Abstract

We investigate the dependence of photonic waveguide propagation loss on the thickness of the buried oxide layer in Y-cut lithium niobate on insulator substrate to identify trade-offs between optical losses and electromechanical coupling of surface acoustic wave (SAW) devices for acousto-optic applications. Simulations show that a thicker oxide layer reduces the waveguide loss but lowers the electromechanical coupling coefficient of the SAW device. Optical racetrack resonators with different lengths were fabricated by argon plasma etching to experimentally extract waveguide losses. By increasing the oxide layer thickness from 1 µm to 2 µm, we were able to reduce propagation loss of 2 µm (1 µm) wide waveguide from 1.85 dB/cm (3 dB/cm) to as low as 0.37 dB/cm (0.77 dB/cm). Resonators with a quality factor greater than 1 million were demonstrated as well. An oxide thickness of approximately 1.5 µm is sufficient to significantly reduce propagation loss, due to leakage into the substrate and simultaneously attain good electromechanical coupling in acoustic devices. This work not only provides insights on the design and realization of low-loss photonic waveguides in lithium niobate, but also, most importantly, offers experimental evidence of how the oxide thickness directly impacts losses and guides its selection for the synthesis of high-performance acousto-optic devices in Y-cut lithium niobate on insulator.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Novel on chip rotation detection based on the acousto-optic effect in surface acoustic wave gyroscopes

Mohamed Mahmoud, Ashraf Mahmoud, Lutong Cai, Msi Khan, Tamal Mukherjee, James Bain, and Gianluca Piazza
Opt. Express 26(19) 25060-25075 (2018)

Ultra-low loss ridge waveguides on lithium niobate via argon ion milling and gas clustered ion beam smoothening

Shawn Yohanes Siew, Eric Jun Hao Cheung, Haidong Liang, Andrew Bettiol, Noriaki Toyoda, Bandar Alshehri, Elhadj Dogheche, and Aaron J. Danner
Opt. Express 26(4) 4421-4430 (2018)

Monolithic ultra-high-Q lithium niobate microring resonator

Mian Zhang, Cheng Wang, Rebecca Cheng, Amirhassan Shams-Ansari, and Marko Lončar
Optica 4(12) 1536-1537 (2017)

References

  • View by:
  • |
  • |
  • |

  1. L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi, A Appl. Res. 201(2), 253–283 (2004).
    [Crossref]
  2. P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115 (2005).
    [Crossref]
  3. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27(3), 179–181 (2002).
    [Crossref] [PubMed]
  4. H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
    [Crossref] [PubMed]
  5. Y. Song and S. Gong, “Wideband spurious-free lithium niobate RF-MEMS filters,” J. Microelectromech. Syst. 26(4), 820–828 (2017).
    [Crossref]
  6. G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
    [Crossref]
  7. A. J. Mercante, S. Shi, P. Yao, L. Xie, R. M. Weikle, and D. W. Prather, “Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth,” Opt. Express 26(11), 14810–14816 (2018).
    [Crossref] [PubMed]
  8. P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo, A. T. Pomerene, A. L. Starbuck, C. T. DeRose, A. L. Lentine, G. Rebeiz, and S. Mookherjea, “Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth,” Opt. Express 26(18), 23728–23739 (2018).
    [Crossref] [PubMed]
  9. R. Wu, J. Zhang, N. Yao, W. Fang, L. Qiao, Z. Chai, J. Lin, and Y. Cheng, “Lithium niobate micro-disk resonators of quality factors above 107,” Opt. Lett. 43(17), 4116–4119 (2018).
    [Crossref] [PubMed]
  10. H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M.-P. Bernal, “Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film,” Opt. Express 20(3), 2974–2981 (2012).
    [Crossref] [PubMed]
  11. L. Chen, Q. Xu, M. G. Wood, and R. M. Reano, “Hybrid silicon and lithium niobate electro-optical ring modulator,” Optica 1(2), 112–118 (2014).
    [Crossref]
  12. A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, and S. Fathpour, “Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation,” Appl. Phys. Lett. 110(11), 111109 (2017).
    [Crossref]
  13. M. Mahmoud, A. Mahmoud, L. Cai, M. Khan, T. Mukherjee, J. Bain, and G. Piazza, “Novel on chip rotation detection based on the acousto-optic effect in surface acoustic wave gyroscopes,” Opt. Express 26(19), 25060–25075 (2018).
    [Crossref] [PubMed]
  14. L. Cai, A. V. Gorbach, Y. Wang, H. Hu, and W. Ding, “Highly efficient broadband second harmonic generation mediated by mode hybridization and nonlinearity patterning in compact fiber-integrated lithium niobate nano-waveguides,” Sci. Rep. 8(1), 12478 (2018).
    [Crossref] [PubMed]
  15. Z. Hao, J. Wang, S. Ma, W. Mao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Sum-frequency generation in on-chip lithium niobate microdisk resonators,” Photon. Res. 5(6), 623–628 (2017).
    [Crossref]
  16. J. Xu and R. Stroud, Acousto-optic devices: principles, design, and applications (Wiley, 1992).
  17. J. J. Campbell and W. R. Jones, “A method for estimating optimal crystal cuts and propagation direction for excitation of piezoelectric surface waves,” IEEE Trans. Sonics Ultrason. 15(4), 209–217 (1968).
    [Crossref]
  18. S. Y. Siew, E. J. H. Cheung, H. Liang, A. Bettiol, N. Toyoda, B. Alshehri, E. Dogheche, and A. J. Danner, “Ultra-low loss ridge waveguides on lithium niobate via argon ion milling and gas clustered ion beam smoothening,” Opt. Express 26(4), 4421–4430 (2018).
    [Crossref] [PubMed]
  19. H. Nagata, N. Mitsugi, K. Shima, M. Tamai, and E. M. Haga, “Growth of crystalline LiF on CF4 plasma etched LiNbO3 substrates,” J. Cryst. Growth 187(3–4), 573–576 (1998).
    [Crossref]
  20. L. Chang, Y. F. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3(5), 531–535 (2016).
    [Crossref]
  21. M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4(12), 1536–1537 (2017).
    [Crossref]
  22. I. Krasnokutska, J. J. Tambasco, X. Li, and A. Peruzzo, “Ultra-low loss photonic circuits in lithium niobate on insulator,” Opt. Express 26(2), 897–904 (2018).
    [Crossref] [PubMed]
  23. Lumerical Solutions, http://www.lumerical.com/
  24. B. Yang, L. Yang, R. Hu, Z. Sheng, D. Dai, Q. Liu, and S. He, “Fabrication and characterization of small optical ridge waveguides based on SU-8 polymer,” J. Lightw. Tech. 27(18), 4091–4096 (2009).
    [Crossref]
  25. L. Cai, R. Kong, Y. Wang, and H. Hu, “Channel waveguides and y-junctions in x-cut single-crystal lithium niobate thin film,” Opt. Express 23(22), 29211–29221 (2015).
    [Crossref] [PubMed]
  26. M. Itano, F. W. Kern, M. Miyashita, and T. Ohmi, “Particle removal from silicon wafer surface in wet cleaning process,” IEEE Trans. Semicond. Manuf. 6(3), 258–267 (1993).
    [Crossref]
  27. R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide,” Optica 5(8), 1006–1011 (2018).
    [Crossref]

2018 (8)

A. J. Mercante, S. Shi, P. Yao, L. Xie, R. M. Weikle, and D. W. Prather, “Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth,” Opt. Express 26(11), 14810–14816 (2018).
[Crossref] [PubMed]

P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo, A. T. Pomerene, A. L. Starbuck, C. T. DeRose, A. L. Lentine, G. Rebeiz, and S. Mookherjea, “Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth,” Opt. Express 26(18), 23728–23739 (2018).
[Crossref] [PubMed]

R. Wu, J. Zhang, N. Yao, W. Fang, L. Qiao, Z. Chai, J. Lin, and Y. Cheng, “Lithium niobate micro-disk resonators of quality factors above 107,” Opt. Lett. 43(17), 4116–4119 (2018).
[Crossref] [PubMed]

M. Mahmoud, A. Mahmoud, L. Cai, M. Khan, T. Mukherjee, J. Bain, and G. Piazza, “Novel on chip rotation detection based on the acousto-optic effect in surface acoustic wave gyroscopes,” Opt. Express 26(19), 25060–25075 (2018).
[Crossref] [PubMed]

L. Cai, A. V. Gorbach, Y. Wang, H. Hu, and W. Ding, “Highly efficient broadband second harmonic generation mediated by mode hybridization and nonlinearity patterning in compact fiber-integrated lithium niobate nano-waveguides,” Sci. Rep. 8(1), 12478 (2018).
[Crossref] [PubMed]

S. Y. Siew, E. J. H. Cheung, H. Liang, A. Bettiol, N. Toyoda, B. Alshehri, E. Dogheche, and A. J. Danner, “Ultra-low loss ridge waveguides on lithium niobate via argon ion milling and gas clustered ion beam smoothening,” Opt. Express 26(4), 4421–4430 (2018).
[Crossref] [PubMed]

I. Krasnokutska, J. J. Tambasco, X. Li, and A. Peruzzo, “Ultra-low loss photonic circuits in lithium niobate on insulator,” Opt. Express 26(2), 897–904 (2018).
[Crossref] [PubMed]

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide,” Optica 5(8), 1006–1011 (2018).
[Crossref]

2017 (4)

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4(12), 1536–1537 (2017).
[Crossref]

Z. Hao, J. Wang, S. Ma, W. Mao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Sum-frequency generation in on-chip lithium niobate microdisk resonators,” Photon. Res. 5(6), 623–628 (2017).
[Crossref]

Y. Song and S. Gong, “Wideband spurious-free lithium niobate RF-MEMS filters,” J. Microelectromech. Syst. 26(4), 820–828 (2017).
[Crossref]

A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, and S. Fathpour, “Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation,” Appl. Phys. Lett. 110(11), 111109 (2017).
[Crossref]

2016 (1)

2015 (1)

2014 (2)

L. Chen, Q. Xu, M. G. Wood, and R. M. Reano, “Hybrid silicon and lithium niobate electro-optical ring modulator,” Optica 1(2), 112–118 (2014).
[Crossref]

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

2012 (2)

2009 (1)

B. Yang, L. Yang, R. Hu, Z. Sheng, D. Dai, Q. Liu, and S. He, “Fabrication and characterization of small optical ridge waveguides based on SU-8 polymer,” J. Lightw. Tech. 27(18), 4091–4096 (2009).
[Crossref]

2005 (1)

P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115 (2005).
[Crossref]

2004 (1)

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi, A Appl. Res. 201(2), 253–283 (2004).
[Crossref]

2002 (1)

1998 (1)

H. Nagata, N. Mitsugi, K. Shima, M. Tamai, and E. M. Haga, “Growth of crystalline LiF on CF4 plasma etched LiNbO3 substrates,” J. Cryst. Growth 187(3–4), 573–576 (1998).
[Crossref]

1993 (1)

M. Itano, F. W. Kern, M. Miyashita, and T. Ohmi, “Particle removal from silicon wafer surface in wet cleaning process,” IEEE Trans. Semicond. Manuf. 6(3), 258–267 (1993).
[Crossref]

1968 (1)

J. J. Campbell and W. R. Jones, “A method for estimating optimal crystal cuts and propagation direction for excitation of piezoelectric surface waves,” IEEE Trans. Sonics Ultrason. 15(4), 209–217 (1968).
[Crossref]

Al-Rubaye, H.

Alshehri, B.

Arizmendi, L.

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi, A Appl. Res. 201(2), 253–283 (2004).
[Crossref]

Baida, F. I.

Bain, J.

Bernal, M.-P.

Bettiol, A.

Bo, F.

Bowers, J. E.

Cai, L.

Camacho-González, G. F.

A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, and S. Fathpour, “Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation,” Appl. Phys. Lett. 110(11), 111109 (2017).
[Crossref]

Campbell, J. J.

J. J. Campbell and W. R. Jones, “A method for estimating optimal crystal cuts and propagation direction for excitation of piezoelectric surface waves,” IEEE Trans. Sonics Ultrason. 15(4), 209–217 (1968).
[Crossref]

Chai, Z.

Chang, L.

Chen, L.

Cheng, R.

Cheng, Y.

Cheung, E. J. H.

Chiles, J.

A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, and S. Fathpour, “Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation,” Appl. Phys. Lett. 110(11), 111109 (2017).
[Crossref]

Collet, M.

Courjal, N.

Dai, D.

B. Yang, L. Yang, R. Hu, Z. Sheng, D. Dai, Q. Liu, and S. He, “Fabrication and characterization of small optical ridge waveguides based on SU-8 polymer,” J. Lightw. Tech. 27(18), 4091–4096 (2009).
[Crossref]

Dallo, C.

Danner, A. J.

DeRose, C. T.

Ding, W.

L. Cai, A. V. Gorbach, Y. Wang, H. Hu, and W. Ding, “Highly efficient broadband second harmonic generation mediated by mode hybridization and nonlinearity patterning in compact fiber-integrated lithium niobate nano-waveguides,” Sci. Rep. 8(1), 12478 (2018).
[Crossref] [PubMed]

Dogheche, E.

Fang, K.

Fang, W.

Fathpour, S.

A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, and S. Fathpour, “Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation,” Appl. Phys. Lett. 110(11), 111109 (2017).
[Crossref]

Fejer, M. M.

Fujimura, M.

Gao, F.

Gong, S.

Y. Song and S. Gong, “Wideband spurious-free lithium niobate RF-MEMS filters,” J. Microelectromech. Syst. 26(4), 820–828 (2017).
[Crossref]

Gong, Y. X.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Gorbach, A. V.

L. Cai, A. V. Gorbach, Y. Wang, H. Hu, and W. Ding, “Highly efficient broadband second harmonic generation mediated by mode hybridization and nonlinearity patterning in compact fiber-integrated lithium niobate nano-waveguides,” Sci. Rep. 8(1), 12478 (2018).
[Crossref] [PubMed]

Günter, P.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

Haga, E. M.

H. Nagata, N. Mitsugi, K. Shima, M. Tamai, and E. M. Haga, “Growth of crystalline LiF on CF4 plasma etched LiNbO3 substrates,” J. Cryst. Growth 187(3–4), 573–576 (1998).
[Crossref]

Hao, Z.

He, S.

B. Yang, L. Yang, R. Hu, Z. Sheng, D. Dai, Q. Liu, and S. He, “Fabrication and characterization of small optical ridge waveguides based on SU-8 polymer,” J. Lightw. Tech. 27(18), 4091–4096 (2009).
[Crossref]

He, Y.

Hood, D.

Hu, H.

L. Cai, A. V. Gorbach, Y. Wang, H. Hu, and W. Ding, “Highly efficient broadband second harmonic generation mediated by mode hybridization and nonlinearity patterning in compact fiber-integrated lithium niobate nano-waveguides,” Sci. Rep. 8(1), 12478 (2018).
[Crossref] [PubMed]

L. Cai, R. Kong, Y. Wang, and H. Hu, “Channel waveguides and y-junctions in x-cut single-crystal lithium niobate thin film,” Opt. Express 23(22), 29211–29221 (2015).
[Crossref] [PubMed]

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

Hu, R.

B. Yang, L. Yang, R. Hu, Z. Sheng, D. Dai, Q. Liu, and S. He, “Fabrication and characterization of small optical ridge waveguides based on SU-8 polymer,” J. Lightw. Tech. 27(18), 4091–4096 (2009).
[Crossref]

Itano, M.

M. Itano, F. W. Kern, M. Miyashita, and T. Ohmi, “Particle removal from silicon wafer surface in wet cleaning process,” IEEE Trans. Semicond. Manuf. 6(3), 258–267 (1993).
[Crossref]

Jin, H.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Jones, W. R.

J. J. Campbell and W. R. Jones, “A method for estimating optimal crystal cuts and propagation direction for excitation of piezoelectric surface waves,” IEEE Trans. Sonics Ultrason. 15(4), 209–217 (1968).
[Crossref]

Kern, F. W.

M. Itano, F. W. Kern, M. Miyashita, and T. Ohmi, “Particle removal from silicon wafer surface in wet cleaning process,” IEEE Trans. Semicond. Manuf. 6(3), 258–267 (1993).
[Crossref]

Khan, M.

Khan, S.

A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, and S. Fathpour, “Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation,” Appl. Phys. Lett. 110(11), 111109 (2017).
[Crossref]

Kong, R.

Krasnokutska, I.

Kurz, J. R.

Lentine, A. L.

Li, M.

Li, X.

Li, Y. F.

Liang, H.

Lin, J.

Lin, Q.

Liu, F. M.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Liu, Q.

B. Yang, L. Yang, R. Hu, Z. Sheng, D. Dai, Q. Liu, and S. He, “Fabrication and characterization of small optical ridge waveguides based on SU-8 polymer,” J. Lightw. Tech. 27(18), 4091–4096 (2009).
[Crossref]

Loncar, M.

Lu, H.

Luo, R.

Ma, S.

Mahmoud, A.

Mahmoud, M.

Malinowski, M.

A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, and S. Fathpour, “Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation,” Appl. Phys. Lett. 110(11), 111109 (2017).
[Crossref]

Mao, W.

Mercante, A. J.

Mitsugi, N.

H. Nagata, N. Mitsugi, K. Shima, M. Tamai, and E. M. Haga, “Growth of crystalline LiF on CF4 plasma etched LiNbO3 substrates,” J. Cryst. Growth 187(3–4), 573–576 (1998).
[Crossref]

Miyashita, M.

M. Itano, F. W. Kern, M. Miyashita, and T. Ohmi, “Particle removal from silicon wafer surface in wet cleaning process,” IEEE Trans. Semicond. Manuf. 6(3), 258–267 (1993).
[Crossref]

Mookherjea, S.

Mudrick, J.

Mukherjee, T.

Nagata, H.

H. Nagata, N. Mitsugi, K. Shima, M. Tamai, and E. M. Haga, “Growth of crystalline LiF on CF4 plasma etched LiNbO3 substrates,” J. Cryst. Growth 187(3–4), 573–576 (1998).
[Crossref]

Ohmi, T.

M. Itano, F. W. Kern, M. Miyashita, and T. Ohmi, “Particle removal from silicon wafer surface in wet cleaning process,” IEEE Trans. Semicond. Manuf. 6(3), 258–267 (1993).
[Crossref]

Parameswaran, K. R.

Peruzzo, A.

Peters, J.

Piazza, G.

Poberaj, G.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

Pomerene, A. T.

Prather, D. W.

Qiao, L.

Rabiei, P.

P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115 (2005).
[Crossref]

Rao, A.

A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, and S. Fathpour, “Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation,” Appl. Phys. Lett. 110(11), 111109 (2017).
[Crossref]

Reano, R. M.

Rebeiz, G.

Roussev, R. V.

Route, R. K.

Sadani, B.

Shams-Ansari, A.

Sheng, Z.

B. Yang, L. Yang, R. Hu, Z. Sheng, D. Dai, Q. Liu, and S. He, “Fabrication and characterization of small optical ridge waveguides based on SU-8 polymer,” J. Lightw. Tech. 27(18), 4091–4096 (2009).
[Crossref]

Shi, S.

Shima, K.

H. Nagata, N. Mitsugi, K. Shima, M. Tamai, and E. M. Haga, “Growth of crystalline LiF on CF4 plasma etched LiNbO3 substrates,” J. Cryst. Growth 187(3–4), 573–576 (1998).
[Crossref]

Siew, S. Y.

Smith, N.

Sohler, W.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

Song, Y.

Y. Song and S. Gong, “Wideband spurious-free lithium niobate RF-MEMS filters,” J. Microelectromech. Syst. 26(4), 820–828 (2017).
[Crossref]

Starbuck, A. L.

Steier, W. H.

P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115 (2005).
[Crossref]

Stenger, V.

Tamai, M.

H. Nagata, N. Mitsugi, K. Shima, M. Tamai, and E. M. Haga, “Growth of crystalline LiF on CF4 plasma etched LiNbO3 substrates,” J. Cryst. Growth 187(3–4), 573–576 (1998).
[Crossref]

Tambasco, J. J.

Toroghi, S.

A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, and S. Fathpour, “Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation,” Appl. Phys. Lett. 110(11), 111109 (2017).
[Crossref]

Toyoda, N.

Trotter, D.

Ulliac, G.

Volet, N.

Wang, C.

Wang, J.

Wang, L.

Wang, W.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Wang, Y.

L. Cai, A. V. Gorbach, Y. Wang, H. Hu, and W. Ding, “Highly efficient broadband second harmonic generation mediated by mode hybridization and nonlinearity patterning in compact fiber-integrated lithium niobate nano-waveguides,” Sci. Rep. 8(1), 12478 (2018).
[Crossref] [PubMed]

L. Cai, R. Kong, Y. Wang, and H. Hu, “Channel waveguides and y-junctions in x-cut single-crystal lithium niobate thin film,” Opt. Express 23(22), 29211–29221 (2015).
[Crossref] [PubMed]

Weigel, P. O.

Weikle, R. M.

Wood, M. G.

Wu, R.

Xia, J. L.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Xie, L.

Xu, J.

Xu, P.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Xu, Q.

Yang, B.

B. Yang, L. Yang, R. Hu, Z. Sheng, D. Dai, Q. Liu, and S. He, “Fabrication and characterization of small optical ridge waveguides based on SU-8 polymer,” J. Lightw. Tech. 27(18), 4091–4096 (2009).
[Crossref]

Yang, L.

B. Yang, L. Yang, R. Hu, Z. Sheng, D. Dai, Q. Liu, and S. He, “Fabrication and characterization of small optical ridge waveguides based on SU-8 polymer,” J. Lightw. Tech. 27(18), 4091–4096 (2009).
[Crossref]

Yao, N.

Yao, P.

Yuan, Y.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Zhang, G.

Zhang, J.

Zhang, M.

Zhao, J.

Zhong, M. L.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Zhou, J. W.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Zhu, S. N.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115 (2005).
[Crossref]

A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, and S. Fathpour, “Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation,” Appl. Phys. Lett. 110(11), 111109 (2017).
[Crossref]

IEEE Trans. Semicond. Manuf. (1)

M. Itano, F. W. Kern, M. Miyashita, and T. Ohmi, “Particle removal from silicon wafer surface in wet cleaning process,” IEEE Trans. Semicond. Manuf. 6(3), 258–267 (1993).
[Crossref]

IEEE Trans. Sonics Ultrason. (1)

J. J. Campbell and W. R. Jones, “A method for estimating optimal crystal cuts and propagation direction for excitation of piezoelectric surface waves,” IEEE Trans. Sonics Ultrason. 15(4), 209–217 (1968).
[Crossref]

J. Cryst. Growth (1)

H. Nagata, N. Mitsugi, K. Shima, M. Tamai, and E. M. Haga, “Growth of crystalline LiF on CF4 plasma etched LiNbO3 substrates,” J. Cryst. Growth 187(3–4), 573–576 (1998).
[Crossref]

J. Lightw. Tech. (1)

B. Yang, L. Yang, R. Hu, Z. Sheng, D. Dai, Q. Liu, and S. He, “Fabrication and characterization of small optical ridge waveguides based on SU-8 polymer,” J. Lightw. Tech. 27(18), 4091–4096 (2009).
[Crossref]

J. Microelectromech. Syst. (1)

Y. Song and S. Gong, “Wideband spurious-free lithium niobate RF-MEMS filters,” J. Microelectromech. Syst. 26(4), 820–828 (2017).
[Crossref]

Laser Photonics Rev. (1)

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

Opt. Express (7)

A. J. Mercante, S. Shi, P. Yao, L. Xie, R. M. Weikle, and D. W. Prather, “Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth,” Opt. Express 26(11), 14810–14816 (2018).
[Crossref] [PubMed]

P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo, A. T. Pomerene, A. L. Starbuck, C. T. DeRose, A. L. Lentine, G. Rebeiz, and S. Mookherjea, “Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth,” Opt. Express 26(18), 23728–23739 (2018).
[Crossref] [PubMed]

H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M.-P. Bernal, “Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film,” Opt. Express 20(3), 2974–2981 (2012).
[Crossref] [PubMed]

S. Y. Siew, E. J. H. Cheung, H. Liang, A. Bettiol, N. Toyoda, B. Alshehri, E. Dogheche, and A. J. Danner, “Ultra-low loss ridge waveguides on lithium niobate via argon ion milling and gas clustered ion beam smoothening,” Opt. Express 26(4), 4421–4430 (2018).
[Crossref] [PubMed]

M. Mahmoud, A. Mahmoud, L. Cai, M. Khan, T. Mukherjee, J. Bain, and G. Piazza, “Novel on chip rotation detection based on the acousto-optic effect in surface acoustic wave gyroscopes,” Opt. Express 26(19), 25060–25075 (2018).
[Crossref] [PubMed]

L. Cai, R. Kong, Y. Wang, and H. Hu, “Channel waveguides and y-junctions in x-cut single-crystal lithium niobate thin film,” Opt. Express 23(22), 29211–29221 (2015).
[Crossref] [PubMed]

I. Krasnokutska, J. J. Tambasco, X. Li, and A. Peruzzo, “Ultra-low loss photonic circuits in lithium niobate on insulator,” Opt. Express 26(2), 897–904 (2018).
[Crossref] [PubMed]

Opt. Lett. (2)

Optica (4)

Photon. Res. (1)

Phys. Rev. Lett. (1)

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Phys. Status Solidi, A Appl. Res. (1)

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi, A Appl. Res. 201(2), 253–283 (2004).
[Crossref]

Sci. Rep. (1)

L. Cai, A. V. Gorbach, Y. Wang, H. Hu, and W. Ding, “Highly efficient broadband second harmonic generation mediated by mode hybridization and nonlinearity patterning in compact fiber-integrated lithium niobate nano-waveguides,” Sci. Rep. 8(1), 12478 (2018).
[Crossref] [PubMed]

Other (2)

J. Xu and R. Stroud, Acousto-optic devices: principles, design, and applications (Wiley, 1992).

Lumerical Solutions, http://www.lumerical.com/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Simulated electromechanical coupling coefficient (kt2) for various TBOX and acoustic wavelengths (Λ) on a YZ cut LNOI (see inset for wafer stack). The presence of oxide clearly has a deleterious impact on the device kt2. It is interesting to note how the impact changes with the specific wavelength. This is due to changes in penetration of the acoustic and electric fields in the thin films of LN, oxide and the thick LN substrate. At larger acoustic wavelengths, the oxide thickness is a small fraction of the acoustic devices. At intermediate wavelengths, the oxide becomes a dominant part of the active SAW and its impact on kt2 is more dramatic. At the smallest wavelength, the acoustic and electric fields are almost entirely confined in the thin film of LN and the oxide has a lower impact on kt2.
Fig. 2
Fig. 2 (a) Schematic cross-section of the Y-cut LNOI rib waveguide. PML boundary condition was applied in the simulation to represent radiation losses into the substrate. (b) E intensity distribution of the fundamental TE-like mode of the waveguide with W = 1 μm and Tetch = 300 nm. Calculated dependence of loss on W and TBOX (log-scale) for (c) straight waveguide and (d) bent waveguide (radius = 20 μm).
Fig. 3
Fig. 3 (a) Fabrication flow of LNOI photonic devices. The LNOI wafer was purchased from NGK Insulators, LTD. (b) SEM pictures of GC and waveguide before RCA cleaning. The redeposition of LN along the sidewalls of the patterned features is clearly visible. (c) Microscope picture of one of the fabricated RT resonators (upper right) and SEM pictures of various photonic components after RCA cleaning. Inset: the sidewall slant angle is 62° from horizontal. The waveguide is 2 μm wide and the coupling region (lower right) between the waveguides features a gap of 200 nm. The sidewall is very smooth after RCA cleaning. θ is the angle between the propagation direction of the straight waveguide and the crystalline z-axis (θ = 0° for the RT shown in the microscope picture).
Fig. 4
Fig. 4 (a) and (b): Measured (black dots) and fitted (red curves) transmission of RT resonator (L = 4000 μm) with W = 2 μm and W = 1 μm, respectively. (c) and (d): Loaded and unloaded Q factors in RT resonator as a function of the total length (Ltot = 2πR + 2L) for 2 μm and 1 μm wide straight waveguides respectively. (e) and (f): Intrinsic loss in RT resonator as a function of the total length. Average propagation losses of 0.37 dB/cm and 0.77 dB/cm for 2 μm and 1 μm wide straight waveguides were extracted by linearly fitting the experimental data. The variations in the value of the average propagation losses are set equal to one standard deviation of the losses extracted from several resonances around 1550 nm.

Tables (1)

Tables Icon

Table 1 Summary of the Waveguide Propagation Losses (Unit: dB/cm)

Metrics