Abstract

We demonstrate theoretically and experimentally a high level of control of the four-wave mixing process in an inert gas–filled inhibited-coupling guiding hollow-core photonic crystal fiber. The specific multiple-branch dispersion profile in such fibers allows both correlated and separable bi-photon states to be produced. By controlling the choice of gas and its pressure and the fiber length, we experimentally generate various joint spectral intensity profiles in a stimulated regime that is transferable to the spontaneous regime. The generated profiles may cover both spectrally separable and correlated bi-photon states and feature frequency tuning over tens of THz, demonstrating a large dynamic control that will be very useful when implemented in the spontaneous regime as a photon pair source.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced four-wave mixing in a hollow-core photonic-crystal fiber

S. O. Konorov, A. B. Fedotov, and A. M. Zheltikov
Opt. Lett. 28(16) 1448-1450 (2003)

Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber

K. Garay-Palmett, H. J. McGuinness, Offir Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’Ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley
Opt. Express 15(22) 14870-14886 (2007)

State engineering of photon pairs produced through dual-pump spontaneous four-wave mixing

Bin Fang, Offir Cohen, Jamy B. Moreno, and Virginia O. Lorenz
Opt. Express 21(3) 2707-2717 (2013)

References

  • View by:
  • |
  • |
  • |

  1. X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
    [Crossref] [PubMed]
  2. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313 (2001).
    [Crossref] [PubMed]
  3. M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100× 100)-dimensional entangled quantum system,” Proc. Natl. Acad. Sci. U.S.A. 111, 6243–6247 (2014).
    [Crossref]
  4. M. Malik, M. Erhard, M. Huber, M. Krenn, R. Fickler, and A. Zeilinger, “Multi-photon entanglement in high dimensions,” Nat. Photonics 10, 248 (2016).
    [Crossref]
  5. B. Brecht, D. V. Reddy, C. Silberhorn, and M. Raymer, “Photon temporal modes: a complete framework for quantum information science,” Phys. Rev. X 5, 041017 (2015).
  6. C. Law, I. Walmsley, and J. Eberly, “Continuous frequency entanglement: effective finite hilbert space and entropy control,” Phys. Rev. Lett. 84, 5304 (2000).
    [Crossref] [PubMed]
  7. W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
    [Crossref]
  8. A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
    [Crossref] [PubMed]
  9. O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett. 102, 123603 (2009).
    [Crossref] [PubMed]
  10. C. Söller, B. Brecht, P. J. Mosley, L. Y. Zang, A. Podlipensky, N. Y. Joly, P. S. J. Russell, and C. Silberhorn, “Bridging visible and telecom wavelengths with a single-mode broadband photon pair source,” Phys. Rev. A 81, 031801 (2010).
    [Crossref]
  11. R. Kumar, J. R. Ong, M. Savanier, and S. Mookherjea, “Controlling the spectrum of photons generated on a silicon nanophotonic chip,” Nat. Comm. 5, 5489 (2014).
    [Crossref]
  12. E. Ortiz-Ricardo, C. Bertoni-Ocampo, Z. Ibarra-Borja, R. Ramirez-Alarcon, D. Cruz-Delgado, H. Cruz-Ramirez, K. Garay-Palmett, and A. U’Ren, “Spectral tunability of two-photon states generated by spontaneous four-wave mixing: fibre tapering, temperature variation and longitudinal stress,” Quantum Sci. Technol. 2, 034015 (2017).
    [Crossref]
  13. M. Finger, N. Joly, P. S. J. Russell, and M. Chekhova, “Characterization and shaping of the time-frequency schmidt mode spectrum of bright twin beams generated in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. A 95, 053814 (2017).
    [Crossref]
  14. M. A. Finger, T. S. Iskhakov, N. Y. Joly, M. V. Chekhova, and P. S. J. Russell, “Raman-free, noble-gas-filled photonic-crystal fiber source for ultrafast, very bright twin-beam squeezed vacuum,” Phys. Rev. Lett. 115, 143602 (2015).
    [Crossref] [PubMed]
  15. W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. S. J. Russell, “Supercontinuum and four-wave mixing with q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12, 299–309 (2004).
    [Crossref] [PubMed]
  16. K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14870–14886 (2007).
    [Crossref] [PubMed]
  17. N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett. 88, 127902 (2002).
    [Crossref] [PubMed]
  18. F. Benabid and P. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58, 87–124 (2011).
    [Crossref]
  19. P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278 (2014).
    [Crossref]
  20. F. Couny, F. Benabid, P. Roberts, P. Light, and M. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
    [Crossref] [PubMed]
  21. N. Litchinitser, A. Abeeluck, C. Headley, and B. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27, 1592–1594 (2002).
    [Crossref]
  22. B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4, 209–217 (2017).
    [Crossref]
  23. M. Zeisberger and M. A. Schmidt, “Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers,” Sci. Rep. 7, 11761 (2017).
    [Crossref] [PubMed]
  24. M. Zeisberger, A. Hartung, and M. Schmidt, “Understanding dispersion of revolver-type anti-resonant hollow core fibers,” Fibers 6, 68 (2018).
    [Crossref]
  25. B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber part i: Arc curvature effect on confinement loss,” Opt. Express 21, 28597–28608 (2013).
    [Crossref]
  26. L. Vincetti, “Empirical formulas for calculating loss in hollow core tube lattice fibers,” Opt. Express 24, 10313–10325 (2016).
    [Crossref] [PubMed]
  27. M. Liscidini and J. Sipe, “Stimulated emission tomography,” Phys. Rev. Lett. 111, 193602 (2013).
    [Crossref] [PubMed]
  28. B. Fang, O. Cohen, M. Liscidini, J. E. Sipe, and V. O. Lorenz, “Fast and highly resolved capture of the joint spectral density of photon pairs,” Optica 1, 281–284 (2014).
    [Crossref]
  29. K. Zielnicki, K. Garay-Palmett, D. Cruz-Delgado, H. Cruz-Ramirez, M. F. O’Boyle, B. Fang, V. O. Lorenz, A. B. U’Ren, and P. G. Kwiat, “Joint spectral characterization of photon-pair sources,” J. Mod. Opt. 65, 1141–1160 (2018).
    [Crossref]
  30. A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photonics Rev. 8, L76–L80 (2014).
    [Crossref]
  31. M. Azhar, G. Wong, W. Chang, N. Joly, and P. S. J. Russell, “Raman-free nonlinear optical effects in high pressure gas-filled hollow core pcf,” Opt. Express 21, 4405–4410 (2013).
    [Crossref] [PubMed]
  32. K. Lynch-Klarup, E. Mondloch, M. Raymer, D. Arrestier, F. Gérôme, and F. Benabid, “Supercritical xenon-filled hollow-core photonic bandgap fiber,” Opt. Express 21, 13726–13732 (2013).
    [Crossref] [PubMed]
  33. A. Hitachi, V. Chepel, M. I. Lopes, and V. N. Solovov, “New approach to the calculation of the refractive index of liquid and solid xenon,” J. Chem. Phys. 123, 234508 (2005).
    [Crossref]
  34. A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Measurement of refractive indices of neon, argon, krypton and xenon in the 253.7–140.4 nm wavelength range. dispersion relations and estimated oscillator strengths of the resonance lines,” J. Quant. Spectrosc. Radiat. Transf. 25, 395–402 (1981).
    [Crossref]
  35. M. Azhar, N. Joly, J. Travers, and P. S. J. Russell, “Nonlinear optics in xe-filled hollow-core pcf in high pressure and supercritical regimes,” Appl. Phys. B 112, 457–460 (2013).
    [Crossref]
  36. M. Barbier, I. Zaquine, and P. Delaye, “Spontaneous four-wave mixing in liquid-core fibers: towards fibered raman-free correlated photon sources,” New J. Phys. 17, 053031 (2015).
    [Crossref]
  37. J. E. Heebner, P. Chak, S. Pereira, J. E. Sipe, and R. W. Boyd, “Distributed and localized feedback in microresonator sequences for linear and nonlinear optics,” J. Opt. Soc. Am. B 21, 1818–1832 (2004).
    [Crossref]
  38. J. Notaros, J. Mower, M. Heuck, C. Lupo, N. C. Harris, G. R. Steinbrecher, D. Bunandar, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Programmable dispersion on a photonic integrated circuit for classical and quantum applications,” Opt. Express 25, 21275–21285 (2017).
    [Crossref] [PubMed]

2018 (2)

M. Zeisberger, A. Hartung, and M. Schmidt, “Understanding dispersion of revolver-type anti-resonant hollow core fibers,” Fibers 6, 68 (2018).
[Crossref]

K. Zielnicki, K. Garay-Palmett, D. Cruz-Delgado, H. Cruz-Ramirez, M. F. O’Boyle, B. Fang, V. O. Lorenz, A. B. U’Ren, and P. G. Kwiat, “Joint spectral characterization of photon-pair sources,” J. Mod. Opt. 65, 1141–1160 (2018).
[Crossref]

2017 (5)

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4, 209–217 (2017).
[Crossref]

M. Zeisberger and M. A. Schmidt, “Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers,” Sci. Rep. 7, 11761 (2017).
[Crossref] [PubMed]

E. Ortiz-Ricardo, C. Bertoni-Ocampo, Z. Ibarra-Borja, R. Ramirez-Alarcon, D. Cruz-Delgado, H. Cruz-Ramirez, K. Garay-Palmett, and A. U’Ren, “Spectral tunability of two-photon states generated by spontaneous four-wave mixing: fibre tapering, temperature variation and longitudinal stress,” Quantum Sci. Technol. 2, 034015 (2017).
[Crossref]

M. Finger, N. Joly, P. S. J. Russell, and M. Chekhova, “Characterization and shaping of the time-frequency schmidt mode spectrum of bright twin beams generated in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. A 95, 053814 (2017).
[Crossref]

J. Notaros, J. Mower, M. Heuck, C. Lupo, N. C. Harris, G. R. Steinbrecher, D. Bunandar, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Programmable dispersion on a photonic integrated circuit for classical and quantum applications,” Opt. Express 25, 21275–21285 (2017).
[Crossref] [PubMed]

2016 (3)

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref] [PubMed]

M. Malik, M. Erhard, M. Huber, M. Krenn, R. Fickler, and A. Zeilinger, “Multi-photon entanglement in high dimensions,” Nat. Photonics 10, 248 (2016).
[Crossref]

L. Vincetti, “Empirical formulas for calculating loss in hollow core tube lattice fibers,” Opt. Express 24, 10313–10325 (2016).
[Crossref] [PubMed]

2015 (3)

M. Barbier, I. Zaquine, and P. Delaye, “Spontaneous four-wave mixing in liquid-core fibers: towards fibered raman-free correlated photon sources,” New J. Phys. 17, 053031 (2015).
[Crossref]

B. Brecht, D. V. Reddy, C. Silberhorn, and M. Raymer, “Photon temporal modes: a complete framework for quantum information science,” Phys. Rev. X 5, 041017 (2015).

M. A. Finger, T. S. Iskhakov, N. Y. Joly, M. V. Chekhova, and P. S. J. Russell, “Raman-free, noble-gas-filled photonic-crystal fiber source for ultrafast, very bright twin-beam squeezed vacuum,” Phys. Rev. Lett. 115, 143602 (2015).
[Crossref] [PubMed]

2014 (5)

R. Kumar, J. R. Ong, M. Savanier, and S. Mookherjea, “Controlling the spectrum of photons generated on a silicon nanophotonic chip,” Nat. Comm. 5, 5489 (2014).
[Crossref]

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100× 100)-dimensional entangled quantum system,” Proc. Natl. Acad. Sci. U.S.A. 111, 6243–6247 (2014).
[Crossref]

B. Fang, O. Cohen, M. Liscidini, J. E. Sipe, and V. O. Lorenz, “Fast and highly resolved capture of the joint spectral density of photon pairs,” Optica 1, 281–284 (2014).
[Crossref]

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photonics Rev. 8, L76–L80 (2014).
[Crossref]

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278 (2014).
[Crossref]

2013 (5)

2011 (2)

F. Benabid and P. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58, 87–124 (2011).
[Crossref]

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[Crossref] [PubMed]

2010 (1)

C. Söller, B. Brecht, P. J. Mosley, L. Y. Zang, A. Podlipensky, N. Y. Joly, P. S. J. Russell, and C. Silberhorn, “Bridging visible and telecom wavelengths with a single-mode broadband photon pair source,” Phys. Rev. A 81, 031801 (2010).
[Crossref]

2009 (1)

O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett. 102, 123603 (2009).
[Crossref] [PubMed]

2007 (2)

2005 (1)

A. Hitachi, V. Chepel, M. I. Lopes, and V. N. Solovov, “New approach to the calculation of the refractive index of liquid and solid xenon,” J. Chem. Phys. 123, 234508 (2005).
[Crossref]

2004 (2)

2002 (2)

N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett. 88, 127902 (2002).
[Crossref] [PubMed]

N. Litchinitser, A. Abeeluck, C. Headley, and B. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27, 1592–1594 (2002).
[Crossref]

2001 (2)

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[Crossref]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313 (2001).
[Crossref] [PubMed]

2000 (1)

C. Law, I. Walmsley, and J. Eberly, “Continuous frequency entanglement: effective finite hilbert space and entropy control,” Phys. Rev. Lett. 84, 5304 (2000).
[Crossref] [PubMed]

1981 (1)

A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Measurement of refractive indices of neon, argon, krypton and xenon in the 253.7–140.4 nm wavelength range. dispersion relations and estimated oscillator strengths of the resonance lines,” J. Quant. Spectrosc. Radiat. Transf. 25, 395–402 (1981).
[Crossref]

Abdolvand, A.

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278 (2014).
[Crossref]

Abeeluck, A.

Abjean, R.

A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Measurement of refractive indices of neon, argon, krypton and xenon in the 253.7–140.4 nm wavelength range. dispersion relations and estimated oscillator strengths of the resonance lines,” J. Quant. Spectrosc. Radiat. Transf. 25, 395–402 (1981).
[Crossref]

Alharbi, M.

Amsanpally, A.

Arrestier, D.

Azhar, M.

M. Azhar, G. Wong, W. Chang, N. Joly, and P. S. J. Russell, “Raman-free nonlinear optical effects in high pressure gas-filled hollow core pcf,” Opt. Express 21, 4405–4410 (2013).
[Crossref] [PubMed]

M. Azhar, N. Joly, J. Travers, and P. S. J. Russell, “Nonlinear optics in xe-filled hollow-core pcf in high pressure and supercritical regimes,” Appl. Phys. B 112, 457–460 (2013).
[Crossref]

Baehr-Jones, T.

Barbier, M.

M. Barbier, I. Zaquine, and P. Delaye, “Spontaneous four-wave mixing in liquid-core fibers: towards fibered raman-free correlated photon sources,” New J. Phys. 17, 053031 (2015).
[Crossref]

Baz, A.

Benabid, F.

Bertoni-Ocampo, C.

E. Ortiz-Ricardo, C. Bertoni-Ocampo, Z. Ibarra-Borja, R. Ramirez-Alarcon, D. Cruz-Delgado, H. Cruz-Ramirez, K. Garay-Palmett, and A. U’Ren, “Spectral tunability of two-photon states generated by spontaneous four-wave mixing: fibre tapering, temperature variation and longitudinal stress,” Quantum Sci. Technol. 2, 034015 (2017).
[Crossref]

Biancalana, F.

Bideau-Mehu, A.

A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Measurement of refractive indices of neon, argon, krypton and xenon in the 253.7–140.4 nm wavelength range. dispersion relations and estimated oscillator strengths of the resonance lines,” J. Quant. Spectrosc. Radiat. Transf. 25, 395–402 (1981).
[Crossref]

Birks, T. A.

Blondy, J.

Boucher, G.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photonics Rev. 8, L76–L80 (2014).
[Crossref]

Bourennane, M.

N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett. 88, 127902 (2002).
[Crossref] [PubMed]

Boyd, R. W.

Bradley, T.

Brecht, B.

B. Brecht, D. V. Reddy, C. Silberhorn, and M. Raymer, “Photon temporal modes: a complete framework for quantum information science,” Phys. Rev. X 5, 041017 (2015).

C. Söller, B. Brecht, P. J. Mosley, L. Y. Zang, A. Podlipensky, N. Y. Joly, P. S. J. Russell, and C. Silberhorn, “Bridging visible and telecom wavelengths with a single-mode broadband photon pair source,” Phys. Rev. A 81, 031801 (2010).
[Crossref]

Bunandar, D.

Cerf, N. J.

N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett. 88, 127902 (2002).
[Crossref] [PubMed]

Chafer, M.

Chak, P.

Chang, W.

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278 (2014).
[Crossref]

M. Azhar, G. Wong, W. Chang, N. Joly, and P. S. J. Russell, “Raman-free nonlinear optical effects in high pressure gas-filled hollow core pcf,” Opt. Express 21, 4405–4410 (2013).
[Crossref] [PubMed]

Chekhova, M.

M. Finger, N. Joly, P. S. J. Russell, and M. Chekhova, “Characterization and shaping of the time-frequency schmidt mode spectrum of bright twin beams generated in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. A 95, 053814 (2017).
[Crossref]

Chekhova, M. V.

M. A. Finger, T. S. Iskhakov, N. Y. Joly, M. V. Chekhova, and P. S. J. Russell, “Raman-free, noble-gas-filled photonic-crystal fiber source for ultrafast, very bright twin-beam squeezed vacuum,” Phys. Rev. Lett. 115, 143602 (2015).
[Crossref] [PubMed]

Chen, C.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref] [PubMed]

Chen, L.-K.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref] [PubMed]

Chen, Y.-A.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref] [PubMed]

Chepel, V.

A. Hitachi, V. Chepel, M. I. Lopes, and V. N. Solovov, “New approach to the calculation of the refractive index of liquid and solid xenon,” J. Chem. Phys. 123, 234508 (2005).
[Crossref]

Christ, A.

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[Crossref] [PubMed]

Cohen, O.

Couny, F.

F. Couny, F. Benabid, P. Roberts, P. Light, and M. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref] [PubMed]

Cruz-Delgado, D.

K. Zielnicki, K. Garay-Palmett, D. Cruz-Delgado, H. Cruz-Ramirez, M. F. O’Boyle, B. Fang, V. O. Lorenz, A. B. U’Ren, and P. G. Kwiat, “Joint spectral characterization of photon-pair sources,” J. Mod. Opt. 65, 1141–1160 (2018).
[Crossref]

E. Ortiz-Ricardo, C. Bertoni-Ocampo, Z. Ibarra-Borja, R. Ramirez-Alarcon, D. Cruz-Delgado, H. Cruz-Ramirez, K. Garay-Palmett, and A. U’Ren, “Spectral tunability of two-photon states generated by spontaneous four-wave mixing: fibre tapering, temperature variation and longitudinal stress,” Quantum Sci. Technol. 2, 034015 (2017).
[Crossref]

Cruz-Ramirez, H.

K. Zielnicki, K. Garay-Palmett, D. Cruz-Delgado, H. Cruz-Ramirez, M. F. O’Boyle, B. Fang, V. O. Lorenz, A. B. U’Ren, and P. G. Kwiat, “Joint spectral characterization of photon-pair sources,” J. Mod. Opt. 65, 1141–1160 (2018).
[Crossref]

E. Ortiz-Ricardo, C. Bertoni-Ocampo, Z. Ibarra-Borja, R. Ramirez-Alarcon, D. Cruz-Delgado, H. Cruz-Ramirez, K. Garay-Palmett, and A. U’Ren, “Spectral tunability of two-photon states generated by spontaneous four-wave mixing: fibre tapering, temperature variation and longitudinal stress,” Quantum Sci. Technol. 2, 034015 (2017).
[Crossref]

Debord, B.

Delaye, P.

M. Barbier, I. Zaquine, and P. Delaye, “Spontaneous four-wave mixing in liquid-core fibers: towards fibered raman-free correlated photon sources,” New J. Phys. 17, 053031 (2015).
[Crossref]

Ducci, S.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photonics Rev. 8, L76–L80 (2014).
[Crossref]

Eberly, J.

C. Law, I. Walmsley, and J. Eberly, “Continuous frequency entanglement: effective finite hilbert space and entropy control,” Phys. Rev. Lett. 84, 5304 (2000).
[Crossref] [PubMed]

Eckstein, A.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photonics Rev. 8, L76–L80 (2014).
[Crossref]

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[Crossref] [PubMed]

Eggleton, B.

Englund, D.

Erhard, M.

M. Malik, M. Erhard, M. Huber, M. Krenn, R. Fickler, and A. Zeilinger, “Multi-photon entanglement in high dimensions,” Nat. Photonics 10, 248 (2016).
[Crossref]

Fang, B.

K. Zielnicki, K. Garay-Palmett, D. Cruz-Delgado, H. Cruz-Ramirez, M. F. O’Boyle, B. Fang, V. O. Lorenz, A. B. U’Ren, and P. G. Kwiat, “Joint spectral characterization of photon-pair sources,” J. Mod. Opt. 65, 1141–1160 (2018).
[Crossref]

B. Fang, O. Cohen, M. Liscidini, J. E. Sipe, and V. O. Lorenz, “Fast and highly resolved capture of the joint spectral density of photon pairs,” Optica 1, 281–284 (2014).
[Crossref]

Favero, I.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photonics Rev. 8, L76–L80 (2014).
[Crossref]

Fickler, R.

M. Malik, M. Erhard, M. Huber, M. Krenn, R. Fickler, and A. Zeilinger, “Multi-photon entanglement in high dimensions,” Nat. Photonics 10, 248 (2016).
[Crossref]

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100× 100)-dimensional entangled quantum system,” Proc. Natl. Acad. Sci. U.S.A. 111, 6243–6247 (2014).
[Crossref]

Filloux, P.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photonics Rev. 8, L76–L80 (2014).
[Crossref]

Finger, M.

M. Finger, N. Joly, P. S. J. Russell, and M. Chekhova, “Characterization and shaping of the time-frequency schmidt mode spectrum of bright twin beams generated in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. A 95, 053814 (2017).
[Crossref]

Finger, M. A.

M. A. Finger, T. S. Iskhakov, N. Y. Joly, M. V. Chekhova, and P. S. J. Russell, “Raman-free, noble-gas-filled photonic-crystal fiber source for ultrafast, very bright twin-beam squeezed vacuum,” Phys. Rev. Lett. 115, 143602 (2015).
[Crossref] [PubMed]

Fourcade-Dutin, C.

Garay-Palmett, K.

K. Zielnicki, K. Garay-Palmett, D. Cruz-Delgado, H. Cruz-Ramirez, M. F. O’Boyle, B. Fang, V. O. Lorenz, A. B. U’Ren, and P. G. Kwiat, “Joint spectral characterization of photon-pair sources,” J. Mod. Opt. 65, 1141–1160 (2018).
[Crossref]

E. Ortiz-Ricardo, C. Bertoni-Ocampo, Z. Ibarra-Borja, R. Ramirez-Alarcon, D. Cruz-Delgado, H. Cruz-Ramirez, K. Garay-Palmett, and A. U’Ren, “Spectral tunability of two-photon states generated by spontaneous four-wave mixing: fibre tapering, temperature variation and longitudinal stress,” Quantum Sci. Technol. 2, 034015 (2017).
[Crossref]

K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14870–14886 (2007).
[Crossref] [PubMed]

Gérôme, F.

Gisin, N.

N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett. 88, 127902 (2002).
[Crossref] [PubMed]

Grice, W. P.

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[Crossref]

Guern, Y.

A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Measurement of refractive indices of neon, argon, krypton and xenon in the 253.7–140.4 nm wavelength range. dispersion relations and estimated oscillator strengths of the resonance lines,” J. Quant. Spectrosc. Radiat. Transf. 25, 395–402 (1981).
[Crossref]

Harris, N. C.

Hartung, A.

M. Zeisberger, A. Hartung, and M. Schmidt, “Understanding dispersion of revolver-type anti-resonant hollow core fibers,” Fibers 6, 68 (2018).
[Crossref]

Headley, C.

Heebner, J. E.

Heuck, M.

Hitachi, A.

A. Hitachi, V. Chepel, M. I. Lopes, and V. N. Solovov, “New approach to the calculation of the refractive index of liquid and solid xenon,” J. Chem. Phys. 123, 234508 (2005).
[Crossref]

Hochberg, M.

Hölzer, P.

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278 (2014).
[Crossref]

Hu, Y.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref] [PubMed]

Huang, H.-L.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref] [PubMed]

Huber, M.

M. Malik, M. Erhard, M. Huber, M. Krenn, R. Fickler, and A. Zeilinger, “Multi-photon entanglement in high dimensions,” Nat. Photonics 10, 248 (2016).
[Crossref]

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100× 100)-dimensional entangled quantum system,” Proc. Natl. Acad. Sci. U.S.A. 111, 6243–6247 (2014).
[Crossref]

Hugonnot, E.

Ibarra-Borja, Z.

E. Ortiz-Ricardo, C. Bertoni-Ocampo, Z. Ibarra-Borja, R. Ramirez-Alarcon, D. Cruz-Delgado, H. Cruz-Ramirez, K. Garay-Palmett, and A. U’Ren, “Spectral tunability of two-photon states generated by spontaneous four-wave mixing: fibre tapering, temperature variation and longitudinal stress,” Quantum Sci. Technol. 2, 034015 (2017).
[Crossref]

Iskhakov, T. S.

M. A. Finger, T. S. Iskhakov, N. Y. Joly, M. V. Chekhova, and P. S. J. Russell, “Raman-free, noble-gas-filled photonic-crystal fiber source for ultrafast, very bright twin-beam squeezed vacuum,” Phys. Rev. Lett. 115, 143602 (2015).
[Crossref] [PubMed]

Jiang, X.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref] [PubMed]

Johannin-Gilles, A.

A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Measurement of refractive indices of neon, argon, krypton and xenon in the 253.7–140.4 nm wavelength range. dispersion relations and estimated oscillator strengths of the resonance lines,” J. Quant. Spectrosc. Radiat. Transf. 25, 395–402 (1981).
[Crossref]

Joly, N.

M. Finger, N. Joly, P. S. J. Russell, and M. Chekhova, “Characterization and shaping of the time-frequency schmidt mode spectrum of bright twin beams generated in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. A 95, 053814 (2017).
[Crossref]

M. Azhar, N. Joly, J. Travers, and P. S. J. Russell, “Nonlinear optics in xe-filled hollow-core pcf in high pressure and supercritical regimes,” Appl. Phys. B 112, 457–460 (2013).
[Crossref]

M. Azhar, G. Wong, W. Chang, N. Joly, and P. S. J. Russell, “Raman-free nonlinear optical effects in high pressure gas-filled hollow core pcf,” Opt. Express 21, 4405–4410 (2013).
[Crossref] [PubMed]

W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. S. J. Russell, “Supercontinuum and four-wave mixing with q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12, 299–309 (2004).
[Crossref] [PubMed]

Joly, N. Y.

M. A. Finger, T. S. Iskhakov, N. Y. Joly, M. V. Chekhova, and P. S. J. Russell, “Raman-free, noble-gas-filled photonic-crystal fiber source for ultrafast, very bright twin-beam squeezed vacuum,” Phys. Rev. Lett. 115, 143602 (2015).
[Crossref] [PubMed]

C. Söller, B. Brecht, P. J. Mosley, L. Y. Zang, A. Podlipensky, N. Y. Joly, P. S. J. Russell, and C. Silberhorn, “Bridging visible and telecom wavelengths with a single-mode broadband photon pair source,” Phys. Rev. A 81, 031801 (2010).
[Crossref]

Karlsson, A.

N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett. 88, 127902 (2002).
[Crossref] [PubMed]

Knight, J. C.

Krenn, M.

M. Malik, M. Erhard, M. Huber, M. Krenn, R. Fickler, and A. Zeilinger, “Multi-photon entanglement in high dimensions,” Nat. Photonics 10, 248 (2016).
[Crossref]

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100× 100)-dimensional entangled quantum system,” Proc. Natl. Acad. Sci. U.S.A. 111, 6243–6247 (2014).
[Crossref]

Kumar, R.

R. Kumar, J. R. Ong, M. Savanier, and S. Mookherjea, “Controlling the spectrum of photons generated on a silicon nanophotonic chip,” Nat. Comm. 5, 5489 (2014).
[Crossref]

Kwiat, P. G.

K. Zielnicki, K. Garay-Palmett, D. Cruz-Delgado, H. Cruz-Ramirez, M. F. O’Boyle, B. Fang, V. O. Lorenz, A. B. U’Ren, and P. G. Kwiat, “Joint spectral characterization of photon-pair sources,” J. Mod. Opt. 65, 1141–1160 (2018).
[Crossref]

Lapkiewicz, R.

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100× 100)-dimensional entangled quantum system,” Proc. Natl. Acad. Sci. U.S.A. 111, 6243–6247 (2014).
[Crossref]

Law, C.

C. Law, I. Walmsley, and J. Eberly, “Continuous frequency entanglement: effective finite hilbert space and entropy control,” Phys. Rev. Lett. 84, 5304 (2000).
[Crossref] [PubMed]

Lemaître, A.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photonics Rev. 8, L76–L80 (2014).
[Crossref]

Leo, G.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photonics Rev. 8, L76–L80 (2014).
[Crossref]

Li, L.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref] [PubMed]

Li, W.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref] [PubMed]

Li, Z.-D.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref] [PubMed]

Light, P.

F. Couny, F. Benabid, P. Roberts, P. Light, and M. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref] [PubMed]

Liscidini, M.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photonics Rev. 8, L76–L80 (2014).
[Crossref]

B. Fang, O. Cohen, M. Liscidini, J. E. Sipe, and V. O. Lorenz, “Fast and highly resolved capture of the joint spectral density of photon pairs,” Optica 1, 281–284 (2014).
[Crossref]

M. Liscidini and J. Sipe, “Stimulated emission tomography,” Phys. Rev. Lett. 111, 193602 (2013).
[Crossref] [PubMed]

Litchinitser, N.

Liu, C.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref] [PubMed]

Liu, N.-L.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref] [PubMed]

Lloyd, S.

Lopes, M. I.

A. Hitachi, V. Chepel, M. I. Lopes, and V. N. Solovov, “New approach to the calculation of the refractive index of liquid and solid xenon,” J. Chem. Phys. 123, 234508 (2005).
[Crossref]

Lorenz, V. O.

K. Zielnicki, K. Garay-Palmett, D. Cruz-Delgado, H. Cruz-Ramirez, M. F. O’Boyle, B. Fang, V. O. Lorenz, A. B. U’Ren, and P. G. Kwiat, “Joint spectral characterization of photon-pair sources,” J. Mod. Opt. 65, 1141–1160 (2018).
[Crossref]

B. Fang, O. Cohen, M. Liscidini, J. E. Sipe, and V. O. Lorenz, “Fast and highly resolved capture of the joint spectral density of photon pairs,” Optica 1, 281–284 (2014).
[Crossref]

Lu, C.-Y.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref] [PubMed]

Lundeen, J. S.

Luo, Y.-H.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref] [PubMed]

Lupo, C.

Lynch-Klarup, K.

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313 (2001).
[Crossref] [PubMed]

Malik, M.

M. Malik, M. Erhard, M. Huber, M. Krenn, R. Fickler, and A. Zeilinger, “Multi-photon entanglement in high dimensions,” Nat. Photonics 10, 248 (2016).
[Crossref]

Maurel, M.

McGuinness, H. J.

McKinstrie, C. J.

Mondloch, E.

Mookherjea, S.

R. Kumar, J. R. Ong, M. Savanier, and S. Mookherjea, “Controlling the spectrum of photons generated on a silicon nanophotonic chip,” Nat. Comm. 5, 5489 (2014).
[Crossref]

Mosley, P. J.

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[Crossref] [PubMed]

C. Söller, B. Brecht, P. J. Mosley, L. Y. Zang, A. Podlipensky, N. Y. Joly, P. S. J. Russell, and C. Silberhorn, “Bridging visible and telecom wavelengths with a single-mode broadband photon pair source,” Phys. Rev. A 81, 031801 (2010).
[Crossref]

O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett. 102, 123603 (2009).
[Crossref] [PubMed]

Mower, J.

Notaros, J.

O’Boyle, M. F.

K. Zielnicki, K. Garay-Palmett, D. Cruz-Delgado, H. Cruz-Ramirez, M. F. O’Boyle, B. Fang, V. O. Lorenz, A. B. U’Ren, and P. G. Kwiat, “Joint spectral characterization of photon-pair sources,” J. Mod. Opt. 65, 1141–1160 (2018).
[Crossref]

Ong, J. R.

R. Kumar, J. R. Ong, M. Savanier, and S. Mookherjea, “Controlling the spectrum of photons generated on a silicon nanophotonic chip,” Nat. Comm. 5, 5489 (2014).
[Crossref]

Ortiz-Ricardo, E.

E. Ortiz-Ricardo, C. Bertoni-Ocampo, Z. Ibarra-Borja, R. Ramirez-Alarcon, D. Cruz-Delgado, H. Cruz-Ramirez, K. Garay-Palmett, and A. U’Ren, “Spectral tunability of two-photon states generated by spontaneous four-wave mixing: fibre tapering, temperature variation and longitudinal stress,” Quantum Sci. Technol. 2, 034015 (2017).
[Crossref]

Pan, J.-W.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref] [PubMed]

Peng, C.-Z.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref] [PubMed]

Pereira, S.

Podlipensky, A.

C. Söller, B. Brecht, P. J. Mosley, L. Y. Zang, A. Podlipensky, N. Y. Joly, P. S. J. Russell, and C. Silberhorn, “Bridging visible and telecom wavelengths with a single-mode broadband photon pair source,” Phys. Rev. A 81, 031801 (2010).
[Crossref]

Puentes, G.

O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett. 102, 123603 (2009).
[Crossref] [PubMed]

Radic, S.

Ramelow, S.

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100× 100)-dimensional entangled quantum system,” Proc. Natl. Acad. Sci. U.S.A. 111, 6243–6247 (2014).
[Crossref]

Ramirez-Alarcon, R.

E. Ortiz-Ricardo, C. Bertoni-Ocampo, Z. Ibarra-Borja, R. Ramirez-Alarcon, D. Cruz-Delgado, H. Cruz-Ramirez, K. Garay-Palmett, and A. U’Ren, “Spectral tunability of two-photon states generated by spontaneous four-wave mixing: fibre tapering, temperature variation and longitudinal stress,” Quantum Sci. Technol. 2, 034015 (2017).
[Crossref]

Rangel-Rojo, R.

Raymer, M.

B. Brecht, D. V. Reddy, C. Silberhorn, and M. Raymer, “Photon temporal modes: a complete framework for quantum information science,” Phys. Rev. X 5, 041017 (2015).

K. Lynch-Klarup, E. Mondloch, M. Raymer, D. Arrestier, F. Gérôme, and F. Benabid, “Supercritical xenon-filled hollow-core photonic bandgap fiber,” Opt. Express 21, 13726–13732 (2013).
[Crossref] [PubMed]

F. Couny, F. Benabid, P. Roberts, P. Light, and M. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref] [PubMed]

Raymer, M. G.

Reddy, D. V.

B. Brecht, D. V. Reddy, C. Silberhorn, and M. Raymer, “Photon temporal modes: a complete framework for quantum information science,” Phys. Rev. X 5, 041017 (2015).

Roberts, P.

F. Benabid and P. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58, 87–124 (2011).
[Crossref]

F. Couny, F. Benabid, P. Roberts, P. Light, and M. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref] [PubMed]

Russell, P. S. J.

M. Finger, N. Joly, P. S. J. Russell, and M. Chekhova, “Characterization and shaping of the time-frequency schmidt mode spectrum of bright twin beams generated in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. A 95, 053814 (2017).
[Crossref]

M. A. Finger, T. S. Iskhakov, N. Y. Joly, M. V. Chekhova, and P. S. J. Russell, “Raman-free, noble-gas-filled photonic-crystal fiber source for ultrafast, very bright twin-beam squeezed vacuum,” Phys. Rev. Lett. 115, 143602 (2015).
[Crossref] [PubMed]

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278 (2014).
[Crossref]

M. Azhar, N. Joly, J. Travers, and P. S. J. Russell, “Nonlinear optics in xe-filled hollow-core pcf in high pressure and supercritical regimes,” Appl. Phys. B 112, 457–460 (2013).
[Crossref]

M. Azhar, G. Wong, W. Chang, N. Joly, and P. S. J. Russell, “Raman-free nonlinear optical effects in high pressure gas-filled hollow core pcf,” Opt. Express 21, 4405–4410 (2013).
[Crossref] [PubMed]

C. Söller, B. Brecht, P. J. Mosley, L. Y. Zang, A. Podlipensky, N. Y. Joly, P. S. J. Russell, and C. Silberhorn, “Bridging visible and telecom wavelengths with a single-mode broadband photon pair source,” Phys. Rev. A 81, 031801 (2010).
[Crossref]

W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. S. J. Russell, “Supercontinuum and four-wave mixing with q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12, 299–309 (2004).
[Crossref] [PubMed]

Savanier, M.

R. Kumar, J. R. Ong, M. Savanier, and S. Mookherjea, “Controlling the spectrum of photons generated on a silicon nanophotonic chip,” Nat. Comm. 5, 5489 (2014).
[Crossref]

Schmidt, M.

M. Zeisberger, A. Hartung, and M. Schmidt, “Understanding dispersion of revolver-type anti-resonant hollow core fibers,” Fibers 6, 68 (2018).
[Crossref]

Schmidt, M. A.

M. Zeisberger and M. A. Schmidt, “Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers,” Sci. Rep. 7, 11761 (2017).
[Crossref] [PubMed]

Scol, F.

Silberhorn, C.

B. Brecht, D. V. Reddy, C. Silberhorn, and M. Raymer, “Photon temporal modes: a complete framework for quantum information science,” Phys. Rev. X 5, 041017 (2015).

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[Crossref] [PubMed]

C. Söller, B. Brecht, P. J. Mosley, L. Y. Zang, A. Podlipensky, N. Y. Joly, P. S. J. Russell, and C. Silberhorn, “Bridging visible and telecom wavelengths with a single-mode broadband photon pair source,” Phys. Rev. A 81, 031801 (2010).
[Crossref]

Sipe, J.

M. Liscidini and J. Sipe, “Stimulated emission tomography,” Phys. Rev. Lett. 111, 193602 (2013).
[Crossref] [PubMed]

Sipe, J. E.

Smith, B. J.

O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett. 102, 123603 (2009).
[Crossref] [PubMed]

Söller, C.

C. Söller, B. Brecht, P. J. Mosley, L. Y. Zang, A. Podlipensky, N. Y. Joly, P. S. J. Russell, and C. Silberhorn, “Bridging visible and telecom wavelengths with a single-mode broadband photon pair source,” Phys. Rev. A 81, 031801 (2010).
[Crossref]

Solovov, V. N.

A. Hitachi, V. Chepel, M. I. Lopes, and V. N. Solovov, “New approach to the calculation of the refractive index of liquid and solid xenon,” J. Chem. Phys. 123, 234508 (2005).
[Crossref]

Steinbrecher, G. R.

Su, Z.-E.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref] [PubMed]

Travers, J.

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278 (2014).
[Crossref]

M. Azhar, N. Joly, J. Travers, and P. S. J. Russell, “Nonlinear optics in xe-filled hollow-core pcf in high pressure and supercritical regimes,” Appl. Phys. B 112, 457–460 (2013).
[Crossref]

U’Ren, A.

E. Ortiz-Ricardo, C. Bertoni-Ocampo, Z. Ibarra-Borja, R. Ramirez-Alarcon, D. Cruz-Delgado, H. Cruz-Ramirez, K. Garay-Palmett, and A. U’Ren, “Spectral tunability of two-photon states generated by spontaneous four-wave mixing: fibre tapering, temperature variation and longitudinal stress,” Quantum Sci. Technol. 2, 034015 (2017).
[Crossref]

U’Ren, A. B.

K. Zielnicki, K. Garay-Palmett, D. Cruz-Delgado, H. Cruz-Ramirez, M. F. O’Boyle, B. Fang, V. O. Lorenz, A. B. U’Ren, and P. G. Kwiat, “Joint spectral characterization of photon-pair sources,” J. Mod. Opt. 65, 1141–1160 (2018).
[Crossref]

K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14870–14886 (2007).
[Crossref] [PubMed]

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[Crossref]

Vaziri, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313 (2001).
[Crossref] [PubMed]

Vincetti, L.

Wadsworth, W. J.

Walmsley, I.

C. Law, I. Walmsley, and J. Eberly, “Continuous frequency entanglement: effective finite hilbert space and entropy control,” Phys. Rev. Lett. 84, 5304 (2000).
[Crossref] [PubMed]

Walmsley, I. A.

O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett. 102, 123603 (2009).
[Crossref] [PubMed]

K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14870–14886 (2007).
[Crossref] [PubMed]

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[Crossref]

Wang, X.-L.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref] [PubMed]

Wang, Y.

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313 (2001).
[Crossref] [PubMed]

Wong, G.

Wu, D.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref] [PubMed]

Zang, L. Y.

C. Söller, B. Brecht, P. J. Mosley, L. Y. Zang, A. Podlipensky, N. Y. Joly, P. S. J. Russell, and C. Silberhorn, “Bridging visible and telecom wavelengths with a single-mode broadband photon pair source,” Phys. Rev. A 81, 031801 (2010).
[Crossref]

Zaquine, I.

M. Barbier, I. Zaquine, and P. Delaye, “Spontaneous four-wave mixing in liquid-core fibers: towards fibered raman-free correlated photon sources,” New J. Phys. 17, 053031 (2015).
[Crossref]

Zeilinger, A.

M. Malik, M. Erhard, M. Huber, M. Krenn, R. Fickler, and A. Zeilinger, “Multi-photon entanglement in high dimensions,” Nat. Photonics 10, 248 (2016).
[Crossref]

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100× 100)-dimensional entangled quantum system,” Proc. Natl. Acad. Sci. U.S.A. 111, 6243–6247 (2014).
[Crossref]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313 (2001).
[Crossref] [PubMed]

Zeisberger, M.

M. Zeisberger, A. Hartung, and M. Schmidt, “Understanding dispersion of revolver-type anti-resonant hollow core fibers,” Fibers 6, 68 (2018).
[Crossref]

M. Zeisberger and M. A. Schmidt, “Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers,” Sci. Rep. 7, 11761 (2017).
[Crossref] [PubMed]

Zielnicki, K.

K. Zielnicki, K. Garay-Palmett, D. Cruz-Delgado, H. Cruz-Ramirez, M. F. O’Boyle, B. Fang, V. O. Lorenz, A. B. U’Ren, and P. G. Kwiat, “Joint spectral characterization of photon-pair sources,” J. Mod. Opt. 65, 1141–1160 (2018).
[Crossref]

Appl. Phys. B (1)

M. Azhar, N. Joly, J. Travers, and P. S. J. Russell, “Nonlinear optics in xe-filled hollow-core pcf in high pressure and supercritical regimes,” Appl. Phys. B 112, 457–460 (2013).
[Crossref]

Fibers (1)

M. Zeisberger, A. Hartung, and M. Schmidt, “Understanding dispersion of revolver-type anti-resonant hollow core fibers,” Fibers 6, 68 (2018).
[Crossref]

J. Chem. Phys. (1)

A. Hitachi, V. Chepel, M. I. Lopes, and V. N. Solovov, “New approach to the calculation of the refractive index of liquid and solid xenon,” J. Chem. Phys. 123, 234508 (2005).
[Crossref]

J. Mod. Opt. (2)

K. Zielnicki, K. Garay-Palmett, D. Cruz-Delgado, H. Cruz-Ramirez, M. F. O’Boyle, B. Fang, V. O. Lorenz, A. B. U’Ren, and P. G. Kwiat, “Joint spectral characterization of photon-pair sources,” J. Mod. Opt. 65, 1141–1160 (2018).
[Crossref]

F. Benabid and P. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58, 87–124 (2011).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Quant. Spectrosc. Radiat. Transf. (1)

A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Measurement of refractive indices of neon, argon, krypton and xenon in the 253.7–140.4 nm wavelength range. dispersion relations and estimated oscillator strengths of the resonance lines,” J. Quant. Spectrosc. Radiat. Transf. 25, 395–402 (1981).
[Crossref]

Laser Photonics Rev. (1)

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photonics Rev. 8, L76–L80 (2014).
[Crossref]

Nat. Comm. (1)

R. Kumar, J. R. Ong, M. Savanier, and S. Mookherjea, “Controlling the spectrum of photons generated on a silicon nanophotonic chip,” Nat. Comm. 5, 5489 (2014).
[Crossref]

Nat. Photonics (2)

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278 (2014).
[Crossref]

M. Malik, M. Erhard, M. Huber, M. Krenn, R. Fickler, and A. Zeilinger, “Multi-photon entanglement in high dimensions,” Nat. Photonics 10, 248 (2016).
[Crossref]

Nature (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313 (2001).
[Crossref] [PubMed]

New J. Phys. (1)

M. Barbier, I. Zaquine, and P. Delaye, “Spontaneous four-wave mixing in liquid-core fibers: towards fibered raman-free correlated photon sources,” New J. Phys. 17, 053031 (2015).
[Crossref]

Opt. Express (7)

M. Azhar, G. Wong, W. Chang, N. Joly, and P. S. J. Russell, “Raman-free nonlinear optical effects in high pressure gas-filled hollow core pcf,” Opt. Express 21, 4405–4410 (2013).
[Crossref] [PubMed]

K. Lynch-Klarup, E. Mondloch, M. Raymer, D. Arrestier, F. Gérôme, and F. Benabid, “Supercritical xenon-filled hollow-core photonic bandgap fiber,” Opt. Express 21, 13726–13732 (2013).
[Crossref] [PubMed]

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber part i: Arc curvature effect on confinement loss,” Opt. Express 21, 28597–28608 (2013).
[Crossref]

L. Vincetti, “Empirical formulas for calculating loss in hollow core tube lattice fibers,” Opt. Express 24, 10313–10325 (2016).
[Crossref] [PubMed]

W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. S. J. Russell, “Supercontinuum and four-wave mixing with q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12, 299–309 (2004).
[Crossref] [PubMed]

K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14870–14886 (2007).
[Crossref] [PubMed]

J. Notaros, J. Mower, M. Heuck, C. Lupo, N. C. Harris, G. R. Steinbrecher, D. Bunandar, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Programmable dispersion on a photonic integrated circuit for classical and quantum applications,” Opt. Express 25, 21275–21285 (2017).
[Crossref] [PubMed]

Opt. Lett. (1)

Optica (2)

Phys. Rev. A (3)

C. Söller, B. Brecht, P. J. Mosley, L. Y. Zang, A. Podlipensky, N. Y. Joly, P. S. J. Russell, and C. Silberhorn, “Bridging visible and telecom wavelengths with a single-mode broadband photon pair source,” Phys. Rev. A 81, 031801 (2010).
[Crossref]

M. Finger, N. Joly, P. S. J. Russell, and M. Chekhova, “Characterization and shaping of the time-frequency schmidt mode spectrum of bright twin beams generated in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. A 95, 053814 (2017).
[Crossref]

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[Crossref]

Phys. Rev. Lett. (7)

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[Crossref] [PubMed]

O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett. 102, 123603 (2009).
[Crossref] [PubMed]

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[Crossref] [PubMed]

C. Law, I. Walmsley, and J. Eberly, “Continuous frequency entanglement: effective finite hilbert space and entropy control,” Phys. Rev. Lett. 84, 5304 (2000).
[Crossref] [PubMed]

M. A. Finger, T. S. Iskhakov, N. Y. Joly, M. V. Chekhova, and P. S. J. Russell, “Raman-free, noble-gas-filled photonic-crystal fiber source for ultrafast, very bright twin-beam squeezed vacuum,” Phys. Rev. Lett. 115, 143602 (2015).
[Crossref] [PubMed]

N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett. 88, 127902 (2002).
[Crossref] [PubMed]

M. Liscidini and J. Sipe, “Stimulated emission tomography,” Phys. Rev. Lett. 111, 193602 (2013).
[Crossref] [PubMed]

Phys. Rev. X (1)

B. Brecht, D. V. Reddy, C. Silberhorn, and M. Raymer, “Photon temporal modes: a complete framework for quantum information science,” Phys. Rev. X 5, 041017 (2015).

Proc. Natl. Acad. Sci. U.S.A. (1)

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100× 100)-dimensional entangled quantum system,” Proc. Natl. Acad. Sci. U.S.A. 111, 6243–6247 (2014).
[Crossref]

Quantum Sci. Technol. (1)

E. Ortiz-Ricardo, C. Bertoni-Ocampo, Z. Ibarra-Borja, R. Ramirez-Alarcon, D. Cruz-Delgado, H. Cruz-Ramirez, K. Garay-Palmett, and A. U’Ren, “Spectral tunability of two-photon states generated by spontaneous four-wave mixing: fibre tapering, temperature variation and longitudinal stress,” Quantum Sci. Technol. 2, 034015 (2017).
[Crossref]

Sci. Rep. (1)

M. Zeisberger and M. A. Schmidt, “Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers,” Sci. Rep. 7, 11761 (2017).
[Crossref] [PubMed]

Science (1)

F. Couny, F. Benabid, P. Roberts, P. Light, and M. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 From left to right: absolute value of the energy conservation function α, the phase matching function ϕ and corresponding joint spectral amplitude in the case of a Gaussian pump in an unengineered medium.
Fig. 2
Fig. 2 (a) Fiber cross section (R = 20 μm, t 630 nm) and (b) its optical properties. The group-velocity dispersion (blue) is computed with the analytical model whereas the black curve gives the transmitted power for a fiber length of 6.5 m pumped with a super-continuum source. The circles give the position of the zero-dispersion wavelengths. The high peak in the transmission at 1064 nm is a measurement artifact due to the super-continuum pump.
Fig. 3
Fig. 3 Top: Effective index and bottom: inverse group velocity β1 in a IC fiber filled with Xenon (3.5 bar) with a radius of 22 μm for three different silica strut thickness. The Roman numbers to the different bands separated by discontinuities. The gray dashed lines correspond to the dispersion when neglecting the resonances (neglecting last term of Eq. (4)).
Fig. 4
Fig. 4 Top: Simulation comparing the FWM spectral density map with and without neglecting the effect of resonances in the dispersion. The parameters used are the one of our fiber (R = 22 μm, t = 630 nm, and P = 3.5 bar of Xe). The y-axis corresponds to the gap between pump and signal/idler frequencies Δ ω = | ω p ω s / i | . The color gives an additional information about the angle θ of the phase matching function. (S) and (S’) correspond to a single band FWM whereas (M1) and (M2) correspond to a multiband FWM. The black cross describes our experimental configuration ( λ p = 1030 nm). The grey region corresponds to FWM where signal and idler are generated too close to the pump wavelength. Note that the lines have been thickened for improved visibility. Bottom: Corresponding group velocity relations.
Fig. 5
Fig. 5 (a) Experimental setup for the stimulated emission tomography. HWP: half-wave plate, L: lens, DM: Dichroic Mirror. (b) Power generated at the signal frequency as a function of the seed power (blue dots) and of the pump power (red squares), measured at the fiber output. The solid lines correspond to a perfect linear and quadratic dependence (log scale). (c) Measured spatial profile at the fiber output at pump frequency.
Fig. 6
Fig. 6 Top, comparison between experimental (1st row) and simulated (2nd row) JSI for different fiber lengths when filled with 3.4 bar of Xe. The simulation takes into account a modulation in the Gaussian shape of the pump laser spectrum. Bottom, corresponding Schmidt number and Schmidt decomposition (assuming a flat phase).
Fig. 7
Fig. 7 Left: JSI as a function of gas pressure when filled with xenon and argon Right: Central position of the JSI idler wavelength as a function of gas pressure, for xenon (red circles) and argon (blue squares) and comparison with the simulation. The measurement range in shaded gray was limited by the tunability of the seed laser.

Tables (1)

Tables Icon

Table 1 Sets of conditions required to obtain either factorable or correlated pair states. Each set defines i) a relation between the group-velocities of pump, signal and idler photons which in turn determines the angle θ ii) a relation between medium length and pump bandwidth.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

| ψ p a i r = κ d ω s d ω i F ( ω s , ω i ) a ^ s ( ω s ) b ^ i ( ω i ) | 0 , 0
ϕ = sinc [ Δ k lin ( ω s , ω i ) L 2 ] × exp [ i Δ k lin ( ω s , ω i ) L 2 ] ,
Δ k lin ( ω s , ω i ) = ( ω s ω s 0 ) . ( β 1 p β 1 s ) + ( ω i ω i 0 ) . ( β 1 p β 1 i ) ,
| ψ p a i r = n = 0 c n A ^ n B ^ n | 0 , 0 ,
n eff = n g a s j m 1 , n 2 2 k 0 2 n g a s R 2 j m 1 , n 2 k 0 3 n g a s 2 R 3 . cot  [ Ψ ( t ) ] ϵ 1 . ϵ + 1 2 ,
n gaz ( λ , P , T ) 1 + ( n gaz 2 ( λ , P 0 , T 0 ) 1 ) . P P 0 . T 0 T

Metrics