Abstract

Laser-induced periodic surface structures (LIPSS) provide an easy and cost-effective means of fabricating gratings and have been widely studied in recent decades. To overcome the challenge of orientation controllability, we developed a feasible and efficient method for manipulating the orientation of LIPSS in real time. Specifically, we used orthogonally polarized and equal-energy femtosecond laser (50 fs, 800 nm) double-pulse trains with time delay about 1ps, total peak laser fluence about 1.0 J/cm2, laser repetition frequency at 100 Hz and scanning speed at 150 μm/s to manipulate the LIPSS orientation on silicon surfaces perpendicular to the scanning direction, regardless of the scanning paths. The underlying mechanism is attributed to the periodic energy deposition along the direction of surface plasmon polaritons (SPPs), which can be controlled oriented along the scanning direction in orthogonally polarized femtosecond laser double-pulse trains surface scan processing. An application of structural colors presents the functionality of our method.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Self-organizing microstructures orientation control in femtosecond laser patterning on silicon surface

Pengjun Liu, Lan Jiang, Jie Hu, Shuai Zhang, and Yongfeng Lu
Opt. Express 22(14) 16669-16675 (2014)

Femtosecond laser eraser for controllable removing periodic microstructures on Fe-based metallic glass surfaces

Yuhao Lei, Nan Zhang, Jianjun Yang, and Chunlei Guo
Opt. Express 26(5) 5102-5110 (2018)

Anisotropy modulations of femtosecond laser pulse induced periodic surface structures on silicon by adjusting double pulse delay

Weina Han, Lan Jiang, Xiaowei Li, Qingsong Wang, Hao Li, and YongFeng Lu
Opt. Express 22(13) 15820-15828 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. H. Kong, D. D. L. Wijngaards, and R. F. Wolffenbuttel, “Infrared micro-spectrometer based on a diffraction grating,” Sensor. Actuat. A-Phys. 92(1–3), 88–95 (2001).
  2. R. Dewan and D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106(7), 074901 (2009).
    [Crossref]
  3. J. Neauport and N. Bonod, “Diffraction gratings: from principles to applications in high-intensity lasers,” Adv. Opt. Photonics 8(1), 156–199 (2016).
    [Crossref]
  4. H. J. Cornelissen, D. K. G. de Boer, and T. Tukker, “Diffraction gratings for Lighting applications,” Proc. SPIE 8835, 88350I (2013).
    [Crossref]
  5. H. Xie, Q. Wang, S. Kishimoto, and F. Dai, “Characterization of planar periodic structure using inverse laser scanning confocal microscopy Moiré method and its application in the structure of butterfly wing,” J. Appl. Phys. 101(10), 103511 (2007).
    [Crossref]
  6. A. Sezginer, K. C. Johnson, and F. E. Stanke, “Overlay alignment metrology using diffraction gratings,” (Google Patents, 2004).
  7. C. A. Palmer and E. G. Loewen, Diffraction grating handbook (Newport Corporation, 2005).
  8. J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures—a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
    [Crossref]
  9. T. Y. Hwang and C. L. Guo, “Angular effects of nanostructure-covered femtosecond laser induced periodic surface structures on metals,” J. Appl. Phys. 108(7), 073523 (2010).
    [Crossref]
  10. J. Bonse and J. Kruger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108(3), 034903 (2010).
    [Crossref]
  11. S. Schwarz, S. Rung, C. Esen, and R. Hellmann, “Surface Plasmon Polariton Triggered Generation of 1D-Low Spatial Frequency LIPSS on Fused Silica,” Appl. Sci. (Basel) 8(9), 1624 (2018).
    [Crossref]
  12. T. Jwad, P. Penchev, V. Nasrollahi, and S. Dimov, “Laser induced ripples’ gratings with angular periodicity for fabrication of diffraction holograms,” Appl. Surf. Sci. 453, 449–456 (2018).
    [Crossref]
  13. A. Cerkauskaite, R. Drevinskas, A. Solodar, I. Abdulhalim, and P. G. Kazansky, “Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring,” ACS Photonics 4(11), 2944–2951 (2017).
    [Crossref]
  14. F. Liang, R. Vallée, and S. L. Chin, “Pulse fluence dependent nanograting inscription on the surface of fused silica,” Appl. Phys. Lett. 100(25), 251105 (2012).
    [Crossref]
  15. P. Gregorčič, M. Sedlacek, B. Podgornik, and J. Reif, “Formation of laser-induced periodic surface structures (LIPSS) on tool steel by multiple picosecond laser pulses of different polarizations,” Appl. Surf. Sci. 387, 698–706 (2016).
    [Crossref]
  16. R. Le Harzic, D. Dörr, D. Sauer, M. Neumeier, M. Epple, H. Zimmermann, and F. Stracke, “Large-area, uniform, high-spatial-frequency ripples generated on silicon using a nanojoule-femtosecond laser at high repetition rate,” Opt. Lett. 36(2), 229–231 (2011).
    [Crossref] [PubMed]
  17. E. Rebollar, S. Pérez, J. J. Hernández, I. Martín-Fabiani, D. R. Rueda, T. A. Ezquerra, and M. Castillejo, “Assessment and formation mechanism of laser-induced periodic surface structures on polymer spin-coated films in real and reciprocal space,” Langmuir 27(9), 5596–5606 (2011).
    [Crossref] [PubMed]
  18. P. Liu, L. Jiang, J. Hu, W. Han, and Y. Lu, “Direct writing anisotropy on crystalline silicon surface by linearly polarized femtosecond laser,” Opt. Lett. 38(11), 1969–1971 (2013).
    [Crossref] [PubMed]
  19. P. Liu, L. Jiang, J. Hu, S. Zhang, and Y. Lu, “Self-organizing microstructures orientation control in femtosecond laser patterning on silicon surface,” Opt. Express 22(14), 16669–16675 (2014).
    [Crossref] [PubMed]
  20. G. Giannuzzi, C. Gaudiuso, C. Di Franco, G. Scamarcio, P. M. Lugara, and A. Ancona, “Large area laser-induced periodic surface structures on steel by bursts of femtosecond pulses with picosecond delays,” Opt. Lasers Eng. 114, 15–21 (2019).
    [Crossref]
  21. M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
    [Crossref] [PubMed]
  22. M. Barberoglou, G. D. Tsibidis, D. Gray, E. Magoulakis, C. Fotakis, E. Stratakis, and P. A. Loukakos, “The influence of ultra-fast temporal energy regulation on the morphology of Si surfaces through femtosecond double pulse laser irradiation,” Appl. Phys., A Mater. Sci. Process. 113(2), 273–283 (2013).
    [Crossref]
  23. S. Höhm, M. Rohloff, A. Rosenfeld, J. Krüger, and J. Bonse, “Dynamics of the formation of laser-induced periodic surface structures on dielectrics and semiconductors upon femtosecond laser pulse irradiation sequences,” Appl. Phys., A Mater. Sci. Process. 110(3), 553–557 (2013).
    [Crossref]
  24. F. Fraggelakis, E. Stratakis, and P. A. Loukakos, “Control of periodic surface structures on Silicon by combined temporal and polarization shaping of femtosecond laser pulses,” Appl. Surf. Sci. 444, 154–160 (2018).
    [Crossref]
  25. S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silicon upon polarization controlled two-color double-pulse irradiation,” Opt. Express 23(1), 61–71 (2015).
    [Crossref] [PubMed]
  26. B. Dusser, Z. Sagan, H. Soder, N. Faure, J. P. Colombier, M. Jourlin, and E. Audouard, “Controlled nanostructrures formation by ultra fast laser pulses for color marking,” Opt. Express 18(3), 2913–2924 (2010).
    [Crossref] [PubMed]
  27. E. Skoulas, A. Manousaki, C. Fotakis, and E. Stratakis, “Biomimetic surface structuring using cylindrical vector femtosecond laser beams,” Sci. Rep. 7(1), 45114 (2017).
    [Crossref] [PubMed]
  28. K. Lou, S. X. Qian, X. L. Wang, Y. Li, B. Gu, C. Tu, and H. T. Wang, “Two-dimensional microstructures induced by femtosecond vector light fields on silicon,” Opt. Express 20(1), 120–127 (2012).
    [Crossref] [PubMed]
  29. T. J. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon,” Opt. Express 21(24), 29643–29655 (2013).
    [Crossref] [PubMed]
  30. L. Wang, Q. D. Chen, X. W. Cao, R. Buividas, X. Wang, S. Juodkazis, and H. B. Sun, “Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing,” Light Sci. Appl. 6(12), e17112 (2017).
    [Crossref] [PubMed]
  31. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
    [Crossref] [PubMed]
  32. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7(5), 196–198 (1982).
    [Crossref] [PubMed]
  33. V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7(1), 39989 (2017).
    [Crossref] [PubMed]
  34. H. Raether, Surface-Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1986).
  35. V. V. Gerasimov, B. A. Knyazev, I. A. Kotelnikov, A. K. Nikitin, V. S. Cherkassky, G. N. Kulipanov, and G. N. Zhizhin, “Surface plasmon polaritons launched using a terahertz free-electron laser: propagation along a gold-ZnS-air interface and decoupling to free waves at the surface edge,” J. Opt. Soc. Am. B 30(8), 2182–2190 (2013).
    [Crossref]
  36. A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 074104 (2005).
    [Crossref]
  37. T. J. Y. Derrien, J. Krüger, and J. Bonse, “Properties of surface plasmon polaritons on lossy materials: lifetimes, periods and excitation conditions,” J. Opt. 18(11), 115007 (2016).
    [Crossref]
  38. J. Yao, C. Zhang, H. Liu, Q. Dai, L. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses,” Appl. Surf. Sci. 258(19), 7625–7632 (2012).
    [Crossref]

2019 (1)

G. Giannuzzi, C. Gaudiuso, C. Di Franco, G. Scamarcio, P. M. Lugara, and A. Ancona, “Large area laser-induced periodic surface structures on steel by bursts of femtosecond pulses with picosecond delays,” Opt. Lasers Eng. 114, 15–21 (2019).
[Crossref]

2018 (3)

S. Schwarz, S. Rung, C. Esen, and R. Hellmann, “Surface Plasmon Polariton Triggered Generation of 1D-Low Spatial Frequency LIPSS on Fused Silica,” Appl. Sci. (Basel) 8(9), 1624 (2018).
[Crossref]

T. Jwad, P. Penchev, V. Nasrollahi, and S. Dimov, “Laser induced ripples’ gratings with angular periodicity for fabrication of diffraction holograms,” Appl. Surf. Sci. 453, 449–456 (2018).
[Crossref]

F. Fraggelakis, E. Stratakis, and P. A. Loukakos, “Control of periodic surface structures on Silicon by combined temporal and polarization shaping of femtosecond laser pulses,” Appl. Surf. Sci. 444, 154–160 (2018).
[Crossref]

2017 (5)

E. Skoulas, A. Manousaki, C. Fotakis, and E. Stratakis, “Biomimetic surface structuring using cylindrical vector femtosecond laser beams,” Sci. Rep. 7(1), 45114 (2017).
[Crossref] [PubMed]

L. Wang, Q. D. Chen, X. W. Cao, R. Buividas, X. Wang, S. Juodkazis, and H. B. Sun, “Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing,” Light Sci. Appl. 6(12), e17112 (2017).
[Crossref] [PubMed]

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7(1), 39989 (2017).
[Crossref] [PubMed]

A. Cerkauskaite, R. Drevinskas, A. Solodar, I. Abdulhalim, and P. G. Kazansky, “Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring,” ACS Photonics 4(11), 2944–2951 (2017).
[Crossref]

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures—a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
[Crossref]

2016 (3)

P. Gregorčič, M. Sedlacek, B. Podgornik, and J. Reif, “Formation of laser-induced periodic surface structures (LIPSS) on tool steel by multiple picosecond laser pulses of different polarizations,” Appl. Surf. Sci. 387, 698–706 (2016).
[Crossref]

J. Neauport and N. Bonod, “Diffraction gratings: from principles to applications in high-intensity lasers,” Adv. Opt. Photonics 8(1), 156–199 (2016).
[Crossref]

T. J. Y. Derrien, J. Krüger, and J. Bonse, “Properties of surface plasmon polaritons on lossy materials: lifetimes, periods and excitation conditions,” J. Opt. 18(11), 115007 (2016).
[Crossref]

2015 (1)

2014 (1)

2013 (6)

P. Liu, L. Jiang, J. Hu, W. Han, and Y. Lu, “Direct writing anisotropy on crystalline silicon surface by linearly polarized femtosecond laser,” Opt. Lett. 38(11), 1969–1971 (2013).
[Crossref] [PubMed]

H. J. Cornelissen, D. K. G. de Boer, and T. Tukker, “Diffraction gratings for Lighting applications,” Proc. SPIE 8835, 88350I (2013).
[Crossref]

M. Barberoglou, G. D. Tsibidis, D. Gray, E. Magoulakis, C. Fotakis, E. Stratakis, and P. A. Loukakos, “The influence of ultra-fast temporal energy regulation on the morphology of Si surfaces through femtosecond double pulse laser irradiation,” Appl. Phys., A Mater. Sci. Process. 113(2), 273–283 (2013).
[Crossref]

S. Höhm, M. Rohloff, A. Rosenfeld, J. Krüger, and J. Bonse, “Dynamics of the formation of laser-induced periodic surface structures on dielectrics and semiconductors upon femtosecond laser pulse irradiation sequences,” Appl. Phys., A Mater. Sci. Process. 110(3), 553–557 (2013).
[Crossref]

V. V. Gerasimov, B. A. Knyazev, I. A. Kotelnikov, A. K. Nikitin, V. S. Cherkassky, G. N. Kulipanov, and G. N. Zhizhin, “Surface plasmon polaritons launched using a terahertz free-electron laser: propagation along a gold-ZnS-air interface and decoupling to free waves at the surface edge,” J. Opt. Soc. Am. B 30(8), 2182–2190 (2013).
[Crossref]

T. J. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon,” Opt. Express 21(24), 29643–29655 (2013).
[Crossref] [PubMed]

2012 (3)

J. Yao, C. Zhang, H. Liu, Q. Dai, L. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses,” Appl. Surf. Sci. 258(19), 7625–7632 (2012).
[Crossref]

K. Lou, S. X. Qian, X. L. Wang, Y. Li, B. Gu, C. Tu, and H. T. Wang, “Two-dimensional microstructures induced by femtosecond vector light fields on silicon,” Opt. Express 20(1), 120–127 (2012).
[Crossref] [PubMed]

F. Liang, R. Vallée, and S. L. Chin, “Pulse fluence dependent nanograting inscription on the surface of fused silica,” Appl. Phys. Lett. 100(25), 251105 (2012).
[Crossref]

2011 (2)

R. Le Harzic, D. Dörr, D. Sauer, M. Neumeier, M. Epple, H. Zimmermann, and F. Stracke, “Large-area, uniform, high-spatial-frequency ripples generated on silicon using a nanojoule-femtosecond laser at high repetition rate,” Opt. Lett. 36(2), 229–231 (2011).
[Crossref] [PubMed]

E. Rebollar, S. Pérez, J. J. Hernández, I. Martín-Fabiani, D. R. Rueda, T. A. Ezquerra, and M. Castillejo, “Assessment and formation mechanism of laser-induced periodic surface structures on polymer spin-coated films in real and reciprocal space,” Langmuir 27(9), 5596–5606 (2011).
[Crossref] [PubMed]

2010 (3)

T. Y. Hwang and C. L. Guo, “Angular effects of nanostructure-covered femtosecond laser induced periodic surface structures on metals,” J. Appl. Phys. 108(7), 073523 (2010).
[Crossref]

J. Bonse and J. Kruger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108(3), 034903 (2010).
[Crossref]

B. Dusser, Z. Sagan, H. Soder, N. Faure, J. P. Colombier, M. Jourlin, and E. Audouard, “Controlled nanostructrures formation by ultra fast laser pulses for color marking,” Opt. Express 18(3), 2913–2924 (2010).
[Crossref] [PubMed]

2009 (2)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

R. Dewan and D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106(7), 074901 (2009).
[Crossref]

2008 (1)

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[Crossref] [PubMed]

2007 (1)

H. Xie, Q. Wang, S. Kishimoto, and F. Dai, “Characterization of planar periodic structure using inverse laser scanning confocal microscopy Moiré method and its application in the structure of butterfly wing,” J. Appl. Phys. 101(10), 103511 (2007).
[Crossref]

2005 (1)

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 074104 (2005).
[Crossref]

2001 (1)

S. H. Kong, D. D. L. Wijngaards, and R. F. Wolffenbuttel, “Infrared micro-spectrometer based on a diffraction grating,” Sensor. Actuat. A-Phys. 92(1–3), 88–95 (2001).

1982 (1)

Abdulhalim, I.

A. Cerkauskaite, R. Drevinskas, A. Solodar, I. Abdulhalim, and P. G. Kazansky, “Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring,” ACS Photonics 4(11), 2944–2951 (2017).
[Crossref]

Ancona, A.

G. Giannuzzi, C. Gaudiuso, C. Di Franco, G. Scamarcio, P. M. Lugara, and A. Ancona, “Large area laser-induced periodic surface structures on steel by bursts of femtosecond pulses with picosecond delays,” Opt. Lasers Eng. 114, 15–21 (2019).
[Crossref]

Audouard, E.

Aussenegg, F. R.

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 074104 (2005).
[Crossref]

Barberoglou, M.

M. Barberoglou, G. D. Tsibidis, D. Gray, E. Magoulakis, C. Fotakis, E. Stratakis, and P. A. Loukakos, “The influence of ultra-fast temporal energy regulation on the morphology of Si surfaces through femtosecond double pulse laser irradiation,” Appl. Phys., A Mater. Sci. Process. 113(2), 273–283 (2013).
[Crossref]

Bonod, N.

J. Neauport and N. Bonod, “Diffraction gratings: from principles to applications in high-intensity lasers,” Adv. Opt. Photonics 8(1), 156–199 (2016).
[Crossref]

Bonse, J.

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures—a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
[Crossref]

T. J. Y. Derrien, J. Krüger, and J. Bonse, “Properties of surface plasmon polaritons on lossy materials: lifetimes, periods and excitation conditions,” J. Opt. 18(11), 115007 (2016).
[Crossref]

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silicon upon polarization controlled two-color double-pulse irradiation,” Opt. Express 23(1), 61–71 (2015).
[Crossref] [PubMed]

T. J. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon,” Opt. Express 21(24), 29643–29655 (2013).
[Crossref] [PubMed]

S. Höhm, M. Rohloff, A. Rosenfeld, J. Krüger, and J. Bonse, “Dynamics of the formation of laser-induced periodic surface structures on dielectrics and semiconductors upon femtosecond laser pulse irradiation sequences,” Appl. Phys., A Mater. Sci. Process. 110(3), 553–557 (2013).
[Crossref]

J. Bonse and J. Kruger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108(3), 034903 (2010).
[Crossref]

Bragheri, F.

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7(1), 39989 (2017).
[Crossref] [PubMed]

Buividas, R.

L. Wang, Q. D. Chen, X. W. Cao, R. Buividas, X. Wang, S. Juodkazis, and H. B. Sun, “Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing,” Light Sci. Appl. 6(12), e17112 (2017).
[Crossref] [PubMed]

Cao, X. W.

L. Wang, Q. D. Chen, X. W. Cao, R. Buividas, X. Wang, S. Juodkazis, and H. B. Sun, “Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing,” Light Sci. Appl. 6(12), e17112 (2017).
[Crossref] [PubMed]

Carey, J. E.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[Crossref] [PubMed]

Castillejo, M.

E. Rebollar, S. Pérez, J. J. Hernández, I. Martín-Fabiani, D. R. Rueda, T. A. Ezquerra, and M. Castillejo, “Assessment and formation mechanism of laser-induced periodic surface structures on polymer spin-coated films in real and reciprocal space,” Langmuir 27(9), 5596–5606 (2011).
[Crossref] [PubMed]

Cerkauskaite, A.

A. Cerkauskaite, R. Drevinskas, A. Solodar, I. Abdulhalim, and P. G. Kazansky, “Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring,” ACS Photonics 4(11), 2944–2951 (2017).
[Crossref]

Chen, Q. D.

L. Wang, Q. D. Chen, X. W. Cao, R. Buividas, X. Wang, S. Juodkazis, and H. B. Sun, “Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing,” Light Sci. Appl. 6(12), e17112 (2017).
[Crossref] [PubMed]

Cheng, Y.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Cherkassky, V. S.

Chin, S. L.

F. Liang, R. Vallée, and S. L. Chin, “Pulse fluence dependent nanograting inscription on the surface of fused silica,” Appl. Phys. Lett. 100(25), 251105 (2012).
[Crossref]

Colombier, J. P.

Cornelissen, H. J.

H. J. Cornelissen, D. K. G. de Boer, and T. Tukker, “Diffraction gratings for Lighting applications,” Proc. SPIE 8835, 88350I (2013).
[Crossref]

Crouch, C. H.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[Crossref] [PubMed]

Dai, F.

H. Xie, Q. Wang, S. Kishimoto, and F. Dai, “Characterization of planar periodic structure using inverse laser scanning confocal microscopy Moiré method and its application in the structure of butterfly wing,” J. Appl. Phys. 101(10), 103511 (2007).
[Crossref]

Dai, Q.

J. Yao, C. Zhang, H. Liu, Q. Dai, L. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses,” Appl. Surf. Sci. 258(19), 7625–7632 (2012).
[Crossref]

de Boer, D. K. G.

H. J. Cornelissen, D. K. G. de Boer, and T. Tukker, “Diffraction gratings for Lighting applications,” Proc. SPIE 8835, 88350I (2013).
[Crossref]

Derrien, T. J.

Derrien, T. J. Y.

T. J. Y. Derrien, J. Krüger, and J. Bonse, “Properties of surface plasmon polaritons on lossy materials: lifetimes, periods and excitation conditions,” J. Opt. 18(11), 115007 (2016).
[Crossref]

Dewan, R.

R. Dewan and D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106(7), 074901 (2009).
[Crossref]

Di Franco, C.

G. Giannuzzi, C. Gaudiuso, C. Di Franco, G. Scamarcio, P. M. Lugara, and A. Ancona, “Large area laser-induced periodic surface structures on steel by bursts of femtosecond pulses with picosecond delays,” Opt. Lasers Eng. 114, 15–21 (2019).
[Crossref]

Dimov, S.

T. Jwad, P. Penchev, V. Nasrollahi, and S. Dimov, “Laser induced ripples’ gratings with angular periodicity for fabrication of diffraction holograms,” Appl. Surf. Sci. 453, 449–456 (2018).
[Crossref]

Ditlbacher, H.

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 074104 (2005).
[Crossref]

Dörr, D.

Drevinskas, R.

A. Cerkauskaite, R. Drevinskas, A. Solodar, I. Abdulhalim, and P. G. Kazansky, “Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring,” ACS Photonics 4(11), 2944–2951 (2017).
[Crossref]

Drezet, A.

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 074104 (2005).
[Crossref]

Dusser, B.

Epple, M.

Esen, C.

S. Schwarz, S. Rung, C. Esen, and R. Hellmann, “Surface Plasmon Polariton Triggered Generation of 1D-Low Spatial Frequency LIPSS on Fused Silica,” Appl. Sci. (Basel) 8(9), 1624 (2018).
[Crossref]

Ezquerra, T. A.

E. Rebollar, S. Pérez, J. J. Hernández, I. Martín-Fabiani, D. R. Rueda, T. A. Ezquerra, and M. Castillejo, “Assessment and formation mechanism of laser-induced periodic surface structures on polymer spin-coated films in real and reciprocal space,” Langmuir 27(9), 5596–5606 (2011).
[Crossref] [PubMed]

Faure, N.

Fotakis, C.

E. Skoulas, A. Manousaki, C. Fotakis, and E. Stratakis, “Biomimetic surface structuring using cylindrical vector femtosecond laser beams,” Sci. Rep. 7(1), 45114 (2017).
[Crossref] [PubMed]

M. Barberoglou, G. D. Tsibidis, D. Gray, E. Magoulakis, C. Fotakis, E. Stratakis, and P. A. Loukakos, “The influence of ultra-fast temporal energy regulation on the morphology of Si surfaces through femtosecond double pulse laser irradiation,” Appl. Phys., A Mater. Sci. Process. 113(2), 273–283 (2013).
[Crossref]

Fraggelakis, F.

F. Fraggelakis, E. Stratakis, and P. A. Loukakos, “Control of periodic surface structures on Silicon by combined temporal and polarization shaping of femtosecond laser pulses,” Appl. Surf. Sci. 444, 154–160 (2018).
[Crossref]

Gamaly, E. G.

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7(1), 39989 (2017).
[Crossref] [PubMed]

Gaudiuso, C.

G. Giannuzzi, C. Gaudiuso, C. Di Franco, G. Scamarcio, P. M. Lugara, and A. Ancona, “Large area laser-induced periodic surface structures on steel by bursts of femtosecond pulses with picosecond delays,” Opt. Lasers Eng. 114, 15–21 (2019).
[Crossref]

Gerasimov, V. V.

Giannuzzi, G.

G. Giannuzzi, C. Gaudiuso, C. Di Franco, G. Scamarcio, P. M. Lugara, and A. Ancona, “Large area laser-induced periodic surface structures on steel by bursts of femtosecond pulses with picosecond delays,” Opt. Lasers Eng. 114, 15–21 (2019).
[Crossref]

Gopal, A. V.

J. Yao, C. Zhang, H. Liu, Q. Dai, L. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses,” Appl. Surf. Sci. 258(19), 7625–7632 (2012).
[Crossref]

Gray, D.

M. Barberoglou, G. D. Tsibidis, D. Gray, E. Magoulakis, C. Fotakis, E. Stratakis, and P. A. Loukakos, “The influence of ultra-fast temporal energy regulation on the morphology of Si surfaces through femtosecond double pulse laser irradiation,” Appl. Phys., A Mater. Sci. Process. 113(2), 273–283 (2013).
[Crossref]

Gregorcic, P.

P. Gregorčič, M. Sedlacek, B. Podgornik, and J. Reif, “Formation of laser-induced periodic surface structures (LIPSS) on tool steel by multiple picosecond laser pulses of different polarizations,” Appl. Surf. Sci. 387, 698–706 (2016).
[Crossref]

Gu, B.

Guo, C. L.

T. Y. Hwang and C. L. Guo, “Angular effects of nanostructure-covered femtosecond laser induced periodic surface structures on metals,” J. Appl. Phys. 108(7), 073523 (2010).
[Crossref]

Han, W.

Hellmann, R.

S. Schwarz, S. Rung, C. Esen, and R. Hellmann, “Surface Plasmon Polariton Triggered Generation of 1D-Low Spatial Frequency LIPSS on Fused Silica,” Appl. Sci. (Basel) 8(9), 1624 (2018).
[Crossref]

Hernández, J. J.

E. Rebollar, S. Pérez, J. J. Hernández, I. Martín-Fabiani, D. R. Rueda, T. A. Ezquerra, and M. Castillejo, “Assessment and formation mechanism of laser-induced periodic surface structures on polymer spin-coated films in real and reciprocal space,” Langmuir 27(9), 5596–5606 (2011).
[Crossref] [PubMed]

Herzlieb, M.

Hohenau, A.

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 074104 (2005).
[Crossref]

Höhm, S.

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures—a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
[Crossref]

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silicon upon polarization controlled two-color double-pulse irradiation,” Opt. Express 23(1), 61–71 (2015).
[Crossref] [PubMed]

T. J. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon,” Opt. Express 21(24), 29643–29655 (2013).
[Crossref] [PubMed]

S. Höhm, M. Rohloff, A. Rosenfeld, J. Krüger, and J. Bonse, “Dynamics of the formation of laser-induced periodic surface structures on dielectrics and semiconductors upon femtosecond laser pulse irradiation sequences,” Appl. Phys., A Mater. Sci. Process. 110(3), 553–557 (2013).
[Crossref]

Hu, J.

Huang, M.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Hwang, T. Y.

T. Y. Hwang and C. L. Guo, “Angular effects of nanostructure-covered femtosecond laser induced periodic surface structures on metals,” J. Appl. Phys. 108(7), 073523 (2010).
[Crossref]

Itina, T. E.

Jiang, L.

Jourlin, M.

Juodkazis, S.

L. Wang, Q. D. Chen, X. W. Cao, R. Buividas, X. Wang, S. Juodkazis, and H. B. Sun, “Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing,” Light Sci. Appl. 6(12), e17112 (2017).
[Crossref] [PubMed]

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7(1), 39989 (2017).
[Crossref] [PubMed]

Jwad, T.

T. Jwad, P. Penchev, V. Nasrollahi, and S. Dimov, “Laser induced ripples’ gratings with angular periodicity for fabrication of diffraction holograms,” Appl. Surf. Sci. 453, 449–456 (2018).
[Crossref]

Kandyla, M.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[Crossref] [PubMed]

Kazansky, P. G.

A. Cerkauskaite, R. Drevinskas, A. Solodar, I. Abdulhalim, and P. G. Kazansky, “Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring,” ACS Photonics 4(11), 2944–2951 (2017).
[Crossref]

Kirner, S. V.

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures—a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
[Crossref]

Kishimoto, S.

H. Xie, Q. Wang, S. Kishimoto, and F. Dai, “Characterization of planar periodic structure using inverse laser scanning confocal microscopy Moiré method and its application in the structure of butterfly wing,” J. Appl. Phys. 101(10), 103511 (2007).
[Crossref]

Knipp, D.

R. Dewan and D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106(7), 074901 (2009).
[Crossref]

Knyazev, B. A.

Kong, S. H.

S. H. Kong, D. D. L. Wijngaards, and R. F. Wolffenbuttel, “Infrared micro-spectrometer based on a diffraction grating,” Sensor. Actuat. A-Phys. 92(1–3), 88–95 (2001).

Kotelnikov, I. A.

Krenn, J. R.

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 074104 (2005).
[Crossref]

Kruger, J.

J. Bonse and J. Kruger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108(3), 034903 (2010).
[Crossref]

Krüger, J.

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures—a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
[Crossref]

T. J. Y. Derrien, J. Krüger, and J. Bonse, “Properties of surface plasmon polaritons on lossy materials: lifetimes, periods and excitation conditions,” J. Opt. 18(11), 115007 (2016).
[Crossref]

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silicon upon polarization controlled two-color double-pulse irradiation,” Opt. Express 23(1), 61–71 (2015).
[Crossref] [PubMed]

T. J. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon,” Opt. Express 21(24), 29643–29655 (2013).
[Crossref] [PubMed]

S. Höhm, M. Rohloff, A. Rosenfeld, J. Krüger, and J. Bonse, “Dynamics of the formation of laser-induced periodic surface structures on dielectrics and semiconductors upon femtosecond laser pulse irradiation sequences,” Appl. Phys., A Mater. Sci. Process. 110(3), 553–557 (2013).
[Crossref]

Kulipanov, G. N.

Lan, S.

J. Yao, C. Zhang, H. Liu, Q. Dai, L. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses,” Appl. Surf. Sci. 258(19), 7625–7632 (2012).
[Crossref]

Le Harzic, R.

Leitner, A.

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 074104 (2005).
[Crossref]

Li, Y.

Liang, F.

F. Liang, R. Vallée, and S. L. Chin, “Pulse fluence dependent nanograting inscription on the surface of fused silica,” Appl. Phys. Lett. 100(25), 251105 (2012).
[Crossref]

Liu, H.

J. Yao, C. Zhang, H. Liu, Q. Dai, L. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses,” Appl. Surf. Sci. 258(19), 7625–7632 (2012).
[Crossref]

Liu, J. M.

Liu, P.

Lou, K.

Loukakos, P. A.

F. Fraggelakis, E. Stratakis, and P. A. Loukakos, “Control of periodic surface structures on Silicon by combined temporal and polarization shaping of femtosecond laser pulses,” Appl. Surf. Sci. 444, 154–160 (2018).
[Crossref]

M. Barberoglou, G. D. Tsibidis, D. Gray, E. Magoulakis, C. Fotakis, E. Stratakis, and P. A. Loukakos, “The influence of ultra-fast temporal energy regulation on the morphology of Si surfaces through femtosecond double pulse laser irradiation,” Appl. Phys., A Mater. Sci. Process. 113(2), 273–283 (2013).
[Crossref]

Lu, Y.

Lugara, P. M.

G. Giannuzzi, C. Gaudiuso, C. Di Franco, G. Scamarcio, P. M. Lugara, and A. Ancona, “Large area laser-induced periodic surface structures on steel by bursts of femtosecond pulses with picosecond delays,” Opt. Lasers Eng. 114, 15–21 (2019).
[Crossref]

Lysak, T. M.

J. Yao, C. Zhang, H. Liu, Q. Dai, L. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses,” Appl. Surf. Sci. 258(19), 7625–7632 (2012).
[Crossref]

Magoulakis, E.

M. Barberoglou, G. D. Tsibidis, D. Gray, E. Magoulakis, C. Fotakis, E. Stratakis, and P. A. Loukakos, “The influence of ultra-fast temporal energy regulation on the morphology of Si surfaces through femtosecond double pulse laser irradiation,” Appl. Phys., A Mater. Sci. Process. 113(2), 273–283 (2013).
[Crossref]

Manousaki, A.

E. Skoulas, A. Manousaki, C. Fotakis, and E. Stratakis, “Biomimetic surface structuring using cylindrical vector femtosecond laser beams,” Sci. Rep. 7(1), 45114 (2017).
[Crossref] [PubMed]

Martín-Fabiani, I.

E. Rebollar, S. Pérez, J. J. Hernández, I. Martín-Fabiani, D. R. Rueda, T. A. Ezquerra, and M. Castillejo, “Assessment and formation mechanism of laser-induced periodic surface structures on polymer spin-coated films in real and reciprocal space,” Langmuir 27(9), 5596–5606 (2011).
[Crossref] [PubMed]

Mazur, E.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[Crossref] [PubMed]

Nasrollahi, V.

T. Jwad, P. Penchev, V. Nasrollahi, and S. Dimov, “Laser induced ripples’ gratings with angular periodicity for fabrication of diffraction holograms,” Appl. Surf. Sci. 453, 449–456 (2018).
[Crossref]

Neauport, J.

J. Neauport and N. Bonod, “Diffraction gratings: from principles to applications in high-intensity lasers,” Adv. Opt. Photonics 8(1), 156–199 (2016).
[Crossref]

Neumeier, M.

Nikitin, A. K.

Osellame, R.

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7(1), 39989 (2017).
[Crossref] [PubMed]

Penchev, P.

T. Jwad, P. Penchev, V. Nasrollahi, and S. Dimov, “Laser induced ripples’ gratings with angular periodicity for fabrication of diffraction holograms,” Appl. Surf. Sci. 453, 449–456 (2018).
[Crossref]

Pérez, S.

E. Rebollar, S. Pérez, J. J. Hernández, I. Martín-Fabiani, D. R. Rueda, T. A. Ezquerra, and M. Castillejo, “Assessment and formation mechanism of laser-induced periodic surface structures on polymer spin-coated films in real and reciprocal space,” Langmuir 27(9), 5596–5606 (2011).
[Crossref] [PubMed]

Podgornik, B.

P. Gregorčič, M. Sedlacek, B. Podgornik, and J. Reif, “Formation of laser-induced periodic surface structures (LIPSS) on tool steel by multiple picosecond laser pulses of different polarizations,” Appl. Surf. Sci. 387, 698–706 (2016).
[Crossref]

Qian, S. X.

Raciukaitis, G.

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7(1), 39989 (2017).
[Crossref] [PubMed]

Rebollar, E.

E. Rebollar, S. Pérez, J. J. Hernández, I. Martín-Fabiani, D. R. Rueda, T. A. Ezquerra, and M. Castillejo, “Assessment and formation mechanism of laser-induced periodic surface structures on polymer spin-coated films in real and reciprocal space,” Langmuir 27(9), 5596–5606 (2011).
[Crossref] [PubMed]

Reif, J.

P. Gregorčič, M. Sedlacek, B. Podgornik, and J. Reif, “Formation of laser-induced periodic surface structures (LIPSS) on tool steel by multiple picosecond laser pulses of different polarizations,” Appl. Surf. Sci. 387, 698–706 (2016).
[Crossref]

Rohloff, M.

S. Höhm, M. Rohloff, A. Rosenfeld, J. Krüger, and J. Bonse, “Dynamics of the formation of laser-induced periodic surface structures on dielectrics and semiconductors upon femtosecond laser pulse irradiation sequences,” Appl. Phys., A Mater. Sci. Process. 110(3), 553–557 (2013).
[Crossref]

Rosenfeld, A.

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures—a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
[Crossref]

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silicon upon polarization controlled two-color double-pulse irradiation,” Opt. Express 23(1), 61–71 (2015).
[Crossref] [PubMed]

T. J. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon,” Opt. Express 21(24), 29643–29655 (2013).
[Crossref] [PubMed]

S. Höhm, M. Rohloff, A. Rosenfeld, J. Krüger, and J. Bonse, “Dynamics of the formation of laser-induced periodic surface structures on dielectrics and semiconductors upon femtosecond laser pulse irradiation sequences,” Appl. Phys., A Mater. Sci. Process. 110(3), 553–557 (2013).
[Crossref]

Rueda, D. R.

E. Rebollar, S. Pérez, J. J. Hernández, I. Martín-Fabiani, D. R. Rueda, T. A. Ezquerra, and M. Castillejo, “Assessment and formation mechanism of laser-induced periodic surface structures on polymer spin-coated films in real and reciprocal space,” Langmuir 27(9), 5596–5606 (2011).
[Crossref] [PubMed]

Rung, S.

S. Schwarz, S. Rung, C. Esen, and R. Hellmann, “Surface Plasmon Polariton Triggered Generation of 1D-Low Spatial Frequency LIPSS on Fused Silica,” Appl. Sci. (Basel) 8(9), 1624 (2018).
[Crossref]

Sagan, Z.

Sauer, D.

Scamarcio, G.

G. Giannuzzi, C. Gaudiuso, C. Di Franco, G. Scamarcio, P. M. Lugara, and A. Ancona, “Large area laser-induced periodic surface structures on steel by bursts of femtosecond pulses with picosecond delays,” Opt. Lasers Eng. 114, 15–21 (2019).
[Crossref]

Schwarz, S.

S. Schwarz, S. Rung, C. Esen, and R. Hellmann, “Surface Plasmon Polariton Triggered Generation of 1D-Low Spatial Frequency LIPSS on Fused Silica,” Appl. Sci. (Basel) 8(9), 1624 (2018).
[Crossref]

Sedlacek, M.

P. Gregorčič, M. Sedlacek, B. Podgornik, and J. Reif, “Formation of laser-induced periodic surface structures (LIPSS) on tool steel by multiple picosecond laser pulses of different polarizations,” Appl. Surf. Sci. 387, 698–706 (2016).
[Crossref]

Shen, M.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[Crossref] [PubMed]

Skoulas, E.

E. Skoulas, A. Manousaki, C. Fotakis, and E. Stratakis, “Biomimetic surface structuring using cylindrical vector femtosecond laser beams,” Sci. Rep. 7(1), 45114 (2017).
[Crossref] [PubMed]

Soder, H.

Solodar, A.

A. Cerkauskaite, R. Drevinskas, A. Solodar, I. Abdulhalim, and P. G. Kazansky, “Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring,” ACS Photonics 4(11), 2944–2951 (2017).
[Crossref]

Stankevic, V.

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7(1), 39989 (2017).
[Crossref] [PubMed]

Steinberger, B.

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 074104 (2005).
[Crossref]

Stepanov, A. L.

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 074104 (2005).
[Crossref]

Stone, H. A.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[Crossref] [PubMed]

Stracke, F.

Stratakis, E.

F. Fraggelakis, E. Stratakis, and P. A. Loukakos, “Control of periodic surface structures on Silicon by combined temporal and polarization shaping of femtosecond laser pulses,” Appl. Surf. Sci. 444, 154–160 (2018).
[Crossref]

E. Skoulas, A. Manousaki, C. Fotakis, and E. Stratakis, “Biomimetic surface structuring using cylindrical vector femtosecond laser beams,” Sci. Rep. 7(1), 45114 (2017).
[Crossref] [PubMed]

M. Barberoglou, G. D. Tsibidis, D. Gray, E. Magoulakis, C. Fotakis, E. Stratakis, and P. A. Loukakos, “The influence of ultra-fast temporal energy regulation on the morphology of Si surfaces through femtosecond double pulse laser irradiation,” Appl. Phys., A Mater. Sci. Process. 113(2), 273–283 (2013).
[Crossref]

Sun, H. B.

L. Wang, Q. D. Chen, X. W. Cao, R. Buividas, X. Wang, S. Juodkazis, and H. B. Sun, “Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing,” Light Sci. Appl. 6(12), e17112 (2017).
[Crossref] [PubMed]

Trofimov, V. A.

J. Yao, C. Zhang, H. Liu, Q. Dai, L. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses,” Appl. Surf. Sci. 258(19), 7625–7632 (2012).
[Crossref]

Tsibidis, G. D.

M. Barberoglou, G. D. Tsibidis, D. Gray, E. Magoulakis, C. Fotakis, E. Stratakis, and P. A. Loukakos, “The influence of ultra-fast temporal energy regulation on the morphology of Si surfaces through femtosecond double pulse laser irradiation,” Appl. Phys., A Mater. Sci. Process. 113(2), 273–283 (2013).
[Crossref]

Tu, C.

Tukker, T.

H. J. Cornelissen, D. K. G. de Boer, and T. Tukker, “Diffraction gratings for Lighting applications,” Proc. SPIE 8835, 88350I (2013).
[Crossref]

Vallée, R.

F. Liang, R. Vallée, and S. L. Chin, “Pulse fluence dependent nanograting inscription on the surface of fused silica,” Appl. Phys. Lett. 100(25), 251105 (2012).
[Crossref]

Wang, H. T.

Wang, L.

L. Wang, Q. D. Chen, X. W. Cao, R. Buividas, X. Wang, S. Juodkazis, and H. B. Sun, “Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing,” Light Sci. Appl. 6(12), e17112 (2017).
[Crossref] [PubMed]

Wang, Q.

H. Xie, Q. Wang, S. Kishimoto, and F. Dai, “Characterization of planar periodic structure using inverse laser scanning confocal microscopy Moiré method and its application in the structure of butterfly wing,” J. Appl. Phys. 101(10), 103511 (2007).
[Crossref]

Wang, X.

L. Wang, Q. D. Chen, X. W. Cao, R. Buividas, X. Wang, S. Juodkazis, and H. B. Sun, “Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing,” Light Sci. Appl. 6(12), e17112 (2017).
[Crossref] [PubMed]

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7(1), 39989 (2017).
[Crossref] [PubMed]

Wang, X. L.

Wijngaards, D. D. L.

S. H. Kong, D. D. L. Wijngaards, and R. F. Wolffenbuttel, “Infrared micro-spectrometer based on a diffraction grating,” Sensor. Actuat. A-Phys. 92(1–3), 88–95 (2001).

Wolffenbuttel, R. F.

S. H. Kong, D. D. L. Wijngaards, and R. F. Wolffenbuttel, “Infrared micro-spectrometer based on a diffraction grating,” Sensor. Actuat. A-Phys. 92(1–3), 88–95 (2001).

Wu, L.

J. Yao, C. Zhang, H. Liu, Q. Dai, L. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses,” Appl. Surf. Sci. 258(19), 7625–7632 (2012).
[Crossref]

Xie, H.

H. Xie, Q. Wang, S. Kishimoto, and F. Dai, “Characterization of planar periodic structure using inverse laser scanning confocal microscopy Moiré method and its application in the structure of butterfly wing,” J. Appl. Phys. 101(10), 103511 (2007).
[Crossref]

Xu, N.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Xu, Z.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Yao, J.

J. Yao, C. Zhang, H. Liu, Q. Dai, L. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses,” Appl. Surf. Sci. 258(19), 7625–7632 (2012).
[Crossref]

Zhang, C.

J. Yao, C. Zhang, H. Liu, Q. Dai, L. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses,” Appl. Surf. Sci. 258(19), 7625–7632 (2012).
[Crossref]

Zhang, S.

Zhao, F.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Zhizhin, G. N.

Zimmermann, H.

ACS Nano (1)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

ACS Photonics (1)

A. Cerkauskaite, R. Drevinskas, A. Solodar, I. Abdulhalim, and P. G. Kazansky, “Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring,” ACS Photonics 4(11), 2944–2951 (2017).
[Crossref]

Adv. Opt. Photonics (1)

J. Neauport and N. Bonod, “Diffraction gratings: from principles to applications in high-intensity lasers,” Adv. Opt. Photonics 8(1), 156–199 (2016).
[Crossref]

Appl. Phys. Lett. (2)

F. Liang, R. Vallée, and S. L. Chin, “Pulse fluence dependent nanograting inscription on the surface of fused silica,” Appl. Phys. Lett. 100(25), 251105 (2012).
[Crossref]

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 074104 (2005).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

M. Barberoglou, G. D. Tsibidis, D. Gray, E. Magoulakis, C. Fotakis, E. Stratakis, and P. A. Loukakos, “The influence of ultra-fast temporal energy regulation on the morphology of Si surfaces through femtosecond double pulse laser irradiation,” Appl. Phys., A Mater. Sci. Process. 113(2), 273–283 (2013).
[Crossref]

S. Höhm, M. Rohloff, A. Rosenfeld, J. Krüger, and J. Bonse, “Dynamics of the formation of laser-induced periodic surface structures on dielectrics and semiconductors upon femtosecond laser pulse irradiation sequences,” Appl. Phys., A Mater. Sci. Process. 110(3), 553–557 (2013).
[Crossref]

Appl. Sci. (Basel) (1)

S. Schwarz, S. Rung, C. Esen, and R. Hellmann, “Surface Plasmon Polariton Triggered Generation of 1D-Low Spatial Frequency LIPSS on Fused Silica,” Appl. Sci. (Basel) 8(9), 1624 (2018).
[Crossref]

Appl. Surf. Sci. (4)

T. Jwad, P. Penchev, V. Nasrollahi, and S. Dimov, “Laser induced ripples’ gratings with angular periodicity for fabrication of diffraction holograms,” Appl. Surf. Sci. 453, 449–456 (2018).
[Crossref]

P. Gregorčič, M. Sedlacek, B. Podgornik, and J. Reif, “Formation of laser-induced periodic surface structures (LIPSS) on tool steel by multiple picosecond laser pulses of different polarizations,” Appl. Surf. Sci. 387, 698–706 (2016).
[Crossref]

F. Fraggelakis, E. Stratakis, and P. A. Loukakos, “Control of periodic surface structures on Silicon by combined temporal and polarization shaping of femtosecond laser pulses,” Appl. Surf. Sci. 444, 154–160 (2018).
[Crossref]

J. Yao, C. Zhang, H. Liu, Q. Dai, L. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses,” Appl. Surf. Sci. 258(19), 7625–7632 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures—a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
[Crossref]

J. Appl. Phys. (4)

T. Y. Hwang and C. L. Guo, “Angular effects of nanostructure-covered femtosecond laser induced periodic surface structures on metals,” J. Appl. Phys. 108(7), 073523 (2010).
[Crossref]

J. Bonse and J. Kruger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108(3), 034903 (2010).
[Crossref]

H. Xie, Q. Wang, S. Kishimoto, and F. Dai, “Characterization of planar periodic structure using inverse laser scanning confocal microscopy Moiré method and its application in the structure of butterfly wing,” J. Appl. Phys. 101(10), 103511 (2007).
[Crossref]

R. Dewan and D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106(7), 074901 (2009).
[Crossref]

J. Opt. (1)

T. J. Y. Derrien, J. Krüger, and J. Bonse, “Properties of surface plasmon polaritons on lossy materials: lifetimes, periods and excitation conditions,” J. Opt. 18(11), 115007 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

Langmuir (1)

E. Rebollar, S. Pérez, J. J. Hernández, I. Martín-Fabiani, D. R. Rueda, T. A. Ezquerra, and M. Castillejo, “Assessment and formation mechanism of laser-induced periodic surface structures on polymer spin-coated films in real and reciprocal space,” Langmuir 27(9), 5596–5606 (2011).
[Crossref] [PubMed]

Light Sci. Appl. (1)

L. Wang, Q. D. Chen, X. W. Cao, R. Buividas, X. Wang, S. Juodkazis, and H. B. Sun, “Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing,” Light Sci. Appl. 6(12), e17112 (2017).
[Crossref] [PubMed]

Nano Lett. (1)

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lasers Eng. (1)

G. Giannuzzi, C. Gaudiuso, C. Di Franco, G. Scamarcio, P. M. Lugara, and A. Ancona, “Large area laser-induced periodic surface structures on steel by bursts of femtosecond pulses with picosecond delays,” Opt. Lasers Eng. 114, 15–21 (2019).
[Crossref]

Opt. Lett. (3)

Proc. SPIE (1)

H. J. Cornelissen, D. K. G. de Boer, and T. Tukker, “Diffraction gratings for Lighting applications,” Proc. SPIE 8835, 88350I (2013).
[Crossref]

Sci. Rep. (2)

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7(1), 39989 (2017).
[Crossref] [PubMed]

E. Skoulas, A. Manousaki, C. Fotakis, and E. Stratakis, “Biomimetic surface structuring using cylindrical vector femtosecond laser beams,” Sci. Rep. 7(1), 45114 (2017).
[Crossref] [PubMed]

Sensor. Actuat. A-Phys. (1)

S. H. Kong, D. D. L. Wijngaards, and R. F. Wolffenbuttel, “Infrared micro-spectrometer based on a diffraction grating,” Sensor. Actuat. A-Phys. 92(1–3), 88–95 (2001).

Other (3)

A. Sezginer, K. C. Johnson, and F. E. Stanke, “Overlay alignment metrology using diffraction gratings,” (Google Patents, 2004).

C. A. Palmer and E. G. Loewen, Diffraction grating handbook (Newport Corporation, 2005).

H. Raether, Surface-Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental setup of fabrication system comprising orthogonally polarized femtosecond laser double-pulse trains.
Fig. 2
Fig. 2 SEM images of LIPSS fabricated at different double-pulse polarization angles: (a) 0°, (b) 30°, (c) 60°, and (d) 90°. The time delay was maintained at 1 ps and the peak laser fluence of each double pulse was maintained at 0.50 J/cm2. The horizontally polarized pulse was always secondary to the other pulse. The double-arrow red lines indicate the laser polarization direction. Scale bar: 5 μm.
Fig. 3
Fig. 3 (a)-(k) SEM images of LIPSS fabricated using orthogonally polarized femtosecond double-pulse trains. (l) The coordinate system used to determine the scanning direction. The white arrow lines indicate the scanning direction. Scale bar: 5 μm.
Fig. 4
Fig. 4 Period of LIPSS in straight scanning as a function of the angle between the scanning direction and positive direction of Y axis, which ranged from 0° to 330°, “V+H” represents a situation where the vertically polarized pulse served as the leading pulse while “H+V” represents a situation where the horizontally polarized pulse served as the leading pulse
Fig. 5
Fig. 5 (a), (b) SEM images of the structure fabricated using horizontally polarized single-pulse surface patterning. (c), (d) SEM images of the structure fabricated using vertically polarized single-pulse surface patterning. (e)- (g) A simple model depicting generation of SPPs in different laser polarization surface patterning processes. (h) SEM images of the structure fabricated using orthogonally polarized double-pulse trains. Scale bar, 2 μm.
Fig. 6
Fig. 6 Scanning electron microscope images of LIPSS fabricated using multiple time delays between double pulses: (a) 0 fs, (b) 500 fs, (c) 1 ps, (d) 5 ps, (e) 10 ps, (f) 12 ps, (g) 50 ps, and (h) 100 ps. The peak laser fluence of each of the double pulses was maintained at 0.50 J/cm2. Scale bar: 4 μm.
Fig. 7
Fig. 7 Structural colors generated using the proposed method. (a), (e), and (i) Schematics of two fabrication plans for LIPSS gratings. (b), (c), (f), (g), (j), and (k) Observed structural colors under white light irradiation in only one direction. (d), (h), and (l) Observed structural colors under white light irradiation in two directions. The white arrows indicate the incident direction of white light. The angle values indicate the angles between white light and the horizontal line. Scale bar: 1.5 mm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

| E H |= E 0 cos(θ)
| E V |= E 0 cos(π/2θ)
| E H |sin(θ)=| E V |cos(θ)
| E |=| E H |cos(θ)+| E V |cos(π/2θ)= E 0

Metrics