Commun. 2, 045022 (2018).
[Crossref]

Tao, R.

R. Tao, P. Ma, X. Wang, Z. Pu, and Z. Liu, “Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers,” Laser Phys. Lett. 14, 025002 (2017).
[Crossref]

R. Su, R. Tao, X. Wang, H. Zhang, P. Ma, Z. Pu, and X. Xu, “2.43 kw narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression,” Laser Phys. Lett. 14, 085102 (2017).
[Crossref]

R. Tao, R. Su, P. Ma, X. Wang, and P. Zhou, “Suppressing mode instabilities by optimizing the fiber coiling methods,” Laser Phys. Lett. 14, 025101 (2017).
[Crossref]

P. Ma, R. Tao, R. Su, X. Wang, P. Zhou, and Z. Liu, “1.89 kw all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality,” Opt. Express 24, 4187 (2016).
[Crossref] [PubMed]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17, 045504 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, Z. Pu, and Z. Liu, “1.3 kw monolithic linearly-polarized single-mode mopa and strategies for mitigating mode instabilities,” Physics 3, 86 (2014).

Taunay, T. F.

Tenglong, L.

L. Tenglong, Z. Congwen, S. Yinhong, M. Yi, K. Weiwei, and P. Wanjing, “3.5 kw bidirectionally pumped narrow-linewidth fiber amplifier seeded by white-noise-source phase-modulated laser,” Laser Phys. 28, 105101 (2018).
[Crossref]

Tino, E.

Tunnermann, A.

Tünnermann, A.

C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20, 12912–12925 (2012).
[Crossref] [PubMed]

A. Tünnermann, C. Jauregui, C. Wirth, F. Stutzki, F. Jansen, H. Otto, J. Limpert, O. Schmidt, T. Schreiber, and T. Eidam, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19, 13218 (2011).
[Crossref] [PubMed]

F. Möller, R. G. Krämer, C. Matzdorf, S. Nolte, M. Strecker, F. Stutzki, M. Plötner, V. Bock, T. Schreiber, and A. Tünnermann, “Comparison between bidirectional pumped yb-doped all-fiber single-mode amplifier and oscillator setup up to a power level of 5 kw,” (2018), p. AM2A.3.

T. Schreiber, A. Liem, E. Freier, C. Matzdorf, R. Eberhardt, C. Jauregui, J. Limpert, and A. Tünnermann, “Analysis of stimulated raman scattering in cw kw fiber oscillators,” in Spie Lase, (2014).

J. Nold, M. Strecker, A. Liem, R. Eberhardt, T. Schreiber, and A. Tünnermann, “Narrow linewidth single mode fiber amplifier with 2.3 kw average power,” Cspg Special Publ. (2015).

Tyrtyshnyy, V.

D. Alekseev, V. Tyrtyshnyy, M. S. Kuznetsov, and O. Antipov, “Transverse mode instability in high-gain few-mode yb3+-doped fiber amplifiers with 10 um core diameter with or without backward reflection,” IEEE J. Sel. Top. Quantum Electron. 24, 1 (2018).

Vatani, V.

Vatter, T.

A. Liu, R. Mead, T. Vatter, A. Henderson, and R. Stafford, “Spectral beam combining of high-power fiber lasers,” Proc. SPIE - The Int. Soc. for Opt. Eng. 5335, 81–88 (2004).

Vaupel, A.

A. Avdokhin, V. Gapontsev, P. Kadwani, A. Vaupel, I. Samartsev, N. Platonov, A. Yusim, and D. Myasnikov, “High average power quasi-cw single-mode green and uv fiber lasers,” in Photonics West-proc Spie, (2015).

Wang, J.

L. I. Zebiao, Z. Huang, X. Xiang, X. Liang, H. Lin, X. U. Shanhui, Z. Yang, J. Wang, and J. Feng, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kw all-fiberized laser,” Photonics Res. 5, 77 (2017).
[Crossref]

Wang, J. Hua

G. Bo, Y. Feng Yang, J. Hua Wang, Zheng, X. Long Chen, and Chun Zhao, “Stimulated brillouin scattering enhancement factor improvement in a 11.6 ghz linewidth 1.5 kw yb-doped fiber amplifier,” Chin. Phys. Lett. 33, 94–97 (2016).

Wang, X.

R. Su, R. Tao, X. Wang, H. Zhang, P. Ma, Z. Pu, and X. Xu, “2.43 kw narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression,” Laser Phys. Lett. 14, 085102 (2017).
[Crossref]

R. Tao, P. Ma, X. Wang, Z. Pu, and Z. Liu, “Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers,” Laser Phys. Lett. 14, 025002 (2017).
[Crossref]

R. Tao, R. Su, P. Ma, X. Wang, and P. Zhou, “Suppressing mode instabilities by optimizing the fiber coiling methods,” Laser Phys. Lett. 14, 025101 (2017).
[Crossref]

P. Ma, R. Tao, R. Su, X. Wang, P. Zhou, and Z. Liu, “1.89 kw all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality,” Opt. Express 24, 4187 (2016).
[Crossref] [PubMed]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17, 045504 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, Z. Pu, and Z. Liu, “1.3 kw monolithic linearly-polarized single-mode mopa and strategies for mitigating mode instabilities,” Physics 3, 86 (2014).

Wang, X. L.

Z. J. Liu, Z. Pu, X. U. Xiaojun, X. L. Wang, and M. A. Yanxing, “Coherent beam combining of high powerfiber lasers: Progress and prospect,” Sci. China Technol. Sci. 56, 1597–1606 (2013).
[Crossref]

Wang, Y.

J. Kang, B. Lu, X. Qi, X. Feng, H. Chen, M. Jiang, Y. Wang, P. Fu, and J. Bai, “An efficient single-frequency yb-doped all-fiber mopa laser at 1064.3 nm,” Chin. Phys. Lett. 33, 54–57 (2016).
[Crossref]

Wang, Y. P.

P. Yan, J. P. Hao, Q. R. Xiao, Y. P. Wang, and M. L. Gong, “The influence of fusion splicing on the beam quality of a ytterbium-doped fiber laser,” Laser Phys. 23, 045109 (2013).
[Crossref]

Wanjing, P.

L. Tenglong, Z. Congwen, S. Yinhong, M. Yi, K. Weiwei, and P. Wanjing, “3.5 kw bidirectionally pumped narrow-linewidth fiber amplifier seeded by white-noise-source phase-modulated laser,” Laser Phys. 28, 105101 (2018).
[Crossref]

Ward, B.

Wei, L.

Wei, S.

Weiwei, K.

L. Tenglong, Z. Congwen, S. Yinhong, M. Yi, K. Weiwei, and P. Wanjing, “3.5 kw bidirectionally pumped narrow-linewidth fiber amplifier seeded by white-noise-source phase-modulated laser,” Laser Phys. 28, 105101 (2018).
[Crossref]

Wenbo, D.

M. Yanxing, W. Xiaolin, L. Jinyong, X. Hu, D. Xiaolin, Z. Jiajian, D. Wenbo, Z. Pu, X. Xiaojun, and S. Lei, “Coherent beam combination of 1.08 kw fiber amplifier array using single frequency dithering technique,” Opt. & Lasers Eng. 49, 1089–1092 (2011).
[Crossref]

Wirth, C.

Xiang, X.

L. I. Zebiao, Z. Huang, X. Xiang, X. Liang, H. Lin, X. U. Shanhui, Z. Yang, J. Wang, and J. Feng, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kw all-fiberized laser,” Photonics Res. 5, 77 (2017).
[Crossref]

Xiangjie, M.

Xiao, Q. R.

P. Yan, J. P. Hao, Q. R. Xiao, Y. P. Wang, and M. L. Gong, “The influence of fusion splicing on the beam quality of a ytterbium-doped fiber laser,” Laser Phys. 23, 045109 (2013).
[Crossref]

Xiaojun, X.

M. Yanxing, W. Xiaolin, L. Jinyong, X. Hu, D. Xiaolin, Z. Jiajian, D. Wenbo, Z. Pu, X. Xiaojun, and S. Lei, “Coherent beam combination of 1.08 kw fiber amplifier array using single frequency dithering technique,” Opt. & Lasers Eng. 49, 1089–1092 (2011).
[Crossref]

Xiaojun, X. U.

Z. J. Liu, Z. Pu, X. U. Xiaojun, X. L. Wang, and M. A. Yanxing, “Coherent beam combining of high powerfiber lasers: Progress and prospect,” Sci. China Technol. Sci. 56, 1597–1606 (2013).
[Crossref]

Xiaolin, D.

M. Yanxing, W. Xiaolin, L. Jinyong, X. Hu, D. Xiaolin, Z. Jiajian, D. Wenbo, Z. Pu, X. Xiaojun, and S. Lei, “Coherent beam combination of 1.08 kw fiber amplifier array using single frequency dithering technique,” Opt. & Lasers Eng. 49, 1089–1092 (2011).
[Crossref]

Xiaolin, W.

M. Yanxing, W. Xiaolin, L. Jinyong, X. Hu, D. Xiaolin, Z. Jiajian, D. Wenbo, Z. Pu, X. Xiaojun, and S. Lei, “Coherent beam combination of 1.08 kw fiber amplifier array using single frequency dithering technique,” Opt. & Lasers Eng. 49, 1089–1092 (2011).
[Crossref]

Xiushan, Z.

Xu, J.

Xu, X.

R. Su, R. Tao, X. Wang, H. Zhang, P. Ma, Z. Pu, and X. Xu, “2.43 kw narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression,” Laser Phys. Lett. 14, 085102 (2017).
[Crossref]

Xuan, T.

Q. Chu, H. Lin, C. Tang, J. Feng, and T. Xuan, “Spectral evolution and stimulated brillouin scattering suppression in phase-modulated fiber amplifier,” J. Phys. Commun. 2, 045022 (2018).
[Crossref]

Yagodkin, R.

N. Platonov, R. Yagodkin, J. D. L. Cruz, A. Yusim, and V. Gapontsev, “1.5 kw linear polarized on pm fiber and 2 kw on non-pm fiber narrow linewidth cw diffraction-limited fiber amplifier,” in Spie Lase, (2017).

Yan, P.

P. Yan, J. P. Hao, Q. R. Xiao, Y. P. Wang, and M. L. Gong, “The influence of fusion splicing on the beam quality of a ytterbium-doped fiber laser,” Laser Phys. 23, 045109 (2013).
[Crossref]

Yang, X.

Yang, Y.

M. Lei, Y. Qi, C. Liu, Y. Yang, Y. Zheng, and J. Zhou, “Mode controlling study on narrow-linewidth and high power all-fiber amplifier,” in International Symposium on Laser Interaction with Matter, (2015).

Yang, Y. Feng

G. Bo, Y. Feng Yang, J. Hua Wang, Zheng, X. Long Chen, and Chun Zhao, “Stimulated brillouin scattering enhancement factor improvement in a 11.6 ghz linewidth 1.5 kw yb-doped fiber amplifier,” Chin. Phys. Lett. 33, 94–97 (2016).

Yang, Z.

L. I. Zebiao, Z. Huang, X. Xiang, X. Liang, H. Lin, X. U. Shanhui, Z. Yang, J. Wang, and J. Feng, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kw all-fiberized laser,” Photonics Res. 5, 77 (2017).
[Crossref]

Yanxing, M.

M. Yanxing, W. Xiaolin, L. Jinyong, X. Hu, D. Xiaolin, Z. Jiajian, D. Wenbo, Z. Pu, X. Xiaojun, and S. Lei, “Coherent beam combination of 1.08 kw fiber amplifier array using single frequency dithering technique,” Opt. & Lasers Eng. 49, 1089–1092 (2011).
[Crossref]

Yanxing, M. A.

Z. J. Liu, Z. Pu, X. U. Xiaojun, X. L. Wang, and M. A. Yanxing, “Coherent beam combining of high powerfiber lasers: Progress and prospect,” Sci. China Technol. Sci. 56, 1597–1606 (2013).
[Crossref]

Yi, M.

L. Tenglong, Z. Congwen, S. Yinhong, M. Yi, K. Weiwei, and P. Wanjing, “3.5 kw bidirectionally pumped narrow-linewidth fiber amplifier seeded by white-noise-source phase-modulated laser,” Laser Phys. 28, 105101 (2018).
[Crossref]

Yinhong, S.

L. Tenglong, Z. Congwen, S. Yinhong, M. Yi, K. Weiwei, and P. Wanjing, “3.5 kw bidirectionally pumped narrow-linewidth fiber amplifier seeded by white-noise-source phase-modulated laser,” Laser Phys. 28, 105101 (2018).
[Crossref]

Yoon, Y. S.

C. Jun, M. Jung, W. Shin, B. A. Yu, Y. S. Yoon, Y. Park, and yuKhong Choi, “818 w yb-doped amplifier with <7 ghz linewidth based on pseudo-random phase modulation in polarization maintained all-fiber configuration,” Laser Phys. Lett. 16, 015102 (2018).

Yu, B. A.

C. Jun, M. Jung, W. Shin, B. A. Yu, Y. S. Yoon, Y. Park, and yuKhong Choi, “818 w yb-doped amplifier with <7 ghz linewidth based on pseudo-random phase modulation in polarization maintained all-fiber configuration,” Laser Phys. Lett. 16, 015102 (2018).

Yu, C. X.

Yu, L.

Z. Li, C. Li, L. Yu, Q. Luo, and J. Feng, “Impact of stimulated raman scattering on the transverse mode instability threshold,” IEEE Photonics J. 10, 1–9 (2018).

Yuguo, Q.

Yusim, A.

N. Platonov, R. Yagodkin, J. D. L. Cruz, A. Yusim, and V. Gapontsev, “1.5 kw linear polarized on pm fiber and 2 kw on non-pm fiber narrow linewidth cw diffraction-limited fiber amplifier,” in Spie Lase, (2017).

A. Avdokhin, V. Gapontsev, P. Kadwani, A. Vaupel, I. Samartsev, N. Platonov, A. Yusim, and D. Myasnikov, “High average power quasi-cw single-mode green and uv fiber lasers,” in Photonics West-proc Spie, (2015).

Zebiao, L. I.

L. I. Zebiao, Z. Huang, X. Xiang, X. Liang, H. Lin, X. U. Shanhui, Z. Yang, J. Wang, and J. Feng, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kw all-fiberized laser,” Photonics Res. 5, 77 (2017).
[Crossref]

Zervas, M. N.

M. N. Zervas and C. A. Codemard, “High power fiber lasers: A review,” IEEE J. Sel. Top. Quantum Electron. 20, 219–241 (2014).
[Crossref]

M. N. Zervas, “Transverse mode instability analysis in fiber amplifiers,” in Society of Photo-optical Instrumentation Engineers, (2017).

Zhang, H.

R. Su, R. Tao, X. Wang, H. Zhang, P. Ma, Z. Pu, and X. Xu, “2.43 kw narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression,” Laser Phys. Lett. 14, 085102 (2017).
[Crossref]

Zhao, Chun

G. Bo, Y. Feng Yang, J. Hua Wang, Zheng, X. Long Chen, and Chun Zhao, “Stimulated brillouin scattering enhancement factor improvement in a 11.6 ghz linewidth 1.5 kw yb-doped fiber amplifier,” Chin. Phys. Lett. 33, 94–97 (2016).

Zheng,

G. Bo, Y. Feng Yang, J. Hua Wang, Zheng, X. Long Chen, and Chun Zhao, “Stimulated brillouin scattering enhancement factor improvement in a 11.6 ghz linewidth 1.5 kw yb-doped fiber amplifier,” Chin. Phys. Lett. 33, 94–97 (2016).

Zheng, Y.

M. Lei, Y. Qi, C. Liu, Y. Yang, Y. Zheng, and J. Zhou, “Mode controlling study on narrow-linewidth and high power all-fiber amplifier,” in International Symposium on Laser Interaction with Matter, (2015).

Zhi, Z.

Zhou, J.

M. Lei, Y. Qi, C. Liu, Y. Yang, Y. Zheng, and J. Zhou, “Mode controlling study on narrow-linewidth and high power all-fiber amplifier,” in International Symposium on Laser Interaction with Matter, (2015).

Y. Qi, M. Lei, C. Liu, B. He, and J. Zhou, “1.75 kw cw narrow linewidth yb-doped all-fiber amplifiers for beam combining application,” in CLEO: 2015, (Optical Society of America, 2015), p. ATu4M.4.

Zhou, P.

R. Tao, R. Su, P. Ma, X. Wang, and P. Zhou, “Suppressing mode instabilities by optimizing the fiber coiling methods,” Laser Phys. Lett. 14, 025101 (2017).
[Crossref]

P. Ma, R. Tao, R. Su, X. Wang, P. Zhou, and Z. Liu, “1.89 kw all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality,” Opt. Express 24, 4187 (2016).
[Crossref] [PubMed]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17, 045504 (2015).
[Crossref]

Zlobina, E. A.

Appl. Opt. (2)

Chin. Phys. Lett. (2)

G. Bo, Y. Feng Yang, J. Hua Wang, Zheng, X. Long Chen, and Chun Zhao, “Stimulated brillouin scattering enhancement factor improvement in a 11.6 ghz linewidth 1.5 kw yb-doped fiber amplifier,” Chin. Phys. Lett. 33, 94–97 (2016).

J. Kang, B. Lu, X. Qi, X. Feng, H. Chen, M. Jiang, Y. Wang, P. Fu, and J. Bai, “An efficient single-frequency yb-doped all-fiber mopa laser at 1064.3 nm,” Chin. Phys. Lett. 33, 54–57 (2016).
[Crossref]

IEEE J. Quantum Electron. (1)

D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37, 207–217 (2001).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

M. N. Zervas and C. A. Codemard, “High power fiber lasers: A review,” IEEE J. Sel. Top. Quantum Electron. 20, 219–241 (2014).
[Crossref]

D. Alekseev, V. Tyrtyshnyy, M. S. Kuznetsov, and O. Antipov, “Transverse mode instability in high-gain few-mode yb3+-doped fiber amplifiers with 10 um core diameter with or without backward reflection,” IEEE J. Sel. Top. Quantum Electron. 24, 1 (2018).

IEEE Photonics J. (1)

Z. Li, C. Li, L. Yu, Q. Luo, and J. Feng, “Impact of stimulated raman scattering on the transverse mode instability threshold,” IEEE Photonics J. 10, 1–9 (2018).

J. Opt. (1)

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17, 045504 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Commun. (1)

Q. Chu, H. Lin, C. Tang, J. Feng, and T. Xuan, “Spectral evolution and stimulated brillouin scattering suppression in phase-modulated fiber amplifier,” J. Phys. Commun. 2, 045022 (2018).
[Crossref]

Laser Phys. (4)

P. Yan, J. P. Hao, Q. R. Xiao, Y. P. Wang, and M. L. Gong, “The influence of fusion splicing on the beam quality of a ytterbium-doped fiber laser,” Laser Phys. 23, 045109 (2013).
[Crossref]

J. Leng, “Influence of temporal characteristics on the power scalability of the fiber amplifier,” Laser Phys. 25, 035101 (2015).
[Crossref]

L. Tenglong, Z. Congwen, S. Yinhong, M. Yi, K. Weiwei, and P. Wanjing, “3.5 kw bidirectionally pumped narrow-linewidth fiber amplifier seeded by white-noise-source phase-modulated laser,” Laser Phys. 28, 105101 (2018).
[Crossref]

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 w ytterbium-doped fiber laser,” Laser Phys. 24, 162–166 (2014).
[Crossref]

Laser Phys. Lett. (4)

R. Su, R. Tao, X. Wang, H. Zhang, P. Ma, Z. Pu, and X. Xu, “2.43 kw narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression,” Laser Phys. Lett. 14, 085102 (2017).
[Crossref]

R. Tao, P. Ma, X. Wang, Z. Pu, and Z. Liu, “Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers,” Laser Phys. Lett. 14, 025002 (2017).
[Crossref]

C. Jun, M. Jung, W. Shin, B. A. Yu, Y. S. Yoon, Y. Park, and yuKhong Choi, “818 w yb-doped amplifier with <7 ghz linewidth based on pseudo-random phase modulation in polarization maintained all-fiber configuration,” Laser Phys. Lett. 16, 015102 (2018).

R. Tao, R. Su, P. Ma, X. Wang, and P. Zhou, “Suppressing mode instabilities by optimizing the fiber coiling methods,” Laser Phys. Lett. 14, 025101 (2017).
[Crossref]

Opt. & Lasers Eng. (1)

M. Yanxing, W. Xiaolin, L. Jinyong, X. Hu, D. Xiaolin, Z. Jiajian, D. Wenbo, Z. Pu, X. Xiaojun, and S. Lei, “Coherent beam combination of 1.08 kw fiber amplifier array using single frequency dithering technique,” Opt. & Lasers Eng. 49, 1089–1092 (2011).
[Crossref]

Opt. Express (15)

Z. Zhi, S. Brian, and M. Michiko, “Generation of 180 w average green power from a frequency-doubled picosecond rod fiber amplifier,” Opt. Express 25, 8138 (2017).

E. A. Zlobina, S. A. Babin, and S. I. Kablukov, “Tunable cw all-fiber optical parametric oscillator operating below 1 μm,” Opt. Express 21, 6777–6782 (2013).
[Crossref] [PubMed]

P. Ma, R. Tao, R. Su, X. Wang, P. Zhou, and Z. Liu, “1.89 kw all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality,” Opt. Express 24, 4187 (2016).
[Crossref] [PubMed]

F. Beier, C. Hupel, J. Nold, S. Kuhn, S. Hein, J. Ihring, B. Sattler, N. Haarlammert, T. Schreiber, and R. Eberhardt, “Narrow linewidth, single mode 3 kw average power from a directly diode pumped ytterbium-doped low na fiber amplifier,” Opt. Express 24, 6011 (2016).
[Crossref] [PubMed]

F. Beier, C. Hupel, S. Kuhn, S. Hein, J. Nold, F. Proske, B. Sattler, A. Liem, C. Jauregui, and J. Limpert, “Single mode 4.3 kw output power from a diode-pumped yb-doped fiber amplifier,” Opt. Express 25, 14892–14899 (2017).
[Crossref] [PubMed]

C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20, 12912–12925 (2012).
[Crossref] [PubMed]

J. Cesar, E. Tino, O. Hans-Jürgen, S. Fabian, J. Florian, L. Jens, and T. Andreas, “Temperature-induced index gratings and their impact on mode instabilities in high-power fiber laser systems,” Opt. Express 20, 440–451 (2012).
[Crossref]

C. Jauregui, H. J. Otto, F. Stutzki, J. Limpert, and A. Tunnermann, “Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening,” Opt. Express 23, 20203–20218 (2015).
[Crossref]

A. Tünnermann, C. Jauregui, C. Wirth, F. Stutzki, F. Jansen, H. Otto, J. Limpert, O. Schmidt, T. Schreiber, and T. Eidam, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19, 13218 (2011).
[Crossref] [PubMed]

J. Cesar, O. Hans-Jürgen, S. Fabian, J. Florian, L. Jens, and T. Andreas, “Passive mitigation strategies for mode instabilities in high-power fiber laser systems,” Opt. Express 21, 19375–19386 (2013).
[Crossref]

B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express 20, 11407 (2012).
[Crossref] [PubMed]

W. Stephan, “Implications of higher-order mode content in large mode area fibers with good beam quality,” Opt. Express 15, 15402–15409 (2007).
[Crossref]

L. Wei, P. Ma, S. Chen, Z. Pu, and Z. Jiang, “Theoretical analysis of the srs-induced mode distortion in large-mode area fiber amplifiers,” Opt. Express 26, 15793 (2018).
[Crossref]

L. Wei, P. Ma, H. Lv, J. Xu, Z. Pu, and Z. Jiang, “General analysis of srs-limited high-power fiber lasers and design strategy,” Opt. Express 24, 26715 (2016).
[Crossref]

S. Naderi, I. Dajani, J. Grosek, and T. Madden, “Theoretical and numerical treatment of modal instability in high-power core and cladding-pumped raman fiber amplifiers,” Opt. Express 24, 16550–16565 (2016).
[Crossref] [PubMed]

Opt. Lett. (3)

Optica (1)

Optik (1)

G. Liu and D. Liu, “Numerical analysis of stimulated brillouin scattering in high-power double-clad fiber lasers,” Optik 120, 24–28 (2009).
[Crossref]

Photonics Res. (1)

L. I. Zebiao, Z. Huang, X. Xiang, X. Liang, H. Lin, X. U. Shanhui, Z. Yang, J. Wang, and J. Feng, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kw all-fiberized laser,” Photonics Res. 5, 77 (2017).
[Crossref]

Physics (1)

R. Tao, P. Ma, X. Wang, Z. Pu, and Z. Liu, “1.3 kw monolithic linearly-polarized single-mode mopa and strategies for mitigating mode instabilities,” Physics 3, 86 (2014).

Proc. SPIE - The Int. Soc. for Opt. Eng. (1)

A. Liu, R. Mead, T. Vatter, A. Henderson, and R. Stafford, “Spectral beam combining of high-power fiber lasers,” Proc. SPIE - The Int. Soc. for Opt. Eng. 5335, 81–88 (2004).

Sci. China Technol. Sci. (1)

Z. J. Liu, Z. Pu, X. U. Xiaojun, X. L. Wang, and M. A. Yanxing, “Coherent beam combining of high powerfiber lasers: Progress and prospect,” Sci. China Technol. Sci. 56, 1597–1606 (2013).
[Crossref]

Other (9)

A. Avdokhin, V. Gapontsev, P. Kadwani, A. Vaupel, I. Samartsev, N. Platonov, A. Yusim, and D. Myasnikov, “High average power quasi-cw single-mode green and uv fiber lasers,” in Photonics West-proc Spie, (2015).

J. Nold, M. Strecker, A. Liem, R. Eberhardt, T. Schreiber, and A. Tünnermann, “Narrow linewidth single mode fiber amplifier with 2.3 kw average power,” Cspg Special Publ. (2015).

T. Schreiber, A. Liem, E. Freier, C. Matzdorf, R. Eberhardt, C. Jauregui, J. Limpert, and A. Tünnermann, “Analysis of stimulated raman scattering in cw kw fiber oscillators,” in Spie Lase, (2014).

F. Möller, R. G. Krämer, C. Matzdorf, S. Nolte, M. Strecker, F. Stutzki, M. Plötner, V. Bock, T. Schreiber, and A. Tünnermann, “Comparison between bidirectional pumped yb-doped all-fiber single-mode amplifier and oscillator setup up to a power level of 5 kw,” (2018), p. AM2A.3.

Y. Qi, M. Lei, C. Liu, B. He, and J. Zhou, “1.75 kw cw narrow linewidth yb-doped all-fiber amplifiers for beam combining application,” in CLEO: 2015, (Optical Society of America, 2015), p. ATu4M.4.

N. Platonov, R. Yagodkin, J. D. L. Cruz, A. Yusim, and V. Gapontsev, “1.5 kw linear polarized on pm fiber and 2 kw on non-pm fiber narrow linewidth cw diffraction-limited fiber amplifier,” in Spie Lase, (2017).

M. N. Zervas, “Transverse mode instability analysis in fiber amplifiers,” in Society of Photo-optical Instrumentation Engineers, (2017).

M. Lei, Y. Qi, C. Liu, Y. Yang, Y. Zheng, and J. Zhou, “Mode controlling study on narrow-linewidth and high power all-fiber amplifier,” in International Symposium on Laser Interaction with Matter, (2015).

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” in Fiber Lasers Xi: Technology, Systems, & Applications, (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experiment setup of the laser system.
Fig. 2
Fig. 2 The spectrum (a) and beam quality (b)versus output power of laser with seed I. The spectrum (c) and beam quality (d) for laser with a filter to remove SRS light at 1630 W.
Fig. 3
Fig. 3 The spectrum (a) and beam quality (b) versus output power of laser with seed II.
Fig. 4
Fig. 4 Output power and backward power of laser without filter (a) and with filter (b) as a function of pump power.
Fig. 5
Fig. 5 The spectrum (a) and beam quality (b) of laser with filter.
Fig. 6
Fig. 6 (a) The output power and backward power versus pump power, and (b) the beam quality at several output power.

Metrics