Abstract

The interaction of plasma (or shock waves) with the uniform sphere shape of polystyrene particles was investigated in this study to observe the effects of confined geometry and energy fluence on propulsion efficiency. The measurements indicate that propulsion efficiency first increases with energy fluence until reaching a maximum at 0.46 J/cm2, then decreases as energy fluency continues to increase. Compared to polystyrene particle propulsion without confined geometry, the propulsion efficiency of polystyrene particles improved due to multiple laser-induced shock wave reflections among the confined geometry internal face; the plasma propelling force also increased perpendicular to the target surface under confined geometry conditions. The results also show that the energy deposited on the plasma affects the energy distribution between the plasma and polystyrene particle. Moreover, a series of experiments was performed to roughly estimate the shock wave expansion shape through the motion direction of the polystyrene particle swarm, where the shock wave was observed to expand spherically.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Study of underwater laser propulsion using different target materials

Hao Qiang, Jun Chen, Bing Han, Zhong-Hua Shen, Jian Lu, and Xiao-Wu Ni
Opt. Express 22(14) 17532-17545 (2014)

Mechanisms governing the interaction of metallic particles with nanosecond laser pulses

Stavros G. Demos, Raluca A. Negres, Rajesh N. Raman, Nan Shen, Alexander M. Rubenchik, and Manyalibo J. Matthews
Opt. Express 24(7) 7792-7815 (2016)

Interaction between a bubble and a metal target for underwater laser propulsion

Hao Qiang, Jun Chen, Bing Han, Yunxiang Pan, Hongchao Zhang, Zhonghua Shen, Jian Lu, and Xiaowu Ni
Appl. Opt. 56(11) 3193-3198 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Kantrowitz, “Propulsion to orbit by ground-based lasers,” Astronautics & Aeronautics (A/A) 10, 74– 76 (1972).
  2. C. A. Rinaldi, N. G. Boggio, D. Rodriguez, A. Lamagna, A. Boselli, F. Manzano, J. Codnia, and M. L. Azcárate, “Dependence of Cm on the composition of solid binary propellants in ablative laser propulsion,” Appl. Surf. Sci. 257(6), 2019–2023 (2011).
    [Crossref]
  3. areT. Yabe, C. Phipps, M. Yamaguchi, R. Nakagawa, K. Aoki, H. Mine, Y. Ogata, C. Baasandash, M. Nakagawa, E. Fujiwara, K. Yoshida, A. Nishiguchi, and I. Kajiwara, “Microairplane propelled by laser driven exotic target,” Appl. Phys. Lett. 80(23), 4318–4320 (2002).
    [Crossref]
  4. A. V. Pakhomov and D. A. Gregory, “Ablative laser propulsion: an old concept revisited,” AIAA J. 38(4), 725–727 (2000).
    [Crossref]
  5. Z. Y. Zheng, J. Zhang, X. Lu, Z. H. Hao, X. H. Yuan, Z. H. Wang, and Z. Y. Wei, “Characteristic investigation of ablative laser propulsion driven by nanosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 83(2), 329–332 (2006).
    [Crossref]
  6. P. X. Ouyang, P. J. Li, E. G. Leksina, S. V. Michurin, and L. J. He, “Effect of liquid properties on laser ablation of aluminum and titanium alloys,” Appl. Surf. Sci. 360, 880–888 (2016).
    [Crossref]
  7. Z. Y. Zheng, J. Zhang, Z. Q. Hao, Z. Zhang, M. Chen, X. Lu, Z. H. Wang, and Z. Y. Wei, “Paper airplane propelled by laser plasma channels generated by femtosecond laser pulses in air,” Opt. Express 13(26), 10616–10621 (2005).
    [Crossref] [PubMed]
  8. Z. Y. Zheng, Z. J. Fan, S. W. Wang, A. G. Dong, J. Xing, and Z. L. Zhang, “The effect of viscosity of liquid propellant on laser plasma propulsion,” Chin. Phys. Lett. 29(9), 095202 (2012).
    [Crossref]
  9. S. A. Metz, L. R. Hettche, R. L. Stegman, and J. T. Schriempf, “Effect of beam intensity on target response to high-intensity pulsed CO2 laser radiation,” J. Appl. Phys. 46(4), 1634–1642 (1975).
    [Crossref]
  10. B. V. Lakatosh, D. B. Abramenko, V. V. Ivanov, V. V. Medvedev, V. M. Krivtsun, K. N. Koshelev, and A. M. Yakunin, “Propulsion of a flat tin target with pulsed CO2 laser radiation: measurements using a ballistic pendulum,” Laser Phys. Lett. 15(1), 016003 (2018).
    [Crossref]
  11. S. Zhu, Y. F. Lu, M. H. Hong, and X. Y. Chen, “Laser ablation of solid substrates in water and ambient air,” J. Appl. Phys. 89(4), 2400–2403 (2001).
    [Crossref]
  12. J. Chen, B. B. Li, H. C. Zhang, H. Qiang, Z. H. Shen, and X. W. Ni, “Enhancement of momentum coupling coefficient by cavity with toroidal bubble for underwater laser propulsion,” J. Appl. Phys. 113(6), 063107 (2013).
    [Crossref]
  13. B. Han, Z. H. Shen, J. Lu, and X. W. Ni, “Laser propulsion for transport in water environment,” Mod. Phys. Lett. B 24(07), 641–648 (2010).
    [Crossref]
  14. H. Qiang, J. Chen, B. Han, Z. H. Shen, J. Lu, and X. W. Ni, “Study of underwater laser propulsion using different target materials,” Opt. Express 22(14), 17532–17545 (2014).
    [Crossref] [PubMed]
  15. R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser-produced plasma in confined geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
    [Crossref]
  16. M. R. Ahmad, Y. Jamil, M. Q. Zakaria, T. Hussain, and R. Ahmad, “Plasma confinement to enhance the momentum coupling coefficient in ablative laser micro-propulsion: a novel approach,” Laser Phys. Lett. 12(7), 076101 (2015).
    [Crossref]
  17. D. Grojo, Ph. Delaporte, M. Sentis, O. H. Pakarinen, and A. S. Foster, “The so-called dry laser cleaning governed by humidity at the nanometer scale,” Appl. Phys. Lett. 92(3), 033108 (2008).
    [Crossref]
  18. H. Yu, H. Li, L. Cui, S. Liu, and J. Yang, “Micro-gun based on laser pulse propulsion,” Sci. Rep. 7(1), 16299 (2017).
    [Crossref] [PubMed]
  19. Z. Y. Zheng, H. Gao, L. Gao, J. Xing, Z. J. Fan, A. G. Dong, and Z. L. Zhang, “Laser plasma propulsion generation in nanosecond pulse laser interaction with polyimide film,” Appl. Phys., A Mater. Sci. Process. 115(4), 1439–1443 (2014).
    [Crossref]
  20. H. C. Yu, L. G. Cui, K. Zhang, J. Yang, and H. Y. Li, “Effect of a fiber-capillary structure on nanosecond laser pulse propulsion,” Appl. Phys. A. 124, 37 (2018).
  21. Z. Wang, Z. Y. Hou, S. L. Lui, D. Jiang, J. M. Liu, and Z. Li, “Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal,” Opt. Express 20(S6), A1011–A1018 (2012).
    [Crossref]
  22. Z. Y. Zheng, J. Zhang, Y. Zhang, F. Liu, M. Chen, X. Lu, and Y. T. Li, “Enhancement of coupling coefficient of laser plasma propulsion by water confinement,” Appl. Phys., A Mater. Sci. Process. 85(4), 441–443 (2006).
    [Crossref]
  23. H. C. Yu, H. Y. Li, Y. Wang, L. G. Cui, S. Q. Liu, and J. Yang, “Brief review on pulse laser propulsion,” Opt. Laser Technol. 100, 57–74 (2018).
    [Crossref]
  24. C. Phipps, J. R. Luke, T. Lippert, M. Hauer, and A. Wokaun, “Micropropulsion using laser ablation,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1385–1389 (2004).
    [Crossref]
  25. S. S. Harilal, B. O’Shay, Y. Z. Tao, and M. S. Tillack, “Ambient gas effects on the dynamics of laser-produced tin plume expansion,” J. Appl. Phys. 99(8), 083303 (2006).
    [Crossref]
  26. Z. Q. Chen, X. B. Wang, D. L. Zuo, P. X. Lu, and J. W. Wang, “Investigation of Nd: YAG laser produced tin droplet plasma expansion,” Laser Phys. Lett. 13(5), 056002 (2016).
    [Crossref]
  27. Z. Y. Zheng, Y. Zhang, W. G. Zhou, X. Lu, Y. T. Li, and J. Zhang, “High coupling efficiency generation in water confined laser plasma propulsion,” Chin. Phys. Lett. 24(2), 501–503 (2007).
    [Crossref]
  28. T. Sizyuk and A. Hassanein, “Enhancing extreme ultraviolet photons emission in laser produced plasmas for advanced lithography,” Phys. Plasmas 19(8), 083102 (2012).
    [Crossref]
  29. S. G. Demos, R. A. Negres, R. N. Raman, N. Shen, A. M. Rubenchik, and M. J. Matthews, “Mechanisms governing the interaction of metallic particles with nanosecond laser pulses,” Opt. Express 24(7), 7792–7815 (2016).
    [Crossref] [PubMed]
  30. K. Mori, R. Maruyama, and K. Shimamura, “Energy conversion and momentum coupling of the sub-kJ laser ablation of aluminum in air atmosphere,” J. Appl. Phys. 118(7), 073304 (2015).
    [Crossref]
  31. A. E. Hussein, P. K. Diwakar, S. S. Harilal, and A. Hassanein, “The role of laser wavelength on plasma generation and expansion of ablation plumes in air,” J. Appl. Phys. 113(14), 143305 (2013).
    [Crossref]

2018 (3)

B. V. Lakatosh, D. B. Abramenko, V. V. Ivanov, V. V. Medvedev, V. M. Krivtsun, K. N. Koshelev, and A. M. Yakunin, “Propulsion of a flat tin target with pulsed CO2 laser radiation: measurements using a ballistic pendulum,” Laser Phys. Lett. 15(1), 016003 (2018).
[Crossref]

H. C. Yu, L. G. Cui, K. Zhang, J. Yang, and H. Y. Li, “Effect of a fiber-capillary structure on nanosecond laser pulse propulsion,” Appl. Phys. A. 124, 37 (2018).

H. C. Yu, H. Y. Li, Y. Wang, L. G. Cui, S. Q. Liu, and J. Yang, “Brief review on pulse laser propulsion,” Opt. Laser Technol. 100, 57–74 (2018).
[Crossref]

2017 (1)

H. Yu, H. Li, L. Cui, S. Liu, and J. Yang, “Micro-gun based on laser pulse propulsion,” Sci. Rep. 7(1), 16299 (2017).
[Crossref] [PubMed]

2016 (3)

Z. Q. Chen, X. B. Wang, D. L. Zuo, P. X. Lu, and J. W. Wang, “Investigation of Nd: YAG laser produced tin droplet plasma expansion,” Laser Phys. Lett. 13(5), 056002 (2016).
[Crossref]

S. G. Demos, R. A. Negres, R. N. Raman, N. Shen, A. M. Rubenchik, and M. J. Matthews, “Mechanisms governing the interaction of metallic particles with nanosecond laser pulses,” Opt. Express 24(7), 7792–7815 (2016).
[Crossref] [PubMed]

P. X. Ouyang, P. J. Li, E. G. Leksina, S. V. Michurin, and L. J. He, “Effect of liquid properties on laser ablation of aluminum and titanium alloys,” Appl. Surf. Sci. 360, 880–888 (2016).
[Crossref]

2015 (2)

M. R. Ahmad, Y. Jamil, M. Q. Zakaria, T. Hussain, and R. Ahmad, “Plasma confinement to enhance the momentum coupling coefficient in ablative laser micro-propulsion: a novel approach,” Laser Phys. Lett. 12(7), 076101 (2015).
[Crossref]

K. Mori, R. Maruyama, and K. Shimamura, “Energy conversion and momentum coupling of the sub-kJ laser ablation of aluminum in air atmosphere,” J. Appl. Phys. 118(7), 073304 (2015).
[Crossref]

2014 (2)

Z. Y. Zheng, H. Gao, L. Gao, J. Xing, Z. J. Fan, A. G. Dong, and Z. L. Zhang, “Laser plasma propulsion generation in nanosecond pulse laser interaction with polyimide film,” Appl. Phys., A Mater. Sci. Process. 115(4), 1439–1443 (2014).
[Crossref]

H. Qiang, J. Chen, B. Han, Z. H. Shen, J. Lu, and X. W. Ni, “Study of underwater laser propulsion using different target materials,” Opt. Express 22(14), 17532–17545 (2014).
[Crossref] [PubMed]

2013 (2)

J. Chen, B. B. Li, H. C. Zhang, H. Qiang, Z. H. Shen, and X. W. Ni, “Enhancement of momentum coupling coefficient by cavity with toroidal bubble for underwater laser propulsion,” J. Appl. Phys. 113(6), 063107 (2013).
[Crossref]

A. E. Hussein, P. K. Diwakar, S. S. Harilal, and A. Hassanein, “The role of laser wavelength on plasma generation and expansion of ablation plumes in air,” J. Appl. Phys. 113(14), 143305 (2013).
[Crossref]

2012 (3)

T. Sizyuk and A. Hassanein, “Enhancing extreme ultraviolet photons emission in laser produced plasmas for advanced lithography,” Phys. Plasmas 19(8), 083102 (2012).
[Crossref]

Z. Wang, Z. Y. Hou, S. L. Lui, D. Jiang, J. M. Liu, and Z. Li, “Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal,” Opt. Express 20(S6), A1011–A1018 (2012).
[Crossref]

Z. Y. Zheng, Z. J. Fan, S. W. Wang, A. G. Dong, J. Xing, and Z. L. Zhang, “The effect of viscosity of liquid propellant on laser plasma propulsion,” Chin. Phys. Lett. 29(9), 095202 (2012).
[Crossref]

2011 (1)

C. A. Rinaldi, N. G. Boggio, D. Rodriguez, A. Lamagna, A. Boselli, F. Manzano, J. Codnia, and M. L. Azcárate, “Dependence of Cm on the composition of solid binary propellants in ablative laser propulsion,” Appl. Surf. Sci. 257(6), 2019–2023 (2011).
[Crossref]

2010 (1)

B. Han, Z. H. Shen, J. Lu, and X. W. Ni, “Laser propulsion for transport in water environment,” Mod. Phys. Lett. B 24(07), 641–648 (2010).
[Crossref]

2008 (1)

D. Grojo, Ph. Delaporte, M. Sentis, O. H. Pakarinen, and A. S. Foster, “The so-called dry laser cleaning governed by humidity at the nanometer scale,” Appl. Phys. Lett. 92(3), 033108 (2008).
[Crossref]

2007 (1)

Z. Y. Zheng, Y. Zhang, W. G. Zhou, X. Lu, Y. T. Li, and J. Zhang, “High coupling efficiency generation in water confined laser plasma propulsion,” Chin. Phys. Lett. 24(2), 501–503 (2007).
[Crossref]

2006 (3)

Z. Y. Zheng, J. Zhang, Y. Zhang, F. Liu, M. Chen, X. Lu, and Y. T. Li, “Enhancement of coupling coefficient of laser plasma propulsion by water confinement,” Appl. Phys., A Mater. Sci. Process. 85(4), 441–443 (2006).
[Crossref]

S. S. Harilal, B. O’Shay, Y. Z. Tao, and M. S. Tillack, “Ambient gas effects on the dynamics of laser-produced tin plume expansion,” J. Appl. Phys. 99(8), 083303 (2006).
[Crossref]

Z. Y. Zheng, J. Zhang, X. Lu, Z. H. Hao, X. H. Yuan, Z. H. Wang, and Z. Y. Wei, “Characteristic investigation of ablative laser propulsion driven by nanosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 83(2), 329–332 (2006).
[Crossref]

2005 (1)

2004 (1)

C. Phipps, J. R. Luke, T. Lippert, M. Hauer, and A. Wokaun, “Micropropulsion using laser ablation,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1385–1389 (2004).
[Crossref]

2002 (1)

areT. Yabe, C. Phipps, M. Yamaguchi, R. Nakagawa, K. Aoki, H. Mine, Y. Ogata, C. Baasandash, M. Nakagawa, E. Fujiwara, K. Yoshida, A. Nishiguchi, and I. Kajiwara, “Microairplane propelled by laser driven exotic target,” Appl. Phys. Lett. 80(23), 4318–4320 (2002).
[Crossref]

2001 (1)

S. Zhu, Y. F. Lu, M. H. Hong, and X. Y. Chen, “Laser ablation of solid substrates in water and ambient air,” J. Appl. Phys. 89(4), 2400–2403 (2001).
[Crossref]

2000 (1)

A. V. Pakhomov and D. A. Gregory, “Ablative laser propulsion: an old concept revisited,” AIAA J. 38(4), 725–727 (2000).
[Crossref]

1990 (1)

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser-produced plasma in confined geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
[Crossref]

1975 (1)

S. A. Metz, L. R. Hettche, R. L. Stegman, and J. T. Schriempf, “Effect of beam intensity on target response to high-intensity pulsed CO2 laser radiation,” J. Appl. Phys. 46(4), 1634–1642 (1975).
[Crossref]

1972 (1)

A. Kantrowitz, “Propulsion to orbit by ground-based lasers,” Astronautics & Aeronautics (A/A) 10, 74– 76 (1972).

Abramenko, D. B.

B. V. Lakatosh, D. B. Abramenko, V. V. Ivanov, V. V. Medvedev, V. M. Krivtsun, K. N. Koshelev, and A. M. Yakunin, “Propulsion of a flat tin target with pulsed CO2 laser radiation: measurements using a ballistic pendulum,” Laser Phys. Lett. 15(1), 016003 (2018).
[Crossref]

Ahmad, M. R.

M. R. Ahmad, Y. Jamil, M. Q. Zakaria, T. Hussain, and R. Ahmad, “Plasma confinement to enhance the momentum coupling coefficient in ablative laser micro-propulsion: a novel approach,” Laser Phys. Lett. 12(7), 076101 (2015).
[Crossref]

Ahmad, R.

M. R. Ahmad, Y. Jamil, M. Q. Zakaria, T. Hussain, and R. Ahmad, “Plasma confinement to enhance the momentum coupling coefficient in ablative laser micro-propulsion: a novel approach,” Laser Phys. Lett. 12(7), 076101 (2015).
[Crossref]

Aoki, K.

areT. Yabe, C. Phipps, M. Yamaguchi, R. Nakagawa, K. Aoki, H. Mine, Y. Ogata, C. Baasandash, M. Nakagawa, E. Fujiwara, K. Yoshida, A. Nishiguchi, and I. Kajiwara, “Microairplane propelled by laser driven exotic target,” Appl. Phys. Lett. 80(23), 4318–4320 (2002).
[Crossref]

Azcárate, M. L.

C. A. Rinaldi, N. G. Boggio, D. Rodriguez, A. Lamagna, A. Boselli, F. Manzano, J. Codnia, and M. L. Azcárate, “Dependence of Cm on the composition of solid binary propellants in ablative laser propulsion,” Appl. Surf. Sci. 257(6), 2019–2023 (2011).
[Crossref]

Baasandash, C.

areT. Yabe, C. Phipps, M. Yamaguchi, R. Nakagawa, K. Aoki, H. Mine, Y. Ogata, C. Baasandash, M. Nakagawa, E. Fujiwara, K. Yoshida, A. Nishiguchi, and I. Kajiwara, “Microairplane propelled by laser driven exotic target,” Appl. Phys. Lett. 80(23), 4318–4320 (2002).
[Crossref]

Ballard, P.

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser-produced plasma in confined geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
[Crossref]

Boggio, N. G.

C. A. Rinaldi, N. G. Boggio, D. Rodriguez, A. Lamagna, A. Boselli, F. Manzano, J. Codnia, and M. L. Azcárate, “Dependence of Cm on the composition of solid binary propellants in ablative laser propulsion,” Appl. Surf. Sci. 257(6), 2019–2023 (2011).
[Crossref]

Boselli, A.

C. A. Rinaldi, N. G. Boggio, D. Rodriguez, A. Lamagna, A. Boselli, F. Manzano, J. Codnia, and M. L. Azcárate, “Dependence of Cm on the composition of solid binary propellants in ablative laser propulsion,” Appl. Surf. Sci. 257(6), 2019–2023 (2011).
[Crossref]

Chen, J.

H. Qiang, J. Chen, B. Han, Z. H. Shen, J. Lu, and X. W. Ni, “Study of underwater laser propulsion using different target materials,” Opt. Express 22(14), 17532–17545 (2014).
[Crossref] [PubMed]

J. Chen, B. B. Li, H. C. Zhang, H. Qiang, Z. H. Shen, and X. W. Ni, “Enhancement of momentum coupling coefficient by cavity with toroidal bubble for underwater laser propulsion,” J. Appl. Phys. 113(6), 063107 (2013).
[Crossref]

Chen, M.

Z. Y. Zheng, J. Zhang, Y. Zhang, F. Liu, M. Chen, X. Lu, and Y. T. Li, “Enhancement of coupling coefficient of laser plasma propulsion by water confinement,” Appl. Phys., A Mater. Sci. Process. 85(4), 441–443 (2006).
[Crossref]

Z. Y. Zheng, J. Zhang, Z. Q. Hao, Z. Zhang, M. Chen, X. Lu, Z. H. Wang, and Z. Y. Wei, “Paper airplane propelled by laser plasma channels generated by femtosecond laser pulses in air,” Opt. Express 13(26), 10616–10621 (2005).
[Crossref] [PubMed]

Chen, X. Y.

S. Zhu, Y. F. Lu, M. H. Hong, and X. Y. Chen, “Laser ablation of solid substrates in water and ambient air,” J. Appl. Phys. 89(4), 2400–2403 (2001).
[Crossref]

Chen, Z. Q.

Z. Q. Chen, X. B. Wang, D. L. Zuo, P. X. Lu, and J. W. Wang, “Investigation of Nd: YAG laser produced tin droplet plasma expansion,” Laser Phys. Lett. 13(5), 056002 (2016).
[Crossref]

Codnia, J.

C. A. Rinaldi, N. G. Boggio, D. Rodriguez, A. Lamagna, A. Boselli, F. Manzano, J. Codnia, and M. L. Azcárate, “Dependence of Cm on the composition of solid binary propellants in ablative laser propulsion,” Appl. Surf. Sci. 257(6), 2019–2023 (2011).
[Crossref]

Cui, L.

H. Yu, H. Li, L. Cui, S. Liu, and J. Yang, “Micro-gun based on laser pulse propulsion,” Sci. Rep. 7(1), 16299 (2017).
[Crossref] [PubMed]

Cui, L. G.

H. C. Yu, L. G. Cui, K. Zhang, J. Yang, and H. Y. Li, “Effect of a fiber-capillary structure on nanosecond laser pulse propulsion,” Appl. Phys. A. 124, 37 (2018).

H. C. Yu, H. Y. Li, Y. Wang, L. G. Cui, S. Q. Liu, and J. Yang, “Brief review on pulse laser propulsion,” Opt. Laser Technol. 100, 57–74 (2018).
[Crossref]

Delaporte, Ph.

D. Grojo, Ph. Delaporte, M. Sentis, O. H. Pakarinen, and A. S. Foster, “The so-called dry laser cleaning governed by humidity at the nanometer scale,” Appl. Phys. Lett. 92(3), 033108 (2008).
[Crossref]

Demos, S. G.

Devaux, D.

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser-produced plasma in confined geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
[Crossref]

Diwakar, P. K.

A. E. Hussein, P. K. Diwakar, S. S. Harilal, and A. Hassanein, “The role of laser wavelength on plasma generation and expansion of ablation plumes in air,” J. Appl. Phys. 113(14), 143305 (2013).
[Crossref]

Dong, A. G.

Z. Y. Zheng, H. Gao, L. Gao, J. Xing, Z. J. Fan, A. G. Dong, and Z. L. Zhang, “Laser plasma propulsion generation in nanosecond pulse laser interaction with polyimide film,” Appl. Phys., A Mater. Sci. Process. 115(4), 1439–1443 (2014).
[Crossref]

Z. Y. Zheng, Z. J. Fan, S. W. Wang, A. G. Dong, J. Xing, and Z. L. Zhang, “The effect of viscosity of liquid propellant on laser plasma propulsion,” Chin. Phys. Lett. 29(9), 095202 (2012).
[Crossref]

Fabbro, R.

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser-produced plasma in confined geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
[Crossref]

Fan, Z. J.

Z. Y. Zheng, H. Gao, L. Gao, J. Xing, Z. J. Fan, A. G. Dong, and Z. L. Zhang, “Laser plasma propulsion generation in nanosecond pulse laser interaction with polyimide film,” Appl. Phys., A Mater. Sci. Process. 115(4), 1439–1443 (2014).
[Crossref]

Z. Y. Zheng, Z. J. Fan, S. W. Wang, A. G. Dong, J. Xing, and Z. L. Zhang, “The effect of viscosity of liquid propellant on laser plasma propulsion,” Chin. Phys. Lett. 29(9), 095202 (2012).
[Crossref]

Foster, A. S.

D. Grojo, Ph. Delaporte, M. Sentis, O. H. Pakarinen, and A. S. Foster, “The so-called dry laser cleaning governed by humidity at the nanometer scale,” Appl. Phys. Lett. 92(3), 033108 (2008).
[Crossref]

Fournier, J.

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser-produced plasma in confined geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
[Crossref]

Fujiwara, E.

areT. Yabe, C. Phipps, M. Yamaguchi, R. Nakagawa, K. Aoki, H. Mine, Y. Ogata, C. Baasandash, M. Nakagawa, E. Fujiwara, K. Yoshida, A. Nishiguchi, and I. Kajiwara, “Microairplane propelled by laser driven exotic target,” Appl. Phys. Lett. 80(23), 4318–4320 (2002).
[Crossref]

Gao, H.

Z. Y. Zheng, H. Gao, L. Gao, J. Xing, Z. J. Fan, A. G. Dong, and Z. L. Zhang, “Laser plasma propulsion generation in nanosecond pulse laser interaction with polyimide film,” Appl. Phys., A Mater. Sci. Process. 115(4), 1439–1443 (2014).
[Crossref]

Gao, L.

Z. Y. Zheng, H. Gao, L. Gao, J. Xing, Z. J. Fan, A. G. Dong, and Z. L. Zhang, “Laser plasma propulsion generation in nanosecond pulse laser interaction with polyimide film,” Appl. Phys., A Mater. Sci. Process. 115(4), 1439–1443 (2014).
[Crossref]

Gregory, D. A.

A. V. Pakhomov and D. A. Gregory, “Ablative laser propulsion: an old concept revisited,” AIAA J. 38(4), 725–727 (2000).
[Crossref]

Grojo, D.

D. Grojo, Ph. Delaporte, M. Sentis, O. H. Pakarinen, and A. S. Foster, “The so-called dry laser cleaning governed by humidity at the nanometer scale,” Appl. Phys. Lett. 92(3), 033108 (2008).
[Crossref]

Han, B.

H. Qiang, J. Chen, B. Han, Z. H. Shen, J. Lu, and X. W. Ni, “Study of underwater laser propulsion using different target materials,” Opt. Express 22(14), 17532–17545 (2014).
[Crossref] [PubMed]

B. Han, Z. H. Shen, J. Lu, and X. W. Ni, “Laser propulsion for transport in water environment,” Mod. Phys. Lett. B 24(07), 641–648 (2010).
[Crossref]

Hao, Z. H.

Z. Y. Zheng, J. Zhang, X. Lu, Z. H. Hao, X. H. Yuan, Z. H. Wang, and Z. Y. Wei, “Characteristic investigation of ablative laser propulsion driven by nanosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 83(2), 329–332 (2006).
[Crossref]

Hao, Z. Q.

Harilal, S. S.

A. E. Hussein, P. K. Diwakar, S. S. Harilal, and A. Hassanein, “The role of laser wavelength on plasma generation and expansion of ablation plumes in air,” J. Appl. Phys. 113(14), 143305 (2013).
[Crossref]

S. S. Harilal, B. O’Shay, Y. Z. Tao, and M. S. Tillack, “Ambient gas effects on the dynamics of laser-produced tin plume expansion,” J. Appl. Phys. 99(8), 083303 (2006).
[Crossref]

Hassanein, A.

A. E. Hussein, P. K. Diwakar, S. S. Harilal, and A. Hassanein, “The role of laser wavelength on plasma generation and expansion of ablation plumes in air,” J. Appl. Phys. 113(14), 143305 (2013).
[Crossref]

T. Sizyuk and A. Hassanein, “Enhancing extreme ultraviolet photons emission in laser produced plasmas for advanced lithography,” Phys. Plasmas 19(8), 083102 (2012).
[Crossref]

Hauer, M.

C. Phipps, J. R. Luke, T. Lippert, M. Hauer, and A. Wokaun, “Micropropulsion using laser ablation,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1385–1389 (2004).
[Crossref]

He, L. J.

P. X. Ouyang, P. J. Li, E. G. Leksina, S. V. Michurin, and L. J. He, “Effect of liquid properties on laser ablation of aluminum and titanium alloys,” Appl. Surf. Sci. 360, 880–888 (2016).
[Crossref]

Hettche, L. R.

S. A. Metz, L. R. Hettche, R. L. Stegman, and J. T. Schriempf, “Effect of beam intensity on target response to high-intensity pulsed CO2 laser radiation,” J. Appl. Phys. 46(4), 1634–1642 (1975).
[Crossref]

Hong, M. H.

S. Zhu, Y. F. Lu, M. H. Hong, and X. Y. Chen, “Laser ablation of solid substrates in water and ambient air,” J. Appl. Phys. 89(4), 2400–2403 (2001).
[Crossref]

Hou, Z. Y.

Hussain, T.

M. R. Ahmad, Y. Jamil, M. Q. Zakaria, T. Hussain, and R. Ahmad, “Plasma confinement to enhance the momentum coupling coefficient in ablative laser micro-propulsion: a novel approach,” Laser Phys. Lett. 12(7), 076101 (2015).
[Crossref]

Hussein, A. E.

A. E. Hussein, P. K. Diwakar, S. S. Harilal, and A. Hassanein, “The role of laser wavelength on plasma generation and expansion of ablation plumes in air,” J. Appl. Phys. 113(14), 143305 (2013).
[Crossref]

Ivanov, V. V.

B. V. Lakatosh, D. B. Abramenko, V. V. Ivanov, V. V. Medvedev, V. M. Krivtsun, K. N. Koshelev, and A. M. Yakunin, “Propulsion of a flat tin target with pulsed CO2 laser radiation: measurements using a ballistic pendulum,” Laser Phys. Lett. 15(1), 016003 (2018).
[Crossref]

Jamil, Y.

M. R. Ahmad, Y. Jamil, M. Q. Zakaria, T. Hussain, and R. Ahmad, “Plasma confinement to enhance the momentum coupling coefficient in ablative laser micro-propulsion: a novel approach,” Laser Phys. Lett. 12(7), 076101 (2015).
[Crossref]

Jiang, D.

Kajiwara, I.

areT. Yabe, C. Phipps, M. Yamaguchi, R. Nakagawa, K. Aoki, H. Mine, Y. Ogata, C. Baasandash, M. Nakagawa, E. Fujiwara, K. Yoshida, A. Nishiguchi, and I. Kajiwara, “Microairplane propelled by laser driven exotic target,” Appl. Phys. Lett. 80(23), 4318–4320 (2002).
[Crossref]

Kantrowitz, A.

A. Kantrowitz, “Propulsion to orbit by ground-based lasers,” Astronautics & Aeronautics (A/A) 10, 74– 76 (1972).

Koshelev, K. N.

B. V. Lakatosh, D. B. Abramenko, V. V. Ivanov, V. V. Medvedev, V. M. Krivtsun, K. N. Koshelev, and A. M. Yakunin, “Propulsion of a flat tin target with pulsed CO2 laser radiation: measurements using a ballistic pendulum,” Laser Phys. Lett. 15(1), 016003 (2018).
[Crossref]

Krivtsun, V. M.

B. V. Lakatosh, D. B. Abramenko, V. V. Ivanov, V. V. Medvedev, V. M. Krivtsun, K. N. Koshelev, and A. M. Yakunin, “Propulsion of a flat tin target with pulsed CO2 laser radiation: measurements using a ballistic pendulum,” Laser Phys. Lett. 15(1), 016003 (2018).
[Crossref]

Lakatosh, B. V.

B. V. Lakatosh, D. B. Abramenko, V. V. Ivanov, V. V. Medvedev, V. M. Krivtsun, K. N. Koshelev, and A. M. Yakunin, “Propulsion of a flat tin target with pulsed CO2 laser radiation: measurements using a ballistic pendulum,” Laser Phys. Lett. 15(1), 016003 (2018).
[Crossref]

Lamagna, A.

C. A. Rinaldi, N. G. Boggio, D. Rodriguez, A. Lamagna, A. Boselli, F. Manzano, J. Codnia, and M. L. Azcárate, “Dependence of Cm on the composition of solid binary propellants in ablative laser propulsion,” Appl. Surf. Sci. 257(6), 2019–2023 (2011).
[Crossref]

Leksina, E. G.

P. X. Ouyang, P. J. Li, E. G. Leksina, S. V. Michurin, and L. J. He, “Effect of liquid properties on laser ablation of aluminum and titanium alloys,” Appl. Surf. Sci. 360, 880–888 (2016).
[Crossref]

Li, B. B.

J. Chen, B. B. Li, H. C. Zhang, H. Qiang, Z. H. Shen, and X. W. Ni, “Enhancement of momentum coupling coefficient by cavity with toroidal bubble for underwater laser propulsion,” J. Appl. Phys. 113(6), 063107 (2013).
[Crossref]

Li, H.

H. Yu, H. Li, L. Cui, S. Liu, and J. Yang, “Micro-gun based on laser pulse propulsion,” Sci. Rep. 7(1), 16299 (2017).
[Crossref] [PubMed]

Li, H. Y.

H. C. Yu, L. G. Cui, K. Zhang, J. Yang, and H. Y. Li, “Effect of a fiber-capillary structure on nanosecond laser pulse propulsion,” Appl. Phys. A. 124, 37 (2018).

H. C. Yu, H. Y. Li, Y. Wang, L. G. Cui, S. Q. Liu, and J. Yang, “Brief review on pulse laser propulsion,” Opt. Laser Technol. 100, 57–74 (2018).
[Crossref]

Li, P. J.

P. X. Ouyang, P. J. Li, E. G. Leksina, S. V. Michurin, and L. J. He, “Effect of liquid properties on laser ablation of aluminum and titanium alloys,” Appl. Surf. Sci. 360, 880–888 (2016).
[Crossref]

Li, Y. T.

Z. Y. Zheng, Y. Zhang, W. G. Zhou, X. Lu, Y. T. Li, and J. Zhang, “High coupling efficiency generation in water confined laser plasma propulsion,” Chin. Phys. Lett. 24(2), 501–503 (2007).
[Crossref]

Z. Y. Zheng, J. Zhang, Y. Zhang, F. Liu, M. Chen, X. Lu, and Y. T. Li, “Enhancement of coupling coefficient of laser plasma propulsion by water confinement,” Appl. Phys., A Mater. Sci. Process. 85(4), 441–443 (2006).
[Crossref]

Li, Z.

Lippert, T.

C. Phipps, J. R. Luke, T. Lippert, M. Hauer, and A. Wokaun, “Micropropulsion using laser ablation,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1385–1389 (2004).
[Crossref]

Liu, F.

Z. Y. Zheng, J. Zhang, Y. Zhang, F. Liu, M. Chen, X. Lu, and Y. T. Li, “Enhancement of coupling coefficient of laser plasma propulsion by water confinement,” Appl. Phys., A Mater. Sci. Process. 85(4), 441–443 (2006).
[Crossref]

Liu, J. M.

Liu, S.

H. Yu, H. Li, L. Cui, S. Liu, and J. Yang, “Micro-gun based on laser pulse propulsion,” Sci. Rep. 7(1), 16299 (2017).
[Crossref] [PubMed]

Liu, S. Q.

H. C. Yu, H. Y. Li, Y. Wang, L. G. Cui, S. Q. Liu, and J. Yang, “Brief review on pulse laser propulsion,” Opt. Laser Technol. 100, 57–74 (2018).
[Crossref]

Lu, J.

H. Qiang, J. Chen, B. Han, Z. H. Shen, J. Lu, and X. W. Ni, “Study of underwater laser propulsion using different target materials,” Opt. Express 22(14), 17532–17545 (2014).
[Crossref] [PubMed]

B. Han, Z. H. Shen, J. Lu, and X. W. Ni, “Laser propulsion for transport in water environment,” Mod. Phys. Lett. B 24(07), 641–648 (2010).
[Crossref]

Lu, P. X.

Z. Q. Chen, X. B. Wang, D. L. Zuo, P. X. Lu, and J. W. Wang, “Investigation of Nd: YAG laser produced tin droplet plasma expansion,” Laser Phys. Lett. 13(5), 056002 (2016).
[Crossref]

Lu, X.

Z. Y. Zheng, Y. Zhang, W. G. Zhou, X. Lu, Y. T. Li, and J. Zhang, “High coupling efficiency generation in water confined laser plasma propulsion,” Chin. Phys. Lett. 24(2), 501–503 (2007).
[Crossref]

Z. Y. Zheng, J. Zhang, Y. Zhang, F. Liu, M. Chen, X. Lu, and Y. T. Li, “Enhancement of coupling coefficient of laser plasma propulsion by water confinement,” Appl. Phys., A Mater. Sci. Process. 85(4), 441–443 (2006).
[Crossref]

Z. Y. Zheng, J. Zhang, X. Lu, Z. H. Hao, X. H. Yuan, Z. H. Wang, and Z. Y. Wei, “Characteristic investigation of ablative laser propulsion driven by nanosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 83(2), 329–332 (2006).
[Crossref]

Z. Y. Zheng, J. Zhang, Z. Q. Hao, Z. Zhang, M. Chen, X. Lu, Z. H. Wang, and Z. Y. Wei, “Paper airplane propelled by laser plasma channels generated by femtosecond laser pulses in air,” Opt. Express 13(26), 10616–10621 (2005).
[Crossref] [PubMed]

Lu, Y. F.

S. Zhu, Y. F. Lu, M. H. Hong, and X. Y. Chen, “Laser ablation of solid substrates in water and ambient air,” J. Appl. Phys. 89(4), 2400–2403 (2001).
[Crossref]

Lui, S. L.

Luke, J. R.

C. Phipps, J. R. Luke, T. Lippert, M. Hauer, and A. Wokaun, “Micropropulsion using laser ablation,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1385–1389 (2004).
[Crossref]

Manzano, F.

C. A. Rinaldi, N. G. Boggio, D. Rodriguez, A. Lamagna, A. Boselli, F. Manzano, J. Codnia, and M. L. Azcárate, “Dependence of Cm on the composition of solid binary propellants in ablative laser propulsion,” Appl. Surf. Sci. 257(6), 2019–2023 (2011).
[Crossref]

Maruyama, R.

K. Mori, R. Maruyama, and K. Shimamura, “Energy conversion and momentum coupling of the sub-kJ laser ablation of aluminum in air atmosphere,” J. Appl. Phys. 118(7), 073304 (2015).
[Crossref]

Matthews, M. J.

Medvedev, V. V.

B. V. Lakatosh, D. B. Abramenko, V. V. Ivanov, V. V. Medvedev, V. M. Krivtsun, K. N. Koshelev, and A. M. Yakunin, “Propulsion of a flat tin target with pulsed CO2 laser radiation: measurements using a ballistic pendulum,” Laser Phys. Lett. 15(1), 016003 (2018).
[Crossref]

Metz, S. A.

S. A. Metz, L. R. Hettche, R. L. Stegman, and J. T. Schriempf, “Effect of beam intensity on target response to high-intensity pulsed CO2 laser radiation,” J. Appl. Phys. 46(4), 1634–1642 (1975).
[Crossref]

Michurin, S. V.

P. X. Ouyang, P. J. Li, E. G. Leksina, S. V. Michurin, and L. J. He, “Effect of liquid properties on laser ablation of aluminum and titanium alloys,” Appl. Surf. Sci. 360, 880–888 (2016).
[Crossref]

Mine, H.

areT. Yabe, C. Phipps, M. Yamaguchi, R. Nakagawa, K. Aoki, H. Mine, Y. Ogata, C. Baasandash, M. Nakagawa, E. Fujiwara, K. Yoshida, A. Nishiguchi, and I. Kajiwara, “Microairplane propelled by laser driven exotic target,” Appl. Phys. Lett. 80(23), 4318–4320 (2002).
[Crossref]

Mori, K.

K. Mori, R. Maruyama, and K. Shimamura, “Energy conversion and momentum coupling of the sub-kJ laser ablation of aluminum in air atmosphere,” J. Appl. Phys. 118(7), 073304 (2015).
[Crossref]

Nakagawa, M.

areT. Yabe, C. Phipps, M. Yamaguchi, R. Nakagawa, K. Aoki, H. Mine, Y. Ogata, C. Baasandash, M. Nakagawa, E. Fujiwara, K. Yoshida, A. Nishiguchi, and I. Kajiwara, “Microairplane propelled by laser driven exotic target,” Appl. Phys. Lett. 80(23), 4318–4320 (2002).
[Crossref]

Nakagawa, R.

areT. Yabe, C. Phipps, M. Yamaguchi, R. Nakagawa, K. Aoki, H. Mine, Y. Ogata, C. Baasandash, M. Nakagawa, E. Fujiwara, K. Yoshida, A. Nishiguchi, and I. Kajiwara, “Microairplane propelled by laser driven exotic target,” Appl. Phys. Lett. 80(23), 4318–4320 (2002).
[Crossref]

Negres, R. A.

Ni, X. W.

H. Qiang, J. Chen, B. Han, Z. H. Shen, J. Lu, and X. W. Ni, “Study of underwater laser propulsion using different target materials,” Opt. Express 22(14), 17532–17545 (2014).
[Crossref] [PubMed]

J. Chen, B. B. Li, H. C. Zhang, H. Qiang, Z. H. Shen, and X. W. Ni, “Enhancement of momentum coupling coefficient by cavity with toroidal bubble for underwater laser propulsion,” J. Appl. Phys. 113(6), 063107 (2013).
[Crossref]

B. Han, Z. H. Shen, J. Lu, and X. W. Ni, “Laser propulsion for transport in water environment,” Mod. Phys. Lett. B 24(07), 641–648 (2010).
[Crossref]

Nishiguchi, A.

areT. Yabe, C. Phipps, M. Yamaguchi, R. Nakagawa, K. Aoki, H. Mine, Y. Ogata, C. Baasandash, M. Nakagawa, E. Fujiwara, K. Yoshida, A. Nishiguchi, and I. Kajiwara, “Microairplane propelled by laser driven exotic target,” Appl. Phys. Lett. 80(23), 4318–4320 (2002).
[Crossref]

O’Shay, B.

S. S. Harilal, B. O’Shay, Y. Z. Tao, and M. S. Tillack, “Ambient gas effects on the dynamics of laser-produced tin plume expansion,” J. Appl. Phys. 99(8), 083303 (2006).
[Crossref]

Ogata, Y.

areT. Yabe, C. Phipps, M. Yamaguchi, R. Nakagawa, K. Aoki, H. Mine, Y. Ogata, C. Baasandash, M. Nakagawa, E. Fujiwara, K. Yoshida, A. Nishiguchi, and I. Kajiwara, “Microairplane propelled by laser driven exotic target,” Appl. Phys. Lett. 80(23), 4318–4320 (2002).
[Crossref]

Ouyang, P. X.

P. X. Ouyang, P. J. Li, E. G. Leksina, S. V. Michurin, and L. J. He, “Effect of liquid properties on laser ablation of aluminum and titanium alloys,” Appl. Surf. Sci. 360, 880–888 (2016).
[Crossref]

Pakarinen, O. H.

D. Grojo, Ph. Delaporte, M. Sentis, O. H. Pakarinen, and A. S. Foster, “The so-called dry laser cleaning governed by humidity at the nanometer scale,” Appl. Phys. Lett. 92(3), 033108 (2008).
[Crossref]

Pakhomov, A. V.

A. V. Pakhomov and D. A. Gregory, “Ablative laser propulsion: an old concept revisited,” AIAA J. 38(4), 725–727 (2000).
[Crossref]

Phipps, C.

C. Phipps, J. R. Luke, T. Lippert, M. Hauer, and A. Wokaun, “Micropropulsion using laser ablation,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1385–1389 (2004).
[Crossref]

areT. Yabe, C. Phipps, M. Yamaguchi, R. Nakagawa, K. Aoki, H. Mine, Y. Ogata, C. Baasandash, M. Nakagawa, E. Fujiwara, K. Yoshida, A. Nishiguchi, and I. Kajiwara, “Microairplane propelled by laser driven exotic target,” Appl. Phys. Lett. 80(23), 4318–4320 (2002).
[Crossref]

Qiang, H.

H. Qiang, J. Chen, B. Han, Z. H. Shen, J. Lu, and X. W. Ni, “Study of underwater laser propulsion using different target materials,” Opt. Express 22(14), 17532–17545 (2014).
[Crossref] [PubMed]

J. Chen, B. B. Li, H. C. Zhang, H. Qiang, Z. H. Shen, and X. W. Ni, “Enhancement of momentum coupling coefficient by cavity with toroidal bubble for underwater laser propulsion,” J. Appl. Phys. 113(6), 063107 (2013).
[Crossref]

Raman, R. N.

Rinaldi, C. A.

C. A. Rinaldi, N. G. Boggio, D. Rodriguez, A. Lamagna, A. Boselli, F. Manzano, J. Codnia, and M. L. Azcárate, “Dependence of Cm on the composition of solid binary propellants in ablative laser propulsion,” Appl. Surf. Sci. 257(6), 2019–2023 (2011).
[Crossref]

Rodriguez, D.

C. A. Rinaldi, N. G. Boggio, D. Rodriguez, A. Lamagna, A. Boselli, F. Manzano, J. Codnia, and M. L. Azcárate, “Dependence of Cm on the composition of solid binary propellants in ablative laser propulsion,” Appl. Surf. Sci. 257(6), 2019–2023 (2011).
[Crossref]

Rubenchik, A. M.

Schriempf, J. T.

S. A. Metz, L. R. Hettche, R. L. Stegman, and J. T. Schriempf, “Effect of beam intensity on target response to high-intensity pulsed CO2 laser radiation,” J. Appl. Phys. 46(4), 1634–1642 (1975).
[Crossref]

Sentis, M.

D. Grojo, Ph. Delaporte, M. Sentis, O. H. Pakarinen, and A. S. Foster, “The so-called dry laser cleaning governed by humidity at the nanometer scale,” Appl. Phys. Lett. 92(3), 033108 (2008).
[Crossref]

Shen, N.

Shen, Z. H.

H. Qiang, J. Chen, B. Han, Z. H. Shen, J. Lu, and X. W. Ni, “Study of underwater laser propulsion using different target materials,” Opt. Express 22(14), 17532–17545 (2014).
[Crossref] [PubMed]

J. Chen, B. B. Li, H. C. Zhang, H. Qiang, Z. H. Shen, and X. W. Ni, “Enhancement of momentum coupling coefficient by cavity with toroidal bubble for underwater laser propulsion,” J. Appl. Phys. 113(6), 063107 (2013).
[Crossref]

B. Han, Z. H. Shen, J. Lu, and X. W. Ni, “Laser propulsion for transport in water environment,” Mod. Phys. Lett. B 24(07), 641–648 (2010).
[Crossref]

Shimamura, K.

K. Mori, R. Maruyama, and K. Shimamura, “Energy conversion and momentum coupling of the sub-kJ laser ablation of aluminum in air atmosphere,” J. Appl. Phys. 118(7), 073304 (2015).
[Crossref]

Sizyuk, T.

T. Sizyuk and A. Hassanein, “Enhancing extreme ultraviolet photons emission in laser produced plasmas for advanced lithography,” Phys. Plasmas 19(8), 083102 (2012).
[Crossref]

Stegman, R. L.

S. A. Metz, L. R. Hettche, R. L. Stegman, and J. T. Schriempf, “Effect of beam intensity on target response to high-intensity pulsed CO2 laser radiation,” J. Appl. Phys. 46(4), 1634–1642 (1975).
[Crossref]

Tao, Y. Z.

S. S. Harilal, B. O’Shay, Y. Z. Tao, and M. S. Tillack, “Ambient gas effects on the dynamics of laser-produced tin plume expansion,” J. Appl. Phys. 99(8), 083303 (2006).
[Crossref]

Tillack, M. S.

S. S. Harilal, B. O’Shay, Y. Z. Tao, and M. S. Tillack, “Ambient gas effects on the dynamics of laser-produced tin plume expansion,” J. Appl. Phys. 99(8), 083303 (2006).
[Crossref]

Virmont, J.

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser-produced plasma in confined geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
[Crossref]

Wang, J. W.

Z. Q. Chen, X. B. Wang, D. L. Zuo, P. X. Lu, and J. W. Wang, “Investigation of Nd: YAG laser produced tin droplet plasma expansion,” Laser Phys. Lett. 13(5), 056002 (2016).
[Crossref]

Wang, S. W.

Z. Y. Zheng, Z. J. Fan, S. W. Wang, A. G. Dong, J. Xing, and Z. L. Zhang, “The effect of viscosity of liquid propellant on laser plasma propulsion,” Chin. Phys. Lett. 29(9), 095202 (2012).
[Crossref]

Wang, X. B.

Z. Q. Chen, X. B. Wang, D. L. Zuo, P. X. Lu, and J. W. Wang, “Investigation of Nd: YAG laser produced tin droplet plasma expansion,” Laser Phys. Lett. 13(5), 056002 (2016).
[Crossref]

Wang, Y.

H. C. Yu, H. Y. Li, Y. Wang, L. G. Cui, S. Q. Liu, and J. Yang, “Brief review on pulse laser propulsion,” Opt. Laser Technol. 100, 57–74 (2018).
[Crossref]

Wang, Z.

Wang, Z. H.

Z. Y. Zheng, J. Zhang, X. Lu, Z. H. Hao, X. H. Yuan, Z. H. Wang, and Z. Y. Wei, “Characteristic investigation of ablative laser propulsion driven by nanosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 83(2), 329–332 (2006).
[Crossref]

Z. Y. Zheng, J. Zhang, Z. Q. Hao, Z. Zhang, M. Chen, X. Lu, Z. H. Wang, and Z. Y. Wei, “Paper airplane propelled by laser plasma channels generated by femtosecond laser pulses in air,” Opt. Express 13(26), 10616–10621 (2005).
[Crossref] [PubMed]

Wei, Z. Y.

Z. Y. Zheng, J. Zhang, X. Lu, Z. H. Hao, X. H. Yuan, Z. H. Wang, and Z. Y. Wei, “Characteristic investigation of ablative laser propulsion driven by nanosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 83(2), 329–332 (2006).
[Crossref]

Z. Y. Zheng, J. Zhang, Z. Q. Hao, Z. Zhang, M. Chen, X. Lu, Z. H. Wang, and Z. Y. Wei, “Paper airplane propelled by laser plasma channels generated by femtosecond laser pulses in air,” Opt. Express 13(26), 10616–10621 (2005).
[Crossref] [PubMed]

Wokaun, A.

C. Phipps, J. R. Luke, T. Lippert, M. Hauer, and A. Wokaun, “Micropropulsion using laser ablation,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1385–1389 (2004).
[Crossref]

Xing, J.

Z. Y. Zheng, H. Gao, L. Gao, J. Xing, Z. J. Fan, A. G. Dong, and Z. L. Zhang, “Laser plasma propulsion generation in nanosecond pulse laser interaction with polyimide film,” Appl. Phys., A Mater. Sci. Process. 115(4), 1439–1443 (2014).
[Crossref]

Z. Y. Zheng, Z. J. Fan, S. W. Wang, A. G. Dong, J. Xing, and Z. L. Zhang, “The effect of viscosity of liquid propellant on laser plasma propulsion,” Chin. Phys. Lett. 29(9), 095202 (2012).
[Crossref]

Yabe, T.

areT. Yabe, C. Phipps, M. Yamaguchi, R. Nakagawa, K. Aoki, H. Mine, Y. Ogata, C. Baasandash, M. Nakagawa, E. Fujiwara, K. Yoshida, A. Nishiguchi, and I. Kajiwara, “Microairplane propelled by laser driven exotic target,” Appl. Phys. Lett. 80(23), 4318–4320 (2002).
[Crossref]

Yakunin, A. M.

B. V. Lakatosh, D. B. Abramenko, V. V. Ivanov, V. V. Medvedev, V. M. Krivtsun, K. N. Koshelev, and A. M. Yakunin, “Propulsion of a flat tin target with pulsed CO2 laser radiation: measurements using a ballistic pendulum,” Laser Phys. Lett. 15(1), 016003 (2018).
[Crossref]

Yamaguchi, M.

areT. Yabe, C. Phipps, M. Yamaguchi, R. Nakagawa, K. Aoki, H. Mine, Y. Ogata, C. Baasandash, M. Nakagawa, E. Fujiwara, K. Yoshida, A. Nishiguchi, and I. Kajiwara, “Microairplane propelled by laser driven exotic target,” Appl. Phys. Lett. 80(23), 4318–4320 (2002).
[Crossref]

Yang, J.

H. C. Yu, L. G. Cui, K. Zhang, J. Yang, and H. Y. Li, “Effect of a fiber-capillary structure on nanosecond laser pulse propulsion,” Appl. Phys. A. 124, 37 (2018).

H. C. Yu, H. Y. Li, Y. Wang, L. G. Cui, S. Q. Liu, and J. Yang, “Brief review on pulse laser propulsion,” Opt. Laser Technol. 100, 57–74 (2018).
[Crossref]

H. Yu, H. Li, L. Cui, S. Liu, and J. Yang, “Micro-gun based on laser pulse propulsion,” Sci. Rep. 7(1), 16299 (2017).
[Crossref] [PubMed]

Yoshida, K.

areT. Yabe, C. Phipps, M. Yamaguchi, R. Nakagawa, K. Aoki, H. Mine, Y. Ogata, C. Baasandash, M. Nakagawa, E. Fujiwara, K. Yoshida, A. Nishiguchi, and I. Kajiwara, “Microairplane propelled by laser driven exotic target,” Appl. Phys. Lett. 80(23), 4318–4320 (2002).
[Crossref]

Yu, H.

H. Yu, H. Li, L. Cui, S. Liu, and J. Yang, “Micro-gun based on laser pulse propulsion,” Sci. Rep. 7(1), 16299 (2017).
[Crossref] [PubMed]

Yu, H. C.

H. C. Yu, L. G. Cui, K. Zhang, J. Yang, and H. Y. Li, “Effect of a fiber-capillary structure on nanosecond laser pulse propulsion,” Appl. Phys. A. 124, 37 (2018).

H. C. Yu, H. Y. Li, Y. Wang, L. G. Cui, S. Q. Liu, and J. Yang, “Brief review on pulse laser propulsion,” Opt. Laser Technol. 100, 57–74 (2018).
[Crossref]

Yuan, X. H.

Z. Y. Zheng, J. Zhang, X. Lu, Z. H. Hao, X. H. Yuan, Z. H. Wang, and Z. Y. Wei, “Characteristic investigation of ablative laser propulsion driven by nanosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 83(2), 329–332 (2006).
[Crossref]

Zakaria, M. Q.

M. R. Ahmad, Y. Jamil, M. Q. Zakaria, T. Hussain, and R. Ahmad, “Plasma confinement to enhance the momentum coupling coefficient in ablative laser micro-propulsion: a novel approach,” Laser Phys. Lett. 12(7), 076101 (2015).
[Crossref]

Zhang, H. C.

J. Chen, B. B. Li, H. C. Zhang, H. Qiang, Z. H. Shen, and X. W. Ni, “Enhancement of momentum coupling coefficient by cavity with toroidal bubble for underwater laser propulsion,” J. Appl. Phys. 113(6), 063107 (2013).
[Crossref]

Zhang, J.

Z. Y. Zheng, Y. Zhang, W. G. Zhou, X. Lu, Y. T. Li, and J. Zhang, “High coupling efficiency generation in water confined laser plasma propulsion,” Chin. Phys. Lett. 24(2), 501–503 (2007).
[Crossref]

Z. Y. Zheng, J. Zhang, Y. Zhang, F. Liu, M. Chen, X. Lu, and Y. T. Li, “Enhancement of coupling coefficient of laser plasma propulsion by water confinement,” Appl. Phys., A Mater. Sci. Process. 85(4), 441–443 (2006).
[Crossref]

Z. Y. Zheng, J. Zhang, X. Lu, Z. H. Hao, X. H. Yuan, Z. H. Wang, and Z. Y. Wei, “Characteristic investigation of ablative laser propulsion driven by nanosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 83(2), 329–332 (2006).
[Crossref]

Z. Y. Zheng, J. Zhang, Z. Q. Hao, Z. Zhang, M. Chen, X. Lu, Z. H. Wang, and Z. Y. Wei, “Paper airplane propelled by laser plasma channels generated by femtosecond laser pulses in air,” Opt. Express 13(26), 10616–10621 (2005).
[Crossref] [PubMed]

Zhang, K.

H. C. Yu, L. G. Cui, K. Zhang, J. Yang, and H. Y. Li, “Effect of a fiber-capillary structure on nanosecond laser pulse propulsion,” Appl. Phys. A. 124, 37 (2018).

Zhang, Y.

Z. Y. Zheng, Y. Zhang, W. G. Zhou, X. Lu, Y. T. Li, and J. Zhang, “High coupling efficiency generation in water confined laser plasma propulsion,” Chin. Phys. Lett. 24(2), 501–503 (2007).
[Crossref]

Z. Y. Zheng, J. Zhang, Y. Zhang, F. Liu, M. Chen, X. Lu, and Y. T. Li, “Enhancement of coupling coefficient of laser plasma propulsion by water confinement,” Appl. Phys., A Mater. Sci. Process. 85(4), 441–443 (2006).
[Crossref]

Zhang, Z.

Zhang, Z. L.

Z. Y. Zheng, H. Gao, L. Gao, J. Xing, Z. J. Fan, A. G. Dong, and Z. L. Zhang, “Laser plasma propulsion generation in nanosecond pulse laser interaction with polyimide film,” Appl. Phys., A Mater. Sci. Process. 115(4), 1439–1443 (2014).
[Crossref]

Z. Y. Zheng, Z. J. Fan, S. W. Wang, A. G. Dong, J. Xing, and Z. L. Zhang, “The effect of viscosity of liquid propellant on laser plasma propulsion,” Chin. Phys. Lett. 29(9), 095202 (2012).
[Crossref]

Zheng, Z. Y.

Z. Y. Zheng, H. Gao, L. Gao, J. Xing, Z. J. Fan, A. G. Dong, and Z. L. Zhang, “Laser plasma propulsion generation in nanosecond pulse laser interaction with polyimide film,” Appl. Phys., A Mater. Sci. Process. 115(4), 1439–1443 (2014).
[Crossref]

Z. Y. Zheng, Z. J. Fan, S. W. Wang, A. G. Dong, J. Xing, and Z. L. Zhang, “The effect of viscosity of liquid propellant on laser plasma propulsion,” Chin. Phys. Lett. 29(9), 095202 (2012).
[Crossref]

Z. Y. Zheng, Y. Zhang, W. G. Zhou, X. Lu, Y. T. Li, and J. Zhang, “High coupling efficiency generation in water confined laser plasma propulsion,” Chin. Phys. Lett. 24(2), 501–503 (2007).
[Crossref]

Z. Y. Zheng, J. Zhang, Y. Zhang, F. Liu, M. Chen, X. Lu, and Y. T. Li, “Enhancement of coupling coefficient of laser plasma propulsion by water confinement,” Appl. Phys., A Mater. Sci. Process. 85(4), 441–443 (2006).
[Crossref]

Z. Y. Zheng, J. Zhang, X. Lu, Z. H. Hao, X. H. Yuan, Z. H. Wang, and Z. Y. Wei, “Characteristic investigation of ablative laser propulsion driven by nanosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 83(2), 329–332 (2006).
[Crossref]

Z. Y. Zheng, J. Zhang, Z. Q. Hao, Z. Zhang, M. Chen, X. Lu, Z. H. Wang, and Z. Y. Wei, “Paper airplane propelled by laser plasma channels generated by femtosecond laser pulses in air,” Opt. Express 13(26), 10616–10621 (2005).
[Crossref] [PubMed]

Zhou, W. G.

Z. Y. Zheng, Y. Zhang, W. G. Zhou, X. Lu, Y. T. Li, and J. Zhang, “High coupling efficiency generation in water confined laser plasma propulsion,” Chin. Phys. Lett. 24(2), 501–503 (2007).
[Crossref]

Zhu, S.

S. Zhu, Y. F. Lu, M. H. Hong, and X. Y. Chen, “Laser ablation of solid substrates in water and ambient air,” J. Appl. Phys. 89(4), 2400–2403 (2001).
[Crossref]

Zuo, D. L.

Z. Q. Chen, X. B. Wang, D. L. Zuo, P. X. Lu, and J. W. Wang, “Investigation of Nd: YAG laser produced tin droplet plasma expansion,” Laser Phys. Lett. 13(5), 056002 (2016).
[Crossref]

AIAA J. (1)

A. V. Pakhomov and D. A. Gregory, “Ablative laser propulsion: an old concept revisited,” AIAA J. 38(4), 725–727 (2000).
[Crossref]

Appl. Phys. A. (1)

H. C. Yu, L. G. Cui, K. Zhang, J. Yang, and H. Y. Li, “Effect of a fiber-capillary structure on nanosecond laser pulse propulsion,” Appl. Phys. A. 124, 37 (2018).

Appl. Phys. Lett. (2)

areT. Yabe, C. Phipps, M. Yamaguchi, R. Nakagawa, K. Aoki, H. Mine, Y. Ogata, C. Baasandash, M. Nakagawa, E. Fujiwara, K. Yoshida, A. Nishiguchi, and I. Kajiwara, “Microairplane propelled by laser driven exotic target,” Appl. Phys. Lett. 80(23), 4318–4320 (2002).
[Crossref]

D. Grojo, Ph. Delaporte, M. Sentis, O. H. Pakarinen, and A. S. Foster, “The so-called dry laser cleaning governed by humidity at the nanometer scale,” Appl. Phys. Lett. 92(3), 033108 (2008).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (4)

Z. Y. Zheng, J. Zhang, X. Lu, Z. H. Hao, X. H. Yuan, Z. H. Wang, and Z. Y. Wei, “Characteristic investigation of ablative laser propulsion driven by nanosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 83(2), 329–332 (2006).
[Crossref]

Z. Y. Zheng, H. Gao, L. Gao, J. Xing, Z. J. Fan, A. G. Dong, and Z. L. Zhang, “Laser plasma propulsion generation in nanosecond pulse laser interaction with polyimide film,” Appl. Phys., A Mater. Sci. Process. 115(4), 1439–1443 (2014).
[Crossref]

Z. Y. Zheng, J. Zhang, Y. Zhang, F. Liu, M. Chen, X. Lu, and Y. T. Li, “Enhancement of coupling coefficient of laser plasma propulsion by water confinement,” Appl. Phys., A Mater. Sci. Process. 85(4), 441–443 (2006).
[Crossref]

C. Phipps, J. R. Luke, T. Lippert, M. Hauer, and A. Wokaun, “Micropropulsion using laser ablation,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1385–1389 (2004).
[Crossref]

Appl. Surf. Sci. (2)

P. X. Ouyang, P. J. Li, E. G. Leksina, S. V. Michurin, and L. J. He, “Effect of liquid properties on laser ablation of aluminum and titanium alloys,” Appl. Surf. Sci. 360, 880–888 (2016).
[Crossref]

C. A. Rinaldi, N. G. Boggio, D. Rodriguez, A. Lamagna, A. Boselli, F. Manzano, J. Codnia, and M. L. Azcárate, “Dependence of Cm on the composition of solid binary propellants in ablative laser propulsion,” Appl. Surf. Sci. 257(6), 2019–2023 (2011).
[Crossref]

Astronautics & Aeronautics (A/A) (1)

A. Kantrowitz, “Propulsion to orbit by ground-based lasers,” Astronautics & Aeronautics (A/A) 10, 74– 76 (1972).

Chin. Phys. Lett. (2)

Z. Y. Zheng, Z. J. Fan, S. W. Wang, A. G. Dong, J. Xing, and Z. L. Zhang, “The effect of viscosity of liquid propellant on laser plasma propulsion,” Chin. Phys. Lett. 29(9), 095202 (2012).
[Crossref]

Z. Y. Zheng, Y. Zhang, W. G. Zhou, X. Lu, Y. T. Li, and J. Zhang, “High coupling efficiency generation in water confined laser plasma propulsion,” Chin. Phys. Lett. 24(2), 501–503 (2007).
[Crossref]

J. Appl. Phys. (7)

K. Mori, R. Maruyama, and K. Shimamura, “Energy conversion and momentum coupling of the sub-kJ laser ablation of aluminum in air atmosphere,” J. Appl. Phys. 118(7), 073304 (2015).
[Crossref]

A. E. Hussein, P. K. Diwakar, S. S. Harilal, and A. Hassanein, “The role of laser wavelength on plasma generation and expansion of ablation plumes in air,” J. Appl. Phys. 113(14), 143305 (2013).
[Crossref]

S. S. Harilal, B. O’Shay, Y. Z. Tao, and M. S. Tillack, “Ambient gas effects on the dynamics of laser-produced tin plume expansion,” J. Appl. Phys. 99(8), 083303 (2006).
[Crossref]

S. A. Metz, L. R. Hettche, R. L. Stegman, and J. T. Schriempf, “Effect of beam intensity on target response to high-intensity pulsed CO2 laser radiation,” J. Appl. Phys. 46(4), 1634–1642 (1975).
[Crossref]

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser-produced plasma in confined geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
[Crossref]

S. Zhu, Y. F. Lu, M. H. Hong, and X. Y. Chen, “Laser ablation of solid substrates in water and ambient air,” J. Appl. Phys. 89(4), 2400–2403 (2001).
[Crossref]

J. Chen, B. B. Li, H. C. Zhang, H. Qiang, Z. H. Shen, and X. W. Ni, “Enhancement of momentum coupling coefficient by cavity with toroidal bubble for underwater laser propulsion,” J. Appl. Phys. 113(6), 063107 (2013).
[Crossref]

Laser Phys. Lett. (3)

M. R. Ahmad, Y. Jamil, M. Q. Zakaria, T. Hussain, and R. Ahmad, “Plasma confinement to enhance the momentum coupling coefficient in ablative laser micro-propulsion: a novel approach,” Laser Phys. Lett. 12(7), 076101 (2015).
[Crossref]

B. V. Lakatosh, D. B. Abramenko, V. V. Ivanov, V. V. Medvedev, V. M. Krivtsun, K. N. Koshelev, and A. M. Yakunin, “Propulsion of a flat tin target with pulsed CO2 laser radiation: measurements using a ballistic pendulum,” Laser Phys. Lett. 15(1), 016003 (2018).
[Crossref]

Z. Q. Chen, X. B. Wang, D. L. Zuo, P. X. Lu, and J. W. Wang, “Investigation of Nd: YAG laser produced tin droplet plasma expansion,” Laser Phys. Lett. 13(5), 056002 (2016).
[Crossref]

Mod. Phys. Lett. B (1)

B. Han, Z. H. Shen, J. Lu, and X. W. Ni, “Laser propulsion for transport in water environment,” Mod. Phys. Lett. B 24(07), 641–648 (2010).
[Crossref]

Opt. Express (4)

Opt. Laser Technol. (1)

H. C. Yu, H. Y. Li, Y. Wang, L. G. Cui, S. Q. Liu, and J. Yang, “Brief review on pulse laser propulsion,” Opt. Laser Technol. 100, 57–74 (2018).
[Crossref]

Phys. Plasmas (1)

T. Sizyuk and A. Hassanein, “Enhancing extreme ultraviolet photons emission in laser produced plasmas for advanced lithography,” Phys. Plasmas 19(8), 083102 (2012).
[Crossref]

Sci. Rep. (1)

H. Yu, H. Li, L. Cui, S. Liu, and J. Yang, “Micro-gun based on laser pulse propulsion,” Sci. Rep. 7(1), 16299 (2017).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Laser plasma propulsion PS particle experimental setup.
Fig. 2
Fig. 2 (a) PS particle movement with energy fluence 0.314 J/cm2 (0.5 ms interval). (b) Distance and velocity of PS particle as a function of time. (c) Kinetic energy of PS particle and resistance as a function of energy fluence.
Fig. 3
Fig. 3 PS particle movement process at different energy fluences: (a) 0.314 J/cm2, (b) 0.38 J/cm2, (c) 0.46 J/cm2, (d) PS particle speed as function of energy fluence, inset: Movement distance of PS particle as a function of energy fluence. (e) Momentum coupling coefficient Cm and momentum P as functions of energy fluence.
Fig. 4
Fig. 4 Effects of confined geometry on PS particle propulsion efficiency. Experiments: (a) Without confined geometry (b) With confined geometry. Simulations: (c) Without confined geometry. (d) With confined geometry. (e) Normalized energy intensity distribution.
Fig. 5
Fig. 5 (a) Plasma produced by air breakdown collides with PS particle. (b) Plasma image sequences at different energy fluences: (I) 0.38 J/cm2 (b) 0.548 J/cm2 (c) Uniform PS particle (d) PS particle kinetic (to R5) as a function of energy fluence.
Fig. 6
Fig. 6 (a) Driving force analysis while the PS particle was impact by shock wave. (b) The resultant and resistance dependent on energy fluence.
Fig. 7
Fig. 7 (a) PS particle swarm motion driven by plasma (shock wave) generated by air breakdown. (b) and (c) Shock wave produced by plasma expansion pushes PS particle swarm forward.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F(Gpa)=3.22× 10 3 ( a 2a+3 ) 2/3 ρ 0 1/3 (g/c m 3 )× I 2/3 (GW/c m 2 )
F o =2Ehv/cεt

Metrics